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† Mälardalen University, Västerås, Sweden, {thomas.nolte,alesandro.papadopoulos}@mdu.se

Abstract—Distributed control systems are part of the often
invisible backbone of modern society that provides utility services
like water and electricity. Their uninterrupted operation is vital,
and unplanned stops due to failure can be expensive. Critical
devices, like controllers, are often duplicated to minimize the
service stop probability, with a secondary controller acting as a
backup to the primary. A seamless takeover requires that the
backup has the primary’s latest state, i.e., the primary has to
replicate its state to the backup. While this method ensures
high availability, it can be costly due to hardware doubling.
This work proposes a state replication solution that doesn’t
require the backup to store the primary state, separating state
storage from the backup function. Our replication approach
allows for more flexible controller redundancy deployments
since one controller can be a backup for multiple primaries
without being saturated by state replication data. Our main
contribution is the partible state replication approach, realized
with a distributed architecture utilizing a consensus algorithm.
A partial connectivity-tolerant consensus algorithm is also an
additional contribution.

I. INTRODUCTION

Distributed Control Systems (DCS) are the backbone of
many large-scale automation solutions, especially in critical
domains where unplanned downtime can have significant fi-
nancial and operational repercussions. Central to these systems
are controllers with redundancy mechanisms that minimize the
risk of unplanned downtime. Commonly, this redundancy is
achieved through hardware duplication, where one controller
operates as the active primary and another as a standby backup,
ready to take over in case of a primary failure. In a DCS
setting, controllers are often termed Distributed Controller
Nodes (DCN), a term interchangeable with ‘controller’ in this
paper.

With the advent of Industry 4.0, there’s been a notable tran-
sition from specialized fieldbuses to more flexible networked
solutions, enhancing system interconnectivity. Networked-
based architecture allows flexible redundancy schemes, such
as one backup for many primaries, a redundancy pattern
that increases fault tolerance with reduced hardware footprint.
However, seamless backup takeover requires state replication
from the primaries, a task the backup’s bandwidth could limit.

Central to the DCS is the DCN-driven control application,
which manages the physical process’s state. The application
samples the process state by reading values from input I/O
connected to sensors and determines appropriate actions based

This work is funded by The Knowledge Foundation (KKS), project ARRAY
and SACSys, and The Swedish Foundation for Strategic Research (SSF).

on these samples. These actions then dictate the output values
sent to the output I/O, interfacing with the real-world process.
Fig. 1 shows this sequence—often described as ‘copy-in,
execute, and copy-out.’

As mentioned, a primary DCN replicates the redundant
DCN control application state to the backup. The application
state data size depends on the application and can vary
between a few bytes to many megabytes.

Copy-in Execute Replicate State Copy-out

Application
state

Update state

Fig. 1: Typical control application task execution steps.
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Fig. 2: Naive state replication approach - the backup stores
every application’s state.

The latest state is needed to resume the operation of an
application seamlessly. Fig. 2 depicts a redundancy deploy-
ment with multiple primaries and one backup using a naive
state replication where all applications replicate their state to
a single backup (DCN 5). The network capacity of the backup
in terms of bandwidth becomes a potential bottleneck in such
a deployment.

The required bandwidth is the replicated state data size
multiplied by replication frequency. If A is the set of all
redundant applications, sdsi is the size of the state data, and
rti is the allowed state replication time for application i and
i ∈ A. Then, Eq. 1 shows the total bandwidth required, bw,
to replicate the states. If bw is larger than the bandwidth the
backup provides, the puzzle is not solvable with the naive
approach.

bw =

|A|∑
i=1

sdsi

(
1

rti

)
(1)

This paper aims to answer the question of how the aggregate
state replication data sent to the backup DCN can be reduced.
By reducing this traffic, the risk of redundancy arrangements
being limited due to backup network resources will also



decrease. To address this challenge, the paper proposes a new
method called Partible State Replication (PSR), which sepa-
rates the backup role from the recipient of primary application
states. With PSR, states can be replicated to any DCN, serving
as our direct contribution. Further enhancing fault tolerance,
we decentralize storage allocation handling for PSR, leading
to our secondary contribution: a consensus protocol targeting
a DCN cluster.

The paper is organized as follows: Sec. II reviews related
work. Sec. III provides an overview of PSR, elaborated upon
in Sec. IV. The consensus protocol is detailed in Sec. V, while
Sec. VI presents our implementation and evaluation findings.
Finally, we conclude and discuss future work in Sec. VII.

II. RELATED WORK

Passive standby redundancy is the prevailing DCN redun-
dancy mechanism [1], [2], [3]. Prior research has explored
diverse DCN redundancy concepts, including cloud-hosted
redundant controllers, orchestrator utilization, and architec-
tures centered on forming redundant solutions from non-
redundant Commercial Off-The-Shelf (COTS) Programmable
Logic Controllers (PLC) [4], [5], [6].

Achieving standby redundancy via hardware duplication is
costly, especially with high-end DCNs designed for redun-
dancy [6]. In contrast to the related work mentioned above,
we propose a partible synchronization between primary and
backup to enable a cost-effective redundancy. This partible
approach entails segregating state storage from the backup
role, further detailed in Sec. III.

The data replication research landscape is vast; examples
include deduplication and placement strategies [7], [8], [9].
Our contribution is a placement-enabling architecture aimed
at reducing the network resource load on backup nodes.
Exploring optimal placements for redundant DCN applications
remains an avenue for future research. Like our work, Bakhshi
et al. [10] provide a distributed persistent state storage archi-
tecture for containerized applications. However, their solution
replicates the states to all nodes, likely increasing bandwidth
demand.

PSR is a decentralized distributed system. Common in
fault-tolerant distributed systems is active replication using
Replicated State Machines (RSM) synchronized using a repli-
cated request log [11], [12]. Consensus protocols, like the
well-known Paxos, ensure ordered delivery of requests to the
RSMs [13], [14]. While influential, Paxos is intricate; hence,
Raft offers a simpler alternative [15]. Raft divides time into
terms, each with a dedicated leader. Another quite well-known
consensus protocol is Viewstamped Replication (VSR), which
employs views comparable to Raft’s terms [16], [17], [18].

Omni-Paxos, a variant of Paxos, addresses a shortcoming
in protocols like Raft, Paxos, and VSR, which can lose pro-
gression under partial connectivity scenarios [19]. An example
of partial connectivity is a three-peer system where only one
peer connects to all others, inhibiting direct communication
between the two remaining peers. This situation can hinder

progress in VSR and Raft. Omni-Paxos resolves this by im-
plementing Quorum-Connected (QC) as a criterion for leader
election. QC means a connection to a quorum of peers.

ZooKeeper Atomic Broadcast (ZAB) is a replication pro-
tocol that prioritizes performance by relaxing the guaranteed
order slightly [20], [21], [16].

PSR and the above protocols assume fail-stop semantics;
Castro et al. propose a practical version of a Byzantine fault-
tolerant protocol [22].

Industrial control systems—especially those necessitating
redundancy—prioritize high dependability [6]. Solutions tol-
erant to partial connectivity are more likely to show higher
availability. Also, as argued by Ongaro et al. [15], an algorithm
where there is one dedicated leader, and that leader is the
most up-to-date partaker, is easier to understand. Hence, with
inspiration from the abovementioned protocols, we propose a
consensus protocol that, like Omni-Paxos, is partial connectiv-
ity tolerant but built upon a VSR foundation instead of Paxos.
VSR, like Raft, ensures that the leader is up-to-date with the
latest entries after synchronization, and VSR deterministically
elects a leader and ensures that this is the only leader. We
call the proposed protocol Viewstamped Replication - Quorum
Connected (VSR-QC), further described in Sec. V.

III. PARTIBLE STATE REPLICATION

This section provides a high-level introduction and overview
of PSR, the problem addressed with PSR, the assumptions, and
requirements.

Overview: In the naive state replication method, the backup
is required to manage the aggregate bandwidth necessary
for synchronizing the state of every application for which it
serves as the backup DCN, as detailed in Eq. 1. PSR reduces
the state replication bandwidth required from a backup by
distributing the replicated state storage amongst the DCNs in
the DCN cluster. The DCN cluster is the set of DCNs that
forms the resource pool available for state replication. Fig. 3
demonstrates the distributed state storage facilitated by PSR,
where DCNs 1-4 function as primary DCNs, managing the
primary instances of the applications, while DCN 5 acts as a
backup for all these primaries.

 DCN 1 (P)

App 1 App 2 App 3 App 4 App 5

App 6 App 7

App 8 App 9

App 10State App 1-2

State App 3

State App 8-10

State App 4-5

State App 6-7

 DCN 5 (B) DCN 2 (P)  DCN 3 (P)  DCN 4 (P)

DCN Cluster

Fig. 3: An example of a PSR using DCN cluster of five DCNs.
DCN 1-4 host primary applications, and DCN 5 is backup
for DCN 1-4. All primary applications replicate their state
somewhere, but not all to the same DCN.

Assumptions: This work does not cover the allocation of
applications to the DCNs, nor the allocations of DCNs to



a DCN cluster. We assume applications reside in persistent
storage and start upon DCN startup. Additionally, the backup
is assumed to have adequate resources to maintain applications
on warm standby. I.e., allow the backup application instance
to detect a failure of the primary instance and resume the
primary state. The system operates under a non-Byzantine
failure-recovery semantic.

Requirements: Each primary application instance must
have a designated location for state storage, and each backup
instance needs to be able to access this storage. Efficient state
fetching and storing are crucial, especially in applications
with short cycle times. “Short” is relative, but shorter is
better for faster control loops, with 500 ms being a common
minimum [4].

PSR must avoid central mechanisms for pairing application
state storage. The cluster should operate independently and
recover from faults without a central server, enhancing fault
tolerance.

PSR must provide the capability to add (register) and
remove (deregister) applications for state storage, i.e., provide
dynamic properties. Active applications request and consume
available storage; removed applications return storage. Simi-
larly, DCNs register their storage capability upon activation
and update it upon change, ensuring they don’t become over-
allocated. In other words, DCNs report their available capacity,
applications declare their resource needs when registering, and
PSR tries to find a matching storage for each application.

IV. ARCHITECTURE

This section outlines the PSR architecture, detailing its
internal components and their interactions in key use cases.
Although we refer to DCN, this term is interchangeable
with any computing device. The focus is on storage and
state replication, but the described principles and mechanisms
can be applied to other scenarios, like allocating application
execution based on available computational resources.

A. Components

The PSR architecture comprises three main components,
as depicted in Fig. 4: (i) Application Redundancy Func-
tions (ARF), (ii) Partible State Replication Manager (PSRM),
and (ii) Cluster Consensus Manager (CCM). Sec. V provides a
detailed discussion of the CCM. For the context of this section,
it suffices to understand that the CCM provides consistent
replication across all DCNs via a consensus algorithm.

PSRM

State Storage Pair    
Registry (SSPR) 

ARF 
App. Failure

Detector (AFD)

Storage Registry      
(SR) 

App. State Storage
Pairer (ASSP)

App. State Replicator
(ASR)

SPP
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Info

Data replicated with
CCM

CCM
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App.
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Fig. 4: High-level architecture view of the PSR constituting
components.
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Fig. 5: Component interaction when (a) adding/removing an
application or (b) storage when a DCN startup.

The ARF offers redundancy functions essential for a redun-
dant application, including failure detection and state replica-
tion. It comprises two sub-components: the Application Failure
Detector (AFD) and the Application State Replicator (ASR).
AFD manages failure detection, where the backup’s AFD
monitors the primary and alerts in case of failure. ASR is
responsible for state replication, transferring the application
state to the designated storage, and enabling the backup
application to fetch the state to resume with the primary’s
latest state if needed.

The PSRM consists of four sub-components: the Appli-
cation Info Registry (AIR), the Storage Registry (SR), the
Application State Storage Pairer (ASSP), and the State Storage
Pair Registry (SSPR).

The AIR’s responsibility is threefold. The first is to gather
the local applications’ state replication needs. The second is
replicating the collected information in the cluster. The third
is to keep a registry of all the application’s state storage needs
in the cluster. See Fig. 5a.

The SR’s responsibility is also threefold, like AIR. SR is the
AIR counterpart for storage. It gathers the storage capability
provided by the local DCN, replicates this information in the
cluster, and holds a registry with all the available storage in
the cluster. See Fig. 5b.

The ASSP does the actual paring; it uses the application’s
state replication needs to find a state storage for each appli-
cation. ASSP uses the information in AIR and SR to do the
pairing. The ASSP instance running on the DCN with the
leader CCM does the pairing; see Sec. V.

The SSPR keeps the registry of application storage allo-
cation, i.e., the application-storage pair. The ASSP updates
the SSPR if any change in the requested or available storage
impacts the pairing made. Such as the adding or removing of
DCNs or applications. SSPR uses the CCM to replicate the
paring information in the cluster. See Fig. 5a.

B. Use cases

This section shows the interaction between the different
components for four key use cases.

1) Application start (registering/deregistering): A redun-
dant application registers itself with the ASR at startup (1);



DCN 3
(Designated backup)

PSRM
SSPR

DCN 1

ARF 

App. (P) 

(1)

AFDASR
PSRM

DCN 2

SSPR

ARF 
AFD

App. (B) 

ASR

App. State

(4)

(5)
(6)

(7) (2)

(3)(10)(8)
(9)
(11)

(a) Normal operation.

DCN 1
ARF 

AFD

DCN 2

DCN 3
(Designated backup)

ARF 
AFD

App. (B) 

ASR
App. State

(2)

(3)

PSRM
SSPR

App. (P) (1)

(4)(5)(10)

(6)
(7)

(8)

(9)

(b) Failing DCN scenario.

Fig. 6: Component interaction during (a) normal operation
and (b) failure of DCN running a primary instance of an
application.

see Fig. 5a. ASR registers the application information in
PSRM through AIR (2). AIR uses the CCM to replicate the
application information in the cluster (3). When the CCM has
successfully replicated application information in the cluster,
all AIR instances are informed and update their registry (4).
AIR notifies the ASSP when there is a change in the registered
applications (5). A change in the CCM leader state also
triggers ASSP to evaluate the current pairings. The ASSP
located with the CCM leader pairs the application with storage
located on a DCN other than the primary application. Once
ASSP has made a paring (or removed one), it asks SSPR to
update (6). SSPR requests the CCM to replicate the updated
pairing in the cluster (7). When the pairing information has
replicated in the cluster, the CCM in all DCNs informs the
SSPR of the changed pairing information (8).

2) DCN startup (storage registering/deregistering): A DCN
providing storage registers its information upon startup, as
shown in Fig. 5b. It informs the SR in PSRM (1), and the
SR replicates this storage information using CCM (2). CCM
ensures all SR instances are updated (3). When SR detects
a change in information, it notifies ASSP (4). If the storage
update requires a change in the application state storage
pairing, ASSP in the DCN with the leader CCM updates and
passes this information to SSPR (5). SSPR then replicates this
pairing across the cluster using CCM (6), which distributes
the updated pairing to SSPR on all DCNs (7).

An alternative scenario occurs when storage becomes un-
available, triggering ASR to mark the storage as unavailable,
leading ASSP to reassign alternative storage to the impacted
application.

3) Normal operation: Fig. 6a illustrates the standard oper-
ation process. The application communicates its status to the
AFD (1). The AFD in DCN 1 then sends a heartbeat to its
backup counterpart in DCN 3 (2). As long as the AFD in
DCN 3 receives confirmation that DCN 1’s primary instance
is operational (3), the backup application in DCN 3 remains
on warm standby. The primary application instance replicates
its state through ASR (4), which retrieves storage information
from SSPR (5-6) and then stores the application state data, for

Follower Electing Leader

Startup

Leader failure detected or
ElectionStart received

Election won

QC lost or
ElectionStart recived

Leader
announced

Election tmo -
restart election

Fig. 7: The VSR-QC state machine.

example, in DCN 2 (7). The ASR in the backup continuously
verifies access to the storage and the validity of the state data,
retrieving storage location from SSPR (8-9) and checking its
accessibility and data validity (10). Any change in storage
accessibility is reported to PSRM and SR (11), initiating the
process shown in Fig. 5b. Both primary and backup ASRs
perform this accessibility check.

4) DCN failure: Fig. 6b depicts a DCN failure and the
subsequent actions by the backup application instance in
DCN 3 to take the primary role. If the primary application
instance fails to trigger the AFD, the warm standby application
in DCN 3 becomes the primary (1-4). Upon assuming the
primary role (4), it requests the latest state from the ASR
in ARF (5). The ASR then inquires about SSPR for the
storage location (6-7), retrieves the latest state from the storage
(e.g., DCN 2) (8-9), and supplies the retrieved state to the
application (10).

V. CCM - CLUSTER CONSENSUS MANAGER

PSR utilizes CCM for cluster consensus, employing VSR-
QC as its consensus protocol. This section details VSR-QC
and outlines the CCM sub-components for implementing CCM
with VSR-QC.

A. VSR-QC protocol

VSR-QC, influenced by VSR [18], Raft [15], and Omni-
Paxos [19], operates under a non-Byzantine failure-recovery
model. It assumes protocol instances don’t continuously crash
and recover. Messages may be lost, but the system is generally
synchronous, following a partially synchronous model. When
describing the protocol, we use the term VSR-QC instance
rather than server, node, or DCN since VSR-QC can run
multiple instances per node / DCN.

Like Raft, a VSR-QC instance can be in either of the three
states Follower, Electing, or Leader, shown in Fig. 7.

The leader is the VSR-QC instance in state Leader and it
is the driver of the replication. The leader is elected from the
set of followers. A follower can only become a leader if it is
QC and elected by a majority. Each instance has a unique and
persistently stored identification, id.

Followers are VSR-QC instances in state Follower. Each
VSR-QC instance maintains its own instance of the replicated
log. The replicated log is an ordered list of replicated requests.
The log is orderly replicated to all functioning VSR-QC
instances in the replica group. The replica group is the set of
VSR-QC instances forming the distributed replication. VSR-
QC as VSR, Raft, and Paxos tolerate f faulty VSR-QC
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Fig. 8: Normal replication flow of VSR-QC.

instances in the replica group. Hence, 2f +1 is the minimum
replica group size to be f fault tolerant.

VSR-QC utilizes the view concept [18], [15]. A view is
an integer, V iewNumber, incremented each time a leader
election process is started.

The protocol’s functionality is explained through four sce-
narios: (i) normal operation, (ii) leader election, (iii) synchro-
nization, and (iv) failure detection, concluded with a brief
discussion on configuration.

1) Normal operation: The normal operation of VSR-QC
is similar to VSR [18], illustrated in Fig. 8 and summarized
below.

A DCN (or other client) issues a request by sending
a
〈
Request, rid,msg

〉
message to the leader (1). Step 3 in

Fig. 5a is a PSR request example. The rid is a tuple comprising
the client ID and a request number, forming a unique request
ID, rid. The rid prevents double processing of requests in case
of a leader failure while a request is uncompleted. The payload
of the request is msg. Unprocessed requests, identified by rid,
prompt the leader to dispatch a

〈
Prepare, v, n, r,m

〉
message

to all followers (2), where v is the current V iewNumber,
n the OpNumber, and r and m are the rid and msg. The
OpNumber is an integer incremented by the leader for each
finalized request.

Followers process Prepare messages sequentially
in OpNumber order. Upon having all prior log entries,
a follower adds the new entry, stores the rid, and sends
a
〈
PrepareOK, v, n

〉
back to the leader. If preceding entries

are missing, the follower attempts synchronization (see
Sec. V-A3), withholding PrepareOK until all previous and
current entries are stored in the log.

The leader waits for replies from f followers with
PrepareOK (f followers plus the leader constitute a ma-
jority). After receiving at least f PrepareOK, the request is
stored in the replicated log of a majority, and the leader issues
a commit with the

〈
Commit, v, k

〉
message (4), where k is

the CommitNumber. The CommitNumber is the highest
OpNumber that has been committed. Committed entries can
not be changed or removed.

After sending the Commit, the leader performs the upcall
to the distributed application (5). The upcall is the term for
passing the request to the distributed application layer, PSR,
in our case, exemplified in step 4 in Fig. 5a. The followers
issue the upcall when they receive the Commit if all previous
entries are committed.
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CC=2

Follower 3
CC=2

Detection Election
start
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(4)

(4)
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(6)
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Fig. 9: Leader election.

2) Leader election: As mentioned in Sec. II, VSR does not
handle partial connectivity because it requires QC voters [18],
[19]. VSR-QC is partial connection tolerant because VSR-QC
uses QC as leader criteria, but it does not require that the
voters are QC, similar to Omni-Paxos [19].

The failure detection catches leader failure and determines
which instances are QC or not; see Sec. V-A4. Fig. 9 shows
a leader election sequence that starts with the failure of the
current leader (1). Eventually, the failed leader is detected by
another VSR-QC instance, in this case, Follower 1 (2).

Follower 1 detects the failed leader and initiates an election
by entering the Electing state, increments its V iewNumber,
sends an

〈
ElectionStart, v

〉
message to all other VSR-

QC instances (3), and starts the election timeout timer. The
ElectionStart message contains v set to the current (just
incremented) V iewNumber of the VSR-QC instance.

Follower 2 receives the ElectionStart message from Fol-
lower 1 and enters the Electing state if the received v is
higher than V iewNumber and assigns v to its V iewNumber.
Follower 2 also sends an ElectionStart message to all other
instances when entering the Electing state and starts the
election period timer.

Suppose no leader has presented itself directly via the
ElectionComplete message or indirectly via the heartbeat. In
that case, when the election period timer expires, the election
process restarts by incrementing the V iewNumber again and
re-entering the Electing state.

If a new ElectionStart message with v higher than
V iewNumber is received before the election period has
ended, the election period restarts and the above-described
actions repeat.

In Electing, VSR-QC instances cast one vote per election
period (V iewNumber) using

〈
ElectionV ote, lid, v, n, k

〉
,

addressed to the prospective new leader. This message includes
lid (the prospective leader’s id), V iewNumber, OpNumber,
and CommitNumber, as depicted in step (4) in Fig. 9.

Voting is based on the Connectivity Count (cc), updated
by the failure detection; see Sec. V-A4. The cc reflects the
number of connected VSR-QC instances. Votes are given to
the instance with the highest cc over the QC limit. In case of
equal cc values, the tie is broken by id, favoring the lowest
id.

A VSR-QC instance receiving an ElectionV ote message
enters the Electing state if the received v is higher than
V iewNumber and performs the above-described action when
entering state Electing. In state Electing it counts all



ElectionV ote messages with v = V iewNumber received
within the election period as valid votes. If it gets an
ElectionV ote with a v higher than its V iewNumber, it re-
enters Electing, resets the vote count, restarts the election
timer, and updates its V iewNumber to v.

A VSR-QC instance in Electing that receives f + 1
valid votes accepts that it is the new leader and enters the
Leader state and announces itself as the new leader by sending
out a

〈
ElectionComplete, lid, v, n, k

〉
message where lid

is id, v is V iewNumber, n the OpNumber, and k the
CommitNumber. Fig. 9 (4) shows Follower 1 obtaining
the majority of votes, becoming the new leader, and mak-
ing the announcement with the ElectionComplete message
(5). The other VSR-QC instance in state Electing enters
the Follower state when receiving ElectionComplete, or a
Heartbeat indicating a leader, with a v equal or higher than
V iewNumber.

A leader that loses QC leaves the leader role and initiates
a new election by sending the ElectionStart message; see
Fig. 7.

The new leader must ensure it has the latest log entries,
which it does by requesting the entries it is missing, if
any, from the most up-to-date follower. The n k in the
ElectionV ote message has informed the leader about the
most up-to-date follower, and it is to that follower the leader
requests a synchronization, step (6) and (7) in Fig. 9. Syn-
chronization is further described in Sec. V-A3.

3) Synchronization: VSR-QC requires no persistent storage
to store the log; it assumes that a majority never fails at
the same time. However, if desired, VSR-QC, as the VSR
inspiration, can be modified to use persistent storage and
reduce the synchronization needed upon recovery [18].

This section describes synchronization steps to bring a VSR-
QC instance that, for whatever reason, has become outdated
in synchronization again. We divided the synchronization
description into three steps: (i) detection, (ii) follower syn-
chronization, and (iii) (newly elected) leader synchronization.

A follower detects that it is not synchronized when receiving
Prepare or a Heartbeat message with a v and n higher
than the follower’s V iewNumber and OpNumber. A leader
detects lagging when it has received a majority of votes by
comparing the v and n in the received ElectionV ote message
with its V iewNumber and OpNumber.

A follower that is out of synchronization uses
the

〈
SyncMeReq, i

〉
message where i is the id

of the follower. The receiving VSR-QC instance,
regardless of its current role, will reply with the〈
SyncMeReply, v, n, k, l

〉
message, where v,n,k, and l

is the V iewNumber, OpNumber, CommitNumber, and
log entries of VSR-QC instance i.

The leader is the most updated VSR-QC instance since it
is the designated receiver of client requests and is the driver
of advancement. However, a new leader might not possess
the latest entries immediately after the election. Therefore, as
described in Sec. V-A2, a newly elected leader’s first step is
synchronizing itself with the latest entries. The information in

the ElectionV ote concludes which is the most updated VSR-
QC instance in the majority. The leader sends a SyncMeReq
message to one of the most updated VSR-QC instances to
retrieve the log and perform any missing commits and upcalls.
After synchronization completion, the leader starts accepting
and processing client requests.

Do note there are several ways to make the synchronization
handling more efficient; some are discussed in the VSR
description [18].

4) Failure detection: All the VSR-QC instances send
Heartbeat to one another. A concrete realization example of
such an exchange is a multicast group dedicated to failure
detection within the replica group.

The
〈
Heartbeat, v, n, k, i, p, c

〉
message conveys each

instance’s replication and connectivity status. Replica-
tion status includes V iewNumber(v), OpNumber(n),
CommitNumber(k), instance id (i), and the leader’s id (p),
with p set to zero if no leader is identified. Hence, this message
gossips the leader’s identity. Connectivity status is represented
by c, indicating which instances are connected in a simple
bit-field format, where each bit corresponds to a VSR-QC
instance.

Based on these heartbeats, VSR-QC instances update their
Connectivity Count (cc). Only QC followers can start elec-
tions, and votes are given to the highest cc, averting continuous
re-elections. The leader will relinquish its role if it loses QC
status.

5) Configuration: Adding and removing VSR-QC instances
to the replica group is not covered for page conserva-
tion reasons. We envision that the mechanisms VSR uses
for adding/removing members are suitable for VSR-QC as
well [18].

B. Components

Fig. 10 displays the components of CCM, with the CCM
Service Abstraction (CSA) acting as an interface. CSA’s role
is to provide an easy-to-use interface to the replicated services
like PSR and abstract the underlying consensus protocol.
CSA functions include issuing requests, upcall registration,
and leader checks. CCM’s architecture, as shown in Fig. 10,
comprises four sub-components: (i) Leader Elector (LE), (ii)
Failure Detector (FD), (iii) Group Member Manager (GMM),
and (iv) Log Replicator (LR). LE and FD handle leader
election and failure detection (Sec. V-A2 and V-A4), GMM
manages and updates replica group membership, and LR,
detailed in Sec. V-A1, manages replication, performs upcalls
for new log entries, and handles synchronization.

VI. IMPLEMENTATION, EXECUTION AND RESULT

A. Implementation

We developed a PSR prototype for VxWorks based on the
architecture described in the previous sections. The prototype
is available on GitHub [23].

The prototype version of the ASSP application-storage pair-
ing algorithm pairs applications with available storage based
on the sequence of their registration. The primary goal of the
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algorithm is to find storage on another DCN than the DCN
hosting the primary application instance; the secondary goal is
to find the least utilized storage. The prototype version pairs
an application requiring storage with the first found unused
storage. If no unused storage exists, it searches for the first
storage used by only one other application. If that fails, no
storage exists for the application. The exploration of more
advanced pairing algorithms is future work.

The ARF implementation of the AFD uses a UDP-based
heartbeat message protocol. The heartbeat messages are sent
on requests from the application. The ASR state replication
uses a UDP-based message encapsulating the most recent state
as reported by the application. This message is directed to the
state-storing DCN, exemplified by DCN 2 in Fig. 6a. The ASR
is responsible for operating a storage server on the storage
DCN. This server receives the incoming state messages and
preserves the most recent within RAM.

The prototype includes a Test Application (TAPP), a re-
dundant application that can function as either primary or
backup. We utilize the TAPP to assess PSR’s performance and
to draw comparisons with the naive state replication approach
depicted in Fig. 2. In its backup role, the TAPP remains in
warm standby, meaning it’s loaded into RAM and primed to
switch to the primary role when the AFD detects a failure
of the original primary instance of TAPP. The primary TAPP
instance requests that the AFD send heartbeats and the ASR
transmit its latest state to the storage. The state includes a
sequence number that is incremented in each iteration. The
state size and period time are adjustable.

When a TAPP instance takes the primary role, it requests
the latest state using its local ASR. The local ASR, in turn,
sends a state request message to the ASR on the storage DCN
to obtain the most recent state, as illustrated in Fig. 6b.

To conduct failover testing, the primary TAPP instance is in-
structed to cease operation, which prompts the backup instance
to assume the primary role upon the AFD heartbeat timing
out. In transitioning to the primary role, the TAPP anticipates a
specific state from the ARF. Knowing the sequence number of
the latest state before a commanded shutdown, the TAPP can
confirm whether it has successfully retrieved the most recent
state.

B. Setup and Execution

We utilize virtual machines running on VMware 17 as
DCNs. Each virtual machine has one CPU, one core, and
two GB of RAM. These machines are hosted on a Lenovo
ThinkPad P15, featuring a 2.7 GHz Intel I7 processor and 48

GB of RAM. The bandwidth of the virtual network interface
connecting the virtual machines is limited to 1024 Kbps. This
limitation is imposed to make evaluations feasible in a virtual-
ized environment without overloading the host computer. On
these virtual DCNs, we run the PSR prototype, including the
TAPP, on VxWorks 21.07.

Our experiments involve five different redundancy patterns:
(i) one primary and one backup (1p), (ii) two primaries and
one backup (2p), (iii) three primaries and one backup (3p),
(iv) four primaries and one backup (4p), and (v) five primaries
and one backup (5p). The primaries run the TAPP instance in
the primary mode, while the backups host the backup TAPP,
as depicted in Fig. 3. In the 1p configuration, there are four
TAPP instances: two running as primaries on the primary DCN
and two as warm standby backups. This pattern continues,
resulting in 8 instances for 2p, 12 for 3p, 16 for 4p, and so
on.

Each TAPP instance operates on a 40-millisecond cycle,
sending a heartbeat (via AFD) and replicating its state (using
ASR). The volume of state data replicated in each cycle is
adjustable. We begin our tests with 128 bytes of state data,
increasing it in 128-byte increments until network resource
overutilization on one or more DCNs causes the test to fail.
At each increment, we simulate a controlled failure of the
TAPP instance on DCN 1 by commanding it to stop.

A test is considered to have failed when a backup TAPP
instance erroneously transitions to the primary role due to
AFD not receiving heartbeats – a consequence of network
congestion from state replication traffic. Similarly, a test fails
if a triggered failure doesn’t result in the backup retrieving the
latest state. We define the point at which tests begin to fail as
the ‘failure threshold.’

In our tests, we run the system in PSR mode, employing
PSR for state replication. Each participating virtual DCN
contributes storage for two TAPP instances in this mode.
Therefore, in the 1p configuration, two DCNs provide storage.
However, for fault tolerance, the primary can only use storage
on the backup DCN, not on itself. In the 2p setup, three DCNs
offer storage, assigned to TAPP by PSR, demonstrating the
concept illustrated in Fig. 3. In contrast, the naive mode only
uses the backup for storage, as shown in Fig. 2.

C. Result

The graphs presented in Fig 11 illustrate the bandwidth
usage for state replication under functioning redundancy, the
TAPP state replication increment before the failure threshold.
In other words, the graphs highlight the point at which an
additional 128-byte increment in the TAPP state data usage
leads to system failure. Thus, these graphs offer insights
into the differing aspects of the state replication bandwidth
threshold for both naive state replication and PSR.

For the 1p configuration, the state replication threshold
is identical between PSR and the naive approach. This is
because, in a 1p setup, the naive and PSR methods replicate the
state to the only backup available. However, as illustrated in
Fig. 11a, the bandwidth available to each DCN decreases as we
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Fig. 11: Graphs showing the threshold bandwidth utilization per DCN, application, and the total state replication bandwidth.

expand the configuration using the naive approach. In contrast,
with PSR, the bandwidth remains consistent regardless of the
number of DCNs since each added DCN also contributes
storage, as shown in Fig. 11a.

Fig. 11b displays the bandwidth utilization per application.
In our experiment, we consistently deployed two TAPP in-
stances per DCN, meaning the threshold bandwidth utilization
for each application is effectively half that of the DCN.

Finally, Fig. 11c depicts the total bandwidth used for state
replication across all applications in the various configurations.
Notably, the total bandwidth usage for PSR increases as
more configurations are added. This increase is attributed to
each newly added DCN hosting both the TAPP and provides
storage. Conversely, in the naive approach, where only the
backup provides storage, the total bandwidth usage slightly
decreases. This decrease is likely due to the increased number
of heartbeat messages and overhead.

VII. CONCLUSION AND FUTURE WORK

This paper introduced an architecture that separates state
replication storage from backup in a decentralized system, em-
ploying the VSR-QC consensus protocol to maintain consis-
tency. We evaluated the state replication capacity, comparing
PSR with naive state replication methods. Our results show
that PSR significantly increases the feasible state replication
data volume, enabling a single DCN to back up multiple
primaries.

Future research goals include bounded, low-latency, state
data retrieval mechanisms, and reliability modeling to find
cost-efficient deployments for real applications that satisfy
given reliability targets. Another future research possibility
is optimizing application and state storage pairing, given
available resources and response time requirements. A last
example of future research is investigating the integration of
PSR in a context where a system like Kubernetes orchestrates
the DCNs and applications.
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