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Abstract—Industrial controllers constitute the core of numer-
ous automation solutions. Continuous control system operation
is crucial in certain sectors, where hardware duplication serves
as a strategy to mitigate the risk of unexpected operational
halts due to hardware failures. Standby controller redundancy
is a commonly adopted strategy for process automation. This
approach involves an active primary controller managing the
process while a passive backup is on standby, ready to resume
control should the primary fail. Typically, redundant controllers
are paired with redundant networks and devices to eliminate any
single points of failure. The process automation domain is on
the brink of a paradigm shift towards greater interconnectivity
and interoperability. OPC UA is emerging as the standard
that will facilitate this shift, with OPC UA PubSub as the
communication standard for cyclic real-time data exchange. Our
work investigates standby redundancy using OPC UA PubSub,
analyzing a system with redundant controllers and devices in
publisher-subscriber roles. The analysis reveals that failovers are
not subscriber-transparent without synchronized publisher states.
We discuss solutions and experimentally validate an internal
stack state synchronization alternative.

I. INTRODUCTION

Automation solutions are crucial in modern society and
pivotal in infrastructure for critical utility services such as
power and freshwater distribution. At the core of these au-
tomation solutions is the controller, which interacts with the
physical environment through Input and Output (I/O) devices.
The controller processes data from input devices to assess the
system’s status and directs output devices to achieve desired
outcomes, forming what is known as the control loop. In
certain domains, such as offshore oil and gas production, halts
can incur significant costs, particularly unexpected halts due
to hardware failures. Hence, the reliability requirements for
the components constituting the control loop are high in such
domains.

A widely adopted strategy to mitigate the risk of unplanned
stops caused by hardware failures is the implementation of
spatial redundancy. This involves duplicating critical hardware
components such as devices, communication systems, and
controllers. The aim is to ensure that a single fault does not
lead to a system halt, effectively eliminating what is known
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as a Single Point of Failure (SPoF). By having redundant
components, the system can continue to operate even if one
component fails, thereby enhancing the system’s reliability and
reducing the risk of unexpected halts.

The predominant industrial controller redundancy solution is
standby redundancy [1]. Standby controller redundancy means
that one of the controllers in the controller pair is assigned the
primary role, meaning that it is the active controller driving
the process [2]. The other controller in the pair is the backup,
which is passive until the primary controller fails. In such a
situation, the backup assumes the primary role and continues
to run the control application. The same principle commonly
applies to redundant devices, where one is the primary, and
the other is the backup.

The automation domain is experiencing a paradigm shift
driven by Industry 4.0’s demand for data, increased inter-
operability, and interconnectivity. OPC UA is identified as
the enabling standard for interoperability [3]. The PubSub
part of the OPC UA standard details a publish-subscribe
model suitable for cyclic real-time communication between
controllers and I/O devices [4]. Further, OPC UA PubSub is
the communication foundation in the OPC UA Field eXchange
(UAFX) standard, targeting field device communication [5],
[6].

Our contribution is the OPC UA PubSub analysis through
the standby redundancy lens. Using controller and device
redundancy as an analysis basis, we identify challenges in
publisher failover when using the standard’s normative con-
figuration for real-time exchange. The issue is subscriber ex-
pectancy on message information populated by the publisher,
which typically lacks replication in backup publishers. Based
on our analysis, we propose alternative solutions and validate
our findings through experiments, including a basic test where
we synchronize publisher internals.

The paper is organized as follows: Sec. II present related
work; Sec. III provides an overview of OPC UA, especially
PubSub; Sec. IV discusses OPC UA PubSub’s behavior in se-
lected controller redundancy failure scenarios; Sec. V explores
OPC UA PubSub redundancy adaptations, complemented by
an experimental evaluation in Sec. VI; and finally, Sec. VII
concludes with a summary and future directions.



II. RELATED WORK

This work explores OPC UA PubSub in the context of con-
troller and device redundancy. Redundancy is a means of fault
tolerance. Fault tolerance, defined by Avizienis et al. as the
preservation of operation in the face of faults, is a critical as-
pect of dependability [7]. The field of fault tolerance research,
especially in embedded and industrial systems, is extensive.
For instance, Ballesteros et al. introduce an architectural model
that dynamically adjusts resilience by dynamic allocation of
communication and computational resources according to task
criticality [8]. Vitucci et al. investigate hardware design tech-
niques that strengthen product reliability [9]. In the flourishing
field of artificial intelligence, Nouioua et al. examine the use
of machine learning for network fault detection [10].

Given the reliability requirements of industrial networks,
several fault tolerance approaches exist, offering various types
of spatial, temporal, or informational redundancy. Álvarez et
al. comprehensively survey these mechanisms in industrial
networks [11] and Danielis et al. [12] survey reliability aspects
of industrial, Ethernet-based, protocols. Neither of the two sur-
veys cover OPC UA PubSub. Nast et als industrial applicability
protocol survey covers OPC UA PubSub and reliability as a
requirement, but without considering redundancy [13].

Regarding controller redundancy, Simion et al. note that
standby modes—either hot or warm—are prevalent redun-
dancy patterns in industrial controllers [1]. The distinction
between hot and warm standby lies in the level of backup
readiness. However, the backup controls the process in neither
warm nor hot standby mode. Additionally, Stój et al. present
a cost-effective approach to controller redundancy utilizing
EtherCAT [14]. None of these controller redundancy-related
works cover OPC UA PubSub.

In the context of OPC UA PubSub, Neumann et al. inves-
tigate the requirements that an OPC UA PubSub field device
must meet [15]. However, their study does not address reliabil-
ity aspects. Additionally, the integration of OPC UA PubSub
with Time Sensitive Networks (TSN) has been examined by
various researchers, demonstrating the feasibility of achieving
low latency in real-time communication [16], [17], [18], [5].

Redundancy, in the context of OPC UA, is considered
by Ismail et al. that describe a redundant OPC UA server
architecture based on ZooKeeper as the underlying replication
means [19]. Additionally, Cupek et al. detail the implementa-
tion of an OPC UA server in Java, focusing on redundancy
aspects [20]. However, these works are related to redundancy
for OPC UA Servers, which differs from OPC UA PubSub,
further described in Sec. III.

The related work mentioned does not address OPC UA
PubSub and redundancy. To our knowledge, this study is the
first to examine OPC UA PubSub in the context of controller
redundancy.

III. OPC UA

Established in 2008, OPC UA is a comprehensive standard
for interoperability across various parts of industrial automa-
tion, encompassing machine-to-machine communication, com-

missioning, and engineering [21]. It introduces a platform-
independent and service-oriented architecture and an informa-
tion model where data and services are accessible via attributes
and methods on objects within an information collection
called AddressSpace. Remote access to AddressSpace exposed
information typically uses OPC UA Client Server [22]. OPC
UA Client Server is not designed for real-time, low-latency
communication but specifies server redundancy handling. OPC
UA prescribes OPC UA PubSub for cyclic, real-time com-
munication, though it does not specify PubSub redundancy
handling.

The OPC UA’s PubSub part details a publish-subscribe com-
munication model, complementing the client-server model and
supporting deterministic cyclic process value exchange [5],
[16], [18]. PubSub utilizes a Message Oriented Middleware
(MOM) to decouple publishers and subscribers [4]. The MOM
can be broker-based, where a broker connects publishers and
subscribers, or broker-less, relying on network equipment
to act as a broker via multicast groups. This work focuses
on broker-less PubSub over User Datagram Protocol (UDP),
which targets real-time cyclic data exchange.

A. OPC UA PubSub - internals

This section outlines the internals of OPC UA PubSub
as defined by the standard [4]. Fig. 1a depicts the objects
and their interconnections. The PublishSubscribe object is
the root for all PubSub objects, aggregating one or more
PubSubConnections. A PubSubConnection defines the trans-
port protocol, e.g., UDP, and specifies the destination ad-
dress, either unicast or multicast. Each PubSubConnection
may have multiple WriterGroups. WriterGroups encapsulates
the data from DataSetWriter into a NetworkMessage. The
DataSetWriter fetches and formats the data from Published-
DataSet for publishing. On the subscriber side, ReaderGroup
is the receiving counterpart of the WriterGroup, and DataSe-
tReader, analogous to DataSetWriter, unpacks the data and
updates the SubscribedDataSet.

Next, to describe the OPC UA PubSub internals, we’ll
follow the data from a publisher to a subscriber, depicted
in Fig. 1b. The initial step (1) collects the DataSet data for
publication. The data acquisition method depends on the type
of publisher, for example, sampling I/O values or reading a
variable in a control application. The PublishedDataSet defines
the data source and type of data, including the DataSetMeta-
Data, which is essential for subscribers to interpret the received
DataSetMessage.

Step (2) encapsulates the DataSet into a DataSetMessage
using the DataSetWriter. The DataSetWriter DataSetMessage
creation offers flexibility in fields selected for inclusion into
the DataSetMessage. Which fields to include is controlled
by the DataSetFieldContentMask. For example, fields like
ConfigurationVersion and DataSetMessage SequenceNumber
can be included, as detailed in Fig. 2.

Next, the WriterGroup (3) encapsulates the DataSetMessage
into a NetworkMessage. A single WriterGroup can receive
DataSetMessages from multiple DataSetWriters, allowing a
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Fig. 1: Overview of the OPC UA PubSub internals.

NetworkMessage to carry several DataSetMessages. As the
DataSetWriter, the WriterGroup offers flexibility in which
fields to include in the NetworkMessage, such as sequence
numbers. The PublishingInterval parameter of the Writer-
Group determines the frequency of publishing.

In step (4), the WriterGroup sends the NetworkMessage
to the publisher’s network stack. The broker-less middleware
utilizes the network for message broking (5). The publisher
can target the message to a specific subscriber using a unicast
IP address or address multiple subscribers simultaneously with
a multicast address. The network equipment, assumed to be
layer two network switches in case of real-time exchange,
ensures that the published message reaches the subscribers.

Upon arrival at the subscriber (6), the network stack verifies
that the message is meant for this subscriber on the node
level, i.e., confirming that the destination address matches a
multicast address or the subscriber’s unicast address (IP or
MAC address).

Next, the ReaderGroup processes the incoming Net-
workMessage (7), discarding any messages not intended for
this subscriber by verifying the PublisherID in the Net-
workMessage. It then extracts the DataSetMessage from the
NetworkMessage and forwards the DataSetMessage to the
appropriate DataSetReader.

The DataSetReader (8) uses the DataSetMetaData to decode
the DataSetMessage and update the DataSet with the data re-
ceived. The DataSetReader monitors the interval between two
DataSetMessages. Suppose no new DataSetMessage appears
within the period defined by the MessageReceiveTimeout pa-
rameter of the DataSetReader. In that case, the DataSetReader
enters an error state. When in error state, the DataSetReader
sets the data quality on data update by the DataSetReader to
bad, indicating to any dependent application that the data is
outdated. Finally, the specific application determines how the
received and updated data are utilized (9).

B. OPC UA PubSub protocol - UADP

As discussed, OPC UA PubSub offers various alternatives
for the underlying protocol and MOM, ranging from direct,
broker-less Ethernet operation to broker-based solutions. This
work focuses on the UDP-based alternative, where published

network messages are encapsulated in UDP packets on Eth-
ernet, known as the Unified Architecture Datagram Protocol
(UADP) [4].

UADP targets cyclic real-time data exchange, such as
controller and device communication. The standard outlines
recommended message layouts and header configurations.
Our description adheres to these recommendations, excluding
security enhancements, which are left for future exploration.
Fig. 2 illustrates the normative UADP NetworkMessage fields
for cyclic real-time communication, per the standard [4].
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Fig. 2: UADP NetworkMessage layout, with the normative
header fields for cyclic data exchange.

The first field in the NetworkMessage header is the Ver-
sion/flags byte, which specifies the UADP version and includes
flags that indicate the presence of other header fields. The
standard suggests that Extended Flags 1, PublisherId, and
GroupHeader are included in the cyclic real-time normative
NetworkMessage.

The second field, ExtendedFlags1 (ExtFlags1), further de-
fines which additional header fields to expect. For instance, it
determines whether the PublisherId is a 16-bit or 64-bit value,
with 64-bit being the default. The PublisherId is the third field,
a unique publisher identifier within the MOM.

Next is the Group header, containing WriterGroup infor-
mation. The first field within this header is the GroupFlags
(Grp. Flags), which, similar to the NetworkMessage header,
indicates the presence of certain fields in the Group header.
Again, the normative fields are illustrated in Fig. 2. The
WriterGroupId (WriterGrpId) uniquely identifies the Writer-
Group within the publisher. The GroupVersion (GrpVersion)
notes the time of the last layout change to the data encapsu-
lated by the WriterGroup, such as changes in header fields or
DataSet reconfigurations. The NetworkMessageNumber (Net-
workMsgNumber) is utilized if multiple NetworkMessages are
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Fig. 3: Redundant controller publishing to the redundant
subscribing device.

required to transmit all DataSets managed by the WriterGroup,
and the SequenceNumber increments with each message. The
subscriber discards the messages that are deemed outdated by
the sequence number comparisons. If no messages are received
from the publisher within a time exceeding a predetermined
“fail-time” (MessageReceiveTimeout), the receiver should be
prepared to accept any sequence number. This mechanism
ensures resilience in scenarios where the publisher fails and
subsequently recovers. However, the subscriber tags the Sub-
scribedDataSet data quality as bad since it is not updated
within the MessageReceiveTimeout.

The DataSetMessage header and the DataSetMessage pay-
loads come after the Group header and carry the published
values/data. The first field in the DataSetMessage header
is DataSetFlags1, specifying the subsequent header fields
that are present. Next is the MessageSequenceNumber, a
sequence number unique to the DataSetMessage, updated
by the DataSetWriter for each DataSetMessage. The Status
field follows the MessageSequenceNumber, providing quality
information about the data/values within the DataSetMessage,
indicating whether the data is good, bad, or uncertain. Last
is the payload, comprising the application-specific data ex-
changed.

IV. PUBSUB AND CONTROLLER/DEVICE REDUNDANCY

In this section, we analyze OPC UA PubSub in the context
of controller and device redundancy, using two configurations
as depicted in Fig. 3. The distinction between the two config-
urations is the type of UADP connection utilized for PubSub,
i.e., multicast or unicast. As mentioned, the UADP PubSub
configuration used is the normative for cyclic real-time data
exchange as detailed in Sec. III-B.

With the two configurations illustrated in Fig. 3, we investi-
gate failure recovery, i.e., failover, using four different failure
scenarios. Those are:

• PCM - Primary controller failure with multicast PubSub.
• PCU - Primary controller failure with unicast PubSub.
• PDM - Primary device failure with multicast PubSub.
• PDU - Primary device failure with unicast PubSub.
To keep the explanation and illustration as simple as pos-

sible, we assume that the controller is the publisher and the
device the subscriber, even though a controller and, likewise,
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Fig. 4: Primary controller failure, i.e., publisher failure.

a device could be both subscriber and publisher or any other
possible combination. We use the four failure scenarios as the
basis for the following subsections.

The assumptions for our failure consequence analysis and
their justifications are as follows: the backup can, through the
synchronization link, detect if the primary fails and resume the
primary role. The application states, particularly the control
loop states, are synchronized with the backup. However, the
internal states of the OPC UA PubSub stack are not synchro-
nized. The rationale is that control system manufacturers often
develop controller runtimes, whereas communication stacks,
such as OPC UA, are typically third-party software integrated
into the system. Therefore, synchronizing internal stack states
is not commonly practiced. Furthermore, we assume the
backup is configured identically to the primary regarding OPC
UA PubSub-related settings.

A. Primary controller failure with multicast PubSub - PCM

As illustrated in Fig. 4a and elaborated in Sec. III-A,
the WriterGroup and DataSetWriter hold internal states that
contribute to the composition of the NetworkMessage, such as
the sequence numbers. These sequence numbers are part of the
dynamic state data within the WriterGroup and DataSetWriter,
and they change with each message transmitted.

When the backup controller takes over as primary, the
necessary actions depend on the capabilities of the utilized
stack. The backup may need to instantiate the WriterGroup
and DataSetWriter, or, if the stack permits, these components
could be pre-configured but inactive, allowing for a quicker
transition to an operational state upon taking over as primary.
Upon activation, the new primary begins publishing with the
internal states and sequence numbers from its own Writer-
Group and DataSetWriter, as shown in Fig. 4a. Hence, the
sequence number in the messages from the new primary is
not resumed from where the former primary failed, causing the
subscribing device’s ReaderGroup to discard them as outdated.
In a rare scenario where the backup takes over just before a
sequence number wraparound, the first message from the new
primary might have the expected sequence number, allowing
the message to go through to the DataSetReader. However,



the DataSetReader will likely reject the DataSetMessage due
to an old MessageSequenceNumber.

DataSetMessages are discarded until the MessageReceive-
Timeout expires. At this point, as mentioned in Sec. III-B, the
DataSetReader enters an error state, marking data quality as
bad but resetting the expectation for sequence numbers. The
subsequent DataSetMessage from the new primary is accepted,
but this acceptance comes too late for a seamless transition,
as data quality has already been compromised due to the
expiration of the MessageReceiveTimeout.

Although multicast allows a backup subscribing device to
receive data directly from the primary controller publisher, this
doesn’t address the sequence number expectation mismatch
between subscriber and publisher due to the publisher failover.

B. Primary controller failure with unicast PubSub - PCU

The outcome of the PCU failure scenario is identical to
that of PCM, because the failure originates at the publishing
end in both examples, and the subscriber’s sequence number
expectations are the same. The only distinction is that in
the PCU scenario, only the primary device receives the pub-
lished message. Nevertheless, this difference does not affect
the outcome of the failure scenario; see Fig. 4b.

C. Primary device failure with multicast PubSub - PDM

This scenario covers the failure of a subscribing primary
device in a multicast configuration as depicted in Fig. 5a.
We assume both devices are appropriately configured and
have their OPC UA PubSub stacks initialized to subscribe to
the multicast published data. Hence, the primary and backup
devices receive the data published by the primary controller.
However, this requires the pair to ensure consistency. One
alternative could be to discard the updated values on the
backup when they reach the application layer where the
redundancy roles are known. An alternate strategy would be
to prevent the backup device from receiving any updates by
only activating its subscription once it is required to take over
as the primary. This approach would mirror the PDU scenario.

In this, the PDM scenario, the new primary’s Reader-
Group and DataSetReader are already aligned with the former
primary’s since both devices have been receiving the same
messages. Therefore, when the backup takes the primary role,
it can seamlessly accept and process the published values from
the controller.

D. Primary device failure with unicast PubSub - PDU

In contrast to PDM, in this scenario, the backup device,
when stepping into the primary role due to the failure of
the former primary, hasn’t received the latest values pub-
lished by the controller. Upon starting to receive messages,
the subscriber—now the new primary—has no preconceived
expectations regarding the sequence numbers. Specifically,
the ReaderGroup, having not received any NetworkMessage
from the publishing controller previously, holds no anticipation
about the sequence numbers from the publishing controller’s
WriterGroup. As a result, it would accept the incoming Net-
workMessage and forward the contained DataSetMessages to
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Fig. 5: Primary device failure, i.e., subscriber failure.

the DataSetReader. Similarly, the DataSetReader, with no prior
expectations regarding the MessageSequenceNumber in the
DataSetMessage, would also accept the incoming message.
In this scenario, the transition to receiving subscribed data
by the new primary device would be seamless, ensuring no
interruption in data reception despite the role change.

E. Summary

Table I summarizes the redundancy and failure scenarios
discussed above. It shows that a primary subscriber’s failure
recovery (PDM, PDU) in a redundant pair can be transparent
to the OPC PubSub data using layers in the device. However,
the recovery of a publisher failure (PCM, PCU), e.g., the
controller in our discussion, results in bad data quality status,
which is undesirable.

TABLE I: Failure and recovery scenario summary.

Scenario: PCM PCU PDM PDU

Result: FAIL FAIL OK OK

V. IMPROVEMENT ALTERNATIVES

As summarized in Table I, a publisher failure causes the sub-
scriber to reject DataSetMessages and NetworkMessages from
the new primary’s DataSetWriter and WriterGroup. This sec-
tion examines three strategies for seamless publisher failover:
(i) the PubSub redundancy layer, (ii) stack synchronization,
and (iii) standard extension alternatives, detailed further in sub-
sequent sections. While our examples use multicast publishers,
the strategies also apply to unicast publishers.

A. PubSub redundancy layer

In the PubSub redundancy layer alternative, PubSub-related
redundancy management occurs in a layer above OPC UA
PubSub, termed the redundancy layer. As depicted in Fig. 6a,
each controller within the pair establishes a WriterGroup
and DataSetWriter, while each device in the redundant pair
configures a corresponding ReaderGroup and DataSetReader.
Synchronization between the pair is managed at the redun-
dancy layer, not within the OPC UA PubSub stacks.
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Fig. 6: PubSub redundancy layer establishing parallel publi-
cations.

Several approaches exist for the redundancy layer. One
method involves embedding redundancy state information
within the transmitted data. Embedding redundancy state infor-
mation in the published data is similar to PROFINET’s redun-
dancy approach, which creates parallel logical connections be-
tween controller and device, distinguishing one as primary and
the others as backups [23]. At the subscriber, the redundancy
layer can opt to process data solely from the primary, similar
to PROFINET’s strategy, potentially minimizing the backup’s
activity. Note that the redundancy state information is carried
in the application-specific data, whereas in PROFINET, this
information is part of the protocol.

Another approach allows both controllers in the redundant
pair to publish updates and actual data, enabling the subscriber
to utilize data from either the primary or the backup, with
the option to switch based on error indications from the cor-
responding DataSetReader or ReaderGroup. This necessitates
the backup being up-to-date and publishing data at appropriate
intervals, as illustrated by variable X in Fig. 6a.

A third approach is to avoid parallel publications, accept
the delays, and hide potential quality degradation resulting
from MessageReceiveTimeout expiration in the redundancy
layer. With this approach, the redundancy layer would manage
data updates. This approach hides the resumption of subscrip-
tion from the new primary publisher within the redundancy
layer. This strategy is most suitable for RawData since the
standard does not prescribe quality handling for RawData. A
MessageReceiveTimeout would otherwise lead to subscribed
data being marked with bad quality.

As exemplified, the redundancy layer is realizable in various
incompatible ways. Hence, the redundancy layer alternative
will likely need standardization to maintain interoperability
between vendors.
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Fig. 7: Stack synchronization in the publisher creates a seam-
less appearance, making the stack instances appear as one
to the subscriber, hence depicted as a single entity. On the
subscriber side, there’s no necessity for internal stack state
synchronization; thus, we depict it as two distinct instances.

B. Stack synchronization

The stack synchronization entails synchronizing the internal
states of the OPC UA PubSub stack from the primary publish-
ing controller to the backup publisher, as illustrated in Fig. 7.
The synchronization allows the stack instance running on the
backup to resume with the latest state of the primary stack
instance. Specifically, sequence numbers need to be synchro-
nized to the backup before transmitting the message. With this
strategy, the backup publisher can continue publishing using
the same internal state as the former primary’s DataSetWriter
and WriterGroup. Therefore, from the subscriber’s perspective,
the failover due to the failure is transparent. This approach’s
advantage is its transparency to the subscriber. The downside,
however, is the need for synchronization support within the
OPC UA PubSub stack’s internal workings.

C. Standard extension

As mentioned in Sec. V-A, PROFINET achieves redundancy
through parallel logical connections between controllers and
devices, designating a primary connection for data exchange
and monitoring others to prevent failures leading to unde-
tected redundancy deterioration [23]. A redundancy layer
manages these connections, seamlessly switching the primary
connection as needed, thereby decoupling redundancy man-
agement from the application layer. The OPC UA PubSub
standard could similarly incorporate a redundancy model like
PROFINET. On a high abstraction level, this section presents
one alternative to integrate similar redundancy features into
OPC UA PubSub.

The extension includes (i) a RedundancyState field in
the DataSetMessageHeader to indicate if the message is
from a primary publisher and (ii) a redundancy state for
DataSetWriter and DataSetReader. DataSetFlags2, as DataSet-
Flag1, indicates field presence. A bit in DataSetFlags2 will
represent the presence of the RedundancyState field, with
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Fig. 8: Publisher and subscriber redundancy example with the
described OPC UA PubSub standard extension.

DataSetFlag1 indicating the presence of DataSetFlags2. The
extension is detailed in Fig. 8a.

The PublishedDataSet (1) represents the data set to be
published, synchronized between the primary and backup. The
primary DataSetWriter (2), labeled P, creates the DataSetMes-
sage, setting the introduced RedundancyState field to primary
in the DataSetMessageHeader. A backup DataSetWriter (3)
in the backup controller also publishes, duplicating the data
or sending a placeholder, with RedundancyState field set as
backup.

The primary controller’s WriterGroup (4) embeds the pri-
mary DataSetWriter’s DataSetMessage into a NetworkMes-
sage. Similarly, the backup controller’s WriterGroup (5)
encapsulates the DataSetMessage into a NetworkMessage.
The primary and backup WriterGroups have distinct Writer-
GroupIds that ideally follow a convention that allows corre-
sponding pairs to be identified.

The NetworkMessages are multicast (6)(7), ensuring both
devices in the redundant pair receive all messages. Alterna-
tively, additional WriterGroups using unicast could also ensure
that both devices in the redundant pair receive all messages
without using multicast.

ReaderGroups (8-11) on the redundant device receive Net-
workMessages from both controllers, allowing connection
monitoring and means to prevent undetected redundancy dete-
rioration. The ReaderGroups forward DataSetMessages to the
DataSetReaders (12-13). Each device has two ReaderGroups
to handle messages from both publishing controllers in the
redundant controller pair. Only the primary state DataSe-
tReader updates the SubscribedDataSet (14), and only with
DataSetMessages where the RedundancyState field equals
primary.

If the primary publisher fails, the backup DataSetWriter
becomes the primary, continuing to publish the Published-
DataSet, as shown in Fig. 8b. The specifics of this transition,

particularly changing the DataSetWriter’s redundancy state,
are likely implementation-dependent.

VI. EXPERIMENTAL EVALUATION

Sec. IV looked at OPC UA PubSub in a redundancy
context, identifying that publisher failovers aren’t inherently
transparent to subscribers, see Table I. Consequently, Sec. V
explored alternatives, identifying the synchronization of in-
ternal stack states as the approach that maintains standard
compatibility without necessitating specialized handling by the
subscriber. This section experimentally tests these findings,
employing the multicast scenarios PCM and PDM, using the
transport protocol and UADP message configurations outlined
in Sec. III-B and Fig. 2.

For the experiment, we use the open source OPC UA stack
open62541 [24], [25] running on Ubuntu 20.04.6 LTS using
VMWare. One Virtual Machine (VM) acts as the publishing
controller, and the other as the redundant subscriber device. We
simulate publisher failure recovery (failover) by halting and
restarting the publisher in the same VM and process. Further,
we simulate subscriber failure and recovery by restarting the
subscriber. The exchanged data consists of ten four-byte values
the publisher publishes every 100 ms. The test implementation
and modifications to the open62541 stack are available on
GitHub [26].

A. Implementation

The open62541 PubSub implementation doesn’t verify se-
quence numbers. It checks neither the Group header nor the
DataSetMessage sequence numbers. To address this, we added
checksum verification as per the standard. We added checking
of the Group header sequence number, updated by the Writer-
Group and checked by the ReaderGroup, and checking of
the DataSetMessageHeader sequence number, updated by the
DataSetWriter and verified by the DataSetReader. Messages
with incorrect checksums are discarded.

For stack synchronization, we implemented a simple yet
representative solution allowing a resumed instance to con-
tinue with the sequence number last used. This implementation
is sufficient for our experiment, where we simulate the failure
by stopping the publisher and resuming a new one in the same
VM and process. For more details, refer to the implementa-
tion [26].

B. Experiment and Result

We conducted the experiments using the setup previously
described and three different variants of the open62541 stack:
(i) the original open62541 version - ORG, (ii) sequence num-
ber adherence - SEQ, and (iii) synchronization and sequence
number adherence - SYNC. Table II displays the results,
with OK indicating a seamless recovery from the subscriber’s
perspective and FAIL indicating a non-seamless recovery.

The results, as detailed in Table II, reflect the analysis from
Sec. IV highlighting the challenges with publisher failures.
While the original open62541 version (ORG) shows OK for
publisher failure scenarios (PCM), this is attributed to the



stack’s non-adherence to sequence numbering; it ignores them.
In the SEQ variant, publisher recovery is not transparent
to the subscriber; the new primary publisher uses sequence
numbers perceived as outdated by the subscriber, leading to
message rejection. Conversely, the SYNC variant enables the
new primary publisher to resume with sequence numbers
aligned with subscriber expectations, resulting in a successful,
seamless recovery.

TABLE II: Failure recovery result for different scenarios and
stack variants.

Scenario Stack variant
ORG SEQ SYNC

PCM OK1 FAIL OK
PDM OK OK OK

VII. CONCLUSION AND FUTURE WORK

This work has examined OPC UA PubSub within the
context of controller and device redundancy, focusing on the
standard’s recommended messaging configuration for real-
time, cyclic data exchanges. The type of exchange that is
typical in industrial settings. We explored four failure sce-
narios in a redundant controller and device setup using OPC
UA PubSub, assessing the transparency of failovers, where
the backup should take over seamlessly without impacting the
application.

Our analysis revealed that the publisher redundancy is not
transparent—highlighting a gap where the redundant publisher
fails. We proposed three alternatives to address this in order to
provide a seamless publisher failover. Further, we conducted
experiments using the open62541 stack, implementing one
of the suggested alternatives to validate our discussions. We
conclude that achieving publisher redundancy in a way that is
transparent to subscribers is feasible but requires stack support.

Future work includes adding general platform-independent
redundancy support in open62541, as well as an in-depth
evaluation and implementation of a redundancy layer similar to
that of PROFINET, allowing for status monitoring to prevent
redundancy deterioration from going undetected.
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[9] C. Vitucci, D. Sundmark, M. Jägemar, J. Danielsson, A. Larsson,
and T. Nolte, “Fault management impacts on the networking systems
hardware design,” in IECON 2023-49th Annual Conference of the IEEE
Industrial Electronics Society, pp. 1–8, IEEE, 2023.

[10] M. Nouioua, P. Fournier-Viger, G. He, F. Nouioua, and Z. Min, “A survey
of machine learning for network fault management,” Machine Learning
and Data Mining for Emerging Trend in Cyber Dynamics: Theories and
Applications, pp. 1–27, 2021.
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