
An Ontology-based Representation for Shaping
Product Evolution in Regulated Industries⋆

Barbara Gallina1, Henrik Dibowski2, and Markus Schweizer2

1 Mälardalen University, Väster̊as, Sweden, barbara.gallina@mdu.se
2 Robert Bosch GmbH, Renningen, Germany, {name.surname}@de.bosch.com

Abstract. Compliance management is a challenging activity in regu-
lated industries. This is due to the need of navigating rapidly shifting
requirements. In the automotive domain products (items) evolve rapidly
creating a product line in time in addition to the one in space. The
product variability is constrained by legislation, standards, etc. whose
applicability may vary depending on the jurisdiction. In this paper, we
focus on the legislation and its impact on the product in terms of in-
clusion/exclusion of product features. We exploit the Semantic Web
technologies and we propose an ontology-based representation for man-
aging product variability in compliance with legislation. Specifically, we
provide the representation in Resource Description Framework (RDF) and
we introduce reusable SHACL (Shapes Constraint Language) constraints
to shape the RDF graphs. We illustrate our proposal by considering US
and UNECE regulations and their impact on the window lifter.

Keywords: Compliance Management · Product Evolution · Feature
Diagrams · Ontologies · Reusable SHACL Constraints · Variability.

1 Introduction

Compliance management is a challenging activity in (highly) regulated industries.
This is due to the need of handling high volumes of data and navigating rapidly
shifting requirements. In the automotive domain, for instance, products (items)
evolve rapidly creating a product line in time in addition to the one in space.
The product variability is constrained by legislations, standards, guidelines, etc.
whose applicability may vary depending on the jurisdiction. Hence, the variability
to be managed is not only at the technical product level but it also comprises the
management of the variability related to potentially applicable and overlapping
legislations, standards, guidelines, etc. This implies that activities focused on
modelling these different types of features need to be supported. All these pieces
of variable information contribute to building the product’s pedigree [2]. In [4],
authors have elaborated a layered structure where the inter-dependencies of
different variable artifacts (applicable regulations, applicable standards, etc. and
consequent implication on product evolution) are visualized. Via this layered

⋆ Supported by 4DSafeOps #49 project, https://www.software-center.se

2 B. Gallina et al.

structure, different departments within a highly regulated industry are expected
to identify features and characterise what varies and what remains a commonality
in their domain of expertise. We recognize that that layered structure is actually
present within industrial settings. However, based on experience and as emerged
in a recently conducted survey [1], we also recognize that to manage the variability
at different levels, there is a lack of suitable modeling approaches that enable a
more comprehensive and systematic modeling as well as lack of tools allowing for
interoperability. Specifically, authors in [1] foresee a new generation of software
variability tools with better visualization capabilities where feature models can
be shown not as a whole, but separated into functional areas and easily to
be managed. In [6], authors elaborate a set of principles for feature modelling,
including the principle ”split large models and facilitate consistency with interface
models”, as done in [5]. Interface models are, however, an ad-hoc solution and not
a systematic one. To enable different departments to interoperate while managing
the variability at their own level (i.e., to split large models while managing the
interfaces), we propose an ontology-based representation for managing product
variability and re-configuration at different levels. To do that, first, we provide a
feature model metamodel, formalized as an ontology, given in RDF, augmented
with SHACL constraints to shape/validate the RDF graphs. We also provide
reusable SHACL constraints for characterizing the nature of the features (in
terms of their variability type). To illustrate our proposal, we focus our attention
on two layers, i.e., the legislations and their impact on the product in terms of
inclusion/exclusion of product features. Specifically, we consider US and UNECE
regulations and their impact on the window lifter. We show how to represent
and validate interrelated feature diagrams representing legislations and window
lifters. The rest of the paper is organised as follows. In Section 2, we recall
essential background information. In Section 3, we present and illustrate our
ontology-based representation. In Section 4, we discuss related work. Finally, in
Section 5, we summarise and sketch future work.

2 Background

Feature diagrams are a graphical representation of a hierarchically arranged set
of features, i.e., system properties that capture commonalities or discriminate
among systems in a family. From a semantics perspective, feature diagrams
are trees that are composed of nodes and directed edges. Hence, we sometimes
call them feature trees. The tree root represents a feature that is progressively
decomposed using mandatory, optional, alternative (exclusive-OR features) and
OR-features. In feature diagrams, assuming (during configuration) a top-down
selection of features, mandatory features are features that are always included
in every product. Features that are not necessarily included in every product
may vary. Variation points are features that have at least one direct variable
sub-feature (i.e. as one of its children). The tree can be constrained by formulating
cross-cutting constraints (requires/excludes) that impose presence/absence of

Title Suppressed Due to Excessive Length 3

features based on presence/absence of other features. In this paper, we call feature
tree variants the feature tree configurations.

Power-operated window lifters (WLs) regulate the movement of a side
car window pane. WLs represent a standard feature mounted on every modern car.
A WL is always composed of mechanics, electronics, and the connector to receive
the power input. The mechanics is composed of a set of components, including a
drive gear (mandatory component), composed by a direct current (DC) motor
and toothed and worm gears. The DC motor is responsible for converting the
electrical energy into mechanical energy, needed to actuate the movement (lifting
or lowering) of the window pane. The electronics is also composed of a set of
components, including a microcontroller (MC) unit, which, based on the sensed
information and on the received input, controls the speed and torque of the DC
motor. The MC is composed of hardware and software, which may vary. Different
implementations can be selected depending on the to-be-satisfied needs.

WL-related and self-reversal/anti pinch systems-focused legal re-
quirements applicable in USA and EU. Both, the USA and EU legislations,
specify the same maximum pressure of 100N in their standards. Hence, this
is a mandatory feature. However, in the USA, as part of the Code of Federal
Regulations, specifically the part on Federal Motor Vehicle Safety Standards
(FMVSS), Section 571.118 (Standard No. 118; Power-operated window, partition,
and roof panel systems), it is stated that to detect a pinch situation, tests must
be conducted with a specific test rod stiffness of 65N/mm (S8.1.(b)). In Europe,
according to the UNECE regulation 21 (R21) [7], the required stiffness for the
test rods is 10N/mm (Paragraph 5.8.3.1.3.). These different requirements reveal
a variability of type XOR, specifying that UNECE and US legislations are in
XOR and that depending on which one is applicable, corresponding requirements
(features) have to be satisfied. These different requirements have an implication
on the design of the system (i.e., call for different algorithmic solutions at soft-
ware level), since a stiffer test rod requires faster reaction times as the pressure
increases faster.

Resource Description Framework(RDF) [10] allows users to describe
resources on the Web in a machine-understandable format. The abstract syntax of
RDF has two key data structures: RDF graphs as sets of subject-predicate-object
triples, and RDF datasets for organizing several RDF graphs.Web Ontology
Language (OWL) [8] extends RDFS by adding advanced constructs for defining
the semantics of RDF statements. This enables the formulation of constraints
related to e.g., cardinality, restrictions of values. The main building blocks of an
OWL ontology are classes. A class defines a group of individuals that belong
together because they share the same properties. Classes can be organised in
a specialisation hierarchy using subClassOf. Shapes Constraint Language
(SHACL) [11] is a language for defining constraints, called “SHACL shapes”,
against which RDF graphs can be validated. SHACL constraints can be inter-
preted and processed by a SHACL engine, which checks and validates the SHACL
constraints. In case there are facts in an ontology model or knowledge graph (KG)
which violate any SHACL constraints, the SHACL engine reports a constraint

4 B. Gallina et al.

violation, along with a description. This is then shown to the user. SHACL has
its own vocabulary (e.g., a shape is specified with the construct sh:shape), but it
uses RDF and RDFS vocabulary to define types, classes, subclasses, properties,
lists and resources. SPARQL [9] stands for SPARQL Protocol and RDF Query
Language. SPARQL can be used to formulate queries across diverse data sources
(which can be stored natively as RDF graphs).

3 Ontology-based Representation

In this section, we present our three contributions. Contribution-1 consists
of a feature tree metamodel, formalised as ontology. The metamodel allows for
modeling individual feature trees of any domain and of arbitrary size. The feature
tree metamodel is defined as UML (Unified Modeling Language) class diagram,
shown in Fig. 1. It comprises two classes and five relationships in total.

Fig. 1. Feature tree metamodel

fm:FeatureTree is the class that represents feature trees. Each feature tree
has exactly one root node, which is defined via the relationship fm:hasRootFeature.
The feature it refers to is the root feature, i.e. the top feature in the feature tree.
Each feature can comprise several sub-features, which can be either mandatory
features (relationship fm:hasMandatoryFeature), optional features (relationship
fm:hasOptionalFeature), alternative features (relationship fm:hasORFeature)
or exclusive features (relationship fm:hasXORFeature). With this feature tree
metamodel, arbitrary feature trees can be expressed. This metamodel can be
easily formalized as OWL ontology, by defining the classes as OWL class, and
the relationships as OWL object property. Fig. 2 shows an excerpt of the feature
tree ontology in RDF syntax.

Fig. 2. Excerpt of the feature tree ontology in RDF syntax.

The metamodel ontology constitutes a reusable upper ontology, which can be
imported and refined by a dedicated feature ontology, specialized for a certain

Title Suppressed Due to Excessive Length 5

domain and use case. Therein, the specific feature classes and relationships of the
domain and use case can be defined. To link it with the metamodel, the feature
classes can be defined as subclasses of class fm:Feature, and the relationships
can be defined as subproperties of the object property fm:hasMandatoryFeature,
fm:hasOptionalFeature, fm:hasORFeature or fm:hasXORFeature. This is shown
for the class sa:LegalRequirements and the object property sa:comprises

Jurisdiction in Fig. 3.

Fig. 3. LegalRequirements Class.

A feature ontology representing and organizing the features of the regulations
is shown in Fig. 4 as UML class diagram. This diagram translates the information,
which was provided in Subsection 2. The depicted classes represent OWL classes,
and the associations between them OWL object properties defined in the feature
ontology. The superclass of each class, and the superproperty of each object
property from the metamodel are shown as UML stereotypes using the ”<<...>>”
notation. This feature ontology will be used in the following for introducing and
demonstrating the reusable SHACL constraints.

Fig. 4. A feature ontology representing the overlapping legislations.

A feature ontology representing and organizing the features of the set of
window lifters is shown in Fig. 5 as UML class diagram.

Contribution-2 consists of the validation of Feature Tree Variants with
SHACL. Feature tree variants are to be modeled via instances of the specific fea-
ture ontology and relationships between them. Instances of a specific fm:Feature

6 B. Gallina et al.

Fig. 5. A feature ontology representing a set of window lifters.

subclass represent a chosen feature. The relationships defined in the feature on-
tology are to be used for inter-relating the instances, so that the instance model
represents a valid instantiation of the feature tree. The following RDF snippet
demonstrates that on the example of a feature instance sd:LegalRequirements_1
and its two relationships to (sub-)feature instances:

sd:LegalRequirements_1

a sa:LegalRequirements ;

sa:comprisesJurisdiction sd:Jurisdiction_1 ;

sa:comprisesPinchSituationDetection sd:PinchSituationDetection_1:

.

For validating a feature tree variant, we propose to use SHACL, which means
that a feature ontology needs to be augmented with several SHACL statements.
To realise that, the OWL classes in an ontology need to be extended to SHACL
node shapes, and be related to the SHACL property shapes. This is shown in
the following example for the class sa:LegalRequirements in RDF:

sa:LegalRequirements

a owl:Class , a sh:NodeShape ;

rdfs:label "Legal Requirements" ;

rdfs:subClassOf fm:Feature ;

sh:property sa:LegalRequirements-comprisesJurisdiction ;

sh:property sa:LegalRequirements-comprisesMaxSqueezingForce ;

sh:property sa:LegalRequirements-comprisesPinchSituationDetection ;

sh:sparql co:SPARQLConstraint_RequiresDependency ;

.

Title Suppressed Due to Excessive Length 7

In this example, sa:LegalRequirements is declared to be a SHACL node
shape via the statement ”sa:LegalRequirements a sh:NodeShape”, besides
being a owl:Class. Furthermore, via the SHACL property sh:property, several
SHACL property shapes are attached to it. Each SHACL property shape is
specific for one relationship of the class. To a SHACL property shape, certain
constraints can be attached, as shown in what follows.

Contribution-3 consists of reusable SHACL constraints for mandatory,
optional, OR, XOR, and requires feature relations, as explained in the following
using examples, taken from the feature ontology shown in Fig. 4. The constraints
are defined on the level of SHACL property shapes with SHACL core constraint
components and are specifically designed to support a top-down based creation
of feature tree variants. This means that a feature tree configuration process
starts with the instantiation of the root feature, followed by the features on the
second, third, fourth level and so on. At each (intermediate) step of this top-down
process, the SHACL constraints are capable of validating the correctness and
completeness of the current feature tree variant.

SHACL Constraint Pattern for Mandatory Features. A mandatory
feature can be realized by a SHACL property shape that constraints the cardinality
of the object property to have exactly one value, accomplished with the SHACL
cardinality constraint components minCount=1 and maxCount=1. This can be
seen in the following RDF snippet:

sa:LegalRequirements-comprisesJurisdiction

a sh:PropertyShape ;

sh:path sa:comprisesJurisdiction ;

sh:class sa:Jurisdiction ;

sh:name "comprises jurisdiction" ;

sh:maxCount 1 ;

sh:minCount 1 ;

.

This SHACL property shape requires each instance of the class sa:Legal

Requirements to have exactly one sa:comprisesJurisdiction relation to an
instance of class sa:Jurisdiction, which represents the mandatory feature.

SHACL Constraint Pattern for Optional Features. An optional feature
can be realized by a SHACL property shape that constraints the cardinality of the
object property to zero or one value, accomplished with the SHACL cardinality
constraint component maxCount=1. The absence of a sh:minCount cardinality

constraint component makes the relationship optional. This can be seen in Fig. 6.

Fig. 6. RDF snippet representing the optional feature.

8 B. Gallina et al.

This SHACL property shape defines that each instance of the class sa:Legal
Requirementsmay have one (optional) sa:comprisesPinchSituationDetection
relation to an instance of class sa:PinchSituationDetection, which represents
the optional feature.

SHACL Constraint Pattern for XOR Features. An ”exclusive or”
feature (XOR) can be realized by a SHACL property shape that constraints the
cardinality of the object property to have exactly one value, accomplished with
the SHACL cardinality constraint components minCount=1 and maxCount=1, and
that defines the XOR features via SHACL sh:or as alternative range classes.
This SHACL property shape requires each instance of class sa:PinchSituation
Detection to have exactly one sa:comprisesStiffness relation to an instance
of either class sa:Stiffness10N or sa:Stiffness65N, which represent the XOR
features. This can be seen in Fig. 7.

Fig. 7. RDF snippet representing the XOR feature.

SHACL Constraint Pattern for OR Features. Alternative features (OR)
can be realized by a SHACL property shape that constraints the cardinality
of the object property to one or more values, accomplished with the SHACL
cardinality constraint component minCount=1, and that defines the OR features
via SHACL sh:or as alternative range classes.

SHACL Constraints for Requires. Constraints that express comprehensive
interdependencies between different features can be modelled in SHACL as
SPARQL-based constraints. We propose to specify a ”requires” relationship
between one feature of one feature model, and another feature of another feature
model as SPARQL-based constraint. This constraint detects requires dependencies
between features of different feature models. It requires a relationship of type
fm:requiresFeature to be defined in the feature ontology between the requiring
class (subject) and the required class (object). As an example, we consider
that this relationship exists between the feature sa:USAFMVSSNo118 in Fig. 4
and the feature sa:Algorithm-1 in Fig. 5. If the feature sa:USAFMVSSNo118 is
selected by the legal requirements configuration, sa:Algorithm-1 is required
in the window lifter configuration. The constraint detects violations of specific
requires dependencies, i.e. two features where one requires the other and that not
both appear at the same time in different feature models. The requires constraint
is generic and reusable, i.e. it can be associated with any root feature class of
a feature model, and does not require adaptations when doing so. The requires
constraint, realized as SPARQL-based constraint, is shown in the following:

co:SPARQLConstraint_RequiresDependency

Title Suppressed Due to Excessive Length 9

a sh:SPARQLConstraint ;

sh:message "The feature {?instanceRequiringFeatureClass} of type

{?requiringFeatureClass} requires the feature {?featureClass}" ;

sh:select """PREFIX sh: <http://www.w3.org/ns/shacl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT $this ?requiringFeatureClass ?instanceRequiringFeatureClass

?featureClass ?instanceFeatureClass

WHERE { $this a ?rootFeatureClass.

?rootFeatureClass ((sh:property/sh:class)|

(sh:property/sh:or/rdf:rest*/rdf:first/sh:class))+

?featureClass.

?requiringFeatureClass fm:requiresFeature ?featureClass.

?instanceRequiringFeatureClass a ?requiringFeatureClass.

FILTER NOT EXISTS { ?instanceFeatureClass a ?featureClass} }""";

.

The functional principle of the constraint is the following: The constraint
iterates over all instances of the root feature class it is associated with (variable
$this). From that feature class it recursively explores the entire feature tree
to all contained feature classes. That is realized by a comprehensive recursive
SPARQL path (operator ”+”) comprising two alternative subpaths (operator ”|”).
The first alternative subpath covers mandatory and optional relationships, which
are defined in SHACL via sh:class property. The second subpath covers OR and
XOR relationships, which make use of the SHACL sh:or. Here a comprehensive
iterating through the RDF list comprising the sh:or-related classes is required
via rdf:rest and rdf:first properties. For each feature class of the feature tree
found via the SPARQL path, the existence of an incoming fm:requiresFeature

relation from another feature class is checked. Then, it is checked if the requiring
class has an instance, but the required class not. If so, this means that the
requires constraint is violated, and the requiring instance, along with its class, is
reported back to the user. The SHACL engine therefore constructs (and reports
about) a constraint violation message from the string defined in sh:message. At
runtime the SHACL engine inserts data from the KG via SPARQL variables into
the placeholders, e.g. {?featureClass}. The respective variable binding when
executing the SPARQL-based constraint will be inserted into the message.

4 Related work

In [12], authors propose an ontology to formally specify feature models. Their
ontology, however, is mainly constituted of a set of OWL classes with limited
expressiveness. Despite the intention of proposing an OWL representation for
the knowledge contained in feature models, representing all possible feature
model semantics and despite the intention of formulating SWRL (Semantic
Web Rule Language) rules to ensure the consistency of the feature model and
detect contradicting or conflicting knowledge in the model, the expressiveness

10 B. Gallina et al.

is rather limited and allows limited checks. In addition, rules are not conceived
in an explicit reusable manner. In [3], the author proposes a mapping between
feature trees (given in a domain-specific language) and RDF graphs enriched
with SHACL constraints. The SHACL constraints formulated in his work are
defined specifically for instances of features, i.e. the instance IRIs and literal
values appear in the constraints. This makes the constraints very dependent on
the respective instances, hence the potential for reusing them is low. In our work,
instead, we define constraints on the level of classes. Our constraints are highly
reusable. In addition, in his work, no general feature tree ontology is specified.
In our work, instead, we propose one.

5 Conclusion and Future Work

To tackle the problem of compliance management in regulated industries char-
acterized by demanding variability management needs, we have proposed an
ontology-based representation for representing feature trees as RDF graphs and
reusable SHACL constraints to shape the RDF graphs. In future, we aim at
conducting case study-based research considering the entire layered structure [4].

References

1. Allian, A.P., OliveiraJr, E., Capilla, R., Nakagawa, E.Y.: Have Variability Tools
Fulfilled the Needs of the Software Industry? Journal of Universal Computer Science
26(10), 1282–1311 (2020)

2. Capilla, R., Gallina, B., Cetina, C., Favaro, J.: Opportunities for software reuse in
an uncertain world: From past to emerging trends. Journal of Software Evolution
and Process 31(8), 1–22 (August 2019)

3. Fleischhacker, P.: Validation of Feature Models using Semantic Web technologies.
Master’s thesis, Graz University of Technology, Graz, Austria (2021)

4. Gallina, B., Munk, P., Schweizer, M.: An Extension of the Rasmussen Socio-technical
System for Continuous Safety Assurance. In: Roy, M. (ed.) CARS 2024 - Critical
Automotive applications: Robustness & Safety. Leuven, Belgium (2024)

5. Hofman, P., Stenzel, T., Pohley, T., Kircher, M., Bermann, A.: Domain specific
feature modeling for software product lines. In: Proc. of the 16th Int’l Software
Product Line Conference (SPLC)- Volume 1. p. 229–238. Association for Computing
Machinery, New York, NY, USA (2012)

6. Nešić, D., Krüger, J., Stănciulescu, u., Berger, T.: Principles of feature modeling.
In: Proc. of the 27th ACM Joint Meeting on ESEC/FSE. p. 62–73. New York, NY,
USA (2019)

7. UNECE: REGULATION 21 - Uniform Provisions Concerning the Approval of
vehicles with regard to their interior fittings (April 2003)

8. W3C: OWL 2 Web Ontology Language Manchester Syntax (2012)
9. W3C: SPARQL 1.1 Query Language (2013)

10. W3C: RDF 1.2 Concepts and Abstract Syntax (2014)
11. W3C: Shapes Constraint Language (SHACL), W3C Recommendation (2017)
12. Zaid, L.A., Kleinermann, F., De Troyer, O.: Applying semantic web technology to

feature modeling. In: Proc. of the ACM Symposium on Applied Computing (SAC).
p. 1252–1256. Association for Computing Machinery, New York, NY, USA (2009)

