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We propose CRYSTAL framework for automated cybersecurity assurance of cyber-physical sys-
tems (CPS) at design-time and runtime. We build attack models and apply formal verification to 
recognize potential attacks that may lead to security violations. We focus on both communica-
tion and computation in designing the attack models. We build a monitor to check and manage 
security at runtime and use a reference model, called Tiny Digital Twin, in detecting attacks. The 
Tiny Digital Twin is an abstract behavioral model that is automatically derived from the state 
space generated by model checking during design-time. Using CRYSTAL, we are able to systemat-
ically model and check complex coordinated attacks. In this paper we discuss the applicability of 
CRYSTAL in security analysis and attack detection for different case studies, Temperature Control 
System (TCS), Pneumatic Control System (PCS), and Secure Water Treatment System (SWaT). We 
provide a detailed description of the framework and explain how it works in different cases.

1. Introduction

Cybersecurity is considered as one of the highest priority targets in global policy and national security plans. There are increas-
ingly challenging cybersecurity issues for governments and large companies in various sectors such as water supply system, energy 
production, transportation and smart machines. Because of rapid digitalization, a majority of manufacturing systems are no longer 
closed systems and are becoming systems with increasingly networked and cloud-based connectivity. The attack surface is hence 
expanded from known threats and known devices to additional security threats of new devices, protocols, and workflows.

Security assurance is a non-stop process. Companies need to continually assess their cybersecurity posture to ensure they are up 
to date with the latest security measures. We need to prepare our organizations and industrial companies by using proper tools, 
solutions and methodologies, both at the design phase and the operational phase of the system, and provide well-formed adaptation 
strategies to withstand failures. Formal methods provide an approach to verifying software systems, which can be particularly useful 
in the field of cybersecurity. By using formal methods, one can create a precise mathematical model of the system at design-time, 
which can be used to identify potential vulnerabilities, detect and diagnose flaws and errors, and verify that the system is secure and 
will behave as intended. Runtime verification and monitoring can also be used for resilience against cyberattacks by preventing and 
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detecting cyberattacks and therefore can help in improving reaction time, reducing downtime, and ultimately saving money in the 
case of an attack.

Cyber-Physical Systems (CPS) provide an outstanding foundation for digitalization and building advanced industrial systems 
and applications. CPSs are systems that integrate physical, computational, and communication subsystems. In a CPS, sensors are 
responsible for collecting data on the state of a physical process and submitting them to the controllers. Controllers control the 
physical process using actuators. These systems are used in a wide variety of safety-critical applications, from automotive and 
avionic systems to robotic surgery and smart grids.

In this work, we give a thorough overview of the CRYSTAL1 framework which can be used for building safe and secure Cyber-
Physical Systems. The main building blocks of CRYSTAL are introduced in [1] and [2]. The cornerstone of CRYSTAL is its architecture 
based on the MAPE-K2 feedback loop [3] where we have components to monitor the system, analyze the behavior of the system, 
plan accordingly, and actuate necessary actions.

In CRYSTAL, we build an actor-based model of the system and the attack models, perform security analysis at design-time using 
formal verification in the form of model checking, and find the attacks that may jeopardize the system safety and security [1]. Then, 
abstract the state space generated by model checking to create an abstract behavioral model (Tiny Digital Twin) of the system, and 
use it at runtime [2]. Based on our experience, the actor model matches the domain of reactive and Cyber-Physical Systems well 
and hence the modeling becomes natural in these domains [4–6]. Using CRYSTAL, we are able to systematically model and check 
complex coordinated attacks. In the following, we elaborate details of our framework, and explain the stages of the security process 
in various CPS applications.
CRYSTAL Contributions. CRYSTAL is designed to complement, not to replace, an industrial cybersecurity program. It provides the 
industrial system development with an opportunity to identify areas where existing processes can be strengthened. The highlight 
of CRYSTAL is addressing cybersecurity concerns by deploying a monitor which uses a reference model of the system for attack 
detection in the feedback control loops of CPSs. The style is in the form of MAPE-K architecture, where the reference model acts like 
model@runtime for analysis and planning. A formally verified actor model is used to build the reference model as a Tiny Digital 
Twin. By cross-referencing the actual behavior of the system against the Tiny Digital Twin, we can identify a good percentage of 
discrepancies and take appropriate corrective measures to ensure the reliability and security of the system. We use a concept of 
logical time, and a technique for logical and physical time alignment to be able to monitor a CPS.

We use Timed Rebeca as an actor-based modeling language supported by a model checking tool [7,8] to model the behavior of 
the cyber-physical systems. We use Lingua Franca (LF) [9] to build an executable model of the system. LF is a programming language 
based on the Reactor model of computation [10] for building CPSs. LF deploys a mechanism to synchronize the logical time (defined 
in the Timed Rebeca model) with the physical time in the system.

The CRYSTAL framework is developed incrementally. In [1], we start by developing a Timed Rebeca model from the system 
specification and verify the safety and security requirements using Afra model checker [11]. In [1], we show how to model the 
components of Cyber-Physical Systems as actors in Timed Rebeca, and define interactions between the components as messages 
passed between the actors. We build attack models based on STRIDE threat modeling [12] as the guideline for defining attack 
scenarios. We then show how to verify the safety and security requirements using Afra model checker [11]. We use the Secure Water 
Treatment System (SWaT) to show the modeling and formal verification. In [2], we propose a monitor that uses a Tiny Digital Twin 
to detect false sensor data and faulty control commands. The Tiny Digital Twin is in the form of a state transition model. The monitor 
checks whether the observed data and commands are consistent with the transitions in the Tiny Digital Twin. In [13], we provide a 
formal foundation for mapping the state space of a Timed Rebeca model generated by Afra to the input of mCRL2 ltsconvert tool [14], 
by which we abstract away non-observable actions from the state space while preserving trace equivalence. In [2] and [13] we use 
the Temperature Control System (TCS) case study to demonstrate the methods. In this paper, we provide a complete overview of 
CRYSTAL, elaborating more on the runtime monitoring phase, and highlighting the details of the systems under study, attacks that 
can be detected. Moreover, the Pneumatic Control System is presented in this paper as an example where the distributed controllers 
communicating through insecure channels.

The CRYSTAL framework comprises modeling and programming for constructing cyber-physical systems, security analysis 
through model checking, and runtime monitoring. We have designed three stages that can be used to enhance cyber-resilience 
in CPS applications.

• We use the actor-based language, Timed Rebeca, for modeling and a mapping technique to generate executable code from the 
model.

• We build attack models and define security and safety properties, and we use them in model checking.
• We create a Tiny Digital Twin; for that, we map the state space generated by the model checker into a format that can be the 

input of the mCRL2 ltsconvert tool, and then abstract it using the reduction techniques of the tool.
• We perform runtime monitoring to detect attacks by checking the consistency of the behavior of the operational system with the 

Tiny Digital Twin.

1 CRYSTAL stands for CybeR-physical sYstem SecuriTy AnaLysis.
2

2 Monitor, Analyze, Plan, Execute - Knowledeg-base.
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Fig. 1. Three stages in the CRYSTAL framework. In stage (a), we build a Timed Rebeca model of the system. Then we map the Timed Rebeca model to an LF executable 
code. This LF code is used in simulation when checking the performance of the monitor at runtime (in stage (c)). In stage (b), we build a Timed Rebeca model that is 
augmented with attacks to find potential vulnerable points at design-time. We check the counter-examples generated by Afra to identify the trace of events leading 
to a failure. To build the Tiny Digital Twin, the state space is generated where none of the attacks are activated in the Timed Rebeca model. We use our ltscast tool 
to map the state space to the input format of ltsconvert tool of mCRL2. Then, the Tiny Digital Twin is built using ltsconvert tool. In stage (c), the monitor (written in 
LF) uses the Tiny Digital Twin of the system to detect cyberattacks at runtime.

We demonstrate the details of the methodology to detect attacks using a Temperature Control System (TCS), a Pneumatic Control 
System (PCS), and a Secure Water Treatment System (SWaT). The PCS and SWaT systems are distributed control systems whereas 
TCS is a centralized control system. Aligning logical and physical time, enables us to perform the monitoring at runtime. Relying 
only on the logical times defined in the model is not a realistic assumption at runtime. We model both periodic and trigger sensors, 
which are two different types of sensors used in PCS and TCS. The use of different sensor types in PCS and TCS systems highlights 
the importance of adapting the modeling approach to the specific characteristics of each system. We show how we can model the 
impact of the environment on the TCS system functionality by using nondeterministic assignment for state variables. We highlight 
the multiple incoming connections and how we use priorities for events in the development of the SWaT case study in LF. We 
demonstrate the detection capability of the monitor and discuss the detection rate for each case study while enumerating possible 
attack scenarios.

Outline. We describe CRYSTAL framework and methodology in Section 2. We introduce Timed Rebeca and Lingua Franca in 
Section 3. We present our approach for modeling system and defining attacks in Section 4. In Sections 6, 5 and 7, we follow 
CRYSTAL methodology on three case studies and show the results of security analysis at both the design-time and runtime. Section 8
covers the related works. The conclusion of this work and future directions are discussed in Section 9.

2. The framework

We realize three stages in the CRYSTAL framework: modeling and code generation, design-time security analysis, and runtime 
monitoring, as shown in Fig. 1.
Modeling and code generation. We build a Timed Rebeca model [15,8] to represent the behavior of a CPS. The approach we use 
for creating the Timed Rebeca model depends on the system. We may be building a system from scratch, or we may be dealing with 
an already existing system. We may start from the specification documents of the system and UML diagrams, or if the company is 
using Microsoft STRIDE [12] then we may have the Date Flow Diagrams (DFD) of the system. In the model it is enough to capture 
the main functionalities and behavior of the system in order to produce the correct output based on the inputs. More discussion on 
this topic may be found in [5,16,6].

We use LF to develop an executable code for a CPS. In LF, you may choose a target language like C or C++ for writing the body 
of reactors. Reactors are very close to Rebeca in syntax and semantics as shown in [17], and this enables us to effectively generate an 
executable target code from Timed Rebeca models. In the mapping between Timed Rebeca and LF, each reactor in LF is mapped to 
a reactive class, and each reaction is mapped to a message server in Rebeca. In LF we build the bindings between inputs and outputs 
explicitly in the connection part of the program. For the timing issues, there is an after keyword in LF that has the same semantics as 
in Timed Rebeca.
Design-time security analysis. To check the security vulnerabilities at design-time we need attack models to be combined with the 
system model. The attack scenarios can be built based on the referenced guidelines in the security domain, e.g., STRIDE threat model. 
The attack models mimic real cyber and physical attacks and target the assets of the system to compromise their security properties 
3

or intended functionally, i.e., attacks on communication and components to achieve communication outage or reveal secret data.
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We write the correctness properties from system security requirements, and feed both the combined model of the system and 
attacks, and the property file to the Rebeca model checking tool (Afra) [11] in order to evaluate the system tolerance against 
the attacks. We use the state space which is the output of Afra to build an abstract behavioral model of the system. The abstract 
behavioral model is used as the Tiny Digital Twin to help us in detecting the attacks in the runtime monitoring. We use the mCRL2 
ltsconvert tool [14] to generate the Tiny Digital Twin while preserving the trace equivalency.
Runtime monitoring. During operational phase of the system, the Tiny Digital Twin is used within a monitor to detect cyberattacks 
on sensor data and control commands, and identify compromised components such as controllers. The monitor is strategically 
positioned between the control part and the sensor and actuator components in CPS applications as shown in Fig. 1.(c). It observes 
the visible inputs and outputs of the controllers, traverses state transitions in the Tiny Digital Twin, and detects any misbehavior 
occurring during system operation. To protect the system against attacks and prevent damage, the monitor drops control commands 
that are not consistent with the state transitions in the Tiny Digital Twin. Using the Tiny Digital Twin, and the knowledge of the 
correct and secure functionality of the system, enables the monitor to validate the sequence of actions and the completion time of 
processes. The monitor is developed using LF language and has the same functionality in different CPS applications. It adjusts the 
input/output ports based on the number of sensors and actuators of the system.

3. Background: Timed Rebeca and Lingua Franca

In this section, we provide an overview on Timed Rebeca [7], and describe Lingua Franca programming language [18].
Timed Rebeca. Rebeca (Reactive Object Language) [19] is an actor-based language for modeling and formal verification of con-
current and distributed systems. An actor, called rebec (reactive Object), is an instance of a reactive class. Rebecs communicate via 
asynchronous message passing, which is non-blocking for both sender and receiver. Timed Rebeca, as an extension of Rebeca, has 
a notion of logical time. The logical time is local times of actors synchronized among all actors, that can be seen as a global time. 
Each actor has a set of variables that stores values, a set of methods (called message servers) and a message bag to store the received 
messages along with their arrival times and their deadlines. The actor takes a message with the least arrival time from its bag and 
executes the corresponding message server. The actor can change the values of its variables and send messages to its known actors

while executing a message server. In Timed Rebeca, the primitives delay and after are used to model the progress of time while 
executing a message server.

Timed Rebeca is supported by Afra model checker tool [11]. Afra generates the state space of the Timed Rebeca model, in which 
states contain the local state of all actors and the logical time, and transitions represent three types of possible actions including 
taking a message from the message bag, executing the corresponding message server of the enabled actor, and progressing the logical 
time of the model. An approach based on a shift-equivalence relation is proposed in [8] to make the state space of a Timed Rebeca 
model bounded. Two states are in the shift-equivalence relation when all the elements of both states have the same value except for 
the elements related to time (like the current time value, and the time tags on the messages in the queues including deadlines). The 
elements related to time can be different but they should all have the same difference (shift) in their amount.
Lingua Franca (LF). Lingua Franca is a coordination language based on the Reactor model for programming CPSs [9,20]. A Reactor 
model is a collection of reactors (like rebecs in Rebeca). A reactor has one or more routines that are called reactions (like message 
servers in Rebeca). Reactions define the functionality of the reactor, and have access to a state shared with other reactions, but 
only within the same reactor (similar to Rebeca). Reactors have named (and typed) ports that allow them to connect to other 
reactors. Two reactors can communicate if an output port of a reactor is connected to an input port of the other reactor. The usage 
of ports establishes a clean separation between the functionality and composition of reactors; a reactor only references its own ports. 
Reactions are similar to the message handlers in the actor model. Reactions are triggered by discrete events and may also produce 
them (similar to handling a message and sending a message). An event relates a value to a tag that represents the logical time at 
which the value is present (similar to a time tag for a message). An event produced by one reactor is only observed by other reactors 
that are connected to the port on which the event is produced. Events arrive at input ports, and reactions produce events via output 
ports.

In LF, the logical time does not advance during a reaction. A reactor can have one or more timers. Timers are like ports that can 
trigger reactions. A timer has the form timer name(offset, period) that once triggers at the time shown by offset (if offset is zero, then 
the timer triggers at the start time of the execution), and then triggers periodically according to the period. LF has a built-in type 
for specifying time intervals. A time interval consists of an integer value accompanied by a time unit (e.g., sec for seconds or msec

for milliseconds). Timers are used for specifying periodic tasks, which are very common in embedded computing and CPSs. Each LF 
code contains a main reactor that is an entry point for the execution of the code. The mapping of Timed Rebeca to Lingua Franca 
and reverse, including the timing features, is a natural mapping that is discussed in [17,21]. Both Rebeca and Lingua Franca are 
actor-based languages. Each reactor in Lingua Franca is mapped to a reactive class, and each reaction is mapped to a message server 
in Rebeca. The trigger in a reaction is the name of the message server, and states in LF are mapped to state variables in Rebeca. In 
Rebeca actors send messages to another actor rather than writing on a port. In Lingua Franca we build the bindings between inputs 
and outputs explicitly in the connection part of the program. In mapping Lingua Franca programs to Timed Rebeca we use the after
4

construct; it is used to increase the value of the logical timetag of the message, like in LF.
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Fig. 2. Scheme-A, Scheme-B, and Scheme-C in Timed Rebeca model for security analysis of CPS applications (adapted from [1]). The red circles show attacks on 
communication channels and the blue diamonds indicate attacks on components. For example, in Scheme-A the attacker injects malicious data into the communication 
channel between a sensor and the controller. In Scheme-B, the attacker compromises controllers, and in Scheme-C, there is an attack that is performed in a coordinated 
way. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4. Building the Rebeca models and attacks

In this section, we describe the method to model the behavior of the system and define attack scenarios in Timed Rebeca. We 
consider each component and physical process as an actor in CPS applications. We realize four categories of actors in the Rebeca 
model including controllers, sensors, actuators, and physical processes. Generally, the interaction scenarios between these actors 
follow a closed-loop feedback. Sensor observes the physical component’s status, and sends the sensed data to the controller denoting 
the state of the physical component. Based on the received sensed data, the controller sends the control command to the actuator, 
and the actuator performs the actual physical change. In real cases, we may have different types of actors in each category (e.g., 
temperature sensors, speed sensors, etc.), and each type may be defined by a distinct reactive class.

Generally, the continuous behavior of physical components is expressed using differential equations like in Hybrid Automata [22]. 
We abstract the continuous behavior and only model the discrete jump transitions among the states (states are called control modes 
in hybrid automata). We model the progress of time in each state in Timed Rebeca. In each actor representing a physical component, 
we use state variables to model different states. In the remainder of this section, we will present the method to define attacks.

4.1. Attack modeling

According to [1], the malicious behavior on communication channels and components are considered in three cases: (1) an 
attacker targets the communication channel between two components through injecting malicious messages, (2) an attacker manipu-
lates the internal behavior of one or more components e.g. through malicious code injection, and (3) one or more attackers perform a 
coordinated attack to launch malicious behavior on both the communication channels and the components. To illustrate these cases, 
we define three attack schemes.
Scheme-A: Attack on Communication Channels can happen when an attacker sends malicious messages through the channels 
between the controller and the sensors/actuators. These messages may mislead the receiver and cause a system failure. For example, 
as depicted in Fig. 2 for Scheme-A, an attacker can compromise the channel between the sensor and controller and send false sensor 
data that makes the controller give the wrong command to the actuator, causing unexpected results. In the Timed Rebeca model, a 
reactive class is defined to model the attacker’s behavior. This class sends malicious messages at an appropriate time to damage the 
system. To perform exhaustive security check, a set of Timed Rebeca models can be developed that contains one or more attackers 
that target different channels at different injection times during the system operation. These Timed Rebeca models are inputs of the 
security analysis using model checking.
Scheme-B: Attack on Components indicates a situation in which a number of components are compromised and do not function 
correctly. Attackers may have direct access to the components and perform physical attacks on them. They may damage the code 
in some sensors/actuators or inject malicious code into the controllers. For example, as Fig. 2 shows for Scheme-B, an attacker may 
compromise controllers and perform actions over a physical process different from the desired plan. This scheme is modeled in Timed 
Rebeca as modified message server inside the reactive class corresponding to the target component. This message server models the 
incorrect functionality.
Scheme-C: Combined Attack is a combination of the previous two attack schemes. In this scheme, attackers can compromise both 
the system components and communication channels by coordinating their attacks. Scheme-C in Fig. 2 illustrates a system with the 
presence of an attack in which an attacker injects faulty command into the channel between the controller and the actuator, and com-
promises the sensor to report false sensor data to the controller. The modeling of this scheme would include various combinations of 
the defined attackers and compromised components as actors in a Rebeca model. We can choose many kinds of attack scenarios with 
5

the assumption of compromised network or components in Rebeca model and check the attacks’ damage on the CPS applications.
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Table 1

Attack Classification using STRIDE model [1].

Threat Type

(Security Objective)

Cyber and Physical Attack Scheme-A Scheme-B

Spoofing
(Authentication)

Masquerade attack [24]
Packet spoofing attack [25]

Tampering
(Integrity)

Man-in-the-middle (MITM) [24]
Injection attack [25] [25]
Replay attack [24]
Malware (Virus or Worms) [25]
Physical attack [25] [23]

Reputation
(Non-Repudiation)

On-Off attack [23]

Information 
Disclosure
(Confidentiality)

Eavesdropping [24]
Malware (Spyware) [25]
Side-channel attack [25]
Physical attack [25] [23]

Denial of Service
(Availability)

Resource exhaustion attack [24] [25]
Interruption attack [24]
Malware (Ransomware) [25]
Physical attack [25] [23]

Elevation of
Privilege
(Authorization)

Malware (Rootkit) [25]

4.2. Attack classification

STRIDE3 categorizes threats and corresponding security objectives for systems. Table 1 classifies significant CPS attacks (reported 
in [23–25]) based on the STRIDE categories. Attacks exploit communication and component vulnerabilities in Scheme-A and Scheme-

B. We are able to model these attack scenarios using our methodology.
The attacks that compromise the communication channels belong to the following category. In Spoofing attack, the attacker 

transmits a message with a spoofed identity into the network. Man-in-the-middle (MITM) requires the attacker to put herself in 
between two communicating parties and change the messages. To launch MITM attack, the attacker impersonates herself as one of 
the targeted parties. Injection attack indicates that the attacker injects invalid messages into the network (i.e., packet injection). Replay 
attack is an intentional repetition of sending a message to mislead the receiver. Eavesdropping attack takes advantage of unsecured 
channels to steal the information transmitted over the network. Side-channel attack is an attack in which the attacker uses her own 
technical knowledge of the system to compromise the system security (e.g., a timing attack involves measuring the duration of each 
operation, which is then used to figure out the inputs in the system). Resource exhaustion attack represents a situation that the network 
resources are overwhelmed by a flood of messages transmitted from the attacker. Interruption attack makes a service unavailable for 
legitimate use, and Physical attack aims to damage a communication link.

The attacks that compromise the components belong to the following category. Masquerade attack refers to a situation where the 
attacker impersonates herself as one of the communicating parties. Injection attack is used by an attacker to inject a malicious code 
into a component (i.e., code injection). Malware is a malicious software designed to manipulate the behavior of components. Side-

channel attack is an attack in which the attacker gains knowledge about the system by observing the behavior of some component(s). 
Finally, Physical attack manipulates some component(s) physically.

5. Temperature Control System (TCS)

The temperature control system is responsible for maintaining the temperature of a room in a desired range. We explained this 
system in [2], here we study the whole process in more detail. Fig. 3 shows the components of the system and its environment. This 
system includes a sensor, a heating and cooling unit (hc_unit), and a controller. The controller receives sensor data from the sensor 
and transmits the command 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼, 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁 or 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 to the hc_unit to respectively activate the cooling or heating process, or 
switch off the process. Assume that there is a window inside the room and the outside weather blows inside when the window is 
open. The temperature of the room is slowly changed whether the outside weather is colder or warmer than the current temperature 
value (i.e., uncertain environment). The controller activates the heating/cooling process based on the sensed temperature value. The 
physical process is temperature regulation, and the desired state is a specific range for the temperature.
6

3 The acronym STRIDE stands for Spoofing, Tampering, Reputation, Information Disclosure, Denial of Service, and Elevation of Privilege.
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Fig. 3. Temperature Control System (TCS) of the room and its environment [2]. The outside air affects the temperature and the sensor reports the temperature changes 
to the controller. The Heating-Cooling Unit is controlled by the controller to regulate the temperature of the room in a desired range.

5.1. TCS Timed Rebeca model

We demonstrate the Timed Rebeca model (augmented with attacks) of the TCS case study in Listing 1. We assume that the 
temperature of the room is within the desired range at the beginning (i.e., the value 22 which is between 21 and 23) (line 1). We 
define three reactive classes 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋, 𝖲𝖾𝗇𝗌𝗈𝗋, and 𝖧𝖢_𝖴𝗇𝗂𝗍 to model the system components and one reactive class 𝖱𝗈𝗈𝗆 to model 
the environment. The state variable 𝗌𝖾𝗇𝗌𝖾𝖽𝖵𝖺𝗅𝗎𝖾 in the controller stores the sensor data sent by the sensor, and the state variables 
𝗁𝖾𝖺𝗍𝗂𝗇𝗀_𝖺𝖼𝗍𝗂𝗏𝖾 and 𝖼𝗈𝗈𝗅𝗂𝗇𝗀_𝖺𝖼𝗍𝗂𝗏𝖾 respectively show whether the cooling process or the heating process is activated (line 5). In order 
to regulate the temperature, a message including the value of the temperature (line 38) is sent by the reactive class 𝖲𝖾𝗇𝗌𝗈𝗋 to the 
reactive class 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋. The controller decides to send 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 to the hc-unit if the temperature value is within the desired range 
(line 10). If the temperature value is higher/lower than the desired range, the controller produces an appropriate command, i.e., 
𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼 or 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁, and sends it to 𝖧𝖢_𝖴𝗇𝗂𝗍 (lines 13 and 15). The state variable 𝗍𝖾𝗆𝗉𝖾𝗋𝖺𝗍𝗎𝗋𝖾 in the reactive class 𝖱𝗈𝗈𝗆 shows the 
value of the temperature of the room. The state variable 𝗈𝗎𝗍𝗌𝗂𝖽𝖾_𝖺𝗂𝗋_𝖻𝗅𝗈𝗐𝗂𝗇𝗀 with the non-deterministic assignment shows the outside 
air blowing inside when the window is open (line 27). The temperature of the room is slowly affected by outside air blowing, whether 
the outside weather is colder or warmer than the current temperature value of the room i.e. we do not have a sudden temperature 
change (line 23). The message server 𝗌𝗍𝖺𝗍𝗎𝗌 updates value of the temperature 𝖺𝖿𝗍𝖾𝗋 10 units of time (line 29) and provides the updated 
value of the temperature as a response to the request of the sensor (line 30). The message server 𝗋𝖾𝗀𝗎𝗅𝖺𝗍𝖾 gets a regulation value 
from the controller and sets the process to increase and decrease the temperature value (line 31). The 𝖲𝖾𝗇𝗌𝗈𝗋 periodically senses the 
temperature 𝖺𝖿𝗍𝖾𝗋 2 units of time and sends the updated value to the controller (line 37). The main block includes the declarations 
of all reactive classes defined in the model (line 51 to 56).

There are two differences in the modeling of the TCS case study as compared to the PCS system (presented in Section 6). First, 
the sensor in the TCS has 𝗉𝖾𝗋𝗂𝗈𝖽𝗂𝖼 𝖿𝗎𝗇𝖼𝗍𝗂𝗈𝗇 for sensing temperature, whereas the sensors of the cylinders in the PCS are triggered by 
movements and transmit updates to the controllers. Secondly, the environment of the PCS is isolated, with no uncertain behaviors 
that affect the system functionality, while in the TCS the changing and 𝗎𝗇𝖼𝖾𝗋𝗍𝖺𝗂𝗇 temperature value of the environment can impact 
the functionality of the system.

5.2. TCS attack modeling in Timed Rebeca

The goal of attacks in this system is to change the temperature out of the desired range or cause damage to the physical infras-
tructure (i.e., the heating and cooling unit). We assume that the attacker can compromise the controller to tamper the commands 
issued by the controller (e.g., code injection attack), and alter the sensor to send false sensor data. These attacks can be modeled 
by defining 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖲𝖾𝗇𝗌𝗈𝗋 and 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 as shown in Fig. 4. The coordinated attacks are also modeled by com-
bining both the compromised versions of the sensor and the controller. We define 𝖲𝖾𝗇𝗌𝗈𝗋(𝖼𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽, 𝖼𝗈𝗆𝗉𝖳𝗂𝗆𝖾, 𝗆𝗌𝗀) (line 35) 
and 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋(𝖼𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽, 𝖼𝗈𝗆𝗉𝖳𝗂𝗆𝖾, 𝗆𝗌𝗀) (line 6) as shown in Listing 1 for modeling compromised version of the components, 
and count the number of false sensor data and faulty control commands as the number of attacks by changing the values of the 
parameters.

In the attack modeling, 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖲𝖾𝗇𝗌𝗈𝗋 sends false sensor data to the controller by transmitting values ranging from 19 to 
25 when sensing the temperature value (Listing 1, line 2). Also, 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 sends faulty commands 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼, 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁
or 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 to 𝖧𝖢_𝖴𝗇𝗂𝗍 (Listing 1, line 16 to 19). The complete Timed Rebeca code including the defined attacks is available on 
7

GitHub [26].
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1 env int desiredValue = 22; // initial value for the desired temperature

2 env boolean sComp = false; env int sComp_time = 0; env int smaliciousMsg = 0; ...

3 reactiveclass Controller(5) {

4 knownrebecs { HC_Unit hc_unit; }

5 statevars { int sensedValue; boolean heating_active; boolean cooling_active; }

6 Controller(boolean compromised, int compTime, int msg){

7 heating_active = false; cooling_active = false; sensedValue = desiredValue;

8 if (compromised) { self.compromise(msg) after(compTime);}}

9 msgsrv getsense(int temp) { sensedValue = temp;

10 if (temp <= 23 && temp >= 21) {

11 if (heating_active == true || cooling_active == true) {

12 hc_unit.switchoff(); heating_active = false; cooling_active = false; }

13 } else if (21 > temp) {

14 if (heating_active == false) { hc_unit.activateh(); heating_active = true; }

15 } else if (23 < temp) {... } }

16 msgsrv compromise(int msg){

17 if(msg == 0) {hc_unit.switchoff();

18 } else if(msg == 1) { hc_unit.activateh();} else if(msg == -1) {...}

19 }

20 }

21 reactiveclass Room(5) {//a temperature is affected by outside air blowing

22 knownrebecs { Sensor sensor; }

23 statevars { int temperature; int outside_air_blowing; int regulation; }

24 Room() {

25 temperature = 22; regulation = 0; outside_air_blowing = 0; self.status();}

26 msgsrv status() { //environment affects the temp slowly, in each 10 units of time

27 outside_air_blowing = ? (1, 0, -1);

28 temperature = temperature - outside_air_blowing + regulation; //update temp

29 self.status() after(10); }

30 msgsrv reqsensor() { sensor.getTemp(temperature); }

31 msgsrv regulate(int v) { regulation = v; }// regulate temp

32 }

33 reactiveclass Sensor(5) {

34 knownrebecs { Room room; Controller controller; }

35 Sensor(boolean compromised, int compTime, int msg){

36 if (compromised) {self.getTemp(msg) after(compTime);} self.sense();}

37 msgsrv sense() { room.reqsensor(); self.sense() after(2); }

38 msgsrv getTemp(int temp) { controller.getsense(temp); }

39 }

40 reactiveclass HC_Unit(5) {

41 knownrebecs { Room room; }

42 statevars { boolean heater_on, cooler_on; int regValue; }

43 HC_Unit() {

44 heater_on = false; cooler_on = false; regValue = 0; self.regulateTemp();

45 }

46 msgsrv activateh() { regValue = 1; heater_on = true; }

47 msgsrv activatec() { regValue = -1; cooler_on = true; }

48 msgsrv switchoff() { regValue = 0; cooler_on = false; heater_on = false; }

49 msgsrv regulateTemp() { room.regulate(regValue); self.regulateTemp() after(5); }

50 }

51 main {

52 Room room(sensor): ();

53 Controller controller(hc_unit):(cComp,cComp_time,cmaliciousMsg);

54 Sensor sensor(room,controller):(sComp,sComp_time,smaliciousMsg);

55 HC_Unit hc_unit(room): ();

56 }

Listing 1: Timed Rebeca model for the TCS case study augmented with attacks.

5.3. TCS safety properties

Listing 2 shows the safety properties that are defined for preventing any unsafe activation of cooling or heating processes in 
𝖧𝖢_𝖴𝗇𝗂𝗍. The Timed Rebeca model without attacks for the TCS case study satisfies the safety properties 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟣, 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟤
and 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟥 as listed below.

The property 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟣 ensures that the heating process is not activated when the sensed temperature value is higher than 
23 degrees (i.e., 𝗌𝖾𝗇𝗌𝖾𝖽𝖵𝖺𝗅𝗎𝖾_𝗈𝗏𝖾𝗋). Indeed, if the sensed temperature is above the desired range, the controller must not send the 
command 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁 to the 𝖧𝖢_𝖴𝗇𝗂𝗍. Similarly, the property 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟤 ensures that the cooling process is not activated when the 
sensed temperature value is lower that 21 degrees (i.e., 𝗌𝖾𝗇𝗌𝖾𝖽𝖵𝖺𝗅𝗎𝖾_𝗎𝗇𝖽𝖾𝗋). Finally, the safety property 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟥 is violated if the 
8

temperature goes outside of the desired range due to any event.
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Fig. 4. The sensor periodically senses the temperature every 2 units of time and sends the updated value with the message 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾 to the controller. The controller 
transmits an appropriate command to regulate the temperature value between 21 and 23. The HC_Unit changes the heating/cooling process after 5 units of time. The 
temperature of the room is affected by the environment after 10 units of time. The attack points for performing attack scenarios are the sensor and the controller 
(depicted with blue diamonds).

1 property {

2 define {

3 sensedValue_over = controller.sensedValue > 23;

4 sensedValue_under = controller.sensedValue < 21;

5 unit_heating = hc_unit.heater_on == true;

6 unit_cooling = hc_unit.cooler_on == true;

7 }

8 Assertion {

9 safety_prop1: !(sensedValue_over && !unit_heating);

10 safety_prop2: !(sensedValue_under && !unit_cooling);

11 safety_prop3: !(controller.sensedValue < 20 || controller.sensedValue > 24);

12 }

13 }

Listing 2: The safety properties for the TCS case study.

Table 2

The failure of properties for the compromised sensor and controller. (For interpretation of the colors in the 
table(s), the reader is referred to the web version of this article.)

safety_prop1 safety_prop2 safety_prop3 total_successful_attacks

Compromised Controller 9 7 52 68
Compromised Sensor 33 50 45 128
CompSensor+CompController 16 27 31 74

total_fails_prop 58 84 128 270

5.4. TCS security analysis

Table 2 shows the results of the security analysis based on the model checker outputs after performing attacks. We model 4301 
number of attacks during a predefined system execution period of 25 seconds using the compromised sensor and controller. This 
duration corresponds to the completion time of one cycle for sensing, sending commands, and actuation that is modeled for the 
control system. The number of 182 false sensor data and 87 faulty control commands successfully violate the safety properties.

We also perform combined attack scenarios where the compromised sensor and controller are performed pairwise where each 
compromised component can not separately violate safety properties. We found 74 successful violations of the safety properties.

As shown in Table 2, 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖲𝖾𝗇𝗌𝗈𝗋 violates the safety properties with higher numbers compared to 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋
(highlighted in pink). It indicates that attacks on the sensor can be more successful. We also observe that the property 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟥
has the highest number of violations (highlighted in blue).

5.5. TCS tiny digital twin and monitoring

In this case study, the actions 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾, 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁 and 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 are observable in the system behavior from the controller point of 
view, while actions 𝗀𝖾𝗍𝗍𝖾𝗆𝗉, 𝗌𝖾𝗇𝗌𝖾, 𝗋𝖾𝗀𝗎𝗅𝖺𝗍𝖾, 𝗋𝖾𝗊𝗌𝖾𝗇𝗌𝗈𝗋, 𝗌𝗍𝖺𝗍𝗎𝗌 and 𝗋𝖾𝗀𝗎𝗅𝖺𝗍𝖾𝖳𝖾𝗆𝗉 are non-observable (i.e., silent transitions). The Tiny 
Digital Twin with 125 states and 154 transitions is created by abstracting the states space which has 799 states and 1440 transitions.

We show a subset of the state transitions of the Tiny Digital Twin to explain the system behavior at different states (see Fig. 5). 
In the Tiny Digital Twin of the temperature control system, we see branching states (e.g., S32 and S22) that present different control 
flow paths, where 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 decides to activate/switch off 𝖧𝖢_𝖴𝗇𝗂𝗍 regarding the received sensor data. Also, there are some cycles 
9

of sensor data transmission and control commands, where the same sensor data and control commands are repeated (e.g., a circle 
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Fig. 5. A subset of the state transitions in the Tiny Digital Twin of the TCS case study. It includes branching states and cycles.
10
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Fig. 6. The diagram of the reactors in LF code for TCS case study including monitor reactor.

Table 3

The detection capability of the monitor in TCS case study.

attack types total_successful_attacks detection capability

Compromised Controller 68 68
Compromised Sensor 128 52
CompSensor+CompController 74 31

total_detection_rate 270 151 (%55)

consisting of the states S28 to S20, S15, S122, S29 and back to S28). The Tiny Digital Twin is used within 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 to detect attacks 
on sensor data and control commands. To prevent damage to the system, the monitor drops control commands that are not consistent 
with the state transitions in the Tiny Digital Twin. We evaluate the detection capability of 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 by simulating attacks in Lingua 
Franca code.

5.6. TCS Lingua Franca

The LF code implements all components of the TCS case study (Listing 3). Diagram 6 shows the connectivity between the 
components that are defined as reactors. The input port 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾 in the reactor 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 (line 3) is defined to get a sensor value, 
and three output ports 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁, 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼, and 𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 (lines 4-5) are defined to send values as commands to the 𝖧𝖢_𝖴𝗇𝗂𝗍. We set 
the value of 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝗁 to 1 to trigger the heating (line 15), the value of 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼 to -1 to trigger the cooling (line 17) and the value of 
𝗌𝗐𝗂𝗍𝖼𝗁𝗈𝖿𝖿 to 0 to switch off the 𝖧𝖢_𝖴𝗇𝗂𝗍 (line 11).

We use a 𝗍𝗂𝗆𝖾𝗋 to periodically invoke the reactions and model the periodic events (similar to those message servers in Timed 
Rebeca that send messages to themselves with 𝖺𝖿𝗍𝖾𝗋). Here, the reaction 𝗌𝗍𝖺𝗋𝗍 in the reactors 𝖱𝗈𝗈𝗆, 𝖲𝖾𝗇𝗌𝗈𝗋 and 𝖧𝖢_𝖴𝗇𝗂𝗍 are defined 
for updating (line 26), sensing (line 36) and regulation (line 46) the temperature which are triggered periodically. For example, the 
𝗍𝗂𝗆𝖾𝗋 𝗌𝗍𝖺𝗋𝗍(𝟢,𝟣𝟢 𝗌𝖾𝖼) indicates that updating temperature value is triggered at the start of execution and then it repeats at intervals of 
10 seconds (see line 36).

5.7. Detection capability of the monitor in TCS

We develop 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 in LF where it keeps the Tiny Digital Twin to track the behavior of the system and detect attacks. We develop 
𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖲𝖾𝗇𝗌𝗈𝗋 and 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 to perform attack scenarios listed in Table 2. We simulate 196 false sensor data and 
faulty control commands, and also 74 combined attack scenarios. As shown in Table 3, out of the 270 attack scenarios (combined 
and single successful attacks), 119 attacks are not directly detected by the monitor, therefore the detection rate is about 55 percent. 
The undetected attacks are related to the compromise of the sensor where the sensor sends the false sensor data that matches to the 
data on the branches in the Tiny Digital Twin.

In the following, we describe a few examples of attack scenarios using the Tiny Digital Twin depicted in Fig. 5 and explain how 
the 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 detects the attacks. Assume that the system is in the state S27 and 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖲𝖾𝗇𝗌𝗈𝗋 sends 21 as the temperature value 
to the 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 whereas the actual temperature that is sensed by the sensor is 20. Upon receiving this false sensor data, 𝖬𝗈𝗇𝗂𝗍𝗈𝗋
produces an alarm and terminates the monitoring process because the data sent by 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖲𝖾𝗇𝗌𝗈𝗋 is not matched with the data 
on the transition of the Tiny Digital Twin. As another example, assume the system is in the state S90 and the 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋
sends 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼 as a faulty control command. The 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 drops the command because it is not consistent with the outgoing transition 
of S90. A coordinated attack can occur when 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖲𝖾𝗇𝗌𝗈𝗋 sends false sensor data and 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 alters the 
command to overwrite the controller decision caused by the false sensor data.

From states S32, S21, S20, S35 and S16 there are multiple outgoing transitions. For instance, assume that 21 is sensed as the 
temperature value in S32 but 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖲𝖾𝗇𝗌𝗈𝗋 sends the value 24. According to the Tiny Digital Twin of the case study, the 
value for the next states can be either 20 (S90), 21 (S22), or 22 (S97), therefore 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 detects the false sensor data. Note that the 
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controller should in principle send 𝖺𝖼𝗍𝗂𝗏𝖺𝗍𝖾𝖼 to activate the cooling process by sensing 24. But this is where in modeling the behavior 
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1 target Cpp {fast: false, threads: 1};

2 reactor Controller {

3 input getsense:int; //input and output ports

4 output activateh:int; // activates hc-unit by sending a value to output

5 output activatec:int; output switchoff:int;

6 state heating_active:bool(false); state cooling_active:bool(false);

7 reaction(getsense) -> activatec, activateh, switchoff {=

8 activatec, activateh, switchoff {=

9 if(*getsense.get() <= 23 && *getsense.get() >= 21){

10 if(heating_active == true || cooling_active == true){

11 switchoff.set(0);

12 heating_active = false; cooling_active = false;

13 }

14 } else if(*getsense.get() < 21) {

15 if(heating_active == false){ activateh.set(1); heating_active = true;}

16 } else if(*getsense.get() > 23) {

17 if(cooling_active == false){ activatec.set(-1); cooling_active = true;}

18 }

19 }

20 =}

21 }

22 reactor Room {

23 input regulate:int; input reqsensor:int;

24 output sensedValue:int; state temperature:int(22);

25 state cold_air_blowing:int(0); state regulation:int(0);

26 timer start(0, 10 sec); // triggers room to update temp in each 10 sec

27 reaction(start) {=

28 cold_air_blowing = rand() % 3 + (-1);

29 temperature = temperature - cold_air_blowing + regulation;

30 =}

31 reaction(reqsensor) -> sensedValue {= sensedValue.set(temperature); =}

32 reaction(regulate) {= regulation = *regulate.get(); =}

33 }

34 reactor Sensor {

35 input sensedValue:int; output sense:int; output out:int;

36 timer start(0, 2 sec); // triggers sensor in each 2 sec

37 reaction(start) -> sense{= sense.set(1); =}

38 reaction(sensedValue) -> out {= out.set(sensedValue.get()); =}

39 }

40 reactor HC_Unit {

41 input activateh:int; input activatec:int; input switchoff:int;

42 output regulationV:int; state regValue:int(0);

43 reaction(activateh) {= regValue = 1; =}

44 reaction(activatec) {= regValue = -1; =}

45 reaction(switchoff) {= regValue = 0; =}

46 timer start(0, 5 sec); // regulate temperature in each 5 sec

47 reaction(start) -> regulationV {= regulationV.set(regValue); =}

48 }

49 main reactor RoomTemp {

50 room = new Room(); sensor = new Sensor(); unit = new HC_Unit();

51 controller = new Controller();

52 room.sensedValue -> sensor.sensedValue;

53 sensor.sense -> room.reqsensor; sensor.out -> controller.getsense;

54 ...

55 }

Listing 3: LF code for the TCS case study.

of the environment, in the Timed Rebeca model, we do not model any jumps in the temperature from 21 to 24. Therefore, this is 
captured as an unexpected behavior. As another example, assume that the value 22 is sensed as the temperature value in S32 but 
the 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖲𝖾𝗇𝗌𝗈𝗋 sends a sensed value 21 or 20. In this case, 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 can not detect the false sensor data. We are able to use 
meta-rules to check if the paths between turning on the heating (or cooling) unit(s) are taken too quickly, or if any of these processes 
stay turned on for a time longer than expected. This is one of the ways in which we will continue our research.

6. Pneumatic Control System (PCS)

Pneumatic Control System (PCS) is a control system that regulates the movement of mechanical components, such as cylinders, 
robotic arms or conveyor belts, in multiple directions. The system is widely used in various safety-critical industrial applications, 
including manufacturing and automotive industries due to its high reliability and low maintenance requirements. We use the PCS 
12

described in [27] to explain CRYSTAL.
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Fig. 7. PCS with two cylinders (adapted from [27]). The cylinders pick up a particle from location X and place it in location Y.

The PCS presented here has two cylinders, 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 and 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡, as shown in Fig. 7. Each cylinder is controlled by a dedicated 
controller to regulate the movement in either left-right or up-down directions. The timing of the movement for cylinders can differ 
based on the direction of the movement. The controllers are responsible for coordinating the movements in the correct sequence and 
timing that involve pick-and-place operations. The motion plan is moving the cylinders from the initial position (location X) to the 
target position (location Y), and then moving back to the initial position. In this case, each movement takes 2 units of time. The 
desired sequence of movements of the cylinders is as follows: (𝟣) 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 moves 𝖽𝗈𝗐𝗇, (𝟤) 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 moves 𝗎𝗉, (𝟥) 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 moves 
𝗋𝗂𝗀𝗁𝗍, (𝟦) 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 moves 𝖽𝗈𝗐𝗇 and (𝟧) then 𝗎𝗉, (𝟨) 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 moves 𝗅𝖾𝖿 𝗍.

6.1. PCS Timed Rebeca model

The Timed Rebeca model for the PCS case study is depicted in Listing 4. The model also contains parts for modeling the compro-
mised version of sensors, and an attacker (explained in Section 6.2). In this model, there are six reactive classes 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖠, 𝖲𝖾𝗇𝗌𝗈𝗋𝖠, 
𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠, 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖡, 𝖲𝖾𝗇𝗌𝗈𝗋𝖡, and 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡. Each controller receives the information about the position of its own cylinder from 
the corresponding 𝖲𝖾𝗇𝗌𝗈𝗋, using the message server 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾 (see line 10). The controllers also receive the information about the 
other cylinder movements using the message server 𝗀𝖾𝗍𝖼𝗍𝗅 (line 20). The controllers decide whether to move the cylinder based 
on the current status and desired movement (lines 11 to 19). The controllers send the motion commands 1 or -1 to regulate the 
movements (lines 15 and 19). The sensors in this system are the trigger sensors and simply serve as intermediaries between the 
cylinders and controllers, reporting location information (lines 22 to 27) when cylinders touch initial location or target location. 
Sensing the location of cylinders is modeled using a message server 𝗌𝗍𝖺𝗍𝗎𝗌 in both cylinders that updates the motion and reports it to 
the respective 𝖲𝖾𝗇𝗌𝗈𝗋, which then forwards the location to the corresponding 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 (line 34). The message server 𝖺𝖼𝗍𝗎𝖺𝗍𝖾 receives 
a motion command from the 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋 to handle the movements (line 35). The time of the movement for each cylinder is modeled 
using 𝖺𝖿𝗍𝖾𝗋 primitive (line 36). In this model, the duration of each movement is 2 units of time. We assume that 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖠 starts 
its linear motion from the left at the top of location X. The initial and end locations (value 0 for left-top, 2 for right-top and -2 for 
right-down) for both cylinders are set through environmental variables (see line 1).

6.2. PCS attack modeling in Timed Rebeca

The Timed Rebeca model of the system is augmented with different types of attacks that can be launched to test the resilience of 
the system. The attack scenarios that are modeled in this case study include compromised sensors, compromised cylinders, and injection 
attacks on the communication channels between controllers as shown in Fig. 8. In addition, the combined attacks are performed by 
involving injection attack with the compromised version of sensors and cylinders to perform complex coordinated attacks.

In the following, we explain the attacks augmented in the Timed Rebeca model. The compromised sensors are where 𝖲𝖾𝗇𝗌𝗈𝗋𝖠
and 𝖲𝖾𝗇𝗌𝗈𝗋𝖡 can be compromised by an attacker. In Timed Rebeca model, this attack scenario is modeled by setting a flag in 
the input parameter of the constructor that changes the mode of the sensor component to compromised (see line 24 in List-
ing 4). When the sensor is compromised, it sends a malicious message to its corresponding controller at a specified time. The 
𝖲𝖾𝗇𝗌𝗈𝗋𝖠(𝖼𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽, 𝖼𝗈𝗆𝗉𝖳𝗂𝗆𝖾,𝗆𝗌𝗀) shows how it is activated in the constructor (line 24). The parameter 𝗆𝗌𝗀 indicates the cur-
rent location of the cylinder being sensed, which may be different from the actual location. This can mislead the controller to take the 
wrong decision for the control motion and cause a failure in the system. The compromised cylinders are where 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 and 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡
can be compromised by an attacker. Similar to the attack on sensors, they are modeled by setting a flag in the input parameter of the 
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constructor of the reactive classes (line 31). For example, when 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 is compromised, it receives a malicious command from an 
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1 env int cylinderAEndloc = 2; env int cylinderBEndloc = -2; //environment variables

2 env boolean sAComp = false; env int sAComp_time = 6; env int sAmalMsg = 0;

3 env boolean inj_attk = false; env int attTime = 4;

4 env int malMsg = 0; env int chl = 1;

5 ...

6 reactiveclass ControllerA(5){

7 knownrebecs{ CylinderA cylA; ControllerB cntlB;}

8 statevars{boolean locBisUP, locAisLeft;}

9 ControllerA(){ locBisUP = false; locAisLeft = true;}

10 msgsrv getsense(int locA) { //locBisUP:true means that CylinderB is up

11 if(locBisUP) {

12 if(locAisLeft) {

13 if(locA == cylinderAEndloc) {

14 cntlB.getctl(locA); locAisLeft = false; locBisUP = false;

15 } else { cylA.actuate(1);}

16 } else if (!locAisLeft) {

17 if(locA == 0) {

18 cntlB.getctl(locA); locAisLeft = true; locBisUP = false;

19 } else { cylA.actuate(-1); } } } }

20 msgsrv getctl(int locB){ if (locB == 0) { locBisUP = true; } }

21 }

22 reactiveclass SensorA(5){

23 knownrebecs{ ControllerA ControllerA;}

24 SensorA(boolean compromised, int compTime, int msg){

25 if (compromised) { self.getloc(msg) after(compTime);} }

26 msgsrv getloc(int loc) { ControllerA.getsense(loc);}

27 }

28 reactiveclass CylinderA(5){

29 knownrebecs{SensorA SensorA;}

30 statevars{ int loc, motion;}

31 CylinderA(boolean compromised, int compTime, int msg){

32 loc = 0; motion = 0; self.status();

33 if (compromised) { self.actuate(msg) after(compTime); }}

34 msgsrv status() { loc = loc + motion; // left to right on x-axis

35 if(loc == 0 || loc == cylinderAEndloc){

36 SensorA.getloc(loc); motion = 0; } self.status() after(2); }

37 msgsrv actuate(int rate) { motion = rate;}

38 }

39 reactiveclass ControllerB(5){...}

40 reactiveclass SensorB(5){...}

41 reactiveclass CylinderB(5){...}

42 reactiveclass Attacker(3){//injects false messages in channels between controllers

43 knownrebecs{ ControllerA cntlA; ControllerB cntlB;}

44 Attacker(boolean inj, int channel, int msg, int attktime) {

45 if(inj){ if (channel == 1) { self.chlBA(msg, attktime);}

46 if (channel == 2) { self.chlAB(msg, attktime); } } }

47 msgsrv chlBA(int msg, int attktime){ cntlA.getctl(msg) after(attktime); }

48 msgsrv chlAB(int msg, int attktime){ cntlB.getctl(msg) after(attktime); }

49 }

50 main{

51 CylinderA cylA(SensorA):(cAComp,cAComp_time,cAmalMsg);

52 ControllerA ControllerA(cylA, ControllerB):();

53 SensorA SensorA(ControllerA):(sAComp,sAComp_time,sAmalMsg);

54 ... // ControllerB and SensorB instances

55 Attacker attacker(ControllerA, ControllerB):(inj_attk, chl, malMsg, attTime);}

Listing 4: A part of the Timed Rebeca model augmented with attacks for the PCS case study.

attacker at a specified time (i.e., 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠(𝖼𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽, 𝖼𝗈𝗆𝗉𝖳𝗂𝗆𝖾,𝗆𝗌𝗀))(line 45). The 𝗆𝗌𝗀 can be either to move left or right, caus-
ing the cylinder to move to a different location than intended and compromise the system. The injection attacks show that the system 
is also susceptible to injection attacks, where an attacker can inject a malicious message into the communication channels, i.e., 𝖼𝗁𝗅𝖠𝖡
and 𝖼𝗁𝗅𝖡𝖠, between two controllers. This can cause the controllers to take the wrong decision for the movements and send wrong mo-
tion commands. We define the actor 𝖠𝗍𝗍𝖺𝖼𝗄𝖾𝗋 to perform injection attacks on the system (line 42). The channels 𝖼𝗁𝗅𝖠𝖡 and 𝖼𝗁𝗅𝖡𝖠 are 
compromised and a malicious sensor message is injected at a specified time (i.e., 𝖠𝗍𝗍𝖺𝖼𝗄𝖾𝗋(𝗂𝗇𝗃, 𝖼𝗁𝖺𝗇𝗇𝖾𝗅,𝗆𝗌𝗀, 𝖺𝗍𝗍𝗄𝗍𝗂𝗆𝖾))(lines 45 to 49). 
In order to test for possible complex attack scenarios, we must generate combinations of different values for both the input parameters 
of the 𝖠𝗍𝗍𝖺𝖼𝗄𝖾𝗋 and the 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 components, and verify the model for each combination. To automate this process, we develop 
a Python script for generating input values and collecting verification results. This approach is similar in nature to the automated 
verification technique that uses symbolic modeling and constraint solving. The complete model of the system and the written python 
14

codes are available on GitHub [28].
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Fig. 8. The sensor data and control commands in the PCS case study. The messages are transmitted between controllers in order to regulate the movements. The 
possible attack points for performing attack scenarios are depicted with red circles and blue diamonds to show attacks on communications or components, respectively.

6.3. PCS safety properties

We define safety properties to catch unsafe and undesirable movements of the cylinders. To specify the properties, we use 
assertions. The Timed Rebeca model for the PCS satisfies all the properties in Listing 5 when none of the attacks are activated. If 
the model checker detects that a safety property is not satisfied, it provides the modeler with a counter-example that outlines the 
sequence of events leading to the violation. This sequence of events can be used to determine the steps of the successful attack 
scenario when the compromised components or injection attacks are activated.

The properties shown in Listing 5 are defined using the values of the variables 𝗅𝗈𝖼 and 𝗆𝗈𝗍𝗂𝗈𝗇 for two cylinders in the Timed 
Rebeca model. The variable 𝗅𝗈𝖼 keeps the location information of the cylinder at each state and the variable 𝗆𝗈𝗍𝗂𝗈𝗇 indicates the 
motion command issued by the controller. The property 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟣 is written to ensure that 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 cannot move to the right 
(𝗆𝗈𝗍𝗂𝗈𝗇𝖱) or left (𝗆𝗈𝗍𝗂𝗈𝗇𝖫) while 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 is located at the bottom (𝗅𝗈𝖼𝖡𝖻). The properties 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟤 and 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟥 ensure that 
both cylinders do not move diagonally. In these safety properties, 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 cannot move up (𝗆𝗈𝗍𝗂𝗈𝗇𝖴) or down (𝗆𝗈𝗍𝗂𝗈𝗇𝖣) while 
𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 is moving to the right (𝗆𝗈𝗍𝗂𝗈𝗇𝖱) or left (𝗆𝗈𝗍𝗂𝗈𝗇𝖫). The properties 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟦 and 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟧 ensure that 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 and 
𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡, respectively, only have motion between the initial position and the end position in location X or Y.

1 property {

2 define {

3 locXa = cylA.loc == 0; locYa = cylB.loc == 0;

4 locXb = cylA.loc == 2; locYb = cylB.loc == -2;

5 motionR = cylA.motion == 1; motionL = cylA.motion == -1;

6 motionU = cylB.motion == 1; motionD = cylB.motion == -1;

7 locXbstuck = cylA.loc == 3; locXastuck = cylA.loc == -1;

8 locYbstuck = cylB.loc == -3; locYastuck = cylB.loc == 1;

9 }

10 Assertion {

11 safety_prop1: !((motionR && locYb) || (motionL && locYb));

12 safety_prop2: !((motionR && motionU) || (motionL && motionD));

13 safety_prop3: !((motionL && motionU) || (motionR && motionD));

14 safety_prop4: !(locXastuck ||locXbstuck);

15 safety_prop5: !(locYastuck ||locYbstuck);

16 }

17
18 }

Listing 5: The safety properties for the PCS case study.

6.4. PCS security analysis

Table 4 and Table 5 show the results of the analysis based on the model checker outputs. In our experiments, we consider the 
number of false sensor data and faulty control commands as the number of compromising and injection attacks during a predefined 
system execution period (28 seconds). Among the total number of 2977 attacks on sensor data and control commands (i.e., via 
𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 version of the components), 355 attack scenarios successfully violated the safety properties. Similarly, out of the 
60 injection attacks, 28 attack scenarios successfully violated the safety properties 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟣, 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟤, and 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟥. 
Therefore, the total number of attacks that violated the properties is 383 (i.e., 𝗍𝗈𝗍𝖺𝗅_𝗌𝗎𝖼𝖼𝖾𝗌𝗌𝖿𝗎𝗅_𝖺𝗍𝗍𝖺𝖼𝗄𝗌) out of 3,037 attacks.

Table 4 uses the following notation: 𝗌𝖠𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 indicates that 𝖲𝖾𝗇𝗌𝗈𝗋𝖠 is compromised, while 𝖼𝖠𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 indicates that 
𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 is compromised, and so on for the other components. The high-risk component is 𝖲𝖾𝗇𝗌𝗈𝗋𝖡 since preforming attack scenarios 
using 𝗌𝖡𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 shows the highest total number of failures for the properties (i.e. 140, highlighted in pink). This means that 
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𝖲𝖾𝗇𝗌𝗈𝗋𝖡 is a more vulnerable point and needs to be protected against potential attacks. Additionally, 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟥 is violated more 
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Table 4

The failure of properties for the compromising and injection attacks.

safety_prop1 safety_prop2 safety_prop3 safety_prop4 safety_prop5 total_successful_attacks

cACompromised 5 14 16 3 0 38
cBCompromised 0 19 17 0 13 49
sACompromised 2 44 78 0 4 128
sBCompromised 20 50 31 0 39 140
injection 6 10 12 0 0 28

total_fails_prop 33 137 154 3 56 383

Table 5

The failure of properties for the combined attacks.

safety_prop1 safety_prop2 safety_prop3 safety_prop4 safety_prop5 total_successful_attacks

sACompromised+injection 0 6 36 5 0 47
sACompromised+sBCompromised 2 24 15 0 4 45
sBCompromised+injection 8 33 10 0 24 75
cBCompromised+injection 0 13 10 0 2 25
cBCompromised+sACompromised 0 9 17 0 0 26
cACompromised+sBCompromised 0 0 5 0 0 5
cACompromised+injection 0 4 2 3 0 9
cBCompromised+sBCompromised 5 14 8 0 11 38
cACompromised+sACompromised 0 0 2 0 0 2
cACompromised+cBCompromised 1 0 2 0 0 3

total_fails_prop 16 103 107 8 41 281

than other properties during attacks, indicating that this function in the system behavior is more sensitive (highlighted in blue). We 
also observe that some properties have the higher number of violations per attack (highlighted in gray).

Table 5 shows the results for the combined attack scenarios. We consider the compromising and injection attacks that are 
described in the attack scenarios above, and combine those scenarios pairwise where they do not violate the safety properties 
without combination. The outcomes show the pairs of attacks that result in successful coordinated attack scenarios. Out of the 8010 
combined attack scenarios, 281 cases successfully violate the safety properties. We show the property with the higher number of 
violations (highlighted in gray) for each pair of attacks. The most effective attack is the combination of the attack on 𝖲𝖾𝗇𝗌𝗈𝗋𝖡 and 
the injection of false data into the channels (highlighted in pink).

An example of a combined attack scenario is 𝗌𝖡𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽+ 𝗂𝗇𝗃𝖾𝖼𝗍𝗂𝗈𝗇 where the attack violates the property 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟤. 
As shown within Rebeca IDE in Fig. 9, the attack scenario in the Timed Rebeca model involves an attacker where it injects the 
false sensor data 0 into the channel between the controllers at 𝖺𝗍𝗍𝗄𝗍𝗂𝗆𝖾= 𝟨 and 𝗌𝖡𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 transmits the false sensor data 0 to 
𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖡 at 𝗌𝖡𝖢𝗈𝗆𝗉_𝗍𝗂𝗆𝖾 = 𝟣𝟤. In this combined attack scenario, as shown in Fig. 10, (1) the attacker waits until 6 units of time 
and then injects the false sensor data 𝗀𝖾𝗍𝖼𝗍𝗅(𝟢) into the channel towards 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖡. The false sensor data 0 indicates the movement 
of 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 is completed and 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖡 can actuate 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡. (2) 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖡 sends the motion command 𝖺𝖼𝗍𝗎𝖺𝗍𝖾(𝟣) to actuate 
𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡. (3) 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖡 gets the status of 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 from the compromised sensor where it reports that 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 is moved down. 
(4) 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖡 reports 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖠 that the movement of 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 is completed since it gets the false sensor data 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾(𝟢). (5) 
𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖠 gets the sensor data 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾(𝟢) from 𝖲𝖾𝗇𝗌𝗈𝗋𝖠 where it indicates 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 is on the left and also gets the report 𝗀𝖾𝗍𝖼𝗍𝗅(𝟢)
from 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖡 showing that the movement of 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 is completed. (6) 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖠 sends the motion command 𝖺𝖼𝗍𝗎𝖺𝗍𝖾(𝟣) to 
actuate 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 to the right at time 12. The property 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟤 is violated when 𝖺𝖼𝗍𝗎𝖺𝗍𝖾(𝟣) is sent from 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖠 as shown in 
the counter-example at the top right of the IDE in Fig. 9.

The property 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟤 ensures that both cylinders must not move diagonally. Therefore, the combined attack scenario violates 
the safety property 𝗌𝖺𝖿𝖾𝗍𝗒_𝗉𝗋𝗈𝗉𝟤 at time 12 and the model checker generates the counter-example that indicates the events leading 
to the violated state. In this case, the injection attack and the compromised sensor attack are not successful attacks separately. In our 
approach, we can extend the attack combinations and evaluate the system security with various complex attack scenarios.

6.5. PCS tiny digital twin and monitoring

We employ a monitor to find inconsistencies at runtime. The monitor observes sensor data and control commands transmitted in 
the network and detects attacks using Tiny Digital Twin. Tiny Digital Twin is an abstract version of the state space generated by the 
model checker and is used by the monitor to catch inconsistencies. The monitor walks over the model to check whether the sensor 
data and control commands are consistent with the state transitions in the Tiny Digital Twin.

The actions on the transitions in the state space that are not visible to the monitor (and the controller), are known as non-
observable actions. We developed a tool, ltscast, to map the state space created by Afra into the input format of the mCRL2 ltsconvert

tool [14]. Using the mCRL2 ltsconvert tool, we create the Tiny Digital Twin by abstracting away non-observable actions while 
16

preserving trace equivalence [13].
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Fig. 9. The counter-example generated by Afra model checker for the combined attack scenario cBCompromised+injection where attktime=12. The property
safety_prop2 is violated when actuate(1) is sent from ControllerA.

Fig. 10. The sequence of events for the combined attack cBCompromised+injection where the attack succeeds at time attktime=12 on the control system. The attack 
causes the system to subsequently generate getctl(0) and actuate(1), and violate the safety property safety_prop2.

We create the Tiny Digital Twin for the PCS system by providing the ltsconvert tool with a list of labels that denote the silent 
transitions (non-observable actions). In this system, the actions 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾, 𝖺𝖼𝗍𝗎𝖺𝗍𝖾 and 𝗀𝖾𝗍𝖼𝗍𝗅 are observable in the system behavior 
from the controller point of view, while actions 𝗌𝗍𝖺𝗍𝗎𝗌 and 𝗀𝖾𝗍𝗅𝗈𝖼 are non-observable. The resulting abstract model has 87 states and 
120 transitions, while the original state space has 276 states and 439 transitions.

Fig. 11 shows a subset of state transitions of the Tiny Digital Twin. A transition path that presents the actions to handle the desired 
movement of 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 is shown in the diagram (orange arrows). 𝖲𝖾𝗇𝗌𝗈𝗋𝖠 and 𝖲𝖾𝗇𝗌𝗈𝗋𝖡 send 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾(𝟢) to report that 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 is on 
the left and 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 is moved up (outgoing transitions from state S67 and state S65). Regarding the desired behavior of the system, 
𝖢𝗈𝗇𝗍𝗈𝗅𝗅𝖾𝗋𝖡 sends the motion command 𝖺𝖼𝗍𝗎𝖺𝗍𝖾(−𝟣) to move 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 down (S70). Each motion in the movement of the cylinder 
17

takes 2 units of time (S71). 𝖲𝖾𝗇𝗌𝗈𝗋𝖡 updates the status of 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 to the controller (S76 to S75). The 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 moves in the linear 
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Fig. 11. A subset of the state transitions in the Tiny Digital Twin of the PCS case study. A transition path that presents the actions to handle the desired movement of
CylinderB is shown in the diagram (orange arrows).
18



Journal of Logical and Algebraic Methods in Programming 139 (2024) 100965F. Moradi, S. Abbaspour Asadollah, B. Pourvatan et al.

Fig. 12. The diagram (built in Eclipse IDE) of the reactors in LF code for PCS case study including monitor and attacker reactors.

motion and reaches the end location (i.e., 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾(−𝟤)). 𝖢𝗈𝗇𝗍𝗈𝗅𝗅𝖾𝗋𝖡 sends the motion command 𝖺𝖼𝗍𝗎𝖺𝗍𝖾(𝟣) to move 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 back 
to the up (S74 to S61). 𝖢𝗈𝗇𝗍𝗈𝗅𝗅𝖾𝗋𝖡 starts to send 𝖺𝖼𝗍𝗎𝖺𝗍𝖾(𝟣) to 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 when it receives the report 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾(𝟢) from 𝖲𝖾𝗇𝗌𝗈𝗋𝖠 and the 
message 𝗀𝖾𝗍𝖼𝗍𝗅(𝟢) from 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖡 through the channel between the controllers (S61 to S48). The time shifting transitions between 
states are shown with blue arrows where they indicate the transition due to the shift-equivalence relation.

6.6. PCS Lingua Franca

In Timed Rebeca model and Tiny Digital Twin, we use logical time. However, the monitor deals with physical time in the real 
applications based on physical clocks. To synchronize logical time and physical time, we develop the monitor using Lingua Franca 
(LF). LF aligns these two timelines at runtime using a scheduler that monitors the local clock of each actor and delays processing the 
message until its measurement of physical time exceeds a threshold [20].

We use the mapping between Timed Rebeca and Lingua Franca presented in [17] and write a Lingua Franca code for the PCS case 
study. The code is presented in Listing 6 and its diagram is shown in Fig. 12. The diagram shows reactors including their reactions 
for the system. To simulate the attacks, we modify the reactions in the reactors. This way, the reactors behave as 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽
components and respectively send false sensor data and faulty control commands on the output ports. In addition, the reactor 
𝖠𝗍𝗍𝖺𝖼𝗄𝖾𝗋 is defined to inject false messages into the channel between the controllers.

Similar to the Timed Rebeca model of the system, the code implements all components of the system. The message servers 
𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾, 𝗀𝖾𝗍𝖼𝗍𝗅, 𝗌𝗍𝖺𝗍𝗎𝗌 and 𝖺𝖼𝗍𝗎𝖺𝗍𝖾 (see Listing 4) are mapped to the reactions of the corresponding reactors in LF (see Listing 6). The 
list of known rebecs in 𝗄𝗇𝗈𝗐𝗇𝗋𝖾𝖻𝖾𝖼𝗌 shows the number of output ports that are defined in the respective reactors. For example, the 
output ports 𝖺𝖼𝗍𝗎𝖺𝗍𝖾 and 𝗀𝖾𝗍𝖼𝗍𝗅𝖡 in the reactor 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖠 are defined based on two known rebecs 𝖼𝗒𝗅𝖠 and 𝖼𝗇𝗍𝗅𝖡. The state variables 
𝗅𝗈𝖼𝖡𝗂𝗌𝖴𝖯, 𝗅𝗈𝖼𝖠𝗂𝗌𝖫𝖾𝖿𝗍, 𝗅𝗈𝖼, and 𝗆𝗈𝗍𝗂𝗈𝗇 in the reactive classes 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖠 and 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 are mapped to the states in LF (see e.g., line 4). 
In Timed Rebeca, a message server of other reactive classes (or self) is called, and that is how the binding and the flow is realized. 
In LF, in the connection part of the main reactor, all the bindings are set by defining which input of which reactor is connected to 
which output of which reactor (see line 46 to 53).

As shown in Listing 6, the input ports 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾 and 𝗀𝖾𝗍𝖼𝗍𝗅 in the reactor 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖠 are defined to get sensor data and the report 
from 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖡. Two output ports 𝖺𝖼𝗍𝗎𝖺𝗍𝖾 and 𝗀𝖾𝗍𝖼𝗍𝗅𝖡 are defined to send values as the notion commands to 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 and reports the 
status of the cylinder to 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖡 (line 4). We can set the value of 𝗆𝗈𝗍𝗂𝗈𝗇 defined in the reactor 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 (line 29) by transmitting 
a value in the output port 𝖺𝖼𝗍𝗎𝖺𝗍𝖾. We set the value 1 to move the cylinder to the right (line 10), and -1 to move the cylinder to the 
left (line 14), and use the value of 0 to stop the motion of the cylinder.

The timing of the movement for the cylinders is defined using 𝗍𝗂𝗆𝖾𝗋. The reactor 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 includes 𝗍𝗂𝗆𝖾𝗋 that is used to trigger 
the reaction 𝗌𝗍𝖺𝗍𝗎𝗌 in the cylinder reactor after every 2 seconds (i.e., 𝗍𝗂𝗆𝖾𝗋 𝗌𝗍𝖺𝗍𝗎𝗌(𝟢,𝟤 𝗌𝖾𝖼)). The reaction 𝗌𝗍𝖺𝗍𝗎𝗌 changes the location 
𝗅𝗈𝖼 of the cylinder based on the value of 𝗆𝗈𝗍𝗂𝗈𝗇 (line 28 to 41). The reactors 𝖢𝗈𝗇𝗍𝗋𝗈𝗅𝗅𝖾𝗋𝖡, 𝖲𝖾𝗇𝗌𝗈𝗋𝖡 and 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 are defined similarly 
19

for other components of the system (line 42 to 44).
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We set the compromised version of 𝖲𝖾𝗇𝗌𝗈𝗋𝖠 and 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 using state variables (line 19). If the state variable 𝖼𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 be-
comes true, the reactor 𝖲𝖾𝗇𝗌𝗈𝗋𝖠 behaves as the compromised version and compares the logical time provided in
𝗀𝖾𝗍_𝖾𝗅𝖺𝗉𝗌𝖾𝖽_𝗅𝗈𝗀𝗂𝖼𝖺𝗅_𝗍𝗂𝗆𝖾() with the time value 𝖼𝗈𝗆𝗉𝖳𝗂𝗆𝖾. It sends 𝗆𝗌𝗀 into the output port when two logical times are the same (line 
20 to 23). We have the similar implementation for the compromised version of 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠, 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 and 𝖲𝖾𝗇𝗌𝗈𝗋𝖡 (line 30 to 34).

The main reactor instantiates the components and binds their input and output ports to connect the components together. For 
example, we connect the output port 𝗈𝗎𝗍 in the reactor 𝖲𝖾𝗇𝗌𝗈𝗋𝖠 to the input port 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾𝖠 of the reactor 𝖬𝗈𝗇𝗂𝗍𝗈𝗋. This way, the 
sensor data is transferred from the sensor to the 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 (line 50). In the main reactor, the use of 𝖺𝖿𝗍𝖾𝗋 indicates that a value reaches 
the input port 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾𝖠 of the reactor 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 after 1 unit of time.

1 target Cpp {fast: false, threads: 1};

2 import Monitor.lf; //loads Tiny Digital Twin and compares inputs with labels on transitions

3 reactor ControllerA {

4 input getsense:int; input getctl:int; output actuate:int; output getctlB:int;

5 state locBisUP:bool(false); state locAisLeft:bool(true);

6 reaction(getsense) -> actuate, getctlB {=

7 if (locBisUP) {

8 if (locAisLeft) {

9 if(*getctl.get() == 2){ getctlB.set(*getctl.get());

10 locAisLeft = false; locBisUP = false; } else { actuate.set(1); }

11 } else if (!locAisLeft) {

12 if(*getctl.get() == 0){

13 getctlB.set(*getctl.get()); locAisLeft = true; locBisUP = false;

14 } else { actuate.set(-1); } } } =}

15 reaction(getctl) {= if (*getctl.get() == 0) { locBisUP = true; } =}

16 }

17 reactor SensorA {

18 output out:int; input sensedValue:int;

19 state compromised:bool(false); state compTime:int(0); state msg:int(0);

20 reaction(sensedValue) -> out {=

21 auto elapsed_time = get_elapsed_logical_time();

22 auto elapsed_secs = std::chrono::duration_cast<std::chrono::seconds>(elapsed_time);

23 if(compromised && elapsed_secs == std::chrono::seconds(compTime)){

24 out.set(msg);

25 } else { out.set(sensedValue.get()); }

26 =}

27 }

28 reactor CylinderA {

29 input actuate:int; output getloc:int; state loc:int(0); state motion:int(0);

30 state compromised:bool(false); state compTime:int(0); state msg:int(0);

31 reaction(actuate) {=

32 auto elapsed_time = get_elapsed_logical_time();

33 auto elapsed_secs = std::chrono::duration_cast<std::chrono::seconds>(elapsed_time);

34 if(compromised && elapsed_secs == std::chrono::seconds(compTime)){ motion = msg;

35 } else { motion = *actuate.get(); }

36 =}

37 timer status(0, 2 sec);

38 reaction(status) -> getloc {=

39 loc = loc + motion;

40 if(loc == 0 || loc == 2){ getloc.set(loc); motion = 0; } =}

41 }

42 reactor ControllerB { ... }

43 reactor SensorB { ... }

44 reactor CylinderB { ... }

45 reactor Attacker { ... } //injections

46 main reactor PCS {

47 ...

48 ControllerA = new ControllerA(); ControllerB = new ControllerB();

49 cylA.getloc -> SensorA.sensedValue; cylB.getloc -> SensorB.sensedValue;

50 SensorA.out -> Monitor.getsenseA after 1 sec;

51 ControllerA.actuate -> Monitor.actuateA; ControllerB.actuate -> Monitor.actuateB;

52 Monitor.cmd_actuateA -> cylA.actuate; Monitor.cmd_actuateB -> cylB.actuate;

53 Attacker.getctlA -> ControllerA.getctl; Attacker.getctlB -> ControllerB.getctl;

54 }

Listing 6: LF code for the PCS case study.

6.7. Detection capability of the monitor in PCS

We consider those 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 components and 𝖨𝗇𝗃𝖾𝖼𝗍𝗂𝗈𝗇 attacks that successfully violate the safety properties at design-time 
20

(see Section 6.4, Table 4 and Table 5 for the total successful attacks) in evaluating the detection capability of the monitor at runtime. 
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Table 6

The detection capability of the monitor in the PCS case study.

attack types total_successful_attacks detection capability

cACompromised 38 0
cBCompromised 49 0
sACompromised 128 128
sBCompromised 140 140
injection 28 28
sACompromised+injection 47 47
sACompromised+sBCompromised 45 45
sBCompromised+injection 75 75
cBCompromised+injection 25 8
cBCompromised+sACompromised 26 9
cACompromised+sBCompromised 5 2
cACompromised+injection 9 4
cBCompromised+sBCompromised 38 18
cACompromised+sACompromised 2 1
cACompromised+cBCompromised 3 0

total_detection_rate 664 505 (%76)

In our experiments, in developing LF code, we simulate 355 false sensor data and faulty actuation as listed in Table 4. We also 
simulate 28 injection attacks by defining 𝖠𝗍𝗍𝖺𝖼𝗄𝖾𝗋 and 281 combined attacks where the injection attacks are combined with sensor 
data and faulty commands.

We implement the monitor as a reactor in LF (i.e., 𝖬𝗈𝗇𝗂𝗍𝗈𝗋.𝗅𝖿 ) (line 2). The reactor 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 is imported to the LF code of the 
PCS case study. As shown in Fig. 12, the reactor 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 contains two reactions, one for loading Tiny Digital Twin and another for 
comparing input data with the transitions in the model. The code is compiled by the Lingua Franca compiler, and an executable file 
is returned. The monitor observes the sensor data and the control commands during the code execution and decides to drop or pass 
the commands to the cylinders. The complete LF code of the monitor and the components of the system are available in GitHub [28].

An example of runtime attack detection using 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 is described below. Consider Tiny Digital Twin in Fig. 11, and assume that 
the system is in state S74 and 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖲𝖾𝗇𝗌𝗈𝗋𝖠 sends 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾(𝟣) to the controller indicating 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖠 is moved to the right 
whereas the actual location that is sensed by 𝖲𝖾𝗇𝗌𝗈𝗋𝖠 is left. Upon receiving this false sensor data, 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 produces an alarm and 
terminates the monitoring process because the data sent by the sensor is not the same as the labels on transitions from S74 to S60. 
As another example, assume the system is in state S70 and 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 moves up. 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 does not detect this attack 
immediately because the transmitted command from the controller matches the one in Tiny Digital Twin while 𝖢𝗒𝗅𝗂𝗇𝖽𝖾𝗋𝖡 moves up. 
𝖬𝗈𝗇𝗂𝗍𝗈𝗋 detects the attack when it receives false sensor data 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾(−𝟤) at S74. 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 can drop the commands transmitted from 
the controller that are not consistent with the outgoing transition in Tiny Digital Twin. A coordinated attack can occur when 𝖠𝗍𝗍𝖺𝖼𝗄𝖾𝗋
injects 𝗀𝖾𝗍𝖼𝗍𝗅(𝟢) while 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖲𝖾𝗇𝗌𝗈𝗋𝖡 sends false sensor data 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾(𝟢) to the controller at S54. In this coordinated attack, 
injecting 𝗀𝖾𝗍𝖼𝗍𝗅(𝟢) into the channel is not successful since 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 compares the order and timing of the events with the transitions 
in Tiny Digital Twin. 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 compares 𝗀𝖾𝗍𝖼𝗍𝗅(𝟢) with the outgoing transition at S54 and detects the false sensor data by comparing 
it with the data on the transition between S80 and S49.

As shown in Table 6, the detection rate of the monitor can be calculated with respect to the detected/undetected attacks by the 
monitor. In this case study, out of the 664 attack scenarios (combined and single successful attacks), 159 attacks were not directly 
detected by the monitor, therefore the detection rate is around 76 percent. The undetected attacks are related to the compromise 
of components 𝖼𝖠𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 and 𝖼𝖡𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽, as well as their combination with other attacks, where the attack impact is 
reported by sensors after the attack succeed. The monitor can not immediately detect the attacks that directly affect the actuators 
and physical process, because the monitoring system relies on sensor data and control commands transmitted over the network to 
detect potential attacks, and compares them with the expected state transitions in the Tiny Digital Twin. To improve the ability 
to detect these types of attacks, it may be necessary to implement additional security measures, such as network segmentation, or 
endpoint protection solutions. These measures can help to identify and isolate compromised components or devices, as well as detect 
anomalous behavior that may indicate an ongoing attack.

7. Secure Water Treatment system (SWaT)

The SWaT testbed [29] is a scaled-down version of an industrial water treatment system. This testbed is used for several research 
and training purposes in the iTrust research center [29]. We present the details of SWaT architecture and its Timed Rebeca model 
(adapted from [1]). We explain the definition of the priority for the message servers in the Timed Rebeca and then provide the Tiny 
Digital Twin and the attack detection using the monitor.

The water treatment process in the SWaT system consists of three stages as shown in Fig. 13. These stages include supplying raw 
water into the system, Ultra-Filtration (UF) and Reverse Osmosis (RO). In each stage, there is a PLC responsible for controlling a 
water tank. The PLC is directly connected to some actuators (i.e., valves or pumps) through a local network. A simple password-
based authentication is the only mechanism employed to control access to the network, which makes the SWaT system vulnerable to 
21

eavesdropping or packet injection attacks [30].
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Fig. 13. An abstract architecture of the SWaT system (adapted from [31]).

At any stage during the execution of the water treatment process, each pump can be in 𝗈𝗇 or 𝗈𝖿𝖿 state, and respectively each 
valve can be in one of the two states 𝗈𝗉𝖾𝗇 or 𝖼𝗅𝗈𝗌𝖾. Also, three states are considered for the big tanks (i.e., 𝖳𝖺𝗇𝗄_𝟣 and 𝖳𝖺𝗇𝗄_𝟤): Low(𝗅), 
Medium(𝗆), and High(𝗁), and two states for the small tank (𝖳𝖺𝗇𝗄_𝟥): Low(𝗅) and High(𝗁). During the system operation, whenever the 
water level of a tank changes to 𝗁, the associated sensor reports the change to the responsible PLC. That PLC will close the valve or 
turn off the pump that is pouring water into the tank. Also, the PLC may open a valve, turn a pump on, or send 𝗈𝗉𝖾𝗇/𝗈𝗇 requests to 
other PLCs when the water level in the tank is either 𝗅 or 𝗆. The 𝖯𝖫𝖢_𝟣, 𝖯𝖫𝖢_𝟤 and 𝖯𝖫𝖢_𝟥 are configured to interact with each other 
to manage the SWaT system.

7.1. SWaT Timed Rebeca model

The PLCs communicate with each other through a separate protected network. For example, the 𝗈𝗉𝖾𝗇_𝖱𝖾𝗊∕𝖼𝗅𝗈𝗌𝖾_𝖱𝖾𝗊 or the 𝗈𝗇_𝖱𝖾𝗊
messages passed in the secured channel between the PLCs may not be the target of any attacker. However, the messages (𝗅, 𝗆, and 
𝗁) which are transmitted from the sensors to the PLCs may be tampered by an attacker to affect the decisions made by the PLCs. 
The blue points represent the components that may behave maliciously. Typically, the malicious behavior of the component leads 
to a faulty data transmission. For instance, whenever a pump is compromised, it may push the water to the connected tank once it 
receives the command 𝗈𝖿𝖿 from the corresponding PLC.

In the SWaT Timed Rebeca model, we assume that the water level in each tank is low in the initial state. Also, the water treatment 
process begins by pumping raw water to 𝖳𝖺𝗇𝗄_𝟣 and it ends when the cleaned water flows out of 𝖳𝖺𝗇𝗄_𝟤. During the process execution, 
each sensor sends water level information to the corresponding PLC periodically.

In the following, we provide a detailed explanation of the Rebeca model (see Listing 7) developed for the SWaT system. The 
complete model is available in [32]. The main block includes the declarations of all rebecs together with an attacker rebec (line 45
to 50). In addition to the main block, the Rebeca model includes the reactive classes defining the behavior of the SWaT actors. For 
example, the 𝖯𝖫𝖢_𝟣 reactive class has two known rebecs which are instances of reactive classes 𝖯𝗎𝗆𝗉_𝟣 and 𝖵𝖺𝗅𝗏𝖾. The reactive class 
𝖯𝖫𝖢_𝟣 includes a boolean state variable 𝗈𝗉𝖾𝗇𝖱𝖾𝗊𝖯𝗅𝖼𝟤 whose value indicates whether a water request is received from 𝖯𝖫𝖢_𝟤 or not 
(i.e. request for opening the valve). This variable is initialized to false in the constructor of 𝖯𝖫𝖢_𝟣.

Two boolean state variables 𝗉𝗎𝗆𝗉𝟣𝖮𝗇 and 𝗏𝖺𝗅𝗏𝖾𝖮𝗉𝖾𝗇 indicate the current status of 𝖯𝗎𝗆𝗉_𝟣 and 𝖵𝖺𝗅𝗏𝖾 respectively. The definition 
of 𝖯𝖫𝖢_𝟣 includes three message servers i.e., 𝗉𝗅𝖼𝟣_𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾, 𝗉𝗅𝖼𝟣_𝗈𝗉𝖾𝗇𝖱𝖾𝗊 and 𝗉𝗅𝖼𝟣_𝖼𝗅𝗈𝗌𝖾𝖱𝖾𝗊 (see Listing 7 line 5 to 14). The message 
server 𝗉𝗅𝖼𝟣_𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾 processes the sensor data and issues commands 𝗈𝗇 or 𝗈𝖿𝖿 to 𝖯𝗎𝗆𝗉_𝟣 and 𝗈𝗉𝖾𝗇 or 𝖼𝗅𝗈𝗌𝖾 to 𝖵𝖺𝗅𝗏𝖾 accordingly. 
The message servers 𝗉𝗅𝖼𝟣_𝗈𝗉𝖾𝗇𝖱𝖾𝗊 and 𝗉𝗅𝖼𝟣_𝖼𝗅𝗈𝗌𝖾𝖱𝖾𝗊 are activated once a message is received from 𝖯𝖫𝖢_𝟤. The definition of priority 
depends on the programming language and the techniques in the controllers such as PLCs. For example, in ladder logic programming 
for PLCs, the priority of incoming messages can be defined using timers or counters. We can use @𝗉𝗋𝗂𝗈𝗋𝗂𝗍𝗒 before the definition of 
message servers in a reactive class to specify the sequence in which messages received by the actor are executed. In this model, the 
message server 𝗉𝗅𝖼𝟣_𝖼𝗅𝗈𝗌𝖾𝖱𝖾𝗊 has higher priority than the message servers 𝗉𝗅𝖼𝟣_𝗈𝗉𝖾𝗇𝖱𝖾𝗊 and 𝗉𝗅𝖼𝟣_𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾. In order to have correct 
functionality when messages arrive at the same time, we set the priority of the message server 𝗉𝗅𝖼𝟣_𝖼𝗅𝗈𝗌𝖾𝖱𝖾𝗊 to 1 using @𝗉𝗋𝗂𝗈𝗋𝗂𝗍𝗒(𝟣). 
The reactive class 𝖳𝖺𝗇𝗄_𝟣 contains two message servers, 𝗍𝖺𝗇𝗄𝟣_𝗐𝖺𝗍𝖾𝗋𝖨𝗇𝖼𝗋𝖾𝖺𝗌𝖾 and 𝗍𝖺𝗇𝗄𝟣_𝗐𝖺𝗍𝖾𝗋𝖣𝖾𝖼𝗋𝖾𝖺𝗌𝖾, which are used to change the 
level of water in the tank. We model in a way where the messages corresponding to water decrease are executed before the messages 
related to water increase. The reactive class 𝖯𝗎𝗆𝗉_𝟣 includes four message servers 𝗈𝗇, 𝗈𝖿𝖿 and 𝖪𝖾𝖾𝗉𝖮𝗇𝗉𝗎𝗆𝗉𝗂𝗇𝗀 (lines 31 to 50). The 
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message servers 𝗈𝗇 and 𝗈𝖿𝖿 update the value of the state variable 𝖮𝗇 based on the commands received from 𝖯𝖫𝖢_𝟣. The message 
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1 env int chl = 1; env int malMsg = 0; env int attackTime = 0; ... //env variables

2 reactiveclass PLC_1(5){ knownrebecs{ Pump_1 pump1; Valve valve;}

3 statevars{ boolean openReqPlc2, pump1On, valveOpen; int waterLevelTank1;}

4 PLC_1(){openReqPlc2 = false; sensedTank1WaterLevel = 1; pump1On = false; ...}

5 @priority(3) msgsrv plc1_getsense(int waterLevel){

6 if (waterLevel == 1 && pump1On == false) {

7 pump1.pump1_on(); pump1On = true;

8 } else if (waterLevel == 2) {

9 if(!valveOpen && openReqPlc2) {

10 valve.valve_open(); valveOpen = true;

11 } else if(valveOpen && openReqPlc2) {valve.valve_keepOnWaterFlow(); } ...

12 } else {... }

13 @priority(2) msgsrv plc1_openReq(){openReqPlc2 = true;}

14 @priority(1) msgsrv plc1_closeReq(){

15 openReqPlc2 = false; valve.valve_close(); valveOpen = false; }

16 }

17 reactiveclass PLC_2(5){...} reactiveclass PLC_2(5){...}

18 reactiveclass Tank_1(10){ knownrebecs{ sensorTank1 sensor; ...}

19 statevars{ boolean underFlow,low,medium,high,overFlow;}

20 Tank_1(){ underFlow = false; overFlow = false; low = true; ...}

21 msgsrv tank1_status(){ if (underFlow){sensor.sensor1_reportStatus(0);} else {...}

22 @priority(1) msgsrv tank1_waterIncrease(){ ... //changes water level status

23 if (low == true) { medium = true; low = false; high = false;

24 } else if (medium == true) {...}}

25 @priority(2) msgsrv tank1_waterDecrease(){...

26 if (medium){ tank2.tank2_waterIncrease();}}

27 }

28 reactiveclass Tank_2(10){...}

29 reactiveclass Tank_3(10){... msgsrv tank3_waterDecrease(){

30 if (high) {... tank2.tank2_waterIncrease(); } else if (low) {...}}

31 reactiveclass Pump_1(10){ knownrebecs{ Tank_1 tank1;}

32 statevars{ boolean pump1_on;}

33 Pump1(boolean compromised, int compTime, int msg){ pump1_on = false;

34 if (compromised == true) {

35 if(msg == 1){self.pump1_on();} else {self.pump1_off();}}

36 msgsrv pump1_on(){

37 pump1_on = true; tank1.tank1_waterIncrease(); }

38 @priority(2) msgsrv pump1_keepOnpumping(){

39 if (pump1_on) {tank1.tank1_waterIncrease(); }}

40 @priority(1) msgsrv pump1_off(){...}

41 }

42 reactiveclass Pump_2(10){...} reactiveclass Valve(10){...}

43 reactiveclass sensorTank1(10){...} reactiveclass sensorTank2(10){...}

44 reactiveclass sensorTank3(10){...} reactiveclass reverseOsmosisUnit(5){...}

45 reactiveclass Attacker(3){ knownrebecs{ PLC_1 plc1; PLC_2 plc2; ...}

46 Attacker(boolean inj, int channel, int maliciousMsg, int attackTime){

47 if (inj && chl == 1) { self.channelPlc1S(maliciousMsg, attackTime);

48 } else if (inj && chl == 2) {...}}

49 msgsrv channelPlc1S(int msg, int attackTime){

50 plc1.plc1_getsense(msg) after(attackTime);} ... } //message servers

51 main{

52 @priority(2) PLC_1 plc1(pump1, valve):();

53 @priority(3) sensorTank1 sensor1(tank1, plc1):(s1Comp,s1Comp_time,s1malMsg);

54 ...

55 Attacker attacker(plc1,plc2,plc3,pump1,pump2,valve):(inj_attk,chl,malMsg,attTime)}

Listing 7: An abstract version of the SWaT system Timed Rebeca model augmented with attacks.

server 𝖪𝖾𝖾𝗉𝖮𝗇𝗉𝗎𝗆𝗉𝗂𝗇𝗀 calls 𝗐𝖺𝗍𝖾𝗋𝖨𝗇𝖼𝗋𝖾𝖺𝗌𝖾 and increases the level of water for one level in the tank. This continues until the message 
server 𝗈𝖿𝖿 receives the turn off message. The main block includes the declarations of the reactive classes in the model including the 
priority for each reactive class.

7.2. SWaT attack modeling in Timed Rebeca

In this experiment we use model checking to detect the undesirable events that might happen while attackers tamper the channels 
(e.g., by injecting packets) and compromise sensors/actuators by altering their functionality.

In the Timed Rebeca model, we model compromised actors using parameters that are passed to them (see Listing 7). For example, 
the reactive class 𝖯𝗎𝗆𝗉_𝟣 includes a variable 𝖼𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 that can be set to change the status of the component to be compromised 
or not compromised (line 33). If this variable is set to be compromised then although the pump receives a message to turn its status 
to 𝗈𝗇, it turns it to 𝗈𝖿𝖿 . For changing the variable 𝖼𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 at different times we use the parameter 𝖼𝗈𝗆𝗉𝖳𝗂𝗆𝖾. Similar to the 
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compromised mode of 𝖯𝗎𝗆𝗉_𝟣, whenever the value of the input parameter 𝖼𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 is true for 𝖵𝖺𝗅𝗏𝖾, then both message servers 



Journal of Logical and Algebraic Methods in Programming 139 (2024) 100965F. Moradi, S. Abbaspour Asadollah, B. Pourvatan et al.

Table 7

The failure of properties in Combined Attack.

# 𝖯𝗋𝗈𝗉𝖾𝗋𝗍𝗒 𝖨𝗇𝗃𝖾𝖼𝗍𝖾𝖽 𝗆𝖾𝗌𝗌𝖺𝗀𝖾 𝖢𝗈𝗆𝗆𝗎𝗇𝗂𝖼𝖺𝗍𝗂𝗈𝗇 𝖼𝗁𝖺𝗇𝗇𝖾𝗅 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 𝖼𝗈𝗆𝗉𝗈𝗇𝖾𝗇𝗍 𝖬𝖺𝗅𝗂𝖼𝗂𝗈𝗎𝗌 𝖻𝖾𝗁𝖺𝗏𝗂𝗈𝗋

1 𝗌𝖺𝖿𝖾𝗍𝗒_𝗍𝖺𝗇𝗄𝟣_𝗎𝗇𝖽𝖾𝗋𝖿 𝗅𝗈𝗐 Open 𝖵𝖺𝗅𝗏𝖾 (𝖯𝖫𝖢_𝟣 to 𝖵𝖺𝗅𝗏𝖾) 𝖯𝗎𝗆𝗉_𝟣 (Turn 𝖮𝖿𝖿)
2 𝗌𝖺𝖿𝖾𝗍𝗒_𝗍𝖺𝗇𝗄𝟥_𝗎𝗇𝖽𝖾𝗋𝖿 𝗅𝗈𝗐 Water level in𝖳𝖺𝗇𝗄_𝟤 is medium (𝖲𝖾𝗇𝗌𝗈𝗋_𝟤 to 𝖯𝖫𝖢_𝟤) 𝖲𝖾𝗇𝗌𝗈𝗋_𝟥 (Water level in 𝖳𝖺𝗇𝗄_𝟥 is high)
3 𝗌𝖺𝖿𝖾𝗍𝗒_𝗍𝖺𝗇𝗄𝟥_𝗎𝗇𝖽𝖾𝗋𝖿 𝗅𝗈𝗐 Water level in 𝖳𝖺𝗇𝗄_𝟥 is high (𝖲𝖾𝗇𝗌𝗈𝗋_𝟥 to 𝖯𝖫𝖢_𝟥) 𝖲𝖾𝗇𝗌𝗈𝗋_𝟤 (Water level in 𝖳𝖺𝗇𝗄_𝟤 is medium)

𝗈𝗉𝖾𝗇 and 𝖼𝗅𝗈𝗌𝖾 behave maliciously (for example the message server 𝗈𝗉𝖾𝗇 changes the state variable 𝖮𝗉𝖾𝗇 of 𝖵𝖺𝗅𝗎𝖾 to false). In addition 
to the reactive classes that define the normal and compromised behavior of SWaT components, the Rebeca model includes a reactive 
class named 𝖠𝗍𝗍𝖺𝖼𝗄𝖾𝗋 (line 45) that models the behavior of potential attackers targeting channels to inject messages.

7.3. SWaT safety properties

The goal of attacks on the SWaT system is to cause 𝗈𝗏𝖾𝗋𝖿 𝗅𝗈𝗐 or 𝗎𝗇𝖽𝖾𝗋𝖿 𝗅𝗈𝗐 in one of the tanks. An overflow may harm some of 
the critical units such as the UF or RO and lead to flow out of unclean water, and an underflow may damage a valve or a pump. 
Accordingly, the safety properties presented in Listing 8 are considered to be verified on the Timed Rebeca model of the SWaT 
system. These properties ensure that each tank has no 𝗈𝗏𝖾𝗋𝖿 𝗅𝗈𝗐 or 𝗎𝗇𝖽𝖾𝗋𝖿 𝗅𝗈𝗐.

1 property {

2 define {

3 t1_overFlow = tank1.overFlow; t1_underFlow = tank1.underFlow;

4 t2_overFlow = tank2.overFlow; t2_underFlow = tank2.underFlow;

5 t3_overFlow = tank3.overFlow; t3_underFlow = tank3.underFlow;

6 }

7 Assertion {

8 safety_tank1_overflow: !(t1_overFlow);

9 safety_tank1_underflow: !(t1_underFlow);

10 safety_tank2_overflow: !(t2_overFlow);

11 safety_tank2_underflow: !(t2_underFlow);

12 safety_tank3_overflow: !(t3_overFlow);

13 safety_tank3_underflow: !(t3_underFlow);

14 }

15 }

Listing 8: The safety properties for the SWaT system.

7.4. SWaT security analysis

The outcome of the security analysis includes the attack scenarios that lead the system to the property violation. We write a 
Python script to put different values for the input parameters of the attacker and the compromised components and verify the model 
for each combination.

As described in the previous work [1], we modeled 105 communication attacks and 84 attacks on components, and also the 
combination of these attacks (resulting in 8820 attack scenarios). In total, out of all the above possible attack scenarios, 29 cases 
successfully violate the system security.

The analysis results in Table 7 indicate 𝖢𝗈𝗆𝖻𝗂𝗇𝖾𝖽 attacks, such collaborative attacks can be easily detected. For example assume 
that the system is executing and an attacker injects message Open 𝖵𝖺𝗅𝗏𝖾 into the communication link between 𝖯𝖫𝖢_𝟣 and 𝖵𝖺𝗅𝗏𝖾, and 
at the same time another attacker compromises 𝖯𝗎𝗆𝗉_𝟣 to be turned off, then 𝖳𝖺𝗇𝗄_𝟣 will underflow (line 1 in Table 7). As another 
example, 𝖲𝖾𝗇𝗌𝗈𝗋_𝟤 is compromised and a malicious message of high water level for 𝖳𝖺𝗇𝗄_𝟥 is injected into the channel between 
𝖲𝖾𝗇𝗌𝗈𝗋_𝟥 and 𝖯𝖫𝖢_𝟥, then 𝖲𝖾𝗇𝗌𝗈𝗋_𝟥 will underflow (line 3 in Table 7).

Note that the scenarios presented in Table 7 are those in which the single attacks (message injection or the compromised compo-
nent) do not cause a security failure separately, but the combination leads to the security violation. If we assume that the system is 
robust against the single attack scenarios, the system may still be vulnerable against the collaborative attacks.

7.5. SWaT tiny digital twin and monitoring

The actions 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾 for the sensor data, 𝗈𝗇∕𝗈𝖿𝖿∕𝗄𝖾𝖾𝗉𝖮𝗇𝗉𝗎𝗆𝗉𝗂𝗇𝗀 for the pumps and 𝗈𝗉𝖾𝗇∕𝖼𝗅𝗈𝗌𝖾 for the valve are observable in the 
SWaT system behavior from the controller point of view. We use ltsconvert tool to create the Tiny Digital Twin with 187 states and 
303 transitions, which has abstracted the state space with 543 states and 728 transitions.

We show a subset of the state transitions of the Tiny Digital Twin to explain the system behavior at different states (see Fig. 14). 
In the Tiny Digital Twin of the SWaT system, we observe that PLCs take decision to turn 𝗈𝗇∕𝗈𝖿𝖿 pumps and 𝗈𝗉𝖾𝗇∕𝖼𝗅𝗈𝗌𝖾 valve based 
on the received sensor data. As shown in the diagram, the water level for each tank is sent by the corresponding sensors, and the 
24

water level in 𝖳𝖺𝗇𝗄_𝟣, 𝖳𝖺𝗇𝗄_𝟤 and 𝖳𝖺𝗇𝗄_𝟥 is low at the beginning (the outgoing transitions from S0 to S207). The order of the events 
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Table 8

The detection capability of the monitor in SWaT case study.

attack types total_successful_attacks detection capability

Attacks on Communication 15 7
Attacks on Components 11 6
Combined Attacks 3 2

total_detection_rate 29 15 (%51)

for sensor data can be different which is indicated in the state transitions. Regarding the status of the system, 𝖯𝖫𝖢_𝟣 turns on 𝖯𝗎𝗆𝗉_𝟣
and increases the water level in 𝖳𝖺𝗇𝗄_𝟣 (S207). 𝖯𝖫𝖢_𝟤 sends 𝗈𝗉𝖾𝗇𝖱𝖾𝗊 to ask 𝖯𝖫𝖢_𝟣 to open 𝖵𝖺𝗅𝗏𝖾 if the water level in 𝖳𝖺𝗇𝗄_𝟣 is 
medium (S233). 𝖯𝖫𝖢_𝟥 turns off 𝖯𝗎𝗆𝗉_𝟤 because the water level in 𝖳𝖺𝗇𝗄_𝟥 is low (S136). The water level in 𝖳𝖺𝗇𝗄_𝟣 reaches medium 
after 10 units of time and causes 𝖯𝖫𝖢_𝟣 opens 𝖵𝖺𝗅𝗏𝖾 while 𝖯𝗎𝗆𝗉_𝟣 is on and increases the water level in 𝖳𝖺𝗇𝗄_𝟣 (S119). The sensor 
data are sent by the sensors to the PLCs and report the water level in each tank (S37).

The Tiny Digital Twin is used within 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 to detect attacks that compromise the actions 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾 for the sensor data, 
𝗈𝗇∕𝗈𝖿𝖿∕𝗄𝖾𝖾𝗉𝖮𝗇𝗉𝗎𝗆𝗉𝗂𝗇𝗀 for the pumps and 𝗈𝗉𝖾𝗇∕𝖼𝗅𝗈𝗌𝖾 for the valve. We evaluate the detection capability of 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 by simulat-
ing attacks in Lingua Franca.

7.6. SWaT Lingua Franca

There are two restrictions when connecting reactors and writing reactions in LF code. Firstly, each input port in a reactor can have 
at most one incoming connection, while each output port can have multiple outgoing connections. Secondly, all reactions within a 
reactor are executed in the order they are presented.

In the Timed Rebeca model of SWaT case study, we have priority for the execution of the messages by using the @𝗉𝗋𝗂𝗈𝗋𝗂𝗍𝗒
notation for message servers such as 𝗍𝖺𝗇𝗄𝟣_𝗐𝖺𝗍𝖾𝗋𝖨𝗇𝖼𝗋𝖾𝖺𝗌𝖾 and 𝗍𝖺𝗇𝗄𝟣_𝗐𝖺𝗍𝖾𝗋𝖣𝖾𝖼𝗋𝖾𝖺𝗌𝖾 (see Listing 7 line 25 and 22). Additionally, some 
message servers execute messages that are sent from different reactive classes, for example, 𝗍𝖺𝗇𝗄𝟤_𝗐𝖺𝗍𝖾𝗋𝖨𝗇𝖼𝗋𝖾𝖺𝗌𝖾 in 𝖳𝖺𝗇𝗄_𝟤 execute 
the messages sent from the reactive classes 𝖳𝖺𝗇𝗄_𝟣 and 𝖳𝖺𝗇𝗄_𝟥 (see Listing 7 line 26 and 30). In the mapping between Timed Rebeca 
and LF, we write the reactions within a reactor with the order defined in the timed Rebeca model based on priority. For example, 
we present the reaction 𝖼𝗅𝗈𝗌𝖾_𝖱𝖾𝗊 before the reactions 𝗈𝗉𝖾𝗇_𝖱𝖾𝗊 and 𝗀𝖾𝗍𝗌𝖾𝗇𝗌𝖾 within the reactor 𝖯𝖫𝖢𝟣 (see Listing 9 line 6, 7 and 8). 
Also, those message servers that receive messages from different reactive classes are defined with separate input ports in the reactor 
(see Listing 9 line 28).

7.6.1. Detection capability of the monitor in SWaT

We use 𝖢𝗈𝗆𝗉𝗋𝗈𝗆𝗂𝗌𝖾𝖽 version of the sensors, pumps and valve, and 𝖠𝗍𝗍𝖺𝖼𝗄𝖾𝗋 component to create false data and faulty commands 
at different times during execution. Among the attacks that violate the properties (i.e., 29 cases from the security analysis), 𝖬𝗈𝗇𝗂𝗍𝗈𝗋
directly detects the attacks that involve false sensor data. The attacks on actuators (i.e., pumps and valve) are detected when the 
sensor data is reported to the 𝖬𝗈𝗇𝗂𝗍𝗈𝗋. Therefore, as shown in Table 8, the detection rate of the monitor is about 51 percent in this 
system.

In the following, we explain a combined attack scenario and the detection of the attack by 𝖬𝗈𝗇𝗂𝗍𝗈𝗋. In Fig. 15, we assume that the 
system is under a combined attack 𝖢𝗈𝗆𝗉𝖲𝖾𝗇𝗌𝗈𝗋𝟤 + 𝗂𝗇𝗃𝖾𝖼𝗍𝗂𝗈𝗇. At the time of the attack, the water level in 𝖳𝖺𝗇𝗄_𝟣, 𝖳𝖺𝗇𝗄_𝟤, and 𝖳𝖺𝗇𝗄_𝟥
is low, and 𝖲𝖾𝗇𝗌𝗈𝗋_𝟣 and 𝖲𝖾𝗇𝗌𝗈𝗋_𝟥 send the message 𝗅 to the 𝖯𝖫𝖢_𝟣 and 𝖯𝖫𝖢_𝟥, respectively. However, (1) 𝖲𝖾𝗇𝗌𝗈𝗋_𝟤 is compromised, 
and it sends false sensor data 𝗆 to 𝖯𝖫𝖢_𝟤, even though the water level it senses is 𝗅. Based on the received false sensor data, (2) 
𝖯𝖫𝖢_𝟤 sends an 𝗈𝗇_𝖱𝖾𝗊 command to 𝖯𝖫𝖢_𝟥. At the same time, (3) 𝖠𝗍𝗍𝖺𝖼𝗄𝖾𝗋 injects false sensor data 𝗁 into the communication channel 
between 𝖲𝖾𝗇𝗌𝗈𝗋_𝟥 and 𝖯𝖫𝖢_𝟥. As a result, when 𝖯𝖫𝖢_𝟥 receives the 𝗈𝗇_𝖱𝖾𝗊 command, (4) it decides to issue a command to turn on 
𝖯𝗎𝗆𝗉_𝟤 because the water level in 𝖳𝖺𝗇𝗄_𝟥 is high as reported. (5) The faulty command causes 𝖯𝗎𝗆𝗉_𝟤 to turn on, which decreases 
the water level in 𝖳𝖺𝗇𝗄_𝟥 even though the actual water level is low. It is important to note that the compromised sensor and the 
command injection by the attacker cannot violate the system separately because 𝖯𝖫𝖢_𝟥 needs both the 𝗈𝗇_𝖱𝖾𝗊 and the sensor data 
indicating 𝗁 to turn on 𝖯𝗎𝗆𝗉_𝟤.

According to the Tiny Digital Twin of the SWaT system in Fig. 14, the 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 can detect false sensor data transmissions and 
injections in the combined attack scenario. As highlighted in the state transition diagram, it expects to see the water level reported 
as low for each tank between states S0 and S144. 𝖬𝗈𝗇𝗂𝗍𝗈𝗋 observes the sensor data transmitted into the network. If it detects any 
false sensor data or faulty commands, it will drop them to mitigate any potential system failures.

8. Related work

There are various techniques for improving the security of industrial control systems. Some of these techniques include deploying 
security patches, tracking and monitoring critical areas of the system. One approach in the security engineering is to create frame-
works that facilitate the design, building, and deployment of secure systems, as well as the analysis and evaluation of the security of 
existing systems. Following this line of research several modeling and simulation methods are proposed for analyzing the security of 
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cyber-physical systems (CPSs).
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Fig. 14. A subset of the state transitions in the Tiny Digital Twin of the SWaT case study.
26
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1 target Cpp {fast: false, threads: 1};

2 import Monitor.lf;

3 reactor PLC1 {

4 input close_Req:int; input getsense:int; input open_Req:int; //input ports

5 output pump_on:int; output pump_off:int; output pump_keepOnpumping:int; ...

6 reaction(close_Req) {= openReqPlc2 = false; valveOpen = false; =}

7 reaction(open_Req) {= openReqPlc2 = true; =}

8 reaction(getsense) -> pump_on, pump_off, pump_keepOnpumping, ... {=

9 if(getsense.is_present() && close_Req.is_present()){ //priority of close_Req

10 openReqPlc2 = false; valve_close.set(1); valveOpen = false; }

11 if(*getsense.get() == 1 && !pump1On) { pump_on.set(1); pump1On = true;

12 } else if(*getsense.get() == 2) { ...

13 } else if(*getsense.get() == 3) {... =}

14 }

15 reactor PLC2 {...}reactor PLC3 {...}

16 reactor Tank1 { output reportStatus:int; output waterFlows:int;

17 input status:int; input status_V:int; input status_T:int;

18 input waterIncrease:int; input waterDecrease:int; state waterLevel:int(1);

19 timer start(0, 10 sec);

20 reaction(start, status, status_V, status_T) -> reportStatus {=

21 reportStatus.set(waterLevel);

22 =}

23 reaction(waterIncrease) {= waterLevel = waterLevel + 1;=}

24 reaction(waterDecrease) -> waterFlows {=

25 if(waterLevel == 2){ waterFlows.set(1); // water flows into tank2

26 } else {waterLevel = waterLevel - 1;}=}

27 }

28 reactor Tank2 {... input waterIncrease_T1:int; input waterIncrease_T3:int;

29 reaction(waterIncrease_T1) -> waterFlows{=...=}

30 reaction(waterIncrease_T3) -> unit,status_t1,reportStatus {=...=}}

31 }

32 reactor Tank3 {...} reactor sensorTank1 {...}

33 reactor sensorTank2 {...} reactor sensorTank3 {...}

34 reactor Pump1 {...} reactor Pump2 {...}

35 reactor reverseUnit {...}

36 reactor Valve { input open:int; input close:int; input keepOnWaterFlow:int;

37 output out:int; output status:int;

38 reaction(open) -> out {= out.set(1); =}

39 reaction(keepOnWaterFlow) {= out.set(1); =}

40 reaction(close) -> status {= status.set(1); =}

41 }

42
43 main reactor SWaT {

44 monitor = new monitor();

45 Tank1 = new Tank1();

46 valve = new Valve();

47 PLC1 = new PLC1();

48 PLC1.pump_on -> pump1.on;

49 PLC1.pump_off -> pump1.off;

50 PLC1.pump_keepOnpumping -> pump1.keepOnpumping;

51 PLC1.valve_open -> valve.open;

52 PLC1.valve_close -> valve.close;

53 PLC1.valve_keepOnWaterFlow -> valve.keepOnWaterFlow;

54 monitor.out_valve_open -> valve.open;

55 ....

56 }

Listing 9: LF code for the SWaT case study.

Wasicek et al. [33] propose an aspect-oriented technique to model attacks against CPSs. They use Ptolemy [34] as the modeling 
and simulation framework, and demonstrate the practicality of their technique through modeling four types of attacks on an automo-
tive control system. Taormina et al. [35] propose another simulation-based approach that is implemented in a MATLAB toolbox to 
analyze the risk of cyber-physical attacks on water distribution systems. In [36,37], the authors rely on simulation to perform their 
analyses. They propose a new metric to quantify the impact of attacks on components of the target CPS and perform a cost-benefit 
analysis on security investments.

In [30], Kang et al. use Alloy to model a scaled-down version of a Secure Water Treatment (SWaT) system behavior and po-
tential attackers. They can discover the undetected attacks which cause safety failure (e.g., water tank overflow). Rocchetto and 
Tippenhauer [38] use ASLan++ tool for modeling the physical layer interactions and CL-AtSe tool for analyzing the state space. 
They succeed to find eight attack scenarios on SWaT. Nigam and Talcott [39] use Maude [40] to automate security analysis of the 
protocols in Industry 4.0 applications. They formalize networked sets of devices and a symbolic intruder model in rewriting logic. 
27

Fritz and Zhang [41] consider CPSs as discrete-event systems and model them using a variant of Petri nets. They propose a method 
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Fig. 15. The sequence of events for the combined attack CompSensor_2+injection where the attack successfully turns on Pump_2 while the water level in Tank_3 is 
low. The attack causes the system to subsequently generate on_Req and On where violate the safety property for Tank_3.

based on permutation matrices to detect deception attacks. In particular, they can detect attacks by changing the input and output 
behavior of the system and analyzing its effect on the system behavior.

The authors in [42] propose monitors expressed as automaton models [43] to detect injection attacks against a system. Their 
automaton models represent parametric specifications that need to be checked at runtime. Their monitors support event duplication 
to protect the system against attacks. They validate the approach by implementing the monitors and performing attack examples on 
a program taken from the FISSC benchmark [44].

9. Conclusion and future work

The CRYSTAL framework provides tools for modeling and testing the resilience of cyber-physical systems against cyberattacks. 
The case studies presented in the paper provide evidence of the effectiveness of CRYSTAL in detecting different types of attacks. 
We conduct security tests through model checking at design-time and implements the system to simulate and evaluate the detection 
system at runtime. The cornerstones of the framework are actor-based modeling of the system, defining attack models, abstracting 
the model and creating Tiny Digital Twin, and finally developing a monitor to detect cyberattacks.

The monitor may not immediately detect attacks on actuators as it must first receive notice from the sensor data and compare 
it to the Tiny Digital Twin. The delay in detecting attacks can be problematic in systems where each control command can have a 
significant impact on the physical process, such as fast-moving arms in robotics. In systems where there is enough time to stop the 
system after successful attacks, the monitor can effectively detect attacks and mitigate the impact of attacks before the significant 
damage. For example in TCS, the temperature is changed slowly over time. When an attacker compromises the heating/cooling 
process, the monitor has enough time to stop the temperature changes by dropping faulty commands.

As a future direction, we plan to provide a module for writing policies and rules within the monitor to catch abnormal behavior 
of the system and detect attacks that force the system into undesirable states. By embedding these policies and rules into the monitor, 
the system can become more resilient to cyberattacks, even those attacks that the monitor may not be able to detect immediately.
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