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Abstract— The efficiency of collaborative mobile robot ap-
plications is influenced by the inherent uncertainty introduced
by humans’ presence and active participation. This uncertainty
stems from the dynamic nature of the working environment,
various external factors, and human performance variability.
The observed makespan of an executed plan will deviate from
any deterministic estimate. This raises questions about whether
a calculated plan is optimal given uncertainties, potentially risk-
ing failure to complete the plan within the estimated timeframe.
This research addresses a collaborative task planning problem
for a mobile robot serving multiple humans through tasks such
as providing parts and fetching assemblies. To account for
uncertainties in the durations needed for a single robot and
multiple humans to perform different tasks, a probabilistic
modeling approach is employed, treating task durations as
random variables. The developed task planning algorithm
considers the modeled uncertainties while searching for the
most efficient plans. The outcome is a set of the best plans,
where no plan is better than the other in terms of stochastic
dominance. Our proposed methodology offers a systematic
framework for making informed decisions regarding selecting
a plan from this set, considering the desired risk level specific
to the given operational context.

I. INTRODUCTION

Integrating collaborative robot applications in the indus-
trial landscape started over a decade ago [13]. While robotic
utilization enhances productivity and ergonomic conditions
by managing assistive, repetitive, and strenuous tasks, the
contemporary industrial trend towards mass customization
values the unique skills, adaptability, dexterity, and problem-
solving capabilities of human workers [1]. Our paper specif-
ically focuses on mobile robots in collaborative applications,
appreciating their flexibility to execute diverse tasks across
various locations, catering to the needs of human work-
ers [21]. In collaborative industrial environments character-
ized by semi-structured and dynamic settings, the duration
of robot routing can be influenced by temporary obstacles
and concurrent human and robot activities. Additionally,
uncertainties in robot task durations arise from unpredictable
placements of required parts or tools and the possibility of
task failures, leading to retries. Similarly, the duration of
human tasks introduces uncertainty, influenced by variables
such as workload, fatigue, availability, and location.

This paper aims to study the uncertainty associated with
the duration of tasks performed by robots and humans, affect-
ing collaborative plans’ accuracy. Traditional deterministic
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planning methods fail to account for potential deviations
from the estimated duration of tasks. Additionally, identify-
ing an optimal plan is difficult due to the inherent uncertainty
in task durations and the subjectivity involved in choosing
the “best” plan, which can impact the risk tolerance of a
human planner. For example, a plan with a given probability
of completing the tasks within a certain time limit may be
preferred over a plan with a guaranteed upper bound for the
makespan. While the former may result in a lower makespan,
it can sometimes lead to a higher makespan than the upper
bound of the latter. Taking a medium risk may reduce the
expected makespan over multiple runs. Taking a larger risk
can be motivated if a low makespan gives a reward, whereas
the distinction between a shorter or longer additional delay
might not be crucial. This paper investigates industrial task
planning problems for a mobile robot collaborating with
humans in dynamic environments. To model the planning
problem, we use Robot Task Scheduling Graph (RTSG) [8].
This is motivated by the intuitiveness of the representation
rather than its expressiveness, benefiting domain experts
who have broad knowledge of the application but no in-
depth knowledge of all system parts, e.g., robot program-
ming. This paper extends the RTSG model to enhance the
flexibility of work descriptions by considering concurrent
human tasks and robot tasks with inter-dependencies. The
stochastic modeling approach presented in this paper in-
troduces uncertainty into task and routing durations using
random variables with unrestricted probability distributions.
When concrete data is lacking, initial simplifications of input
distributions, such as uniform distributions, are employed.
These distributions can be iteratively refined through data
collection during system execution, progressively improving
accuracy. The main contribution is a novel task planning
methodology involving computing optimized plans where
uncertainties are considered during plan generation. The
output is a set containing the best plans, where no plan
is better than the other in terms of stochastic dominance.
Notably, the methodology allows a human planner to make
an informed decision on the most suitable plan from this
candidate set by providing a risk level value and/or by
visually inspecting probabilistic makespan distributions of
the candidates. This approach is inspired by Mixed-Initiative
Planning [5]. The novel task planning methodology leverages
a Branch-and-Bound (B&B) algorithm [9] able to solve
planning problems modelled with RTSG, extended to handle
stochastic durations. It explores alternative sub-sequences,
with their durations derived as probability density functions.
One contribution is the derivation of unrestricted probability



distributions to represent makespans of collaborative plans.
Such a distribution is a realistic estimate of the makespan
range that may occur if the plan is executed. Another
contribution is a novel pruning strategy, which uses the first-
order stochastic dominance property to ensure safe pruning.
It guarantees that pruning never eliminates a superior plan in
a stochastic sense. Additionally, we contribute by proposing
stochastic set dominance as a criterion to filter full-length
plans into a candidate set containing only the very best plans,
where no plan’s makespan dominates others in a stochastic
sense. To validate the approach, it is benchmarked against
a deterministic counterpart. Additionally, Monte Carlo sim-
ulations [17] are conducted to verify the correctness of
stochastic makespan computations generated by the planning
algorithm. These evaluations demonstrate the ability of our
methodology to provide more efficient plans and to support
risk-aware task planning under uncertain conditions.

II. RELATED WORK

In a recent approach for task planning in collaborative
assembly applications, a policy for task allocation based on
the current state is trained to optimize future rewards [11].
This work and all other related works differs from ours,
by not providing a set of plans optimized for different
risk levels. Our approach accounts for uncertainties in the
planning problem, while some other approaches solve a de-
terministic planning problem and handle uncertainties during
execution [6] [10], potentially providing a suboptimal plan.
Probabilistic Simple Temporal Networks (PSTN) are used to
model scheduling problems with temporal constraints using
random variables to represent uncertain task durations [18].
In general, PSTN addresses scheduling risks by searching for
robust plans to minimize or control the risk for plan execu-
tion failures caused by violation of temporal constraints, e.g.,
missed deadlines. The problem addressed in this paper has no
temporal constraints, and the type of risk addressed is differ-
ent, i.e., the risk of getting a longer duration than expected at
plan execution. In some works, the primary focus of a robot
is assisting by anticipating the next human task and providing
needed tools or parts just in time [7], [22]. In our work, the
robot serves multiple humans, and a long-sighted sequence
of robot actions is planned. One scheduling approach used
Monte Carlo simulations in a receding horizons approach
to estimate the cost distributions of alternative execution
sequences of robot tasks and human tasks with uncertain
durations [2]. A receding horizons approach naturally limits
the growth of a search tree to a manageable level. For
our problem type, where the objective is to minimize the
makespan, a plan may become greedy and less optimal with
a short-sighted look ahead, causing later costs to dominate.
Additionally, we compute cost distributions in a closed form,
giving a qualitative advantage when comparing alternative
plans and sub-sequences, including the possibility of safe
pruning decisions to reduce the growth of a search tree. In
a receding horizon scenario similar to [2], the uncertainties
in durations of human and robot tasks were modeled and
propagated for alternative task sequences as triangular fuzzy

sets, which in an actual application provided a better plan
optimization than an approach where task durations were
modeled more simplistic, as uniform distributions [3]. This
result motivates the usage of richer representations, as pro-
posed in this paper, to represent uncertain durations when
modeling collaborative applications. Similar to our approach,
[16] models routing and action durations as random variables
and uses a framework of stochastic operations to compute
stochastic start and completion times of tasks for different
scenarios where multiple robots share a mutually exclusive
resource. However, probability distributions are limited to
be Gaussian, while our approach does not impose such re-
strictions. In [15], this Gaussian framework was applied to a
task planning problem of a replenishment agent serving other
agents, where a finite-horizon schedule of tasks is computed
with a B&B approach, including pruning of branches where
a conservative estimate of the minimum cost is higher than
currently the best solution. We propose a novel pruning
strategy based on stochastic dominance, proven to be safe for
this application when comparing unrestricted distributions
of search nodes representing the same state. A proactive
scheduling approach for a Job shop problem was proposed
by [12], using durations modeled as random variables. As a
part of the solution, the sequence of operations on a machine
was computed with a B&B algorithm, minimizing a weighted
combination of expectation and variance of the completion
time. A safe pruning criterion was proposed, using Stably
Stochastic Dominance, providing an ordering of alternative
sequences based on expectation and variance of operations.
While this approach is motivated by the need to find a robust
plan with limited time variations, our approach computes a
candidate set of plans, whose makespans are stochastically
dominated by alternative plans, thereby providing the most
efficient choices for any risk level.

III. MODELING THE PLANNING PROBLEM

In this section, we define and model the planning prob-
lem. We present the modeling of task durations as random
variables and provide related definitions for later reference.

A. Problem description and assumptions

A mobile industrial robot is used to deliver parts to differ-
ent assembly workstations. At these stations, sub-assemblies
are made either by human workers or by the robot itself.
The robot fetches the finished sub-assemblies, and finally,
all sub-assemblies are delivered to another station for further
processing. It is assumed there is no load restriction related to
the mobile robot’s ability to carry parts and sub-assemblies.
Task allocation is static, i.e., there are robot tasks and human
tasks. While considering the dependencies between robot
tasks and human tasks, we assume human tasks are mutually
independent. There is no physical interaction between the
robot and humans and their interaction level can be catego-
rized as synchronized, i.e., they share the same space at the
delivery and fetching locations, but not at the same time [14].
The effects of tasks are assumed to be deterministic, i.e.,
all tasks will eventually succeed. However, task and routing



durations are uncertain. The goal is to compute an offline
plan [4] that minimizes the uncertain makespan while con-
sidering the aversion or willingness to risk. In this context,
the risk is related to efficiency. Increasing the risk means
we increase the probability of reaching shorter makespans
while also accepting the risk of sometimes reaching longer
makespans than before. The risk willingness may influence
what plan is considered to be the best.

B. Modeling a collaborative planning problem

The planning problem is modeled with an RTSG model,
exemplified in Fig. 1. It is a directed acyclic graph giving
an intuitive workflow description of how tasks can be se-
quenced. The Start node and the Goal node represent the
initial state and the desired goal state, respectively. Task
nodes have rectangular shapes. Edges (or paths) represent
precedence constraints, e.g., DL1 must precede MV 1 while
DL1 and DL2 may be performed in any order. Alternative
branches are modeled between OR-Fork (||F) and OR-Join
(||J) node pairs, and in this model, they describe the alterna-
tive selections of human assembly (HA1) or robot assembly
(RA1). Lock node pairs (+L,-L) indicate a branch section
where robot tasks must be scheduled in an uninterrupted
sequence. Here, the robot movement to a human assembly
station (MV 1) must be followed by the robot picking (PI1)
the sub-assembly provided by the human (HA1). AND-
Fork nodes (&F) create parallel branches while AND-Join
nodes (&J) join branches. In this work, the RTSG modeling
formalism has been extended to represent human tasks, i.e.,
tasks allocated to humans (e.g., HA1). Human tasks may be
performed concurrently with robot tasks, and they need to
follow the scheduling constraints set by the RTSG model.
Additionally, the need to synchronize human tasks with
robot tasks is addressed. A new node type, AND-JoinSync
(&JS), has multiple incoming branches and a single outgoing
branch. The &JS node blocks the robot from proceeding with
succeeding robot tasks until all preceding human tasks are
completed, potentially causing some robot wait time. For
example, after moving to an assembly station (MV 1), the
robot may not pick the sub-assembly (PI1) until the human
assembly task (HA1) has provided the assembly.

C. Preliminaries and definitions

Durations for performing robot tasks and human tasks are
indexed variables. The routing duration Rτ,τ ′ between robot
tasks, τ, τ ′ ∈ T where T is the set of all robot tasks. The
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Fig. 1: RTSG model with 2 human assembly tasks.

duration Aτ to perform a robot task τ ∈ T and the duration
Bh to perform a human task h ∈ H , where H is the set of
all human tasks. This work models these durations (Bh, Aτ ,
Rτ,τ ′ ) as independent random variables without assuming
any specific probabilistic distributions.

Definition 1 (Random Variable). A random variable X on
the probability space (Ω,F ,P) is a measurable function X :
Ω → R such that {ω ∈ Ω : X(ω) = x} ∈ F for all x ∈ R.

Definition 2 (Expected value). Given a random variable X ,
its expected value E[X] ∈ R is a measure of the central
tendency or average value of the possible outcomes of X:

E[X] ≜
∫
ω∈Ω

X(ω) dP.

Definition 3 (Variance). Given a random variable X , its
variance, denoted by V[X], is a measure of the dispersion
or spread of the possible outcomes of X .

V[X] ≜ E
[
(X − E[X])

2
]

Definition 4 (Standard deviation). The standard deviation
σ[X] of a random variable X is the square root of its
variance:

σ[X] ≜
√
V[X].

Definition 5 (Probability density function (PDF)). The prob-
ability density function fX(x) of a random variable X is
defined as:

fX(x) = P[ω ∈ Ω | X(ω) = x]

Definition 6 (Cumulative distribution function (CDF)). The
cumulative probability distribution function FX(x) of a
random variable X is defined as:

FX(x) = P[ω ∈ Ω | X(ω) ≤ x]

Definition 7 (Percentile). The k-th percentile of a proba-
bilistic distribution fX(x) is defined as:

pk = inf{x : FX(x) ≥ k}, 0 < k < 1.

Definition 8 (First-Order Stochastic Dominance [19]). Con-
sider two random variables, X and Y , with CDFs FX and
FY . X has a first-order stochastic dominance over Y , if and
only if ∀x, FX(x) ≤ FY (x), and ∃x, FX(x) < FY (x). The
stochastic dominance is denoted in the following as X ⪰ Y .
If the given condition is not fulfilled, this is denoted X ̸⪰ Y .

Definition 9 (Stochastic Set Dominance). Consider one
random variable X and a set of random variables
S = {Y1, . . . , Ya}, with CDFs FX and FY1

, . . . , Fya
.

X has a set dominance over S, if and only if ∀x,
FX(x) ≤ max{FY1

(x), . . . , FYa
(x)}, and ∃x, FX(x) <

max{FY1
(x), . . . , FYa

(x)}. Stochastic set dominance is de-
noted in the following as X ⪰SSD S. If the given condition
is not fulfilled, this is denoted X ̸⪰SSD S. Stochastic set
dominance does not require but follows from first-order
stochastic dominance, i.e., if ∃Y ∈ S | X ⪰ Y =⇒
X ⪰SSD S.



Definition 10 (Independence). Two random variables X and
Y are independent if the pair of events {X = x} and {Y =
y} are independent for all x, y ∈ R. Formally,

P[X = x, Y = y] = P[X = x]P[Y = y], ∀ x, y ∈ R.

Definition 11 (Convolution or sum of random variables). If
X and Y are independent random variables on (Ω,F ,P),
then Z = X + Y has probability density function, when X
and Y are discrete random variables

P[Z = z] =

∞∑
x=−∞

fX(x)fY (z − x), ∀ z ∈ Z, (1)

and for continuous random variables:

P[Z = z] =

∫ ∞

−∞
fX(x)fY (z − x) dx. (2)

Lemma III.1 (Maximum between random variables). If X
and Y are independent random variables on (Ω,F ,P), then
Z = max(X,Y ) has cumulative probability function

FZ(z) = FX(z)FY (z)

Proof. By definition of CDF, we have that:

FZ(z) = P[max(X,Y ) ≤ z] = P[X ≤ z ∧ Y ≤ z]

= P[X ≤ z]P[Y ≤ z] X and Y are independent
= FX(z)FY (z).

IV. PLANNING METHODOLOGY

This section gives a step-by-step description of the plan-
ning methodology. Sec. IV-A defines a feasible plan and
identifies dependencies between robot tasks and human tasks.
Sec. IV-B derives the stochastic duration of a plan or sub-
sequence. Sec. IV-C introduces a B&B algorithm to search
for candidate plans having the shortest durations in a stochas-
tic sense, while Sec. IV-D describes risk-aware plan selection
from this set. Sec. IV-E presents a pruning strategy based on
stochastic dominance and proves this strategy is safe.

A. Plan feasibility and dependencies with human tasks

A plan is the set of all robot tasks in the RTSG model
except those in non-selected alternative branches, ordered in
a feasible sequence from the start node to the goal node.
A feasible plan must fulfill the constraints imposed by the
RTSG model (see Sec. III). For the model in Fig. 1, a feasible
plan is exemplified by (Start, FE2, DL1, RA2, MV 1,
PI1, FE1, DL, Goal). It does not violate precedence or
lock constraints. The completion of the plan depends on the
human task HA1, which belongs to the selected alternative
branch in the RTSG model starting with DL1. Due to
precedence constraints, HA1 can not start, i.e., become
enabled, until DL1 is completed. This makes DL1 the
enabling task of HA1 in this plan. Due to the AND-JoinSync
(&JS) node, MV 1 is not considered completed until HA1
is completed. Therefore, depending on the outcome of task
durations, the robot may need to wait for completion of

HA1 after reaching MV 1. This makes MV 1 the dependent
task of HA1. If a human task is enabled in a plan, there
is always a dependent task, e.g., if the upper &JS node in
Fig. 1 is replaced with an &J node, the goal node becomes
the dependent task of HA1.

B. The duration of a plan

The duration of a plan is referred to as makespan. It
depends on stochastic routing and task durations, Rτ,τ ′ , Aτ ,
Bh, of planned robot tasks and enabled human tasks. From
these inputs, we derive the duration of a plan or sub-sequence
as a random variable without restricting its probability dis-
tribution. To support this derivation, a few definitions are
introduced: A plan is a sequence of robot tasks without
element repetition, defined as P0,n = (τ0, . . . , τn) ⊆ T
where τ0 is the start state, τn the goal state and τ1, . . . , τn−1

are robot tasks. P0,n represents a feasible plan of the RTSG
model, e.g., τ0 = Start, τ1 = DL1, τ2 = RA2, τ3 = MV 1,
etc. Pj,k represents a sub-sequence from τj to τk, where the
first task, τj , represents the start location and the following,
τj+1, . . . , τk, are robot tasks to be performed. For example,
P1,3 = (τ1, τ2, τ3) starts at the location of τ1 and thereafter
performs τ2 followed by τ3. HD(P0,k, τi) ⊆ H represents
the set of human tasks whose dependent task in P0,k is
τi ∈ T , i ≤ k. If a human task, h ∈ H , has an enabling task
τp ∈ P0,k, 0 ≤ p ≤ k, then EI(P0,k, h) = p represents the
sequence index of the enabling task. Similarly, DI(P0,k, h)
represents the sequence index of the dependent task of h
within P0,k. The duration of a sub-sequence Pj,k is indicated
as Kj,k and computed as:

Kj,k = max(D(j, k)) (3)

where D(j, k) is a set of alternative durations between τj and
τk and the max operation is defined in Lemma III.1. D(j, k)
combines the robot’s sequential routing and action durations
with all possible combinations of waiting for human tasks.
Recursion for D(j, k) is given by:

D(j, k) =(D(j, k − 1) +Rτk−1,k
+Aτk) ∪⋃

h∈HD(P0,k,τk)

(D(j,EI(P0,k, h)) +Bh)

where D(j, v) = ∅, ∀v < j. The base case D(j, j) = {C0}
represents a set with one random variable having a constant
value of zero. The sum operator is defined in Def. 11. The
sum of a set of durations D(j, k) and a duration X is element
wise, i.e., D(j, k) + X = {d + X : d ∈ D(j, k)}. A
human task may affect Kj,k if the enabling and dependent
tasks are included in the sub-sequence. Using Eq. 3 is not
always the most efficient way to calculate the duration.
For example, if a new task is appended to a sub-sequence
with a previously known duration, a total re-computation
is not always necessary. By exploiting the structure of a
sequence’s dependencies with human tasks, the duration can
often be computed by adding the durations of consecutive
sub-sequences, i.e., Kj,k = Kj,l + Kl,k, j < l < k. A
sufficient condition for this sum rule is given in Eq. 4. The



condition requires all human tasks enabled in Pj,l, either to
have no dependent tasks in Pl+1,k, or to be completed latest
before the start of τl+1:∧
h∈HE(Pj,l)

(
DT(Pl+1,k, h) = ∅ ∨ p0(KEI(P0,l,h),l) ≥ p100(Bh)

)
(4)

where HE(Pj,k) ⊆ H is the set of human tasks enabled in
Pj,k. DT(Pj,k, h) ∈ T is the dependent task for h ∈ H in
Pj,k. DT(Pj,k, h) = ∅, if the dependent task is elsewhere or
h not is enabled. For later reference, HD(Pj,k) ⊆ H is the
set of human tasks whose dependent tasks are in Pj,k.

C. Extended B&B algorithm

The goal of the planning algorithm is to identify the set of
plans that reaches the goal state with a minimized makespan
in a stochastic sense. Our algorithm extends a previously
developed deterministic B&B algorithm [9] where a breadth-
first forward search from the start state towards the goal state
of an RTSG model is used to compute an optimized plan.
Each search node represents a unique sub-sequence, P0,i,
with a duration, K0,i, where i is the search depth. Children
are identified by searching the RTSG graph for feasible
selections of the next robot task. To limit the search tree
growth, a pruning selection is made among two search nodes
having the same depth, PA

0,i and PB
0,i, if they are considered

equivalent, i.e., they contain the same set of tasks, Eq. 5,
and the last task is the same, Eq. 6. :

{τ : τ ∈ PA
0,i} = {τ : τ ∈ PB

0,i} (5)

τAi = τBi (6)

In essence, equivalent search nodes represent the same state,
but reached with different sequences. Pruning should stop
exploring the search node having the longest duration, i.e.,
the pruning selection criterion. However, this criterion is
unclear when applied on random variables. A naive approach
would be to replace longest duration with longest k-th
percentile of the duration, e.g., pk(K0,i), where the risk-
aware planner selects the targeted k. Unfortunately, our
experiments confirm this criterion is unsafe and may stop
exploring potentially better full-length plans for a given k.
Instead, our pruning selection criterion is based on first-order
stochastic dominance, proven safe in the targeted application
types in Sec. IV-E. When comparing alternative equivalent
sub-sequences during the tree exploration, one sub-sequence
can stochastically dominate another (see Def. 8). This means
it always has a higher chance of providing a longer duration,
for any k, than the other and may therefore be pruned. The
outcome of the tree exploration is a set of goal-reaching
plans, E. From this set, a candidate set, Q ⊆ E, is identified,
containing the plans that do not dominate the set of other
plans:

Q = {P | P ∈ E ∧K ̸⪰SSD {K ′ | P ′ ∈ E \ P}} (7)

where K and K ′ are the makespans of P and P ′, respec-
tively. Using the proposed stochastic set dominance criterion
( ̸⪰SSD) in Eq. 7 instead of first-order stochastic dominance
( ̸⪰) is more stringent, hence every plan in Q will have the

lowest k-th percentile, pk, of all plans in E for at least some
k, which otherwise would not be guaranteed.

D. Risk aware plan selection

It is possible to specify a desired risk level k ∈ [0, 100],
where a lower value increases the risk. From this input, a
candidate plan is automatically selected from Q, having the
minimum makespan reachable with a probability of k, i.e.,
a plan with minimum pk. Specifying a lower k reduces pk
and the probability of making it. Changing k may also lead
to selecting a different candidate plan, which is optimal for
the new k. To complement the risk level, a user decision
may be supported by a visual comparison of PDF curves,
indicating makespan variances of the candidate plans. |Q| =
1 implies there is a single plan having the highest chance
of providing the shortest makespan for any risk level, i.e., a
risk independent optimal plan

E. Safe pruning method

As previously mentioned, the B&B algorithm can prune
nodes at the same search depth if considered equivalent.
However, the equivalence conditions, Eqs. 5-6, are not suf-
ficient when introducing human tasks, potentially running
concurrently with the last robot task. If the search tree
is further explored, children nodes will sometimes include
a dependent task. For these nodes, the concurrent human
task may affect the plan duration differently, depending on
when the human task is enabled and when the dependent
task occurs. This makes a pruning decision solely based on
Eqs. 5-6 unsafe. To remedy this, one additional condition for
equivalence, Eq. 8, is introduced. This condition is fulfilled
if the influence of all enabled human tasks is fully accounted
for in the search node durations, KA

0,i and KB
0,i. If not,

equivalence is still possible for some instances, starting with
identical sub-sequences up to a point where enabling any
human task also includes the corresponding dependent task
in the remaining sequence. The condition above is expressed
as:[ ∧

h∈HE(PA
0,i)

(
DT(PA

0,i, h) ̸= ∅ ∨ p0(K
A
EI(PA

0,i,h),i
) ≥ p100(Bh)

)
∧

∧
h∈HE(PB

0,i)

(
DT(PB

0,i, h) ̸= ∅ ∨ p0(K
B
EI(PB

0,i,h),i
) ≥ p100(Bh)

)]

∨

MI(PA
0,i) = MI(PB

0,i) ∧
MI(PA

0,i)∧
j=0

τAj = τBj

 (8)

whereMI(P0,i) = min{l | HE(Pl+1,i) = HD(Pl+1,i)} (9)

By definition, condition Eq. 8 is true with no human tasks.

Theorem IV.1. Let PA
0,i and PB

0,i be equivalent sequences
and KA

0,i dominate KB
0,i in terms of a first-order stochastic

dominance (FSD), in short, KA
0,i ⪰ KB

0,i. Then, the duration
of any plan starting with sub-sequence PA

0,i dominates the
duration of at least one plan starting with PB

0,i.



Proof. Assume PA
0,n = (τA0 , . . . , τAi , τAi+1, . . . , τ

A
n ) is a fea-

sible plan. We define PB
0,n = (τB0 , . . . , τBi , τAi+1, . . . , τ

A
n ).

Equivalence of PA
0,i and PB

0,i implies conditions Eqs. 5, 6
hold, i.e., the set of completed tasks and the last task τi
are the same, representing the same planning state in the
RTSG model. Therefore, by having an identical continuation
as PA

0,n from τi+1, PB
0,n is also a feasible plan. The proof is

segmented into two distinct cases based on fulfilling the sub-
conditions specified in Eq. 8. In case the first sub-condition
in Eq. 8 is true, it implies condition Eq. 4 is also true for
PA
0,i, P

B
0,i and we can express the duration of corresponding

plans as KA
0,n = KA

0,i + KA
i,n and KB

0,n = KB
0,i + KA

i,n,
respectively. Thereby, both KA

0,n and KB
0,n can be defined as

a monotone, increasing and continuous function of K0,i:

K0,n = K0,i +KA
i,n

KA
0,i ⪰ KB

0,i =⇒ KA
0,n ⪰ KB

0,n in accordance with the
FSD-theorem in [20].

If the second sub-condition in Eq. 8 is true, it implies
PB
0,n = (τA0 , . . . , τAMI, τ

B
MI+1 . . . , τ

B
i , τAi+1, . . . , τ

A
n ) where

MI = MI(PA
0,i) = MI(PB

0,i). By the definition of MI
in Eq. 9, all human tasks enabled within PMI,i also have
their dependent tasks within PMI,i. Some human tasks may
be enabled within PA

0,MI and have their dependent tasks
within PA

i+1,n, thereby running concurrently with PMI,i. All
remaining human tasks are enabled and have their dependent
tasks locally within PA

0,MI or PA
i,n. Considering this structure

of human dependencies, the duration of plans A and B can
be derived from Eq. 3 as:

K0,n = max
(
(KA

0,MI +KMI,i +KA
i,n)∪⋃

h∈HE(PA
0,MI)∩

HD(PA
i+1,n)

(KA
0,EI(P0,MI,h)

+Bh +KA
DI(Pi+1,n,h),n

)
)

where KMI,i becomes included as a single summand in
a single operand of the max operator. Thus, K0,n is a
monotone (non-strictly) increasing and continuous function
of KMI,i. Additionally, the second sub-condition in Eq. 8
implies condition Eq. 4 so that:

KMI,i = K0,i −KA
0,MI

Thus, KMI,i is a monotone, increasing and continuous func-
tion of K0,i. KA

0,i ⪰ KB
0,i =⇒ KA

MI,i ⪰ KB
MI,i =⇒

KA
0,n ⪰ KB

0,n in accordance with the FSD-theorem in [20].

The theorem suggests we can safely prune PA
0,i, since the

exploring of this search node will not result in a better plan
than the best plans starting with PB

0,i.

V. EVALUATION

This section presents an experimental evaluation of the
proposed planning approach, including a use case scenario
for a planning problem, a deterministic benchmark approach,
Monte Carlo simulations, followed by the evaluation results
and their interpretation and a discussion of the outcomes.

Algorithm 1: Monte Carlo makespan computation
function COMPUTEMAKESPAN(P0,n)

i← 1
D0 ← 0
B

′
h = Bh ∀h ∈ HE(P0,0)

while i ≤ n do
B = max{0, B

′
h | h ∈ HD(Pi,i)}

Di = max(Di−1 +Rτi−1,τi +Aτi , B)

B
′
h = Di +Bh ∀h ∈ HE(Pi,i)

i← i+ 1
return Dn

A. Use case scenario

A planning problem, use case A, is modeled with the
RTSG model in Fig. 1, having two human assembly tasks
at different stations, where the robot delivers parts and
fetches completed assemblies. Alternatively, the robot can
perform one or both assemblies at robot assembly stations.
Additionally, there are two robot fetch tasks at different loca-
tions. Routing and task durations are modeled with uniform
distributions. Modeling resolution is 0.1 s. Assuming humans
are somewhat faster than robots, their expected duration is
modeled to be slightly lower but with a higher variance.
An extended version of the planning problem, use case B,
has five additional tasks (DL3, HA3, MV 3, PI3, RA3) by
inserting one extra assembly branch between the AND-Fork
and the AND-Join node pairs in the RTSG model.

B. Deterministic benchmark approach

The rationale of the benchmark approach is to provide
a deterministic version of the probabilistic approach, high-
lighting differences in the outcome if using non-stochastic
values, identical with the expected values of the stochastic
approach, to model routing and task durations. The determin-
istic approach uses the same B&B algorithm but searches for
a single plan with minimized makespan. Sequence durations
are calculated in the same way as detailed in section IV-B,
but using non-stochastic ’+’ and max operators. For pruning,
it uses the same extended criteria for equivalence as detailed
in Eqs. 5, 6 and 8, but with longest duration instead of
stochastic dominance as pruning selection criterion. Since
stochastic dominance does not always occur, the determinis-
tic approach can generally prune more search nodes.

C. Monte Carlo simulations

Monte Carlo simulations are used to verify the correctness
of makespans distributions computed by the incremental
search tree exploration using Eq. 3 combined with the sum
rule Eq. 4. For a single observation of a given plan, task and
routing durations are generated randomly from their modeled
distributions. The observed makespan is computed using
the efficient Alg. 1, which is applicable for a full-length
plan. By generating thousands of makespan observations, a
probability distribution is derived by counting the number of
observations that fall within different intervals. The interval
length is 0.1 s and 5 · 105 simulations are run for each plan.



D. Evaluation results

At the top of Fig. 2, CDFs for the candidate plans of
the stochastic approach are exemplified for use case A. The
vertical axis indicates the k value of a percentile while the
horizontal axis indicates the percentile, i.e., the maximum
makespan for the best k share of outcomes. A risk-tolerant
planner might prefer the red plan, which is the best plan
with a 0-30% chance of making the corresponding percentile
or better. On the other hand, the risk-averse planner might
go for the black plan, which is the best plan with an
85-100% chance of making the corresponding percentile
or better. The green plan is best with a 30-70% chance,
while the blue is best between 70-85%. The second graph
indicates corresponding PDFs, and their expected makespans
as vertical lines, giving an intuition on possible variations.
The third graph indicates the makespan generated by the de-
terministic approach as a solid vertical line. For comparison,
the dotted lines show the PDF and the expected makespan
(see Def. 2) of this plan for the stochastic approach. In this
example, the deterministic plan is also among the stochastic
candidate plans. The bottom graph provides Monte Carlo
distributions of the plans, normalized by dividing interval
counts with the total number of observations. Use case
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Fig. 2: Makespans for use case (A) with two assembly tasks.

B is exemplified in the same way in Fig. 3. Here, the
plan computed by the deterministic approach is not found
among the candidate plans of the stochastic approach. This
is because the deterministic plan stochastically dominates the
set of all other feasible plans according to Def. 9, thereby
excluding it from the candidate set of Eq. 7. In the top graph,
the CDF of the deterministic plan is included as a dotted line.
For every k-value, the percentile of the deterministic plan is
higher than the percentile of at least one of the candidate
plans of the stochastic approach. However, the deterministic
plan does not dominate any candidate plan in terms of first-
order stochastic dominance. In a statistical comparison of
the planning approaches, 100 plans were computed for each
use case with randomized task locations and intervals of
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Fig. 3: Makespans for the extended use case (B).
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Fig. 4: Frequencies of deterministic makespan subtracted
with expected stochastic makespan, for use case A.



Planning approach Number of Number of Among the best
explored nodes pruned nodes stochastic plans
A B A B A B

Stochastic B&B 773 16995 251 6262 (100%) (100%)
Deterministic B&B 594 12116 259 5104 65% 47%

TABLE I: Statistic comparison of the planning approaches.

input distributions. Table I presents the average number of
explored and pruned nodes and indicates how many of the
deterministic plans were found among the candidate plans
of the stochastic approach. In Fig. 4, a histogram presents
frequencies of makespans of the deterministic approach
subtracted by expected makespans of the stochastic approach,
expressed as several standard deviations, for use case A. A
negative value means the deterministic makespan is shorter
than the expected stochastic makespan.

E. Evaluation discussion

The Monte Carlo simulations in the bottom graphs of
Figs. 2 and 3 are, if the noise is omitted, very similar to the
PDFs in the corresponding figures, thereby supporting the
correctness of the plan durations computed by the proposed
planning approach. A large share of the PDFs are quite
asymmetric, highlighting the advantage of not limiting the
type of probabilistic distribution that can be represented. In
this study, the deterministic approach tends to underestimate
the makespan, as indicated in Fig. 4 and exemplified in the
3rd graph of Figs. 2, 3. This tendency magnifies the inherent
problem of the deterministic approach, where a computed
plan is associated with a more or less unknown risk.
The stochastic approach considers this risk while searching
for the best plans, providing information on how much a
makespan can vary and suggesting the best plan with respect
to the planner’s willingness to risk. The deterministic plan is
not always among the best plans of the stochastic approach,
here in 65% and 47% of the runs (Table I). This highlights
the risk of computing an inferior plan by not considering
uncertainties. The stochastic approach needs to explore 30%
and 40% more nodes due to the safe but more restrictive
pruning selection criterion. Still, the potential for pruning in
the proposed approach is significant.

VI. CONCLUSION

This paper proposes a novel methodology to compute
an optimized collaborative plan while considering uncertain
task durations and the risk willingness of a human planner.
Relevant planning problems modeled with a Robot Task
Scheduling Graph (RTSG) accommodate uncertainties by
representing them as random variables. These are effectively
tackled using a Branch-and-Bound (B&B) algorithm, in-
corporating a safe pruning strategy grounded in first-order
stochastic dominance. The result is a set of the best plans
for all risk levels, with makespans represented as probability
distributions, empowering planners to make informed deci-
sions based on their situational risk tolerance. Future research
includes the exploration of techniques for learning input
distributions dynamically. Additionally, we foresee extending

our methodology to consider other types of risks and handle
more complex scenarios, such as centralized or decentral-
ized multi-agent task allocation, agent load restrictions and
intricate dependencies between tasks.
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