
The Importance of a System-Level Approach when
Bringing in New Technologies in Avionics

Håkan Forsberg
School of Design, Innovation and

Engineering
Mälardalen University

Västerås Sweden
hakan.forsberg@mdu.se

Kristina Forsberg
Saab Surveillance

Saab AB
Huskvarna, Sweden

kristina.forsberg@saabgroup.com

Joakim Lindén
Saab Aeronautics

Saab AB
Järfälla, Sweden

joakim.lindén@saabgroup.com

Abstract—In the era of multiple industry trends and new
technologies, avionics systems can benefit from several
innovations. The complexity of modern electronics is
increasing quickly and is being introduced as never before in
new applications. At the algorithm level, the use of deep neural
networks helps to solve problems that were never believed to
be doable before. At the architecture level, hardware artificial
intelligence accelerators, embedded graphical processing units,
embedded sensors, etc., make it possible to create very
powerful new functions. The list of new technologies is long.
Besides technical challenges, system integrity and availability
must be assured when integrating these new technologies into
avionics functions. In this paper, we present emerging
technologies and why a system-level approach is necessary
when implementing these technologies. We also introduce
supporting means for design assurance and fault-tolerance
techniques. We illustrate the importance of a system-level
approach through an example. Our example shows that when
developing functions with new technologies and fault-tolerant
architectures, the system safety assessment process is crucial
for properly implementing a fail-safe design. It is also
challenging due to potentially new failure modes.

Keywords—system safety, safety assessment, new technology,
machine learning

I. INTRODUCTION
When new technology is introduced, the focus is on the

functional level: what can the technology solve? The system
is built around the function rather than focusing on the
potential hazards connected to malfunction. If a proper top-
down approach is used as described by the system safety
process guidelines, the new technology may be used
differently than planned for but be better suited to fulfill the
required safety-requirements. Focus is also on trying to solve
all tasks with a single solution, resulting in suboptimal
results.

If, for instance, a convolutional neural network (CNN) is
selected for object detection and classification, the focus is
on solving these two tasks. An already pre-trained network is
naturally selected from the “best available” networks as the
base network. The pre-trained network is then fine-tuned on
a specific task until accurate enough for the intended
function. While this approach works for most systems, this
may not be the case for safety-critical functions. Introducing
new technology into safety-critical systems poses challenges
to ensure reliability, integrity and availability. To illustrate
this, imagine we develop a safety-critical system employing
neural networks (NNs). In such system, it is crucial for
decisions to be explainable to ensure integrity. At the system
level, especially in object detection systems, explainability
can be achieved through validation data and statistical

analysis across all output classes [1]. The probabilities for
correctly classifying objects should significantly outweigh
those for other classes, and the identified bounding boxes
must closely align with the ground truth. These statistics
must conform to system requirements. To achieve high
integrity, to mitigate false negatives (undetected objects) and
false positives (incorrectly identified objects), diverse,
redundant, parallel deep neural networks (DNNs) can be
deployed [2].

A solid understanding of the system and intended
functionality is also required when selecting the training
dataset for NNs. There must be an assurance that the data
used for training a model appropriately spans the operating
design domain when operating in the real-world
environment. Scenario diversity with scene-altering
parameters like locations, daylight conditions, and weather
conditions need to be covered [3]. To accelerate scene
diversity and include cases not achievable in the real
environment (e.g., testing obstacle detection on runways),
and to lower the cost for training, synthetic datasets are the
key to achieving a high level of integrity [4]. After training
and validation of the NNs, system properties must be ensured
when transitioning from the learning to the inference
environment [1]. In the learning environment, the NN model
is trained to behave as intended. The model is then
transferred to the final hardware (inference environment)
ready to be developed for use in the real application. Rarely
is it the case that the same hardware is used for the two
environments. The complex hardware in the inference
environment draws less power and uses specific artificial
Intelligence (AI) accelerators with limited computational
accuracy (and sometimes with errors allowed). At the same
time, this hardware must be more time-deterministic than
that which is used in the training phase.

The current trend is also to integrate more and diverse
computing cores in the same chip. Each computing core is
developed for its specific purpose to accelerate the
computations. Merging functions onto a single or a few chips
may lead to more complex common mode analysis but may
in some cases improve the detection of design errors through
the inherent hardware diversity used.

In addition to all the new technology, advancements in
supporting methods for safety analysis are emerging. These
include not only the model-based safety analysis described in
SAE ARP4761A [5] but also other techniques, such as newly
invented deductive fault analysis methods, e.g., [6] or
argument-based assurance and certification methods [7]. The
latter is typically discussed for software but has been
introduced for complex electronics as well [8,9]. Assurance
cases provide assurance for a system through arguments
justifying claims about the system. This can, in principle,

This work is partially funded by the Swedish Knowledge
Foundation within the RELIANT Research School.

mailto:hakan.forsberg@mdu.se
mailto:kristina.forsberg@saabgroup.com

allow assurance cases to be better tuned to specific
conditions of a system, and is therefore more agile than
traditional assurance guidelines in adapting to new
technologies and applications [7]. These innovative
approaches can complement the well-established assurance
methods and facilitate the adoption of new technology in
safety-critical systems.

In this paper, we explain why a system-level approach is
necessary when implementing new technologies. We do it
through an example. We also introduce new fault-tolerance
techniques that may assist in the integration of new
technology.

The rest of this paper is structured as follows: Section II
introduces the necessary background information. In Section
III, we introduce an example system using new technology –
a Smart Eye support for landing. In Section IV, we perform a
safety assessment of our Smart Eye. In Section V, we discuss
our approach and potential expansions of our system, and in
Section VI we conclude the article.

II. BACKGROUND
In this section, we begin with a short summary of system

safety. We then introduce machine learning and
approximate computing and highlight the difficulties of
using these technologies in safety-critical systems. To
support the implementation of the technologies, we also
elaborate on emerging assurance methods, new safety
assessment methods, and time-dependent knowledge graphs.

A. Guidelines for development of aircraft systems
Avionics systems development goes hand in hand with

system safety and follows the guidance in SAE ARP4754B
[10]. The safety assessment is carried out using guidelines
from the document SAE ARP 4761A [5].

The code of Federal Regulations, Title 14, §25.1301 (in
Europe CS 25.1301), requires each equipment installed on an
aircraft to be appropriately designed for its intended function.
Every limitation specific to that equipment must be taken
care of. In addition, §25.1309, complements this requirement
by considering any foreseeable operating conditions, i.e., no
unintended functions are allowed. Thus, for any new
technology installed, all limitations must be well-known, and
the functionality and operating environment must be well
understood.

Following RTCA/DO-178C and RTCA/DO-254
(EUROCAE ED-12C and ED-80), ensures
development/design assurance of the underlying software
and complex electronics. For new technology, specific
assurance may be required, e.g., guidance for the use of NNs
(algorithm level) in safety-critical applications.

B. Machine learning in safety-critical systems
Machine Learning (ML) has impressive abilities to

approximate complex functions and is already used in safety-
critical functions, e.g., self-driving cars. However, using ML
in these systems raises concerns [11,12]. To be able to rely
on ML in safety-critical applications, fail-safe design
principles must be enforced. For example, we need integrity
and quality to ensure intended function and prevent failures,
and proven reliability so that multiple, independent failures

are unlikely to occur at the same time (e.g., during one flight
for aircraft).

The level of integrity is not well-known for systems
using ML due to their inability to guarantee that the
predicted outcome is correct. By using automated methods
such as Neural Architecture Search (NAS) and AutoML, the
process of finding the “best” architectures for decision
making can be partially automated. However, these methods
rely on the hypothesis that any neural network (NN) can be
approximated adequately well by selecting the right
subnetwork out of a large random network without mastering
the finite but still combinatorial explosion of possible
networks [13]. For embedded systems another problem
arises: the trained model needs to be embedded in the real
environment’s hardware, which is typically not the same as
the hardware used for training. Network pruning,
quantization and other tricks are typically performed to make
the model fit in the real environment. For dependable
systems, the trained model’s properties (learning
environment) need to be transferred to the real-world model
(inference environment) and this transformation must be
guaranteed. In future work, we aim to explore a
mathematical approach for ML and specifically for the
transformation between the different environments. With the
theory of submodular functions, it is expected that certain
theoretical and practical problems arising in ML can be
solved [13].

When introducing ML in a system, other new
technologies may be required for reliability or other system
properties. To give an example, Schorn et al. [14] introduce a
triple modular redundant feed-forward neural network to
detect anomalies (in this case soft errors) in a larger DNN.
This complexity further promotes a system-level approach. It
is at the system level that monitors are decided to ensure
safety (while monitors for reliability can be set at lower
levels like in the case above). For an overview of error-
mitigation techniques for DNNs, see Mittal [15].

By using fault-tolerant design principles (architectural
mitigation and diversity) for multiple parallel NNs,
uncertainty can be better estimated and reduced compared to
single networks. One example is deep ensembles [16-18]. In
a deep ensemble, several networks try to identify the same
objects individually. If, for instance, a majority of the
networks identify runway lights with high probability and
every other object with low probabilities, the ensemble’s
statistics clearly indicate it is a runway light. The diversity
between the networks in an ensemble can be applied in the
training process with different training sets and/or epochs, or
by using different architectures. With the human-in-the-loop,
the level of uncertainty can be further reduced through smart
guidance during training of deep ensembles. The statistics for
classification of output classes are enhanced (improved
explainability). The strategy for selecting the ensemble of
networks has evolved over time and several methods and
fusion strategies have been suggested [17]. We believe
specific mathematical functions may be used for diversity
measures between NNs in deep ensembles. In addition, in the
future, deep ensembles may be embedded in the real
environment, opening for other diversity actions, e.g.,
different pruning or quantization, with the properties of the
ensemble still being guaranteed. Network pruning or
quantization is typically used in DNNs to reduce the size of

the network, increase the speed or to overcome certain
overfitting problems.

Another important aspect concerns the development
assurance of machine-learning based systems. For these
systems, the functionality is heavily dependent on input
training data. Traditional software (SW) and hardware (HW)
development guidelines cannot satisfy the required design
assurance in the training phase. Other types of design
assurance are needed. This was noticed early in the avionics
industry. Concepts for design assurance of NNs have been
introduced [1,19] in conjunction with an AI roadmap [20].
The Aerospace Vehicles Systems Institute and the main
standardization organizations are working towards assurance
guidelines for the use of ML in avionics as well [21-24]. In
this article, we assume ML design assurance guidelines to be
followed on the algorithmic level for development and
integration of systems reliant on ML.

C. Approximate computing
Approximate computing is another new technology

where computation accuracy is traded off (errors are allowed
to happen in the computations) for better performance or
lower energy consumption [25]. Specifically, the latter is
used as an argument for bringing greenness to computing
[26]. Approximate computing is typically used in certain
applications where specific types of errors can be acceptable
from a system requirements perspective, e.g., minor flaws in
images. Approximate computing can be performed in
multiple ways and at different levels, e.g., at the logic level,
at the arithmetic circuits level, or at the system level
including systems using AI [27]. For critical-data,
approximate computing should be avoided. Only if the
traded accuracy is deterministic (may be statistically),
integrity can be controlled. It shall be noted that Google in
their tensor processing units use approximate computing to
reduce power consumption and IBM applies it in their on-
chip AI accelerators [27]. Thus, a system designer
implementing AI based systems for safety-critical
applications needs to know if approximate computing is
already built-in in certain functionality (hardware) and if it
may have potential impact on the application. Approximate
computing shall not be mixed with network pruning or
quantization.

D. Supporting COTS hardware assurance methods
When introducing new technology in safety-critical

systems, there must be convincing arguments that the new
technology does not violate the safety requirements (or other
requirements as well). To assist in this process, supportive
assurance methods can be used. One such method is
argument-based assurance [7]. However, care must be taken
so that the evidencing part ensures a rational inquiry in the
real world [28]. For new technology, such as embedded
systems using DNNs, we have shown [29] the early steps to
be taken using a generic assurance approach to get the
needed flexibility in the way we argue that the COTS
assurance objectives are met. These early steps may be used
for the introduction of any kind of new technology.

E. Model-based system safety analysis
In the recently revised document “Guidelines for

Conducting the Safety Assessment Process on Civil Aircraft,
Systems, and Equipment,” SAE ARP 4761A [5] a new safety

Fig. 1. MBSA method (figure based on Fig. N2 in [5]). The failure
propagation model (FPM) represents the system architecture including its
dysfunctional behavior. The FPM gets input from design documents and
safety data and generates minimal cut sets, failure sequences, and failure
probabilities.

assessment method is introduced, the model-based safety
analysis (MBSA). This method shall not be mixed with
traditional model-based systems engineering. MBSA is said.
to be capable of replacing fault-tree analysis (FTA), Markov
analysis, or dependency diagrams, and may help in other
analysis methods, such as common mode analysis and
particular risk analysis. MBSA supports the safety analysis
of a function, addresses complex functions, and facilitates
the communication between system and system safety
engineers through models [5]. The safety analysis is
performed through Failure Propagation Models (FPMs), as
seen in Fig. 1. Design documents include system description,
architecture diagrams and requirements.

We believe MBSA can support the use of new
technology in safety-critical systems. Typically, novel
solutions change more frequently, and new failure conditions
(FCs) may show up due to unfamiliar behavior, and these
must be taken care of. Also, multiple failure conditions may
occur. The FPM is ideal for handling these situations. Once
the architecture diagrams and requirements are stable, we
still believe the use of traditional FTAs should be employed
(at least for communication with customers and certification
authorities).

F. Time-dependent solutions based on knowledge graphs
To support structured management and propagation of

characteristic time series information, Graß et al. [30],
introduce the concept of knowledge graphs for time series
data, also known as temporal knowledge graphs (TKGs).
Their solution relies on automated knowledge discovery and
machine learning.

TKGs can be used for context recording from continuous
tracking of sensor readings. Imagine we use a DNN to track
multiple objects from camera image streams. TKGs can then
be used to build graphs over identified entities. We assume
TKGs can be used for anomaly detection, i.e., deviations
from expected patterns from the sensor readings. It could be
something like:

An airplane (Airplane_1) detects a new light (Light_A) at
a location (Point_Y) close to airport (Airport_Z) at a
specific time (2024-06-25T112:12)

Knowledge discovery in databases (KDD) is a field
within Knowledge Graphs concerned with finding and

sorting out relevant data from a TKG, whereas the TKG
offers a structured representation of the collected data,
including these discoveries. This structured storing of
aggregated information makes it accessible for other parts of
the system, at the appropriate abstraction level, such as a
monitor function tasked with detecting sensor drift or
anomalous sensor readings. This way of aggregating system
status information is indeed a methodology to structure the
abundance of sensor data available in most systems today in
a way which lends itself nicely to other dynamic techniques
such as recommender systems, predictive maintenance and
other data-intensive tasks.

When the information is static, it is stored in a Static
Knowledge Graph (SKG). With SKGs, we have prior
knowledge to which we may relate our sensor inputs. When
presented to the KDD function, static information is already
available before takeoff (e.g. layout of markers, light fittings
at a particular runway, runway material etc).

Another application of TKGs, could be to detect
anomalies in the NNs themselves, for example after single
event upsets (like Schorn et al. [14] did with their triple-
modular redundant NNs for detecting abnormalities in
deeper NNs). This would be possible since the TKGs
continuously stores the generated outputs from the NNs.

III. EXAMPLE - SMART EYE SUPPORT FOR LANDING
The FAA revised the rule for the use of enhanced flight

vision systems (EFVS) and pilot compartment view
requirements in December 2016. The revised rule permits the
pilot to use EFVS instead of natural vision to continue
descending below 100 feet to touch down and rollout under
certain conditions [31]. Using EFVS equipment onboard for
landing requires less ground infrastructure at the airport
(CAT II and III equipment). Thus, landing in hazy weather
conditions may be performed on many more and less
equipped airports.

When the pilot’s eye can be enhanced and temporarily
replaced with a Sensor Eye during low visibility conditions,
improved operational weather minimums can be achieved.
Weather minimums ensure that pilots have sufficient
visibility and spatial orientation to navigate safely, both in
the air and near the ground, during takeoff, enroute, and
landing.

To support the pilot, we suggest using a dedicated Smart
Eye to identify lights, surfaces and markers, for making
descent decisions. The Smart Eye is composed of new
technology. Fig. 2 shows our proposed architecture without
redundancy. We assume that the Smart Eye is part of an
enhanced EFVS (EEFVS) system.

Pilots using an EFVS for landing must be careful not to
conclude that there are no obstacles in the flight path just
because the enhanced images don’t show any obstacles.
Also, in worst case scenarios where no published vertical
guidance exists, and the pilot must trust flight path (FP)
vectors and FP angle reference cues, obstacles may appear in
the real world but not in the EFVS [31]. Obstacle detection
must be in place from decision altitude (DA) / decision
height (DH) and all the way down to landing and rollout (or
in case of a missed approach after DA/DH). In addition, if
millimeter wave radar is used to detect obstacles, cluttering
may appear, misleading the pilot to believe there are false
obstacles.

Fig. 2. The suggested implementation of the example system. Light blue
boxes are part of the conventional EFVS while the light green boxes are
new technology and part of the enhanced EFVS with a Smart Eye. Separate
and diverse sensor data is sent to the Smart Eye, which detects lights,
surfaces, and markers. The detected objects are stored and processed with
Temporal Knowledge Graphs (TKGs) and compared with static
information, e.g., airport reference objects and runways, located in a Static
Knowledge Graph (SKG). The intelligent comparator and decision maker
reads data from the SKG and TKGs and from the EFVS processing unit and
informs the pilot of which reference objects have been detected and where.

At the same time as the pilot pays attention to obstacles,
he/she needs to pay attention to detect reference objects
through the EFVS to descend below DA/DH and later below
100 feet above the touchdown zone elevation (TDZE1).

A. The EEFVS system
The EEFVS system is assumed to operate under the

condition for the purpose of research and development and is
assumed to comply with all applicable EFVS requirements.
The EFVS part of the EEFVS (blue boxes in Fig. 2) has
imaging sensors that display the forward imaging scene.
There are several types of sensors that can be used, such as
forward looking infrared (FLIR) cameras (may use different
infrared spectrums), low-light level image amplifier (LLIA),
millimeter wave radar, or millimeter wave radiometry. There
are several reasons for using diverse types of imaging
sensors, one being independence requirements, and others
being the incapabilities of certain sensors, e.g., FLIRs may
not detect lights from LED-based lamps. In our system, see
Fig. 2, we assume Sensor set 1 consists of one ordinary
electro-optical camera, one millimeter wave radar, and one
infrared sensor independent from the sensors in Sensor set 2.
Sensor set 2 consists of a shortwave FLIR and an LLIA. In
our example, we consider the most critical landing, i.e.,
EFVS operations to touchdown and rollout, see Fig. 3.

B. Requirements for decision to descend below DA/DH
The requirement for detecting reference objects through

the EFVS system for decision to descend below DA/DH is
either:

1. The approach light system

or both of the following:

2. The runway threshold

3. The touchdown zone (TDZ)

The runway threshold can be detected through either a) the
beginning of the runway landing surface, b) threshold lights,
or c) runway end identifier lights. The touchdown zone can

1 Elevation here refers to the highest elevation on the runway between 0 to
3 000 feet into the landing surface.

be detected through either a) runway TDZ landing surface, b)
TDZ lights, c) TDZ markers or d) runway lights.

C. Requirements for decision to descend below 100 feet
above TDZE
The requirement for identifying reference objects 100

feet above TDZE to descend even further, see Fig. 3, is to
detect one of the following four reference objects:

1. The runway threshold,
2. The lights or markings of the threshold,
3. The runway TDZ landing surface, or
4. The lights or markings of the TDZ

The detection can be done through visual reference or
through EFVS. In our example the detection is through the
Smart Eye.

D. EFVS operations requirements to touchdown and
rollout
To be able to carry out EFVS operations in lieu of natural

vision from DA/DH down to landing and rollout, several
requirements must be followed. The EFVS must display
important aircraft flight information (see [31], §4.1.1.3) and
many parameters must be aligned and scaled with the
external view (they must be conformal). Additional
requirements also apply including obstacle detection. In our
example, the Smart Eye is not affected by the above
requirements.

When two or more pilots are required, a pilot monitoring
function showing the pilot’s flying EFVS sensor imagery
must be present. EFVS operations to touchdown and rollout
must be capable of handling any failure of any component in
the system.

E. Smart Eye function using new technology
 The whole idea with the Smart Eye is to support the pilot
with decisions to descend below DA/DH and below 100 feet
above TDZE when using the EFVS, to offload his or her
burden of many other things during this busy landing

moment. Once the Smart Eye detects the required reference
objects, the pilot gets information about which reference
objects are detected and where they were found (via
bounding boxes), to support the decision to descend even
further.

 Since we are dealing with detecting reference objects, it
is tempting to let the Smart Eye act as an obstacle detector as
well. However, this complicates the use case and has
therefore not been included (see the discussion section for
additional information).

 Our Smart Eye starts to detect reference objects before
DA/DH and continues to do so all the way down to landing.
At two heights, DA/DH and 100 feet above TDZE, see Fig.
3, decisions to continue to descend are taken based on
detected objects. The following reference objects shall be
detected:

1. Approach light system

2. Beginning of the runway landing surface

3. Threshold lights

4. Runway end identifier lights

5. Runway TDZ landing surface

6. TDZ lights

7. TDZ markers

8. Runway lights

9. Markings of the threshold

 If at least one of the following elements (a single
object or a pair of objects) in the list below (reference
objects according to the numbered list above) is detected
and presented by the Smart Eye just before reaching
DA/DH decision point, the pilot is informed and can
descend below DA/DH:

{(1), (2,5), (2,6), (2,7), (2,8), (3,5), (3,6), (3,7), (3,8),
(4,5), (4,6), (4,7), (4,8)}

Fig. 3. Concept of EFVS operation to touchdown and rollout. The aircraft approaches landing in the instrument segment. To proceed below DA/DH, certain
reference objects must be detected. In the visual segment, the complete landing is performed with EFVS operation in lieu of natural vision. When reaching 100
feet above the touchdown zone elevation (TDZE) other reference objects must be detected before descending further.

 If one of the following elements of reference objects in
the list below (numbers according to the list above) is
detected and presented by the Smart Eye just before 100 feet
above TDZE decision point, the pilot is informed and can
continue to descend for landing and rollout.

{2, 3, 4, 5, 6, 7, 9}

 While it is tempting to train and let a single convolutional
neural network (CNN) be the Smart Eye which identifies all
nine objects above, it should be noted that there are
differences in how the different objects are detected. Our
Smart Eye shall detect three types of objects: surfaces,
markers and lights. The latter consists of detecting five
different types of lights, which may not be detected clearly
by FLIR sensors but probably much better by the LLIA
sensor. The fact that the reference objects to be detected are
sensor-sensitive, different detection solutions may be
required.

IV. SAFETY ASSESSMENT OF THE SMART-EYE
 The acceptable means to comply with certification
regulations is to follow SAE ARP4754B when developing
avionics systems. This guidance document recommends a
top-down requirements driven development starting with the
Functional Hazard Assessment (FHA) performed for all A/C
level functions.

 Here we present a limited part of the established safety
assessment process for the example EEFVS system, pictured
in Fig. 2. The assessment process includes the Descent
Decision Support part (green boxes in Fig. 2) with the aim to
elaborate on possible shortcomings when applied for new
technologies. The integrated EFVS part (blue boxes in Fig.
2) is not included.

A. System FHA – Smart Eye
 A functional hazard assessment (FHA) identifies the
failure conditions for all functions, analyzes the effects on
the aircraft and flight crew, and assigns the corresponding
criticality classification (No Safety Effect, Minor, Major,
Hazardous, Catastrophic) while considering both loss of
functions, and malfunctions. Table 1 shows our Smart Eye
FHA considering failure conditions in terms of integrity and
availability of function. The Smart Eye functionality informs
and displays visible reference objects to the pilot during
approach until touchdown and rollout.

Table 1. FHA for the Smart Eye

Failure Condition (FC) Effects Classif.

1 No identified visible
reference object when
reaching DA/DH

Pilot executes go-around MIN

2 Loss of reference object
during guidance (below
DA/DH)

Pilot executes go-around MAJ

3 Loss of reference object
during guidance (below
100 ft above TDZE)

Pilot executes go-around HAZ

4 Identified reference
objects tied to wrong
static reference objects

Could result in hard landing
or controlled flight into
terrain. Pilot has no means to
detect the error and will
follow the guidance.

CAT

 The FHA identifies the hazard levels associated with the
Smart Eye failure conditions to determine the required
system design assurance and safety levels. The FHA derived
safety requirements are:

SR1. Loss of reference object above DA/DH shall have the
probability of less than 1.0 10-3 /FH

SR2. Loss of reference object below DA/DH shall have the
probability of less than 1.0 10-5 /FH

SR3. Loss of reference object below 100 ft above TDZE shall have
the probability of less than 1.0 10-7 /FH

SR4. Erroneous Reference Object for Descent Decision Support
presented to pilot shall have the probability of less than 1.0 10-9
/FH

SR5. Smart Eye system Development Assurance Level (DAL) shall
be A (CAT FC requires DAL A)

SR6. No single fault shall lead to Erroneous Reference Object for
Descent Decision Support presented to pilot

B. PSSA – Smart Eye
The preliminary system safety assessment (PSSA) is a

top-down approach evaluating how the proposed system
architecture can meet the safety objectives resulting from the
FHA. The PSSA process decomposes and allocates FHA
safety requirements and determines derived safety
requirements for all design items. In this PSSA example, two
conceptual fault trees are constructed for the Smart Eye
system (green boxes in Fig. 2). One representing Loss of and
one representing Malfunction.

The Loss of tree, Fig. 4, includes failure rates. It shows a
possible allocation of failure rates to evaluate if suggested
architecture can meet required availability budget from the
FHA. All failure rates are fictive and included for
redundancy discussion regarding availability.

The Malfunction tree, Fig. 5, does not include any failure
rates, the tree shows how the design intend to meet the
required Integrity level from FHA and identifies
independence requirements.

1) Fault tree analysis
The FTA TOP 1 – Loss of reference object (pilot

guidance) is constructed with three branches, see Fig. 4. HW
faults contributing to the TOP FC in the leftmost branch
represent Smart Eye input equipment necessary to perform
the function Identify Reference Objects. The middle branch
includes the NN not detecting any reference objects. HW
faults contributing to the TOP FC in the right branch
represent Smart Eye platform HW, i.e., power, processing
capability, Input/Output interfaces (I/O).

The FTA TOP 2 – Reference object tied to wrong static
reference object is shown in Fig. 5. The Smart Eye is
designed to achieve high integrity through the possibility to
cross-check the NN’s identified reference objects with
known reference objects (markers, lights and specific
surfaces for each runway) preloaded in a static database.
TOP 2 illustrates this design, where the left branch under the
AND-gate represents the new technology part. The right
branch is the static reference database used by the cross-
check monitor.

Fig. 4. FTA TOP 1 - Loss of reference object, pilot guidance. Q is the failure frequency per flight hour (normally indicated by l).

2) PSSA results
The proposed architecture does not include redundancy

for availability and from TOP 1 it is seen that the safety
requirements SR1 and SR2 are met while SR3 is not met.
Even though failure rates are fictive in this example it is not
realistic to meet hazardous FCs without redundancy.

Design assumption: The processing part of the Smart
Eye which uses NNs to detect and classify objects, also
calculates location data for the detected objects. (This is
possible through the knowledge of the plane’s horizontal
position, altitude, attitude, roll and yaw plus the fact that it is
only objects on ground that are detected.)

Independence requirement: NN location data stored in
the TKGs has a dissimilar source than the SKG’s location
data. SKG’s location data are the exact positions of the
static objects.

C. Fail-safe design
For neural network (NN) design assurance on the

algorithm level, we suggest following the W-assurance
model described in [1]. Once the standardization
organizations finalize their guidelines, these should be
followed. Following such guidance documents may also
reduce the possibility for adversarial attacks (inputs to the
machine learning model designed by an attacker to maximize
the model making mistakes).

The Smart Eye uses new technology in the form of NNs.
To select the best possible NN for detecting the reference
objects including lights (LED-based as well as normal lights)
in hazy weather conditions and with the option of two sensor
inputs (SW-FLIR & LLIA), will be a crucial task to perform.
Research in detecting objects in bad weather conditions is
mainly focused on detecting pedestrians in front of
autonomous cars. Typically, forward radar, normal camera
and LiDAR are used. Reusing these ideas for our system
may be limited.

Fig. 5. FTA TOP 2 - Reference object tied to wrong static reference object.

 While most NNs used for object detection have been
trained on “sunny days” images, and are supposed to work
normally in clear weather, our system will never be used in
those conditions (clear days or clear nights). Our system
works normally in worst-case conditions with heavy fog or
rain, or low-altitude clouds. Thus, the operating design
domain (ODD) is different and training data should be
focused for those conditions. Then, different sensors see
differently through different weather types. Therefore, the
selection of correct sensor types is important and the
preparation of the datasets for training needs to be carefully
planned.

 In the FTA TOP 1, it is shown the NN may not detect any
reference objects despite the sensors are okey. This results in
a go-around. For an NN to completely ignore all detection of
objects, either the training has been extremely poor, or the
ODD has not been clearly identified. The former is not
realistic, but the latter could happen. Poor training resulting
in the NN missing a few objects may not result in a go-
around since other objects will be identified. Poor training
resulting in incorrect object detection (including false
detections of non-existing objects), will be noticed by the
system, see FTA TOP 2. These objects are not shown for the
pilot but instead ignored. However, other reference objects
must still be correctly detected. Thus, the focus should be on
the ODD. Every bad weather condition possible during day
to complete darkness in the night must be taken care of,
suggesting the use of synthetic data for training. In addition,
five different lights, two types of surfaces and two types of
markers shall be detected and classified from a many of
approach angles and inclinations. The produced synthetic
data need to be near the real-world data. Any gap between
the simulated and real-world data needs to be controlled.
Perhaps 3D models of the airports including all lights need to
be used. See Lindén et al. [4] for an implementation of 3D
models in synthetic datasets.

To achieve higher integrity, two NNs can be used: one
for surface and marker detection and another for light
detection. These two NNs should be trained with diverse
“biased” incoming sensor data. That is, the NN used for
surface and marker detection should rely mostly on the FLIR
sensor data and then suppress the LLIA sensor data. Light
detection, on the other hand, should rely more on the LLIA
sensor data than the FLIR sensor data. See Fig. 6 for a
possible Smart Eye processing architecture.

 If an “unknown” weather condition appears (NN not
trained for this scenario), it is sufficient if one of the
differently trained NNs with diverse biased sensor inputs
works, to be able to achieve descent clearance as specified.
This is true since at both decision heights, a decision to
descend can be made from detection of lights only or from
detection of the surface and markers only. However, the
number of possible elements to make the decision from is
reduced. This scenario might be considered as a degraded
mode. If the sensors are truly independent and a normal
descent decision can be taken with one sensor only, then the
OR-gate between Sensor 1 (Event 1) and 2 (Event 2) in the
FTA 1, see in Fig. 4, should be changed to an AND-gate.

To remove any inconsistencies and to ensure correct
behavior from out-of-distribution data, guidance is given in
[1] (Chapter 5 Safety Assessment). Additional guidance is
given by Lindén et al [3]. They introduce metrics to quantify

similarity, used to estimate how a model will perform on out-
of-distribution data.

 We suggest pilots and other experts to be in the loop to
observe the NNs’ outputs when validating the classified data
at the end of the training phase.

In FTA TOP 2, we see that the pilot is only presented
with invalid data if a reference object is inaccurately
identified AND the corresponding data in the SKG is corrupt
or obsolete. The left branch may happen if the NN identifies
an incorrect reference object or a ghost-object (detected non-
existing object), data is corrupt in TKG, or the sensor is
incorrect and not detected by the sensor monitor. To
overcome corrupt data in the TKG or SKG databases,
sufficient data encryption shall be used. It is assumed the
SKG database is regularly updated (e.g., every 28 days or
so). Uncalibrated sensors or ageing sensors should be
detected by the sensor monitors. Thus, the likelihood for
FTA TOP 2 to happen is extremely low.

If an NN cannot be selected and trained to avoid multiple
reference objects to be identified incorrectly or several ghost-
objects to be identified, the availability of the system may
become too low. Then, the use of multiple diverse parallel
(MDP) networks may help. See Stepien et al. [2] for
inspiration. Initial tests will reveal if MDP is necessary to use
or not. Going even further and using deep ensembles may be
used if generalization will be a problem [17]. The improved
statistic from the ensemble helps in decisions to correctly
classify the reference objects. It is, however, difficult to
implement Deep Ensembles in the real hardware and the
increased power envelope may constitute a problem.

As our system is built with comparison of static objects
in an SKG, the likelihood to create false runways with false
lights and markers, and making a pilote attempt landing on a
fake place can be neglected.

Fig. 6. One possible Smart Eye processing solution. The Surface & Marker
Detection Unit identifies surfaces and markers, i.e., 2, 5, 7 and 9 in the list
in Section III E above. The Light Detection Unit detects the five different
types of lights, i.e., 1, 3, 4, 6, and 8 in the list. The Obstacle Detection Unit
detects obstacles in the flight path. It is not part of the example but included
in the discussion. The Backend Processing & Monitoring performs post-
processing including local monitoring of the NNs.

Fig. 7. Graph representation of gained knowledge in landing scenario. The graph structures the information in a way which makes it possible to deduce
higher level intelligence from simpler sensor readings.

Smart guidance in the training with the human-in-the-
loop may further reduce uncertainty and is recommended.
The Surface and Marker Detection Unit should be
implemented in a similar way as the light detection unit,
however, with diverse bias of the sensor inputs.

To be able to fulfill the requirement that our system
should work despite any failure of any component from
DA/DH downto touchdown and rollout, we assume dual
EEFVS to be implemented with one of them in hot standby.

To deduce higher level intelligence from the different
sensors and the output from the neural networks in the
Smart Eye, knowledge graphs will be used. See example
over a landing scenario in Fig. 7. Besides identifying higher
level information about objects and their movements,
anomalies in the sensors and the DNNs may be identified
with this technology. The knowledge graphs help to extract
information in the different phases (descent below DA/DH
and descent below 100 feet above TDZE). Also, since, the
detection of different reference objects may render a go for
descent below DA/DH and below 100 feet above TDZE,
there is a need for a higher-level decision module like the
Knowledge Discovery in Databases (KDD).

V. DISCUSSION
In this section, we discuss our example architecture and a

possible extension of it - an obstacle detector. In addition, we
consider the use of new system safety methods and the use of
complex COTS hardware.

A. Selection of the example architecture
In this article, we selected a use case based on an

Enhanced Flight Vision System (EFVS), where landing in
hazy weather is performed under EFVS operation in lieu of
natural vision. The pilot flying uses a head-up display or a
helmet with goggles, where the normal vision is enhanced
with infrared camera images, radar-based images, or low-
level light amplification or other means. Once the pilot
detects certain reference objects with the enhanced vision,
she/he is allowed to descend further (this concerns two
different heights). At the same time, the pilot must ensure no
obstacles are in the flight path. Obstacles may occur in the
real-world in certain circumstances but may not be visible in
the enhanced vision mode due to specific reasons. In our
architecture, we introduce a Smart Eye to support the pilot
with the task of identifying reference objects to support the
descent decisions made by the pilot. Our Smart Eye solution
is fictive and uses neural networks (NNs) solely for the
purpose of showing the difficulties to implement new
technology and why a system approach should be used. We
also recognize the selection of input sensors to the EFVS and
the Smart Eye from the eyes of a novice. The sensor
selections should be carried out carefully, to achieve the best
possible functionality.

We suggest the use of two different NNs using different
sensor inputs and that detect different types of objects. There
are many other possible solutions that could have been used.
The first obvious one is to use a single NN detecting and
classifying all nine different objects. The complete training
time should then be focused on a single network possibly
resulting in better detections of the objects. Another solution

most probably rendering higher integrity than a single
network would be using two diverse NNs trained differently,
but with the same goal, to detect and classify all nine objects.
(The training time would have been split between the
different networks.) The integrity increase would of course
be hard to measure more than through validation tests. Why
did we choose another approach? From the system level, we
recognized that different sensor types detect light, surface
and marker reference objects differently. We then realized
that descent decisions can be based on light reference objects
alone or on surface and markers alone. By using two NNs
detecting different types of objects, we can emphasize the
training of each of the networks differently (with diverse
goals), with their respective sensor inputs and with the
assumption that the detection task will be more robust and
that even higher integrity can be achieved. We have,
however, not validated our ideas yet on our Smart Eye
example and can only speculate in the results.

B. Using the Smart Eye as an obstacle detector
In Fig. 6, an NN-based Obstacle Detection Unit is present

(dashed module). This unit is not part of our example but is
included here for discussion. The obstacle detection unit
independently detects obstacles in the flight path. When
using enhanced vision sensors that can “see through” clouds
or heavy rain, other information such as colors may
disappear and thus the pilot may potentially miss obstacles.

To detect obstacles with correct positions but without the
need to correctly classify objects, and at the same time
reduce both false positives and false negatives, diverse and
parallel neural networks can be helpful [2]. The Obstacle
Detection Unit may be implemented with three or more
DNNs, diverse enough to reduce the number of undetected
and ghost objects. Undetected objects may result in collisions
and identified objects that do not exist may result in false
abort landing scenarios. Furthermore, identifying the
physical distance and location of any obstacle (including the
ones without reference in the SKG) is harder than detecting
distance and location to reference objects with well-known
positions.

C. The use of new system safety analysis methods
We did not have time to test the new safety assessment

method, MBSA, in SAE ARP 4761A for our example case.
MBSA seems promising for systems with new technology
due to novel solutions change more frequently. However, M.
Sun et al. [32] state that one of the challenges using MBSA is
to assure the adequacy of the fault models for newly
designed components. Do we know the fault models for NNs
accurately enough?

D. Implementing new complex COTS hardware
Argument-based assurance methods can be used to

support COTS hardware assurance when implementing new
technology but need further investigations for use in real
projects using complex electronics such as embedded AI
accelerators.

Advanced heterogeneous computing cores have been
used in the car industry for autonomous driving for many
years now. Tesla introduced their FSD computer for
autonomous driving already in 2019 [33]. However, the
regulations for avionics is different. To have better control
over the hardware used, AI accelerators (without

approximate computing algorithms) may be implemented on
FPGAs (with own developed code or soft IP cores). To fit
the trained models on the real hardware, the NNs may need
to be pruned, and the accelerators may work with quantized
data. Careful testing of the end system is required (and an
essential part in the W-assurance model for NNs [1]) to
ensure that system properties from the training phase are
maintained in the final system using real hardware.

VI. CONCLUSIONS
In this paper, we elaborate on the significance of using a

top-down system development approach when implementing
new technologies in avionics and conducting system safety
work following the guidance in SAE ARP4761A. We
introduce an example: a Smart Eye using neural networks
(NNs) to identify and classify reference objects to support
pilots during landings in hazy weather conditions. We then
perform a safety assessment of the Smart-eye and propose a
proper fail-safe architecture.

We consider the main challenges when integrating new
technologies to be process assurance, understanding new
failure modes, and determining how to limit or divide the
functionality into manageable parts.

The main conclusions are that we suggest using
knowledge graphs in conjunction with NNs to organize and
aggregate sensor information efficiently, and to use a system
development approach that includes a proper safety
assessment when new technologies are introduced into
safety-critical applications. We also conclude that it is
possible to address the use of NNs with conventional safety
assessment processes, i.e., FHA, PSSA and SSA, but
common mode analysis (CMA) to assure independence is
challenging. In classic CMA, independence is used to
achieve integrity and for high complexity diversity might be
required. For NNs, the situation is more complicated. Two
diverse NNs trained differently but with the same goal, may
still lead to the same false positives and negatives.

REFERENCES

[1] EASA and Daedalean, “Concepts of design assurance for neural

networks (CoDANN) II,” May 2021.
[2] H. Stepien, M. Bilger, H. Forsberg, B. Lindgren, and J. Hjorth “A

novel method for detecting UAVs using parallel neural networks with
re-inference,” 33rd Congress of the International Council of the
Aeronautical Sciences (ICAS 2022), Sept. 4-9, 2022.

[3] J. Lindén, H. Forsberg, M. Daneshtalab, and I. Söderquist,
“Evaluating the robustness of ML models to out-of-distribution data
through similarity analysis,” In: Abelló, A., et al. New Trends in
Database and Information Systems. ADBIS 2023. Communications in
Computer and Information Science, vol 1850. Springer, Cham.
https://doi.org/10.1007/978-3-031-42941-5_30

[4] J. Lindén, G. Burresi, H. Forsberg. M. Daneshtalab, and I. Söderquist,
“Enhancing drone surveillance with NeRF: Real-world applications
and simulated environments,” AIAA/IEEE 43rd Digital Avionics
Systems Conference (DASC). IEEE, 2024, in press.

[5] SAE ARP4761A, “Guidelines for conducting the safety assessment
process on civil aircraft, systems, and equipment,” Revised Dec.
2023.

[6] C. Vitucci, T. Westerbäck, D. Sundmark, H. Forsberg, and T. Nolte,
“A deductive fault analysis method based on hypergraphs,” 12th IFAC
Symposium on Fault Detection, Supervision and Safety for Technical
Processes Safe Process, Ferrara, Italy, June 2024.

[7] J. Rushby, X. Xu, M. Rangarajan, and T. L. Weaver, “Understanding
and evaluating assurance cases,” (NASA Technical Report No.
NF1676L-22111), 2015.

https://doi.org/10.1007/978-3-031-42941-5_30

[8] A. Schwierz and H. Forsberg, “Assurance Case to Structure COTS
Hardware Component Assurance for Safety-Critical Avionics,” 2018
IEEE/AIAA 37th Digital Avionics Systems Conference (DASC),
London, UK, 2018, pp. 1-10, doi: 10.1109/DASC.2018.8569774.

[9] H. Forsberg, A. Schwierz, and K. Lundqvist. “Assurance Strategy for
New Computing Platforms in Safety-Critical Avionics,” Aerospace
Technology Congress 2019, FT2019, 08 Oct 2019, Stockholm,
Sweden. 2019.

[10] SAE ARP4754B, “Guidelines for development of civil aircraft and
systems,” Revised Dec. 2023.

[11] A. Bosio, et al., “Emerging computing devices: Challenges and
opportunities for test and reliability,” in 2021 IEEE European Test
Symposium (ETS). IEEE, 2021.

[12] H. Forsberg, J. Lindén, J. Hjorth, T. Månefjord, and M. Daneshtalab,
“Challenges in using neural networks in safety-critical applications,”
in 2020 AIAA/IEEE 39th Digital Avionics Systems Conference
(DASC). IEEE, 2020.

[13] J. A. Bilmes, “Submodularity in machine learning and artificial
intelligence,” arXiv preprint arXiv:2202.00132, 2022.

[14] C. Schorn, A. Guntoro, and G. Ascheid, “Efficient on-line error
detection and mitigation for deep neural network accelerators,” In
International Conference on Computer Safety, Reliability, and
Security, Springer, Cham, 2018, pp. 205-219.

[15] Sparsh Mittal, A survey on modeling and improving reliability of
DNN algorithms and accelerators, Journal of Systems Architecture,
Volume 104, 2020.

[16] B. Lakshminarayanan, A. Pritzel, and C. Blundell., “Simple and
scalable predictive uncertainty estimation using deep ensembles,”
Advances in neural information processing systems, 30, 2017.

[17] M. A. Ganaie, M. Hu, A. K. Malik, M. Tanveer, and P. N. Suganthan,
Ensemble deep learning: A review. Engineering Applications of
Artificial Intelligence, 115, 105151, 2022.

[18] A. Mohammed and R. Kora, A comprehensive review on ensemble
deep learning: Opportunities and challenges. Journal of King Saud
University-Computer and Information Sciences, 35(2), 757-774,
2022.

[19] J.M. Cluzeau, X. Henriquel, G. Rebender, and G. Soudain, “Concepts
of design assurance for neural networks (CoDANN),” Public Report
Extract, EASA AI Task Force and Daedalean AG, Version 1.0, March
31, 2020.

[20] EASA, “Artificial intelligence roadmap – a human-centric approach
to AI in aviation,” Version 1.0, February 2020.

[21] D. Redman, D. Ward and M. Carrico, “AFE 87 – Machine Learning,”
Aerospace Vehicles Systems Institute, Final Report, Issue 1.0, May 7,
2020.

[22] AVSI, “Machine Learning Certification,” Aerospace Vehicles Systems
Institute, Project AFE 89.

[23] SAE, “Artificial intelligence in aviation,” SAE Standardization
Committee G-34. [Online]. Available:
https://www.sae.org/works/committeeHome.do?comtID=TEAG34
[Accessed: June 26, 2024].

[24] EUROCAE, “Artificial Intelligence,” European Organisation for Civil
Aviation Electronics, Working Group WG-114.

[25] M. Ammar Ben Khadra, “An introduction to approximate
computing,” arXiv:1711.06115v2, 2017.

[26] H.B. Barua and K.C. Mondal, Approximate Computing: A Survey of
Recent Trends—Bringing Greenness to Computing and
Communication. J. Inst. Eng. India Ser. B 100, pp. 619–626, 2019.

[27] W. Liu, F. Lombardi and M., Schulte, Approximate Computing: From
Circuits to Applications [Scanning the Issue]. Proceedings of the
IEEE, 108(12), pp. 2103–2107, 2020.

[28] F. McCardel et al., “Towards a coherent view of evidence in safety
assurance,” NASA Technical Report, NASA/TM–20230003336,
April 2023.

[29] H. Forsberg and A. Schwierz, “Emerging COTS-based computing
platforms in avionics need a new assurance concept,” Proceedings of
38th Digital Avionics Systems Conference (DASC 2019), San Diego,
Ca, USA, September 8-12, 2019.

[30] A. Graß, C. Beecks, S. A. Chala, C. Lange, and S. Decker, “A
Knowledge Graph for Query-Induced Analyses of Hierarchically
Structured Time Series Information,” European Conference on
Advances in Databases and Information Systems, Cham: Springer
Nature Switzerland, 2023.

[31] FAA, Advisory Circular, “Enhanced flight vision systems,” AC
No:90-106A, March 2017.

[32] M. Sun, S. Gautham, C. Elks, & C. Fleming, “Characterizing the
Identity of Model-based Safety Assessment: A Systematic Analysis,”
arXiv preprint arXiv:2212.05401, 2022.

[33] Autopilot Review, “Tesla Hardware 3 (Full Self-Driving Computer)
Detailed,” [Online]. Available:
https://www.autopilotreview.com/tesla-custom-ai-chips-hardware-3/
[Accessed June 28, 2024].

https://www.sae.org/works/committeeHome.do?comtID=TEAG34
https://www.autopilotreview.com/tesla-custom-ai-chips-hardware-3/

