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Abstract—In the era of multiple industry trends and new 
technologies, avionics systems can benefit from several 
innovations. The complexity of modern electronics is 
increasing quickly and is being introduced as never before in 
new applications. At the algorithm level, the use of deep neural 
networks helps to solve problems that were never believed to 
be doable before. At the architecture level, hardware artificial 
intelligence accelerators, embedded graphical processing units, 
embedded sensors, etc., make it possible to create very 
powerful new functions. The list of new technologies is long. 
Besides technical challenges, system integrity and availability 
must be assured when integrating these new technologies into 
avionics functions. In this paper, we present emerging 
technologies and why a system-level approach is necessary 
when implementing these technologies. We also introduce 
supporting means for design assurance and fault-tolerance 
techniques. We illustrate the importance of a system-level 
approach through an example. Our example shows that when 
developing functions with new technologies and fault-tolerant 
architectures, the system safety assessment process is crucial 
for properly implementing a fail-safe design. It is also 
challenging due to potentially new failure modes. 

Keywords—system safety, safety assessment, new technology, 
machine learning 

I. INTRODUCTION  
When new technology is introduced, the focus is on the 

functional level: what can the technology solve? The system 
is built around the function rather than focusing on the 
potential hazards connected to malfunction. If a proper top-
down approach is used as described by the system safety 
process guidelines, the new technology may be used 
differently than planned for but be better suited to fulfill the 
required safety-requirements. Focus is also on trying to solve 
all tasks with a single solution, resulting in suboptimal 
results.  

If, for instance, a convolutional neural network (CNN) is 
selected for object detection and classification, the focus is 
on solving these two tasks. An already pre-trained network is 
naturally selected from the “best available” networks as the 
base network. The pre-trained network is then fine-tuned on 
a specific task until accurate enough for the intended 
function. While this approach works for most systems, this 
may not be the case for safety-critical functions. Introducing 
new technology into safety-critical systems poses challenges 
to ensure reliability, integrity and availability. To illustrate 
this, imagine we develop a safety-critical system employing 
neural networks (NNs). In such system, it is crucial for 
decisions to be explainable to ensure integrity. At the system 
level, especially in object detection systems, explainability 
can be achieved through validation data and statistical 

analysis across all output classes [1]. The probabilities for 
correctly classifying objects should significantly outweigh 
those for other classes, and the identified bounding boxes 
must closely align with the ground truth. These statistics 
must conform to system requirements. To achieve high 
integrity, to mitigate false negatives (undetected objects) and 
false positives (incorrectly identified objects), diverse, 
redundant, parallel deep neural networks (DNNs) can be 
deployed [2]. 

A solid understanding of the system and intended 
functionality is also required when selecting the training 
dataset for NNs. There must be an assurance that the data 
used for training a model appropriately spans the operating 
design domain when operating in the real-world 
environment. Scenario diversity with scene-altering 
parameters like locations, daylight conditions, and weather 
conditions need to be covered [3]. To accelerate scene 
diversity and include cases not achievable in the real 
environment (e.g., testing obstacle detection on runways), 
and to lower the cost for training, synthetic datasets are the 
key to achieving a high level of integrity [4]. After training 
and validation of the NNs, system properties must be ensured 
when transitioning from the learning to the inference 
environment [1]. In the learning environment, the NN model 
is trained to behave as intended. The model is then 
transferred to the final hardware (inference environment) 
ready to be developed for use in the real application. Rarely 
is it the case that the same hardware is used for the two 
environments. The complex hardware in the inference 
environment draws less power and uses specific artificial 
Intelligence (AI) accelerators with limited computational 
accuracy (and sometimes with errors allowed). At the same 
time, this hardware must be more time-deterministic than 
that which is used in the training phase.  

The current trend is also to integrate more and diverse 
computing cores in the same chip. Each computing core is 
developed for its specific purpose to accelerate the 
computations. Merging functions onto a single or a few chips 
may lead to more complex common mode analysis but may 
in some cases improve the detection of design errors through 
the inherent hardware diversity used. 

In addition to all the new technology, advancements in 
supporting methods for safety analysis are emerging. These 
include not only the model-based safety analysis described in 
SAE ARP4761A [5] but also other techniques, such as newly 
invented deductive fault analysis methods, e.g., [6] or 
argument-based assurance and certification methods [7]. The 
latter is typically discussed for software but has been 
introduced for complex electronics as well [8,9]. Assurance 
cases provide assurance for a system through arguments 
justifying claims about the system. This can, in principle, 
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allow assurance cases to be better tuned to specific 
conditions of a system, and is therefore more agile than 
traditional assurance guidelines in adapting to new 
technologies and applications [7]. These innovative 
approaches can complement the well-established assurance 
methods and facilitate the adoption of new technology in 
safety-critical systems. 

In this paper, we explain why a system-level approach is 
necessary when implementing new technologies. We do it 
through an example. We also introduce new fault-tolerance 
techniques that may assist in the integration of new 
technology. 

The rest of this paper is structured as follows: Section II 
introduces the necessary background information. In Section 
III, we introduce an example system using new technology – 
a Smart Eye support for landing. In Section IV, we perform a 
safety assessment of our Smart Eye. In Section V, we discuss 
our approach and potential expansions of our system, and in 
Section VI we conclude the article. 

II. BACKGROUND 
In this section, we begin with a short summary of system 

safety. We then introduce machine learning and 
approximate computing and highlight the difficulties of 
using these technologies in safety-critical systems. To 
support the implementation of the technologies, we also 
elaborate on emerging assurance methods, new safety 
assessment methods, and time-dependent knowledge graphs. 

A. Guidelines for development of aircraft systems 
Avionics systems development goes hand in hand with 

system safety and follows the guidance in SAE ARP4754B 
[10]. The safety assessment is carried out using guidelines 
from the document SAE ARP 4761A [5]. 

The code of Federal Regulations, Title 14, §25.1301 (in 
Europe CS 25.1301), requires each equipment installed on an 
aircraft to be appropriately designed for its intended function. 
Every limitation specific to that equipment must be taken 
care of. In addition, §25.1309, complements this requirement 
by considering any foreseeable operating conditions, i.e., no 
unintended functions are allowed. Thus, for any new 
technology installed, all limitations must be well-known, and 
the functionality and operating environment must be well 
understood. 

Following RTCA/DO-178C and RTCA/DO-254 
(EUROCAE ED-12C and ED-80), ensures 
development/design assurance of the underlying software 
and complex electronics. For new technology, specific 
assurance may be required, e.g., guidance for the use of NNs 
(algorithm level) in safety-critical applications. 

B. Machine learning in safety-critical systems 
Machine Learning (ML) has impressive abilities to 

approximate complex functions and is already used in safety-
critical functions, e.g., self-driving cars. However, using ML 
in these systems raises concerns [11,12]. To be able to rely 
on ML in safety-critical applications, fail-safe design 
principles must be enforced. For example, we need integrity 
and quality to ensure intended function and prevent failures, 
and proven reliability so that multiple, independent failures 

are unlikely to occur at the same time (e.g., during one flight 
for aircraft). 

The level of integrity is not well-known for systems 
using ML due to their inability to guarantee that the 
predicted outcome is correct. By using automated methods 
such as Neural Architecture Search (NAS) and AutoML, the 
process of finding the “best” architectures for decision 
making can be partially automated. However, these methods 
rely on the hypothesis that any neural network (NN) can be 
approximated adequately well by selecting the right 
subnetwork out of a large random network without mastering 
the finite but still combinatorial explosion of possible 
networks [13]. For embedded systems another problem 
arises: the trained model needs to be embedded in the real 
environment’s hardware, which is typically not the same as 
the hardware used for training. Network pruning, 
quantization and other tricks are typically performed to make 
the model fit in the real environment. For dependable 
systems, the trained model’s properties (learning 
environment) need to be transferred to the real-world model 
(inference environment) and this transformation must be 
guaranteed. In future work, we aim to explore a 
mathematical approach for ML and specifically for the 
transformation between the different environments. With the 
theory of submodular functions, it is expected that certain 
theoretical and practical problems arising in ML can be 
solved [13]. 

When introducing ML in a system, other new 
technologies may be required for reliability or other system 
properties. To give an example, Schorn et al. [14] introduce a 
triple modular redundant feed-forward neural network to 
detect anomalies (in this case soft errors) in a larger DNN. 
This complexity further promotes a system-level approach. It 
is at the system level that monitors are decided to ensure 
safety (while monitors for reliability can be set at lower 
levels like in the case above). For an overview of error-
mitigation techniques for DNNs, see Mittal [15]. 

By using fault-tolerant design principles (architectural 
mitigation and diversity) for multiple parallel NNs, 
uncertainty can be better estimated and reduced compared to 
single networks. One example is deep ensembles [16-18]. In 
a deep ensemble, several networks try to identify the same 
objects individually. If, for instance, a majority of the 
networks identify runway lights with high probability and 
every other object with low probabilities, the ensemble’s 
statistics clearly indicate it is a runway light. The diversity 
between the networks in an ensemble can be applied in the 
training process with different training sets and/or epochs, or 
by using different architectures. With the human-in-the-loop, 
the level of uncertainty can be further reduced through smart 
guidance during training of deep ensembles. The statistics for 
classification of output classes are enhanced (improved 
explainability). The strategy for selecting the ensemble of 
networks has evolved over time and several methods and 
fusion strategies have been suggested [17]. We believe 
specific mathematical functions may be used for diversity 
measures between NNs in deep ensembles. In addition, in the 
future, deep ensembles may be embedded in the real 
environment, opening for other diversity actions, e.g., 
different pruning or quantization, with the properties of the 
ensemble still being guaranteed. Network pruning or 
quantization is typically used in DNNs to reduce the size of 



the network, increase the speed or to overcome certain 
overfitting problems. 

Another important aspect concerns the development 
assurance of machine-learning based systems. For these 
systems, the functionality is heavily dependent on input 
training data. Traditional software (SW) and hardware (HW) 
development guidelines cannot satisfy the required design 
assurance in the training phase. Other types of design 
assurance are needed. This was noticed early in the avionics 
industry. Concepts for design assurance of NNs have been 
introduced [1,19] in conjunction with an AI roadmap [20]. 
The Aerospace Vehicles Systems Institute and the main 
standardization organizations are working towards assurance 
guidelines for the use of ML in avionics as well [21-24]. In 
this article, we assume ML design assurance guidelines to be 
followed on the algorithmic level for development and 
integration of systems reliant on ML. 

C. Approximate computing 
Approximate computing is another new technology 

where computation accuracy is traded off (errors are allowed 
to happen in the computations) for better performance or 
lower energy consumption [25]. Specifically, the latter is 
used as an argument for bringing greenness to computing 
[26]. Approximate computing is typically used in certain 
applications where specific types of errors can be acceptable 
from a system requirements perspective, e.g., minor flaws in 
images. Approximate computing can be performed in 
multiple ways and at different levels, e.g., at the logic level, 
at the arithmetic circuits level, or at the system level 
including systems using AI [27]. For critical-data, 
approximate computing should be avoided. Only if the 
traded accuracy is deterministic (may be statistically), 
integrity can be controlled. It shall be noted that Google in 
their tensor processing units use approximate computing to 
reduce power consumption and IBM applies it in their on-
chip AI accelerators [27]. Thus, a system designer 
implementing AI based systems for safety-critical 
applications needs to know if approximate computing is 
already built-in in certain functionality (hardware) and if it 
may have potential impact on the application. Approximate 
computing shall not be mixed with network pruning or 
quantization. 

D. Supporting COTS hardware assurance methods 
When introducing new technology in safety-critical 

systems, there must be convincing arguments that the new 
technology does not violate the safety requirements (or other 
requirements as well). To assist in this process, supportive 
assurance methods can be used. One such method is 
argument-based assurance [7]. However, care must be taken 
so that the evidencing part ensures a rational inquiry in the 
real world [28]. For new technology, such as embedded 
systems using DNNs, we have shown [29] the early steps to 
be taken using a generic assurance approach to get the 
needed flexibility in the way we argue that the COTS 
assurance objectives are met. These early steps may be used 
for the introduction of any kind of new technology. 

E. Model-based system safety analysis 
In the recently revised document “Guidelines for 

Conducting the Safety Assessment Process on Civil Aircraft, 
Systems, and Equipment,” SAE ARP 4761A [5] a new safety  

 
Fig. 1.  MBSA method (figure based on Fig. N2 in [5]). The failure 
propagation model (FPM) represents the system architecture including its 
dysfunctional behavior. The FPM gets input from design documents and 
safety data and generates minimal cut sets, failure sequences, and failure 
probabilities. 

 
assessment method is introduced, the model-based safety 
analysis (MBSA). This method shall not be mixed with 
traditional model-based systems engineering. MBSA is said. 
to be capable of replacing fault-tree analysis (FTA), Markov 
analysis, or dependency diagrams, and may help in other 
analysis methods, such as common mode analysis and 
particular risk analysis. MBSA supports the safety analysis 
of a function, addresses complex functions, and facilitates 
the communication between system and system safety 
engineers through models [5]. The safety analysis is 
performed through Failure Propagation Models (FPMs), as 
seen in Fig. 1. Design documents include system description, 
architecture diagrams and requirements. 

We believe MBSA can support the use of new 
technology in safety-critical systems. Typically, novel 
solutions change more frequently, and new failure conditions 
(FCs) may show up due to unfamiliar behavior, and these 
must be taken care of. Also, multiple failure conditions may 
occur. The FPM is ideal for handling these situations. Once 
the architecture diagrams and requirements are stable, we 
still believe the use of traditional FTAs should be employed 
(at least for communication with customers and certification 
authorities). 

F. Time-dependent solutions based on knowledge graphs 
To support structured management and propagation of 

characteristic time series information, Graß et al. [30], 
introduce the concept of knowledge graphs for time series 
data, also known as temporal knowledge graphs (TKGs). 
Their solution relies on automated knowledge discovery and 
machine learning. 

TKGs can be used for context recording from continuous 
tracking of sensor readings. Imagine we use a DNN to track 
multiple objects from camera image streams. TKGs can then 
be used to build graphs over identified entities. We assume 
TKGs can be used for anomaly detection, i.e., deviations 
from expected patterns from the sensor readings. It could be 
something like:  

An airplane (Airplane_1) detects a new light (Light_A) at 
a location (Point_Y) close to airport (Airport_Z) at a 
specific time (2024-06-25T112:12) 

Knowledge discovery in databases (KDD) is a field 
within Knowledge Graphs concerned with finding and 



sorting out relevant data from a TKG, whereas the TKG 
offers a structured representation of the collected data, 
including these discoveries. This structured storing of 
aggregated information makes it accessible for other parts of 
the system, at the appropriate abstraction level, such as a 
monitor function tasked with detecting sensor drift or 
anomalous sensor readings. This way of aggregating system 
status information is indeed a methodology to structure the 
abundance of sensor data available in most systems today in 
a way which lends itself nicely to other dynamic techniques 
such as recommender systems, predictive maintenance and 
other data-intensive tasks.  

When the information is static, it is stored in a Static 
Knowledge Graph (SKG). With SKGs, we have prior 
knowledge to which we may relate our sensor inputs. When 
presented to the KDD function, static information is already 
available before takeoff (e.g. layout of markers, light fittings 
at a particular runway, runway material etc).  

Another application of TKGs, could be to detect 
anomalies in the NNs themselves, for example after single 
event upsets (like Schorn et al. [14] did with their triple-
modular redundant NNs for detecting abnormalities in 
deeper NNs). This would be possible since the TKGs 
continuously stores the generated outputs from the NNs. 

III. EXAMPLE - SMART EYE SUPPORT FOR LANDING 
The FAA revised the rule for the use of enhanced flight 

vision systems (EFVS) and pilot compartment view 
requirements in December 2016. The revised rule permits the 
pilot to use EFVS instead of natural vision to continue 
descending below 100 feet to touch down and rollout under 
certain conditions [31]. Using EFVS equipment onboard for 
landing requires less ground infrastructure at the airport 
(CAT II and III equipment). Thus, landing in hazy weather 
conditions may be performed on many more and less 
equipped airports. 

When the pilot’s eye can be enhanced and temporarily 
replaced with a Sensor Eye during low visibility conditions, 
improved operational weather minimums can be achieved. 
Weather minimums ensure that pilots have sufficient 
visibility and spatial orientation to navigate safely, both in 
the air and near the ground, during takeoff, enroute, and 
landing. 

To support the pilot, we suggest using a dedicated Smart 
Eye to identify lights, surfaces and markers, for making 
descent decisions. The Smart Eye is composed of new 
technology. Fig. 2 shows our proposed architecture without 
redundancy. We assume that the Smart Eye is part of an 
enhanced EFVS (EEFVS) system. 

Pilots using an EFVS for landing must be careful not to 
conclude that there are no obstacles in the flight path just 
because the enhanced images don’t show any obstacles. 
Also, in worst case scenarios where no published vertical 
guidance exists, and the pilot must trust flight path (FP) 
vectors and FP angle reference cues, obstacles may appear in 
the real world but not in the EFVS [31]. Obstacle detection 
must be in place from decision altitude (DA) / decision 
height (DH) and all the way down to landing and rollout (or 
in case of a missed approach after DA/DH). In addition, if 
millimeter wave radar is used to detect obstacles, cluttering 
may appear, misleading the pilot to believe there are false 
obstacles. 

 
Fig. 2. The suggested implementation of the example system. Light blue 
boxes are part of the conventional EFVS while the light green boxes are 
new technology and part of the enhanced EFVS with a Smart Eye. Separate 
and diverse sensor data is sent to the Smart Eye, which detects lights, 
surfaces, and markers. The detected objects are stored and processed with 
Temporal Knowledge Graphs (TKGs) and compared with static 
information, e.g., airport reference objects and runways, located in a Static 
Knowledge Graph (SKG). The intelligent comparator and decision maker 
reads data from the SKG and TKGs and from the EFVS processing unit and 
informs the pilot of which reference objects have been detected and where. 
 

At the same time as the pilot pays attention to obstacles, 
he/she needs to pay attention to detect reference objects 
through the EFVS to descend below DA/DH and later below 
100 feet above the touchdown zone elevation (TDZE1). 

A. The EEFVS system  
The EEFVS system is assumed to operate under the 

condition for the purpose of research and development and is 
assumed to comply with all applicable EFVS requirements. 
The EFVS part of the EEFVS (blue boxes in Fig. 2) has 
imaging sensors that display the forward imaging scene. 
There are several types of sensors that can be used, such as 
forward looking infrared (FLIR) cameras (may use different 
infrared spectrums), low-light level image amplifier (LLIA), 
millimeter wave radar, or millimeter wave radiometry. There 
are several reasons for using diverse types of imaging 
sensors, one being independence requirements, and others 
being the incapabilities of certain sensors, e.g., FLIRs may 
not detect lights from LED-based lamps. In our system, see 
Fig. 2, we assume Sensor set 1 consists of one ordinary 
electro-optical camera, one millimeter wave radar, and one 
infrared sensor independent from the sensors in Sensor set 2. 
Sensor set 2 consists of a shortwave FLIR and an LLIA. In 
our example, we consider the most critical landing, i.e., 
EFVS operations to touchdown and rollout, see  Fig. 3.  

B. Requirements for decision to descend below DA/DH 
The requirement for detecting reference objects through 

the EFVS system for decision to descend below DA/DH is 
either: 

1. The approach light system  

or both of the following: 

2. The runway threshold 

3. The touchdown zone (TDZ) 

The runway threshold can be detected through either a) the 
beginning of the runway landing surface, b) threshold lights, 
or c) runway end identifier lights. The touchdown zone can 

 
1 Elevation here refers to the highest elevation on the runway between 0 to 
3 000 feet into the landing surface. 



be detected through either a) runway TDZ landing surface, b) 
TDZ lights, c) TDZ markers or d) runway lights. 

C. Requirements for decision to descend below 100 feet 
above TDZE 
The requirement for identifying reference objects 100 

feet above TDZE to descend even further, see Fig. 3, is to 
detect one of the following four reference objects: 

1. The runway threshold,  
2. The lights or markings of the threshold,  
3. The runway TDZ landing surface, or  
4. The lights or markings of the TDZ 

 
The detection can be done through visual reference or 
through EFVS. In our example the detection is through the 
Smart Eye. 

D. EFVS operations requirements to touchdown and 
rollout 
To be able to carry out EFVS operations in lieu of natural 

vision from DA/DH down to landing and rollout, several 
requirements must be followed. The EFVS must display 
important aircraft flight information (see [31], §4.1.1.3) and 
many parameters must be aligned and scaled with the 
external view (they must be conformal). Additional 
requirements also apply including obstacle detection. In our 
example, the Smart Eye is not affected by the above 
requirements. 

When two or more pilots are required, a pilot monitoring 
function showing the pilot’s flying EFVS sensor imagery 
must be present. EFVS operations to touchdown and rollout 
must be capable of handling any failure of any component in 
the system.  

E. Smart Eye function using new technology 
 The whole idea with the Smart Eye is to support the pilot 
with decisions to descend below DA/DH and below 100 feet 
above TDZE when using the EFVS, to offload his or her 
burden of many other things during this busy landing 

moment. Once the Smart Eye detects the required reference 
objects, the pilot gets information about which reference 
objects are detected and where they were found (via 
bounding boxes), to support the decision to descend even 
further. 

 Since we are dealing with detecting reference objects, it 
is tempting to let the Smart Eye act as an obstacle detector as 
well. However, this complicates the use case and has 
therefore not been included (see the discussion section for 
additional information). 

 Our Smart Eye starts to detect reference objects before 
DA/DH and continues to do so all the way down to landing. 
At two heights, DA/DH and 100 feet above TDZE, see Fig. 
3, decisions to continue to descend are taken based on 
detected objects.  The following reference objects shall be 
detected: 

1. Approach light system 

2. Beginning of the runway landing surface 

3. Threshold lights 

4. Runway end identifier lights 

5. Runway TDZ landing surface 

6. TDZ lights 

7. TDZ markers 

8. Runway lights 

9. Markings of the threshold 

 If at least one of the following elements (a single 
object or a pair of objects) in the list below (reference 
objects according to the numbered list above) is detected 
and presented by the Smart Eye just before reaching 
DA/DH decision point, the pilot is informed and can 
descend below DA/DH: 

{(1), (2,5), (2,6), (2,7), (2,8), (3,5), (3,6), (3,7), (3,8), 
(4,5), (4,6), (4,7), (4,8)} 

 
 

 
Fig. 3. Concept of EFVS operation to touchdown and rollout. The aircraft approaches landing in the instrument segment. To proceed below DA/DH, certain 
reference objects must be detected. In the visual segment, the complete landing is performed with EFVS operation in lieu of natural vision. When reaching 100 
feet above the touchdown zone elevation (TDZE) other reference objects must be detected before descending further. 



 

 If one of the following elements of reference objects in 
the list below (numbers according to the list above) is 
detected and presented by the Smart Eye just before 100 feet 
above TDZE decision point, the pilot is informed and can 
continue to descend for landing and rollout. 

{2, 3, 4, 5, 6, 7, 9} 

 While it is tempting to train and let a single convolutional 
neural network (CNN) be the Smart Eye which identifies all 
nine objects above, it should be noted that there are 
differences in how the different objects are detected. Our 
Smart Eye shall detect three types of objects: surfaces, 
markers and lights. The latter consists of detecting five 
different types of lights, which may not be detected clearly 
by FLIR sensors but probably much better by the LLIA 
sensor. The fact that the reference objects to be detected are 
sensor-sensitive, different detection solutions may be 
required. 

IV. SAFETY ASSESSMENT OF THE SMART-EYE 
 The acceptable means to comply with certification 
regulations is to follow SAE ARP4754B when developing 
avionics systems. This guidance document recommends a 
top-down requirements driven development starting with the 
Functional Hazard Assessment (FHA) performed for all A/C 
level functions.  

 Here we present a limited part of the established safety 
assessment process for the example EEFVS system, pictured 
in Fig. 2. The assessment process includes the Descent 
Decision Support part (green boxes in Fig. 2) with the aim to 
elaborate on possible shortcomings when applied for new 
technologies. The integrated EFVS part (blue boxes in Fig. 
2) is not included. 

A. System FHA – Smart Eye 
 A functional hazard assessment (FHA) identifies the 
failure conditions for all functions, analyzes the effects on 
the aircraft and flight crew, and assigns the corresponding 
criticality classification (No Safety Effect, Minor, Major, 
Hazardous, Catastrophic) while considering both loss of 
functions, and malfunctions. Table 1 shows our Smart Eye 
FHA considering failure conditions in terms of integrity and 
availability of function. The Smart Eye functionality informs 
and displays visible reference objects to the pilot during 
approach until touchdown and rollout. 

Table 1. FHA for the Smart Eye 
 

# Failure Condition (FC) Effects Classif. 

1 No identified visible 
reference object when 
reaching DA/DH 

Pilot executes go-around MIN 

2 Loss of reference object 
during guidance (below 
DA/DH) 

Pilot executes go-around MAJ 

3 Loss of reference object 
during guidance (below 
100 ft above TDZE) 

Pilot executes go-around HAZ 

4 Identified reference 
objects tied to wrong 
static reference objects 

Could result in hard landing 
or controlled flight into 
terrain. Pilot has no means to 
detect the error and will 
follow the guidance. 

CAT 

 

 The FHA identifies the hazard levels associated with the 
Smart Eye failure conditions to determine the required 
system design assurance and safety levels. The FHA derived 
safety requirements are: 

SR1. Loss of reference object above DA/DH shall have the 
probability of less than 1.0 10-3 /FH 

SR2. Loss of reference object below DA/DH shall have the 
probability of less than 1.0 10-5 /FH 

SR3. Loss of reference object below 100 ft above TDZE shall have 
the probability of less than 1.0 10-7 /FH 

SR4. Erroneous Reference Object for Descent Decision Support 
presented to pilot shall have the probability of less than 1.0 10-9 
/FH 

SR5. Smart Eye system Development Assurance Level (DAL) shall 
be A (CAT FC requires DAL A) 

SR6. No single fault shall lead to Erroneous Reference Object for 
Descent Decision Support presented to pilot 

B. PSSA – Smart Eye 
The preliminary system safety assessment (PSSA) is a 

top-down approach evaluating how the proposed system 
architecture can meet the safety objectives resulting from the 
FHA. The PSSA process decomposes and allocates FHA 
safety requirements and determines derived safety 
requirements for all design items. In this PSSA example, two 
conceptual fault trees are constructed for the Smart Eye 
system (green boxes in Fig. 2). One representing Loss of and 
one representing Malfunction. 

The Loss of tree, Fig. 4, includes failure rates. It shows a 
possible allocation of failure rates to evaluate if suggested 
architecture can meet required availability budget from the 
FHA. All failure rates are fictive and included for 
redundancy discussion regarding availability.  

The Malfunction tree, Fig. 5, does not include any failure 
rates, the tree shows how the design intend to meet the 
required Integrity level from FHA and identifies 
independence requirements. 

1) Fault tree analysis 
The FTA TOP 1 – Loss of reference object (pilot 

guidance) is constructed with three branches, see Fig. 4. HW 
faults contributing to the TOP FC in the leftmost branch 
represent Smart Eye input equipment necessary to perform 
the function Identify Reference Objects. The middle branch 
includes the NN not detecting any reference objects. HW 
faults contributing to the TOP FC in the right branch 
represent Smart Eye platform HW, i.e., power, processing 
capability, Input/Output interfaces (I/O). 

 

The FTA TOP 2 – Reference object tied to wrong static 
reference object is shown in Fig. 5. The Smart Eye is 
designed to achieve high integrity through the possibility to 
cross-check the NN’s identified reference objects with 
known reference objects (markers, lights and specific 
surfaces for each runway) preloaded in a static database. 
TOP 2 illustrates this design, where the left branch under the 
AND-gate represents the new technology part. The right 
branch is the static reference database used by the cross-
check monitor. 

 
 



 

 
Fig. 4. FTA TOP 1 - Loss of reference object, pilot guidance. Q is the failure frequency per flight hour (normally indicated by l). 

 
 

2) PSSA results 
The proposed architecture does not include redundancy 

for availability and from TOP 1 it is seen that the safety 
requirements SR1 and SR2 are met while SR3 is not met. 
Even though failure rates are fictive in this example it is not 
realistic to meet hazardous FCs without redundancy.  

Design assumption: The processing part of the Smart 
Eye which uses NNs to detect and classify objects, also 
calculates location data for the detected objects. (This is 
possible through the knowledge of the plane’s horizontal 
position, altitude, attitude, roll and yaw plus the fact that it is 
only objects on ground that are detected.) 

Independence requirement: NN location data stored in 
the TKGs has a dissimilar source than the SKG’s location 
data. SKG’s location data are the exact positions of the 
static objects. 

 

C. Fail-safe design 
For neural network (NN) design assurance on the 

algorithm level, we suggest following the W-assurance 
model described in [1]. Once the standardization 
organizations finalize their guidelines, these should be 
followed. Following such guidance documents may also 
reduce the possibility for adversarial attacks (inputs to the 
machine learning model designed by an attacker to maximize 
the model making mistakes). 

The Smart Eye uses new technology in the form of NNs. 
To select the best possible NN for detecting the reference 
objects including lights (LED-based as well as normal lights) 
in hazy weather conditions and with the option of two sensor 
inputs (SW-FLIR & LLIA), will be a crucial task to perform. 
Research in detecting objects in bad weather conditions is 
mainly focused on detecting pedestrians in front of 
autonomous cars. Typically, forward radar, normal camera 
and LiDAR are used. Reusing these ideas for our system 
may be limited. 

 

 
 

Fig. 5. FTA TOP 2 - Reference object tied to wrong static reference object. 



 
 While most NNs used for object detection have been 
trained on “sunny days” images, and are supposed to work 
normally in clear weather, our system will never be used in 
those conditions (clear days or clear nights). Our system 
works normally in worst-case conditions with heavy fog or 
rain, or low-altitude clouds. Thus, the operating design 
domain (ODD) is different and training data should be 
focused for those conditions. Then, different sensors see 
differently through different weather types. Therefore, the 
selection of correct sensor types is important and the 
preparation of the datasets for training needs to be carefully 
planned. 

 In the FTA TOP 1, it is shown the NN may not detect any 
reference objects despite the sensors are okey. This results in 
a go-around. For an NN to completely ignore all detection of 
objects, either the training has been extremely poor, or the 
ODD has not been clearly identified. The former is not 
realistic, but the latter could happen. Poor training resulting 
in the NN missing a few objects may not result in a go-
around since other objects will be identified. Poor training 
resulting in incorrect object detection (including false 
detections of non-existing objects), will be noticed by the 
system, see FTA TOP 2. These objects are not shown for the 
pilot but instead ignored. However, other reference objects 
must still be correctly detected. Thus, the focus should be on 
the ODD. Every bad weather condition possible during day 
to complete darkness in the night must be taken care of, 
suggesting the use of synthetic data for training. In addition, 
five different lights, two types of surfaces and two types of 
markers shall be detected and classified from a many of 
approach angles and inclinations. The produced synthetic 
data need to be near the real-world data. Any gap between 
the simulated and real-world data needs to be controlled. 
Perhaps 3D models of the airports including all lights need to 
be used. See Lindén et al. [4] for an implementation of 3D 
models in synthetic datasets. 

To achieve higher integrity, two NNs can be used: one 
for surface and marker detection and another for light 
detection. These two NNs should be trained with diverse 
“biased” incoming sensor data. That is, the NN used for 
surface and marker detection should rely mostly on the FLIR 
sensor data and then suppress the LLIA sensor data. Light 
detection, on the other hand, should rely more on the LLIA 
sensor data than the FLIR sensor data. See Fig. 6 for a 
possible Smart Eye processing architecture. 

 If an “unknown” weather condition appears (NN not 
trained for this scenario), it is sufficient if one of the 
differently trained NNs with diverse biased sensor inputs 
works, to be able to achieve descent clearance as specified. 
This is true since at both decision heights, a decision to 
descend can be made from detection of lights only or from 
detection of the surface and markers only. However, the 
number of possible elements to make the decision from is 
reduced. This scenario might be considered as a degraded 
mode. If the sensors are truly independent and a normal 
descent decision can be taken with one sensor only, then the 
OR-gate between Sensor 1 (Event 1) and 2 (Event 2) in the 
FTA 1, see in Fig. 4, should be changed to an AND-gate. 

To remove any inconsistencies and to ensure correct 
behavior from out-of-distribution data, guidance is given in 
[1] (Chapter 5 Safety Assessment). Additional guidance is 
given by Lindén et al [3]. They introduce metrics to quantify 

similarity, used to estimate how a model will perform on out-
of-distribution data. 

 We suggest pilots and other experts to be in the loop to 
observe the NNs’ outputs when validating the classified data 
at the end of the training phase.  

In FTA TOP 2, we see that the pilot is only presented 
with invalid data if a reference object is inaccurately 
identified AND the corresponding data in the SKG is corrupt 
or obsolete. The left branch may happen if the NN identifies 
an incorrect reference object or a ghost-object (detected non-
existing object), data is corrupt in TKG, or the sensor is 
incorrect and not detected by the sensor monitor. To 
overcome corrupt data in the TKG or SKG databases, 
sufficient data encryption shall be used. It is assumed the 
SKG database is regularly updated (e.g., every 28 days or 
so). Uncalibrated sensors or ageing sensors should be 
detected by the sensor monitors. Thus, the likelihood for 
FTA TOP 2 to happen is extremely low. 

If an NN cannot be selected and trained to avoid multiple 
reference objects to be identified incorrectly or several ghost-
objects to be identified, the availability of the system may 
become too low. Then, the use of multiple diverse parallel 
(MDP) networks may help. See Stepien et al. [2] for 
inspiration. Initial tests will reveal if MDP is necessary to use 
or not. Going even further and using deep ensembles may be 
used if generalization will be a problem [17]. The improved 
statistic from the ensemble helps in decisions to correctly 
classify the reference objects. It is, however, difficult to 
implement Deep Ensembles in the real hardware and the 
increased power envelope may constitute a problem. 

As our system is built with comparison of static objects 
in an SKG, the likelihood to create false runways with false 
lights and markers, and making a pilote attempt landing on a 
fake place can be neglected. 

 

 
 
Fig. 6.  One possible Smart Eye processing solution. The Surface & Marker 
Detection Unit identifies surfaces and markers, i.e., 2, 5, 7 and 9 in the list 
in Section III E above. The Light Detection Unit detects the five different 
types of lights, i.e., 1, 3, 4, 6, and 8 in the list. The Obstacle Detection Unit 
detects obstacles in the flight path. It is not part of the example but included 
in the discussion. The Backend Processing & Monitoring performs post-
processing including local monitoring of the NNs. 



 

 

 
 

Fig. 7. Graph representation of gained knowledge in landing scenario. The graph structures the information in a way which makes it possible to deduce 
higher level intelligence from simpler sensor readings. 

 

Smart guidance in the training with the human-in-the-
loop may further reduce uncertainty and is recommended. 
The Surface and Marker Detection Unit should be 
implemented in a similar way as the light detection unit, 
however, with diverse bias of the sensor inputs. 

To be able to fulfill the requirement that our system 
should work despite any failure of any component from 
DA/DH downto touchdown and rollout, we assume dual 
EEFVS to be implemented with one of them in hot standby. 

To deduce higher level intelligence from the different 
sensors and the output from the neural networks in the 
Smart Eye, knowledge graphs will be used. See example 
over a landing scenario in Fig. 7. Besides identifying higher 
level information about objects and their movements, 
anomalies in the sensors and the DNNs may be identified 
with this technology. The knowledge graphs help to extract 
information in the different phases (descent below DA/DH 
and descent below 100 feet above TDZE). Also, since, the 
detection of different reference objects may render a go for 
descent below DA/DH and below 100 feet above TDZE, 
there is a need for a higher-level decision module like the 
Knowledge Discovery in Databases (KDD). 

V. DISCUSSION 
In this section, we discuss our example architecture and a 

possible extension of it - an obstacle detector. In addition, we 
consider the use of new system safety methods and the use of 
complex COTS hardware. 

A. Selection of the example architecture 
In this article, we selected a use case based on an 

Enhanced Flight Vision System (EFVS), where landing in 
hazy weather is performed under EFVS operation in lieu of 
natural vision. The pilot flying uses a head-up display or a 
helmet with goggles, where the normal vision is enhanced 
with infrared camera images, radar-based images, or low-
level light amplification or other means. Once the pilot 
detects certain reference objects with the enhanced vision, 
she/he is allowed to descend further (this concerns two 
different heights). At the same time, the pilot must ensure no 
obstacles are in the flight path. Obstacles may occur in the 
real-world in certain circumstances but may not be visible in 
the enhanced vision mode due to specific reasons. In our 
architecture, we introduce a Smart Eye to support the pilot 
with the task of identifying reference objects to support the 
descent decisions made by the pilot. Our Smart Eye solution 
is fictive and uses neural networks (NNs) solely for the 
purpose of showing the difficulties to implement new 
technology and why a system approach should be used. We 
also recognize the selection of input sensors to the EFVS and 
the Smart Eye from the eyes of a novice. The sensor 
selections should be carried out carefully, to achieve the best 
possible functionality. 

We suggest the use of two different NNs using different 
sensor inputs and that detect different types of objects. There 
are many other possible solutions that could have been used. 
The first obvious one is to use a single NN detecting and 
classifying all nine different objects. The complete training 
time should then be focused on a single network possibly 
resulting in better detections of the objects. Another solution 



most probably rendering higher integrity than a single 
network would be using two diverse NNs trained differently, 
but with the same goal, to detect and classify all nine objects. 
(The training time would have been split between the 
different networks.) The integrity increase would of course 
be hard to measure more than through validation tests. Why 
did we choose another approach? From the system level, we 
recognized that different sensor types detect light, surface 
and marker reference objects differently. We then realized 
that descent decisions can be based on light reference objects 
alone or on surface and markers alone. By using two NNs 
detecting different types of objects, we can emphasize the 
training of each of the networks differently (with diverse 
goals), with their respective sensor inputs and with the 
assumption that the detection task will be more robust and 
that even higher integrity can be achieved. We have, 
however, not validated our ideas yet on our Smart Eye 
example and can only speculate in the results. 

B. Using the Smart Eye as an obstacle detector 
In Fig. 6, an NN-based Obstacle Detection Unit is present 

(dashed module). This unit is not part of our example but is 
included here for discussion. The obstacle detection unit 
independently detects obstacles in the flight path. When 
using enhanced vision sensors that can “see through” clouds 
or heavy rain, other information such as colors may 
disappear and thus the pilot may potentially miss obstacles. 

To detect obstacles with correct positions but without the 
need to correctly classify objects, and at the same time 
reduce both false positives and false negatives, diverse and 
parallel neural networks can be helpful [2]. The Obstacle 
Detection Unit may be implemented with three or more 
DNNs, diverse enough to reduce the number of undetected 
and ghost objects. Undetected objects may result in collisions 
and identified objects that do not exist may result in false 
abort landing scenarios. Furthermore, identifying the 
physical distance and location of any obstacle (including the 
ones without reference in the SKG) is harder than detecting 
distance and location to reference objects with well-known 
positions. 

C. The use of new system safety analysis methods 
We did not have time to test the new safety assessment 

method, MBSA, in SAE ARP 4761A for our example case. 
MBSA seems promising for systems with new technology 
due to novel solutions change more frequently. However, M. 
Sun et al. [32] state that one of the challenges using MBSA is 
to assure the adequacy of the fault models for newly 
designed components. Do we know the fault models for NNs 
accurately enough? 

D. Implementing new complex COTS hardware 
Argument-based assurance methods can be used to 

support COTS hardware assurance when implementing new 
technology but need further investigations for use in real 
projects using complex electronics such as embedded AI 
accelerators.  

Advanced heterogeneous computing cores have been 
used in the car industry for autonomous driving for many 
years now. Tesla introduced their FSD computer for 
autonomous driving already in 2019 [33]. However, the 
regulations for avionics is different. To have better control 
over the hardware used, AI accelerators (without 

approximate computing algorithms) may be implemented on 
FPGAs (with own developed code or soft IP cores). To fit 
the trained models on the real hardware, the NNs may need 
to be pruned, and the accelerators may work with quantized 
data. Careful testing of the end system is required (and an 
essential part in the W-assurance model for NNs [1]) to 
ensure that system properties from the training phase are 
maintained in the final system using real hardware. 

VI. CONCLUSIONS 
In this paper, we elaborate on the significance of using a 

top-down system development approach when implementing 
new technologies in avionics and conducting system safety 
work following the guidance in SAE ARP4761A. We 
introduce an example: a Smart Eye using neural networks 
(NNs) to identify and classify reference objects to support 
pilots during landings in hazy weather conditions. We then 
perform a safety assessment of the Smart-eye and propose a 
proper fail-safe architecture. 

We consider the main challenges when integrating new 
technologies to be process assurance, understanding new 
failure modes, and determining how to limit or divide the 
functionality into manageable parts. 

The main conclusions are that we suggest using 
knowledge graphs in conjunction with NNs to organize and 
aggregate sensor information efficiently, and to use a system 
development approach that includes a proper safety 
assessment when new technologies are introduced into 
safety-critical applications. We also conclude that it is 
possible to address the use of NNs with conventional safety 
assessment processes, i.e., FHA, PSSA and SSA, but 
common mode analysis (CMA) to assure independence is 
challenging. In classic CMA, independence is used to 
achieve integrity and for high complexity diversity might be 
required. For NNs, the situation is more complicated. Two 
diverse NNs trained differently but with the same goal, may 
still lead to the same false positives and negatives. 
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