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Abstract—Several studies have shown Model-based Testing
(MBT) as an efficient technique for generating fault-effective test
cases. However, the automatic generation of test cases is compro-
mised with redundant test cases providing no additional value
to the coverage or fault detection effectiveness while impacting
test execution efficiency, especially, in a dynamic development
environment where providing timely feedback is crucial. These
redundant test cases need to be discarded to minimize the test
suite size and their effect on the execution cost and efficiency of
a test suite. Reducing a test suite becomes challenging for black
box testing at the system level when no information regarding
the coverage and fault detection effectiveness of the test suite
exists. Hence, in this paper, we have presented a test suite
optimization approach leveraging different machine learning
algorithms, a greedy algorithm, and a similarity measure. The
proposed approach generates a reduced test suite by identifying
and eliminating redundant test cases from an MBT-generated test
suite while having minimal impact on the fault detection rate. We
have also performed a comparative evaluation of the optimized
test suites with the MBT-generated and manually created test
suites in terms of fault detection effectiveness and test execution
efficiency using an industrial case study from Alstom Rail AB,
Sweden. The results show a significant reduction of 85% to
92% in the size of the test suite. Moreover, we also found the
test execution time of the optimized test suite equivalent to the
manually created tests and a fault detection rate within the range
of 95% to 100% for all test suites under observation.

Index Terms—Model-based Testing, Test Suite Reduction, Ma-
chine Learning, System Level Test

I. INTRODUCTION

Model-based testing (MBT) [[1] is one of the automated
testing techniques that can generate test artifacts for the
verification and validation of different software. It uses an
explicit model, created in a modeling language such as Finite
State Machine (FSM), Finite Automata, etc., representing
the concise behavior of the Software Under Test (SUT) to
generate abstract test cases by traversing through the model.
These abstract test cases can be automatically transformed
into concrete test scripts that can be executed on a SUT to
produce test verdicts. MBT uses different coverage criteria
and generation algorithms for model exploration to generate
an adequate test suite to detect faults and bugs in software. The
generated test suite contains a wide range of inputs/outputs
and their interactions within the system representing the po-
tential possible scenarios covering a substantial part of the
implemented code including redundant ones without adding
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additional value to reveal new faults [2]. The redundant test
cases can be categorized as identical and non-identical test
cases [2]. Identical test cases are replicas of each other
consisting of similar test inputs/outputs and timing constraints.
In contrast, non-identical test cases contain different test
inputs/outputs and constraints but cover similar scenarios of
the system’s functionality. The presence of redundant test
cases not only affects the scalability of a test suite but also
poses a substantial challenge, particularly in industrial settings
where cost and resource efficiency is the key. Hence, such
types of test cases need to be identified and discarded to
increase test efficiency and resource utilization in a dynamic
development environment. Previous attempts to mitigate this
challenge through various techniques, including the use of
machine learning for test suite reduction, have often resulted
in a trade-off, a decrease in the fault detection rate [3]] [4] [3]].
Moreover, this problem becomes challenging at system-level
testing when the system is considered a black box, the source
code of the SUT is inaccessible and no other information
exists related to the test suite e.g., coverage, fault detection
effectiveness, etc. The problem in our context can be defined
as:

Problem Statement: “Given an FSM-based generated test
suite (7S) of a fixed size n covering a set of requirements
(R) and having fault detection effectiveness (F), our goal is
to reduce the size of a test suite by identifying and removing
redundant test cases while having a minimum impact on fault
detection effectiveness of the test suite.”

Since the test suite generated from an FSM model does
not contain any information about fault detection effectiveness
prior to execution on a SUT or coverage of implemented code,
a surrogate measure is required. In the literature, different
studies (e.g., [6], [7], [8ll, etc.) have shown a moderate to
strong correlation between diversity, coverage, and fault de-
tection effectiveness. Diversity in a test suite ensures a wide
range of test scenarios, coverage ensures the significant part of
a system is tested, and, together, these can contribute toward
the effectiveness of a test suite in terms of fault detection [9]
[LO]. Hence, in this paper, we proposed, implemented, and in-
tegrated a tool with our previously developed tool i.e., Model-
based Test script GenEration fRamework (TIGER) [11]], and



named it TIGER+ [l TIGER+ reduces the size of a MBT-
generated test suite by identifying and eliminating redundant
test cases based on Modified Condition Decision Coverage
(MCDC) and a similarity measure inspired by the Jaccard
index [12]). It also uses different machine-learning techniques
for the extraction, pre-processing, and classification of the
test data. We have also validated the proposed approach
by generating two subsets of MBT-generated test suite and
performing a comparative evaluation of generated subsets with
a MBT-generated test suite and a test suite created manually.
In our evaluation, we employed mutation analysis to measure
the fault detection effectiveness and execution efficiency of the
test suites using an industrial case study of the Train Control
Management System (TCMS) from Alstom Rail AB, Sweden.
The results of the experimental evaluation show that

o TIGER+ improved the execution efficiency of the MBT-
generated test suite by reducing the test suite size of
approx. 85% and 92% when optimized at the highest and
lowest levels, respectively.

Test suite optimized by the TIGER+ can be used to
achieve a higher fault detection rate within the range of
95% to 100% equivalent to MBT-generated and manually
created test suites.

The rest of the paper is organized as follows: Section
briefly discusses the related studies, Section [III| presents a
detailed description of the proposed approach, Section
shows its experimental evaluation including a description of
the SUT, development and execution of test suites, mutation
analysis, experimental setup, and results, Section [V| presents
a discussion on the results and threats to the validity of this
study is discussed in Section followed by conclusion and
future work in Section [VIIl

II. RELATED WORK

There exist different studies (i.e, [13],[14]], [15], [L16], [17],
[18], [19]) that have proposed different techniques and ap-
proaches in various contexts to generate an adequate size test
suite or to reduce the size of a generated test suite. A summary
of these studies is provided below.

Fraser et al. [13] proposed an optimization approach to
reduce the size of the test suites generated through model
checker-based techniques. The proposed approach transforms
the test cases by sequentially identifying and removing the
redundant parts between the test cases. The experimental eval-
uation shows the improved quality of test cases while having
minimal effect on fault detection effectiveness. Hemmati et
al. [14] introduced a family of similarity-based minimization
techniques for test suites generated through state machines
and reported a comparison with other similar techniques in
the literature. They also have investigated different parame-
ters such as encoding, similarity functions, and minimization
algorithms to show their potential effect on fault detection ca-
pabilities. The similarity-based test reduction was found to be

ITIGER+ is available at https:/github.com/MuhammadNoumanZatar/
TIGER-Plus
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a more effective technique for producing a scalable test suite.
Similarly, the application and thorough investigation of six
distance functions for the reduction of MBT-based generated
test suite reduction is presented in [15]. The empirical results
show that the choice of distance function has minimal effect
on the test suite size, however, has shown significant effects
on the fault coverage and stability of the test suite. Kushik
et al. [16] proposed an approach to minimize the size of an
exhaustive test suite derived from a faulty, non-deterministic
FSM model. The proposed approach augments the human-
defined probabilities to detect each faulty implementation.
Moreover, another approach as an extension of this work is
presented in [17]] for test suite minimization by shortening
the length of the combinations of inputs representing the
checking sequence. Sachtleben et al. [18] proposed a test
generation algorithm for an FSM-based model to generate an
adequate size test suite using grey-box information about the
system i.e., information about enabled/disabled inputs. The
results show a significant reduction in test suite generation
depending on the size of the reference model. Pan et al. [19]
proposed a test suite minimization approach by converting
the source code of the program into an Abstract Syntax Tree
(AST) and then utilizing four tree-based similarity measures
to apply the genetic algorithm for test suite minimization. The
results indicate the effectiveness of the proposed approach by
achieving a high fault detection rate of 82% on average with
the reduced test suite.

III. PROPOSED APPROACH

The proposed approach is intended to provide a reduced but
fault-effective subset of a test suite generated from an FSM
model. Figure [I] represents an overview of each step in the
proposed approach consisting of the following five steps.

1) Model-based test generation
2) Data extraction
3) Pre-processing of abstract test cases

3.1 Data transformation
3.2 Removal of identical test cases
3.3 Imputing missing parameters/values

4) Classification of test cases

4.1 Classification of test cases based on Guard Condi-
tions

4.2 Sub-classification of test cases based on Group
Conditions

5) Test suite reduction

5.1 Test reduction using a greedy algorithm
5.2 Similarity-based test reduction

A. Model-based test generation

We used an open-source model-based testing tool, Graph-
Walker (GW), to generate abstract test cases from an explicit
FSM model delineating the behavior of a SUT. An FSM model
consists of nodes depicting the states of a system and edges
representing the transitions from one state to another based on
guard conditions. Guard conditions are the logical expressions
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embedded in an FSM model constructing functional and non-
functional behavior of a model corresponding to a SUT.
Moreover, an FSM model can also store information to map
requirements with model elements (i.e., nodes and edges)
supporting requirement traceability [[20]. The generation of an
effective and complete test suite requires conformance of an
FSM model to the requirements of a SUT [l]].

GW supports different generation algorithms (e.g., random,
quick random, A star, etc.) and coverage criteria (edge cover-
age, vertex coverage, requirement coverage, etc.) to generate
abstract test cases in the form of a JSON file as shown
in Figure [2] The abstract test cases generated through an
FSM model are conventionally the traversed paths instanti-
ated with different event parameters (test data) encoded as
strings. Similarly, the JSON file generated by GW contains
abstract test cases as a sequence of traversed model elements
representing a test step in a test case. Each test case contains
several pieces of information for each traversed element such
as the name of a model constituting the behavior of a SUT as
‘modelName’, all parameters and their initial values involved
in a model as ‘data’, parameters with their respective altered
values after a transition or at a particular state representing
inputs and expected outputs of a test step in the form of
‘Actions’, and information about a traversed element (i.e.,
currentElementName, currentElementID, and properties), etc.

B. Data extraction

To optimize the abstract test cases, all the information
from the JSON file (e.g., actions represented by different
parameters and their respective values, sequence of model
elements, etc.) along with guard conditions, and requirements
linked to model elements from the FSM model needs to be
extracted. Furthermore, in our case, each parameter used in
a model represents a logical name E| of a signal interacting

2a representation of a signal in requirement specifications at Alstom

46

A machine learning-based test reduction approach

"modelNams": "VariA",

Moarit: "t
"currentElementID": "leacd4dS5-3déc—-46€24-92f4-65bcSe€d%aSc”,

"currentElementNams": "A",

(=
R Sy

"properties": [
[ omxm:

[ omym: 1

b

o1
{
"modelName" :
"data": [
{ "wvarD":
{ "wvarc":
{ "varp":
{ "vara":
1,

"currentElementID":

TS

"Varn",

0

"true" }
"true" }

"true" },

"trus" }

(%)

"19219385-%a02-45£7
"No",
"Action":

[l

-b780-1623c53£7a5",
"currentElementName":

[

"properties™:

"actions":

@M W

"varn=false;" }

1,

[ I S SR (U S S Sy S

Fig. 2. An example of an abstract test step generated by GW in JSON format

with different components of an embedded system, and to
generate concrete or executable test cases/scripts, it requires to
be mapped with one or more technical signal names used by a
real embedded system to perform its operation. The test scripts
at Alstom consist of two main test steps (i.e., forcing input
signals (using technical signal names) and verifying output
signals) to validate a SUT. To achieve this goal, additional
information is required such as the type of each parameter (i.e.,
input and output), and their data types (e.g., int, Boolean, etc.).
Hence, we have proposed a well-defined format of an XML
file containing such information and extracted the required
information from it [[I1]. The extraction process also ensures
the preservation of the continuity between the test cases of a
generated test suite (i.e., the sequences of traversed elements
with their corresponding actions) in the form of an array. We
have defined two logical data models to store the extracted



public class Rootobject
{

public ring modelNams { get; set; }

public string currentElementID { get; set; }

public string currentElementNams { get; set; }

public Actions[] actions { get; set; }

public object[] properties { get; set; }

public class Actions

{

=

public string Action { get; set; }

}
Fig. 3. A logical data model for abstract test cases

class DataModelforFSMModel
{

=

public string guard { get; set; }

public List<string> regquiremsnts { get; set; }

Fig. 4. A logical data model for guard conditions and associated requirements

data (i.e., a logical data model similar to the format of a
JSON file (Figure [2)) consisting of a ‘RootObject’ comprising
‘modelName’, ‘currentElementID’, ‘currentElementName’, an
array of ‘actions’, and ‘properties’ as shown in Figure [3] and
a logical data model consists of guard condition and a list of
requirements associated with each guard condition as shown
in Figure {4).

C. Pre-processing of abstract test cases

The JSON file generated from a model contains abstract
test data as well as information about a model and each
traversed element such as ‘modelName’, ‘CurrentElementID’,
‘properties’, etc. that can be considered as noise diluting
the test cases with insignificant information. Moreover, to
select MCDC-adequate test cases, we require instantiated test
data. Hence, to extract relevant test data, transform it into a
scenario-based test case format, and for test optimization, a
pre-processing of generated abstract test cases is required. The
pre-processing in the proposed approach consists of three main
steps: (3.1) data transformation, (3.2) removal of identical
test cases, and (3.3) imputing the missing parameters and
corresponding values in each test case.

1) Data transformation: The test steps in each generated
test case can contain more than one event parameter and
their respective values encoded in a string, which needs to
be identified and extracted to create inputs, expected outputs,
and timing constraints of a scenario-based test suite. We have
defined a generic logical data model consisting of a unique
test identifier ‘TestcaseID’, a list of actions containing ‘Ac-
tionDescription’, ‘ActionVariable’, and ‘ActionValue’, a list of
expected results comprising ‘ResultDescription’, ‘ResultVari-
able’, and ‘ResultValue’, and a timing constraint ‘Withintime’
to store the dynamic test data in the form of test cases in
a test suite as shown in Figure 5] We have also defined
a data transformation algorithm that splits the string in the
list of *Actions’ to extract parameters and their values based
on delimiters (i.e., ;’ and ‘="), finds the data type of each
parameter from the list of signals extracted from the XML
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public class TestCaseModel
{
public TestCaseModel () {
testcases new List<Testcase>();

}

public List<Testcase> testcases { get; set; }
}
public class Testcase {
public Testcase() {
action = new List<TesthActions>();
expectedresult new List<ExpectedResult>();

}
public int TestcaseID { get; set; }
public List<TestActions> action { get; set: }
public List<ExpectedResult> expectedresult { get; set; }
public string Withintime { get; set; }
}
public class TestRctions
{

public string ActionDescription { get; set; }
public string ActionVariable { get; set; }
public string ActionValue { get; set; }

}

public class ExpectedResult

{
public string ResultDescription { get; set; }
public string ResultVariable { get; set; }
public string ResultValue { get; set; }

Fig. 5. A logical data model of a test suite

file, and dynamically populates the defined logical data model
by creating test actions or expected results.

2) Removal of identical test cases: A test suite generated
from a behavioral model using random generation also con-
tains duplicate or identical test cases, providing no additional
value to reveal new faults. Moreover, each test case consists
of different test steps altering the values of a limited number
of parameters (based on traversed model elements) to validate
the output of a system. These kinds of test cases are usually
followed by a ‘Reset’ test case to restore and validate the initial
state of a SUT before the execution of the next test case. A
‘Reset’ can only be removed from a test suite if each test case
contains the values of each parameter of a SUT. For instance,
a test suite altering or forcing only one or two signals in each
test case without retaining a default or initial values of other
signals to verify the outputs of a system requires a ‘Reset’
before executing the next test case. On the other hand, a test
suite executing an altered value of specific signals as well as
default values of remaining signals in each test case to verify
the outputs of a system does not require a ‘Reset’. Hence,
identical test cases need to be removed while preserving the
‘Reset’ test cases in such test suites.

We defined a naive comparison algorithm in the proposed
approach that uses a definition of the Jaccard index as a
similarity measure to remove the identical test cases but also
preserves the ‘Reset’ test case generated from a model. The
Jaccard index is also known as a similarity coefficient, which
is used to compare the similarity between two unordered sets.
It is a relative measure between the proportion of shared
elements to the total number of distinct elements in the set.
Hence, the algorithm takes the generated test suite as input and
creates a new test suite to add distinct test cases. It starts by
adding the first test case to the distinct test suite and then by
performing a comparison of each test case in the generated test



suite with the test cases already added to the distinct test suite
based on test actions (i.e., by comparing the ‘ActionVariable’
and ‘ActionValue’ in the test actions of each test case). The
algorithm also adds the ‘Reset’ after each test case to produce
the resultant test suite.

3) Imputing missing parameters/values: As described
above, each test case generated through an FSM model con-
sists of test steps forcing or altering the values of specific
parameters without retaining the default or initial values of
the remaining parameters of a system. We can refer to such
parameters as missing parameters/values in a test case. Hence,
to create the requirement traceability matrix by performing
the rule-based classification of test cases based on satisfied
guard conditions (Section [[II-D), we are required to identify
and impute such missing parameters and their values in each
test case. To achieve this goal and retain the missing parame-
ter/values from the ‘Reset’ state, the proposed approach uses
an imputation machine-learning algorithm similar to the next
observation carried backward (NOCB) based on the observed
pattern to identify and impute the missing parameters and their
values into each test case. We have used Language Integrated
Query (LINQ) [21] in the implementation to find the first or
default ‘Reset’ test case in the test suite.

After the transformation of data into a scenario-based test
case format and the removal of identical test cases, the defined
algorithm checks for ‘Reset’ test cases in a test suite. It
identifies the missing parameters in a test case based on the
parameters or signals provided in the XML file, creates new
test actions based on the missing parameters, extracts the
default or initial values from the ‘Reset’, assigns the extracted
value to the respective test action, and adds the test action to
a corresponding test case.

D. Classification of test cases

In this step, we created a Requirement Traceability Matrix
(RTM) by classifying the test cases into different groups based
on the guard conditions in a model. The benefit of this step
is twofold; the traceability provided by RTM can be used
as a measure to ensure that each requirement of a SUT has
an adequate number of test cases, and it will also assist
in optimizing and selecting an MCDC-adequate abstract test
suite.

1) Classification of test cases based on guard conditions:
We used a rule-based classification [22] methodology to create
the RTM and groups of test cases based on extracted guard
conditions. Rule-based classification is a machine-learning
technique that classifies the features of data based on defined
rules. These rules represent conditions specifying the behavior
of a system or input domain. Such rules can be extracted
using data mining techniques (i.e., decision tree induction [23[])
or can also be defined by domain experts based on prior
knowledge of a system or data [24]. Similarly, in a model,
guard conditions represent the rules associated with the re-
quirements of a system and so additional conditions to refine
the system’s behavior and applicability of these rules. Hence,
we used guard conditions as the rules to create an RTM and
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RQ1:

GIVEN:
The documents have been requested.
‘WHEN:
The user initiates the request (VarA= True)
THEN:
The system received the request.
RQ2:
GIVEN:
The system validates the user.
‘WHEN:
The user who requested the document is a manager (VarB= Truc) OR the user's
special request has already been approved (VarC=true).
THEN:
The user is considered valid.
RQ3:
GIVEN:
The system attempts to provide a preview of the documents to the user.
‘WHEN:
The user initiated the request AND 1s considered valid.
THEN:

The documents are previewed.

Fig. 6. An example of requirements in Given-When-Then format

classify the test cases into different groups based on guard
conditions. For instance, let’s assume a system that shows
relevant documents to a user after validation based on two
validation processes (i.e., validation of a request and validation
of a user). Figure [6] represents three functional requirements
(i.e., RQI1, RQ2, and RQ3) of the system written in a Given-
When-Then format defining its behavior. In this context, guard
conditions in a model explicitly representing the behavior
or predicates/decisions in the implementation of the system
based on the above-mentioned requirements, can be specified
as follows:

(varA == true)&&(var B == true||lvarC == true) (1)

(varA == false)||(varB == false&&varC == false)
2

Where guard condition [I] represents a combined rule of
RQI, RQ2, and RQ3, and guard condition[2]is an illustration of
an obvious requirement representing the behavior of a system
if either of the validation processes fails. Hence, all the test
cases satisfying a guard condition will also cover the respective
requirements of the system.

The implemented algorithm takes the distinct test suite
generated in the previous step as input, along with the guard
conditions and associated requirements extracted in the data
extraction step. Then it evaluates each test case against each
guard condition to create an RTM, as well as groups of test
cases based on guard conditions. The logical data model for
RTM is shown in Figure[7] To evaluate test cases against guard
conditions, we have used the dynamic expression function [25]]
of the LINQ library of the .Net framework in our algorithm
and replaced the parameters defined in a guard condition with
their values in the test actions of test cases. Table [[] shows
an example of generated groups and Table [II] illustrates an
example of classification of test cases in different groups.

2) Sub-classification of test cases based on group condi-
tions: Each group, created in the previous step, can be a
representation of more than one requirement. For instance,



class RTMModel{
public List<string> requirements { get; set;
public string guard { get; set; }
public List<Testcase> testcases { get; set;

}
}

Fig. 7. Logical data model for requirement traceability matrix

TABLE I
EXAMPLE OF GENERATED GROUPS BASED ON GUARD CONDITIONS
Group Guard Condition
ID
1 (varA == true)&&(var B == true||lvarC == true)
2 (varA == false)||(varB == false&&varC == false)

the guard condition [T] represents the behavior of the system
covering all the requirements shown in Figure [f] However, if
we divide it into group conditions, the first group condition
(ie., varA == true) represents RQI, the second group
condition (i.e., varB == true2||lvarC == true) illustrates
RQ2 and a combination of both group conditions with an AND
operator depicts RQ3 of the system presented in Figure [6]
Hence, in our proposed approach, we further classified the test
cases into subgroups based on the group conditions in each
guard condition. It is important to mention here that a complex
logical expression representing a guard condition can be a
composition of a nested expression grouped in parentheses
at different levels in an expression tree [26]. The higher level
refers to the level of the expression close to the root of the tree
whereas the lower level refers to the level of the expression
close to the leaves of the tree [27]. Depending on the levels of
nested expressions, different numbers of groups can be created
at different levels. For instance, in an expression tree, the
highest levels of the guard conditions (i.e., [I] and ) in the
given example are 1 that contain only two nested expressions
each at the lowest level (i.e., level 0), hence, the test cases
can only be further classified into four subgroups (i.e., two
subgroups for each guard condition) at lowest level.

In our proposed approach, we have identified the group
conditions in each guard condition using the regular expression
library [28] in the .Net framework and evaluated each test
case in a corresponding group to create subgroups. We created
a logical data model to store the list of sub-classified test
cases. It contains a ‘guard’, a list of ‘requirements’, and
an associated list of ‘group conditions’ comprising a matrix
of ‘group ID’, ‘group condition’, and a list of ‘test cases’
satisfying each group condition as shown in Figure [§] Table [II]
shows an example of subgroups, whereas Table [[V] illustrates
the classification of test cases in identified subgroups.

E. Test suite reduction

We defined a greedy and naive comparison-based approach
to optimize the generated test suite. The greedy approach is
responsible for the selection of MCDC-adequate test cases for
each corresponding group and subgroup created in previous
steps, whereas the naive comparison approach is responsible
for the identification of diverse test cases and performing
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TABLE II
AN EXAMPLE OF CLASSIFIED TEST CASES INTO GROUPS

Group Test case Inputs Outcome

ID ID varA | varB | varC
1 true true true true (Preview)

1 2 true true false true (Preview)
3 true false true true (Preview)
4 true false false false (No Preview)
5 false true true false (No Preview)

2 6 false true false false (No Preview)
7 false false true false (No Preview)
8 false false false | false (No Preview)

class GroupConditionModel
{
public
public
public

string guard { get; set; }
List<string> requiremenets { get; set;
List<GroupConditions> group { get; set;

}
}
}
class GroupCondition {

publie int groupID { get; set; }

public string groupcondition { get; set; 1}

public List<Testcase> testcases { get; set; }

Fig. 8. A logical data model for sub-classification

similarity-based test reduction. MCDC is a coverage crite-
rion recommended by various standards (i.e., EN 50128, EN
50657 [29]]) to validate the safety critical systems. It is a
stricter criterion than a decision or branch coverage that re-
quires the coverage at condition level [30]. It ensures that each
condition in a decision has shown an independent effect on the
outcome of the decision [31]. Hence, we implemented a greedy
algorithm guided by MCDC to select the MCDC-adequate test
suite and then used the naive comparison algorithm similar
to the algorithm described in Section to identify and
remove similar test cases within each subgroup.

TABLE III
AN EXAMPLE OF GENERATED SUBGROUPS

Subgroup ID Group Condition

1 (var A == true)
2 (var B == truellvarC == true)
3 (varA == false)
4 (varB == false&&varC == false)
TABLE IV
AN EXAMPLE OF CLASSIFIED TEST CASES INTO SUBGROUPS
Grou Subgrou; Test case Inputs
P e VarA T varB | varC| Outcome
1 true true true true
1 2 true true false true
1 3 true false true true
1 true true true true
2 2 true true false true
3 true false true true
5 false true true false
3 6 false true false false
2 7 false false true false
8 false false false false
4 4 true false false false
8 false false false false




TABLE V
AN EXAMPLE OF THE RESULTANT TEST SUITE AFTER GREEDY APPROACH

TABLE VI
AN EXAMPLE OF THE REDUCED TEST SUITE

1) Test suite reduction using greedy algorithm: In this step,
we selected the MCDC-adequate test cases by analyzing the
effect of each test action in a test case on the outcome of a
respective decision. We defined a greedy algorithm that takes a
test case from a subgroup of the test suite and creates different
variants by inverting the value of a test action (excluding test
action containing the retained value from ‘Reset’) in each
variant corresponding to conditions in the group condition. It
also evaluates all the variants against the group condition and
observes the effect on the decision. If any of the variants show
an effect on the outcome of the respective group condition (i.e.,
any variant of a test case does not satisfy the group condition),
it adds the test case to the resultant test suite, ensuring that
the condition has its independent effect on the decision. For
example, let’s assume a test case with ‘Group ID’ 1, ‘Subgroup
ID’ 1, and “Test Case ID’ 1 given in Table [IV] The algorithm
will invert the value of ‘varA’ from true to false, evaluate it
against the group condition (i.e., varA == true), and add
it to the resultant test suite as it will not satisfy the group
condition. On the other hand, in the case of a test case with
‘Group’ 1, ‘Subgroup’ 2, and ‘Test Case ID’ 1, it will create
two variants of the test cases by inverting the value of ‘varB’ in
variant 1 and inverting the value of ‘varC’ in variant 2, evaluate
both variants against the corresponding group condition (i.e.,
varB == true|varC == true) and will remove the test
case from the resultant test suite as both variants will show
no effect on the outcome of the group condition. Table [V]
illustrates an example of the resultant test suite.

F. Similarity-based test reduction

Similarity-based test reduction deals with the identification
and removal of similar test cases within each subgroup.
We have used a naive comparison algorithm as defined in
Section but limited the comparable parameters/test
actions to the test cases corresponding to the conditions in a
group condition. For instance, in Table [V] all the test cases
in the subgroup with ‘Subgroup ID’ 1 contain the same
values for ‘varA’ involved in the respective sub-condition (i.e.,
varA == true). Hence, it will add the first test cases from
the subgroup to the reduced test suite and will remove the
remaining. Table [V]] represents an example of a reduced test
suite generated by the proposed approach.
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Group | Subgroup | Test case Inputs Group | Subgroup | Test case Inputs
D D D varA | varB | varc | Ouicome D D D varA | varB | varC | Outcome
1 true true true true 1 1 true true true true
1 2 true true false true 1 N 2 true true false true
1 3 true false true true 3 true false true true
2 2 true true false true N 3 5 false true true false
3 true false true true 4 4 true false false false
5 false true true false
3 6 false true false false
2
7 false false true false
3 Talse | Talse | Talse Talse IV. EXPERIMENTAL EVALUATION
4 true false false false : : . Lo
4 5 Flss 1 Talse T Talse Tl This section presents a brief description of the case study

of a fire detection system which is a sub-system of TCMS
developed at Alstom, the creation of test suites, an overview
of the experimental setup, and the results of the comparative
evaluation between the test suites generated by MBT and
created manually.

A SUT

In this paper, we have considered a fire detection subsystem
of a TCMS for MOVIA E], which is a vehicle family of various
metro trains developed at Alstom, as a case study. TCMS is
a complex and centralized distributed control system designed
for controlling and coordinating various subsystems such as
fire detection systems, traction, doors, etc. It is also responsible
for ensuring the safe and efficient operations of regular and
safety-critical functions of these subsystems and facilitates
real-time monitoring of a train. It utilizes various networks
e.g., Ethernet Consist Network (ECN), Multi-function Vehicle
BUS (MVB), etc. to establish communication between differ-
ent subsystems and devices [32]. The Modular Input/Output-
Safe (MIO-S) and Central Control Unit (CCU-S) devices are
connected through these network to control and manage the
safety-critical functions of a train. The fire detection system
in TCMS is a safety-critical subsystem that is used to detect
fire in the cabs of the trains based on the inputs provided
by Fire Detection Control Units (FDCUs) [32]. It uses two
instances of FDCUs interconnected with and fire sensors to
detect two types of fire, i.e., internal and external. Each FDCU
can possess two types of states i.e., Master or Slave. The
MIO-S device receives the signals from FDCUs along with the
signals from sensors and report them to CCU-S. The CCU-S
performs the computational logic in compliance with received
signals and functional requirements specified in the documents
to indicate the type of fire with a corresponding signal in the
driver’s cab via MIO-S.

B. Development and Execution of Test Suites

To comparatively evaluate the effectiveness and efficiency
of the test suite generated from the proposed approach, we
used a test suite (i.e., test cases and scripts) created by a tester
at Alstom for the selected subsystem. For MBT, we analyzed
the requirement and test specification to completely understand
the system and utilized GraphWalkerE] (GW), an open source

3https://www.sgtrains.com/train-r151.html
4https://github.com/GraphWalker/graphwalker-project/wiki
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MBT tool, to create an FSM model representing the explicit
behavior of the system and to generate abstract test cases.
We also implemented and integrated our proposed approach
with our previously implemented tool i.e., Model-based Test
script GenEration fRamework (TIGER) [11], and named it
TIGER+, to reduce the test suite size and to generate concrete
test scripts. The test scripts are then executed on the SUT to
produce test verdicts. A detailed description of the activities
for the development of the test suites is given in the following
subsections.

1) Manual Test Suite Creation and Execution: The test
suite creation at Alstom is a systematic process that starts with
the understanding of system requirements. Critical functionali-
ties and potential risks are identified, and test cases are written
in a natural language in the form of test steps. Each test step
consists of inputs, expected outputs, and constraints such as
the response time of a system according to the requirements
of the system. The test cases created by a tester at Alstom
cover different potential scenarios based on equivalence class
partitioning and boundary value analysis in compliance with
certain safety standards and regulations i.e., EN 50128 and
EN 50657, and are complemented by requirement coverage to
ensure the coverage of each requirement of the system. How-
ever, in some cases, MCDC is also considered as a coverage
criterion for the development of test cases to validate safety-
critical software [33]]. These test cases are then converted
into test scripts manually and executed on the SUT using
Alstom-specific testing framework and libraries to produce test
verdicts.

2) MBT-generated Test Suites and their Execution: We
utilized the GW studio version to create an FSM model of the
selected subsystem and the TIGER+, which uses the command
line version of GW, to generate three versions of test suites
(i.e., MBT-generated, optimized at the highest level, optimized
at the lowest level) using a random generation algorithm
and 100% edge coverage criterion. The MBT-generated test
suite contains all the test cases including redundant test cases
generated from the selected coverage criteria and generation
algorithm. Whereas test suites optimized at the highest and
lowest levels contain reduced subsets of MBT-generated test
cases through the TIGER+. As mentioned in Section
sub-classification of test cases for test reduction can be carried
out at different levels depending on the complexity of the
guard conditions specified in the FSM to depict the behavior
of the system in conformance with requirements. Hence, in
the case of our selected subsystem, for evaluation purposes,
we only sub-classified the test cases at the highest and the
lowest levels of the nested expressions (i.e., guard conditions)
yielding two different sets of abstract test cases. Moreover,
to execute the generated test cases on the SUT, they need
to be transformed into executable test scripts and require the
Alstom-specific libraries and framework. We transformed the
abstract test cases into concrete test scripts by providing an
XML file to TIGER+ containing information such as the types
of each signal (i.e., input, output), the data type of each signal
(e.g., Int, Boolean, etc.), and the technical names of each signal
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and executed on the SUTs to produce test verdicts.

C. Mutation Analysis

Mutation analysis [34] is an evaluation technique used to
assess and analyze the fault detection capabilities of a test
suite, especially when a system under observation has no
known faults. It involves the creation of different versions
of a real system by inducing a small fault in each version
known as a mutant. Each mutant represents an error in the
programming language (i.e., syntactical or logical) caused by
a developer due to an honest mistake or misinterpretation of
requirements during the development of the system. These
mutants can be categorized into three groups i.e., equivalent,
non-equivalent, and stubborn mutants [35]. Equivalent mutants
exhibit identical behavior to the original programs and cannot
be killed by any test case in a test suite. In contrast, Stubborn
and non-equivalent mutants exhibit different behavior than the
original programs and can be killed by a corresponding test
case in a test suite, however, stubborn mutants are a special
type of mutants that are hard to kill and require special or
additional test cases. A mutant is said to be killed if the test
verdict of a test suite executed on the original program and the
mutated version shows a contradiction otherwise considered
alive. After executing a test suite on each mutant, a mutation
score can be calculated either based on an output-only oracle
where a fault in a program affects the outcome (i.e., strong
mutation) or an internal oracle in which fault in a program
does not affect the outcome (i.e., weak mutation). A mutation
score is a ratio between the total number of mutants and the
number of mutants killed by a test suite representing its fault
detection rate.

D. Experimental Setup

In our cases, the selected subsystem is developed through
Programmable Logical Controller (PLC) programming using
Functional Block Diagrams (FBDs) which are then compiled
and transformed into source or machine-level code through
tools provided by PLC vendors. Moreover, the development
of a safety-critical system at Alstom follows certain safety-
standard i.e., EN50657 to ensure the reliability and safety of
the system. These standards require a well-defined structure of
FBD programs for the design and suggest the use of specific
FBD operators for the development of safety-critical embed-
ded software. Hence, to assess the fault detection effectiveness
of the test suites, we used mutation analysis as described
in Section and performed similar experimentation as
our previous paper [33]]. We created several mutants of FBD
programs by selecting six mutation operators provided in
literature [36]] [37] [38] based on safety-critical industrial cases
study and FBD specific faults i.e., Logic Block Deletion Op-
erator, Logic Block Insertion Operator, Logic Block Replace-
ment Operator, Logic Block Replacement Operator-Improved,
Negation Insertion Operator, and Value Replacement Operator
to mimic programmers’ mistakes. We have discarded the Time
Block Replacement Operator as mutants created by these
operators seem to be stubborn mutants [33]. After the creation



of FBD mutants, we utilized Alstom-specific compiling tools
to generate different builds of virtual trains which are the
simulations representing a train. We also utilized the Alstom-
specific testing framework and simulation platform to execute
the test scripts on the SUTS (i.e., SUT with no known fault and
its mutated versions) and generate test verdicts at the Software-
in-the-Loop level.

E. Results

This section provides our experimental results based on
the mutation analysis to comparatively evaluate the MBT-
generated test suite, optimized test suites, and manually cre-
ated test suite in terms of fault detection effectiveness and test
execution efficiency.

1) Fault detection effectiveness of test suites: To evaluate
the test cases in terms of fault detection effectiveness, we
injected faults in the original FBD program and created
40 mutants based on the selected operator as mentioned in
Section [V-DI We also calculated the mutation score of each
test suite as shown in Table [VII| by executing the test suites on
the SUT and analyzing the test verdicts. It is also important
to mention here that the selected subsystem consisted of
similar requirements which were implemented by generating
different instances of same FBD programs [33]], hence, limited
the creation of mutants for this study. Moreover, we have
used strong mutation to calculate the mutation score at the
system level and only considered the non-equivalent mutants
in our results by excluded the equivalent and stubborn mutants
through manual analysis of the test results.

The results of the experimentation show that the TIGER+
was able to reduce the size of the MBT-generated test suite by
approx. 85% at the highest-level optimization and approx. 92%
at the lowest-level optimization yielding 46 and 22 test cases
out of 307, respectively. We also observed that the test suite
optimized at the highest level provided the highest mutation
score of 100%, MBT-generated delivered a 97.5% mutation
score, whereas the test suites optimized at the lowest level and
created manually were able to achieve a 95% mutation score
by uncovering different interaction faults. We also further
analyzed the test suites and test results to investigate the
variation in the mutation score achieved by each test suite,
especially, to identify a possible logical explanation for the
increase in mutation score of the test suite optimized at the
highest level as it contains a subset of the MBT-generated test
cases. The analysis suggests that the test suites i.e., optimized
at the lowest level and created manually did not contain the
test cases required to detect the injected faults. Whereas in
the case of the MBT-generated test suite, it could not uncover
a fault that was detected by both optimized test suites and,
hence, provided a slightly lower mutation score than the test
suite optimized at the highest level. During the analysis of
this specific undetected fault, the only differences we observed
between these test suites (i.e., MBT-generated and optimized
test suites) were the number of parameters used in test cases
to create different scenarios and the sequence of test cases.
For instance, each test case, in the MBT-generated test suite,
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forces some specific signals, verifies the expected outputs in
conformance with the expected behavior of the system, and
is followed by a ‘Reset’ test case to restore and validate
the system’s initial state. On the other hand, in the case of
the optimized test suites, each test case forces the value of
each signal involved and verifies the expected outputs and the
‘Reset’ test case is only executed at the end of the test scripts.
Hence, optimized test suites succeeded in creating different
possible scenarios to uncover that specific fault. Moreover, a
similar structure of test cases was observed in the case of the
manually created test suite that was also able to uncover that
specific fault.

2) Test execution efficiency of test suites: For the test execu-
tion efficiency of the test suites, we reported the approximate
time required by each test suite to execute all the test cases
on the SUT with no known faults and on the mutated versions
as shown in Table [VII] The MBT-generated test suite required
the highest execution time of approx. 21 minutes if executed
on SUT with no known faults and from 120 to 140 minutes
if executed on the mutated SUTs. Whereas in the case of
manually created test suites and test suites optimized at the
highest level and lowest level 7, 8, and 7 minutes and 10 to
12, 13 to 17, and 10 to 13 minutes of approx. execution time
was required when executed on the SUTs i.e., SUT with no
known fault and the mutated versions, respectively. Moreover,
the analysis of the test verdict shows that the execution time
of each test suite depends on the number of test cases in a
test suite along with the number of test cases that detect a
fault and the waiting time required by a test case in the case
of failure to verify a signal in compliance with requirement
specification.

V. DISCUSSION

Our results regarding the effectiveness of the TIGER+ show
over 85% of test suite reduction in both cases i.e., optimization
at the highest and lowest level. However, during the thorough
analysis of the MBT-generated and reduced test suites as well
as the FSM model, we observed that the reduction rate of
the TIGER+ is dependent on the number of test cases in the
MBT-generated test suite generated through random walks,
the complexity of guard conditions depicting the behavior of
the system, and the size of the FSM model. For instance,
generating different test suites in multiple attempts from a
random generation algorithm can produce a different number
of test cases in each test suite including redundant test cases.
Similarly, the size of the FSM model and the complexity of the
guard condition can yield different numbers of groups during
classification affecting the size of a reduced test suite. Hence,
we believe, the TIGER+ can effectively be used to detect and
eliminate the redundant test cases in a test suite but these
three factors can affect the reduction rate of the proposed
approach. However, the further analysis of these factors and
the significance of their effect on fault detection is another
future work.

We also found the results of mutation analysis in the case
of MBT-generated and manually created test suites similar to



TABLE VII
COMPARATIVE MUTATION ANALYSIS BETWEEN MBT-GENERATED TEST SUITE, OPTIMIZED TEST SUITES, AND MANUALLY CREATED TEST SUITE

Test suites tNelsltmcl;zstf Mutants killed | Mutants alive Mutation score ggplzgz;vff:;sﬂgn time OMnuiIig dlglr;,lll,gmes
Manual 18 38 2 95% 7 10-12
MBT-generated (Original) 307 39 1 97.5% 21 120-140
Optimized at highest level 46 40 0 100% 8 13-17
Optimized at lowest level 22 38 2 95% 7 10-13

our previous study [33]] in terms of detected faults regardless
of the size of the MBT-generated test suite. These results
ratify that a higher fault detection rate can be achieved by
utilizing MBT tools. An in-depth analysis of the mutation
score and undetected faults shows that the MBT-generated
and manually created test suites were only unable to uncover
different interaction faults injected based on the Logic Block
Replacement Operator, and hence, provided a relatively lower
mutation score than the test suite optimized at the highest
level. Whereas, the optimized test suite at the lowest level
was found least effective in detecting faults injected based on
Logic Block Replacement and Logic Block Insertion Operator.

VI. VALIDITY THREATS

This section discusses the threats to the validity of this study
along with the strategies we used to eliminate them.

The factor that can affect the internal validity of this study
is the conformance of the FSM model depicting the behavior
of the selected system with requirements. The modeling of the
system is a manual process that requires complete knowledge
of the domain, process, and system. The requirements at
Alstom are written in natural language using the Given-When-
Then format and there exists a chance that misinterpretation of
these requirements can impact the conformance of the model
and generated test suite. However, to mitigate this threat, we
have spent a substantial amount of time for understanding the
requirements and the system through carefully analyzing the
requirements and test specifications. We have also iteratively
created the model by getting continuous feedback on its
correctness from a testing team at Alstom.

The threats that can influence the reliability and external
validity of the study include the modeling notation, gener-
ation algorithm, human experience of modeling, size of the
subsystem, and particularities of the test generation tool, MBT
model, and test suite specific to Alstom’s testing environment
and system. The proposed approach and tool implemented,
TIGER+, in this study is specifically designed for the test
cases generated through GraphWalker and contains certain
particularities related to the FSM model and the format of files
representing the model and test cases. Similarly, the model and
test suite created in this study using requirements of a subsys-
tem of TCMS developed at Alstom also contains particularities
related to Alstom-specific testing libraries, development, and
testing environments that may not apply to other domains.
However, we have provided a detailed description of the
proposed approach, tool, and experimental methodology for
the other researchers working in a similar domain to apply it
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to other test generation tools and to replicate the study. We also
argue that different modeling notations, generation algorithms,
and coverage criteria may produce different results in terms of
test suite reduction and fault detection effectiveness. Therefore,
more industrial case studies from various domains for the
generalization of the tools and knowledge in different contexts.

We used the mutation analysis in this study to evaluate the
fault detection effectiveness as it is often recommended in the
literature. Furthermore, to select the mutant operator, we have
conducted a thorough investigation on the development of the
FBD program from the literature, applicability of the selected
mutant operators in industrial settings, and dependencies of the
tools and recommendation of safety standards i.e., EN 50128,
EN 50657 used at Alstom for the development of the selected
system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an optimization approach and
implemented a tool, TIGER+, to reduce the size of a test suite
generated through an FSM model for system-level testing. It
leverages different machine learning algorithms to extract, pre-
process, and classify the test data into different groups based
on guard conditions . It also uses a greedy algorithm guided by
MCDC adequacy criteria and a similarity measure inspired by
the Jaccard Index to identify and eliminate redundant test cases
while having minimal effect on the fault detection rate of the
test suite. We also performed a comparative mutation analysis
of the test suites reduced by the TIGER+, the MBT-generated
test suite, and the test suite created manually in terms of
fault detection effectiveness and test execution efficiency in
an industrial setting. Our results show a significant reduction
of the MBT-generated test suite i.e., approx. 85% and 92%
if optimized at the highest and lowest level, respectively.
The experimental results also indicate that TIGER+ not only
contributes towards the test suite optimization to improve
the test efficiency but also preserves the fault detection rate,
showcasing its potential to enhance resource utilization and
testing effectiveness.

In the future, we intend to perform a rigorous evaluation of
the proposed approach using more industrial case studies to
examine the test suite reduction and its effect on fault detection
effectiveness in different contexts. Moreover, a thorough code-
level analysis to measure the coverage by test suites at the
structural level is also warranted.
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