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Abstract—This manuscript presents a novel distributed greedy
framework applicable to a network of Thermostatically Con-
trolled Loads (TCLs) to desynchronize the network’s aggregated
power consumption. Compared to the existing literature, our
proposed framework offers two distinct novelties. Firstly, our
proposed algorithm relaxes the restrictive assumptions associated
with the communication graph among TCLs. To elaborate, our
algorithm only requires a connected graph to execute control,
a condition less demanding than its counterpart algorithms that
mandate a star architecture, K-regular graphs, or undirected
connected graphs. Secondly, a significant novel feature is the
relaxation of the obligation to share private information, such as
each unit’s local power consumption and appliance temperatures,
either with a central coordinator or neighboring TCLs. The
findings presented in this paper are validated through simulations
conducted over a network comprising 1000 TCLs.

Index Terms—Demand Response, Distributed Optimization,
Greedy Control, Multi-agent Systems, Thermostatically Con-
trolled Loads.

I. INTRODUCTION

Power networks and microgrids are experiencing a con-
tinuous increase in the installation of Renewable Energy
Sources (RESs). These sources offer significant advantages
in reducing environmental pollution and mitigating climate
change. However, their efficiency in contributing to power
system inertia is limited. Consequently, the vulnerability of
power networks and microgrids to frequency variations rises as
the penetration of RESs increases. Among various strategies to
address this challenge, Demand-side Response (DSR) appears
particularly promising [1], [2]. DSR has the potential to offer

This work was supported in part by the Project “Network 4 Energy
Sustainable Transition–NEST” funded under the National Recovery and
Resilience Plan (NRRP), (Mission 4, Component 2, Investment 1.3–Call for
tender No. 1561 of 11.10.2022), Ministero dell’Università e della Ricerca
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{mojtaba.kaheni,alessandro.papadopoulos}@mdu.se

E. Usai and M. Franceschelli are with DIEE, University of Cagliari, 09123
Cagliari, Italy. Emails: {mauro.franceschelli, elio.usai}@unica.it

Mauro Franceschelli is the corresponding author.

cost-effective solutions without causing substantial changes to
the Quality of Service (QoS).

A significant proportion of residential energy consumption
is attributed to Thermostatically Controlled Loads (TCLs),
including electric water heaters, refrigerators, air conditioners,
and more. Consequently, any residential DSR initiative should
strategically consider this substantial potential to achieve its
objectives. Studies conducted on TCL-based DSR programs in
regions such as Germany [3], Great Britain [4], Sardegna [5],
and others underscore the fundamental role TCLs play in the
success of DSR.

TCL-DSR has been a prominent research topic for the past
few decades. The first scheme to harness the potential of
TCLs in DSR was direct load control [6], [7] where utilities
have the ability to remotely manage customers’ TCLs. With
recent advancements in multi-agent systems and distributed
control, centralized control frameworks have given way to
distributed control methods. These methods make decisions
in a distributed manner, relying on local measurements and/or
estimations of QoS.

The terms distributed control and multi-agent often denote
distributed decision-making in the literature of TCL-DSR. In
this context, each appliance interacts with a central unit. This
central unit collects data and updates local setpoints [8]–
[11]. However, the requirement of a central aggregator ren-
ders the entire system susceptible to a single-point denial-
of-service (DoS) attack. If the central aggregator becomes
non-operational, the whole network will cease functioning.
Moreover, customers’ privacy might be compromised if agents
transmit their real-time local and private power consumption
information to a central unit. To address these limitations, it
becomes imperative to eliminate the need for an aggregator
and instead consider the adoption of fully distributed algo-
rithms. Such approaches, as seen in [12]–[15], involve agents
solely exchanging information with their neighboring TCLs.

According to ENTSO-E [16], strategies like those outlined
in [8], [17], [18] that involve adjusting the TCLs’ setpoints
are no longer considered legit. The remaining feasible means
of control include altering the typical hysteresis cycle of
the appliances’ thermostats while keeping their setpoints un-
changed. This objective can be achieved either by directly
modifying the hysteresis boundaries as proposed in [11] or
by temporarily disconnecting and reconnecting the TCLs at
appropriate intervals, as demonstrated in strategies such as [9],
[14]. However, it’s worth noting that modifying the hysteresis
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bounds of commercially available and pre-installed TCLs is
not feasible. Therefore, although this method aligns with
ENTSO-E regulations, it does not appear practical.

Identifying the dynamics of TCLs using an LTI model is a
common practice in the literature. However, LTI models can
be inaccurate for practical implementation [19] due to dis-
turbances like water withdrawal and seasonal changes. To the
best of our knowledge, only a few recent papers have explored
model-free algorithms, such as those in [9], [15]. In [9], a
priority-based optimization method is used to desynchronize
power demand by controlling TCLs. The algorithm leverages
data on the TCL temperatures and duty cycles, dispensing with
the explicit use of the temperature model. Subsequently, each
TCL autonomously takes actions based on its score and the
optimization results. In [15], two model-free and distributed
algorithms are proposed for tracking the desired load. The
first algorithm, applicable in K-regular graphs, involves each
agent collecting real-time power consumption data from its
neighbors to make control decisions. The requirement of a
K-regular graph is subsequently relaxed using a dynamic
consensus protocol, which estimates the mean network power
consumption. In this paper, we also introduce a model-free
scheme. The primary distinctions between this paper and the
approaches presented in [9] and [15] are outlined below:
• The algorithm in [9] necessitates an aggregator within its

framework. In contrast, the algorithm proposed in this article
is fully distributed, wherein each agent communicates solely
with its neighboring agents.

• Both algorithms introduced in [15] require the exchange
of real-time power consumption data among neighboring
agents, potentially raising privacy concerns. In contrast,
our proposed algorithm involves the transfer of only the
Lagrangian multipliers among agents, thus maintaining the
agents’ privacy.

• Both [9] and [15] assume the availability of temperature
measurements from thermostatically controlled parameters
for control purposes. This assumption implies a requirement
for smart appliances. As a result, these algorithms are not
suitable for off-the-shelf TCLs. In contrast, our proposed
method eliminates this requirement and is compatible with
off-the-shelf appliances.

A. Statement of contributions

In this article, we present a privacy-preserving distributed
greedy algorithm designed to desynchronize power consump-
tion within a network of TCLs. Our model-free approach offers
a straightforward yet highly efficient and practical solution.
The main contributions of this article are as follows:
• Our proposed algorithm is applicable to off-the-shelf TCL

appliances.
• We present a novel formulation of the desynchronization

problem for a network of TCLs based on an objective
function only indirectly related to decision-making and
show how the Lagrange multipliers corresponding to our
optimization problem can be used to make control decisions.

• The proposed algorithm ensures privacy, i.e., consumption
and temperature data is not sent outside the devices.

• The approach is fully distributed and based only on local
direct interactions between peer and anonymous appliances.

B. Structure of the paper

Section II reviews some fundamental concepts in multi-
agent systems. The problem statement of this study is pre-
sented in Section III. Section IV details the proposed privacy-
preserving, greedy, and fully distributed TCL-DSR algorithm.
The effectiveness of our proposed scheme is showcased
through simulation results in Section V. Concluding remarks
are provided in Section VI.

II. PRELIMINARIES

Consider a network composed of n TCLs that can interact.
In the remainder of the manuscript, we refer to each TCL
as an agent or node. Let V = {1, 2, . . . , n} represent the
set of agents in the network and E ⊆ {V × V} be the set
of communication links (or edges) among the agents, i.e.,
if agent i sends information to j, then (i, j) ∈ E . Such a
network is thus modeled as a graph G = (V, E), including
the sets of nodes V and edges E . We denote the set of
in-neighbors of agent i as N in

i = {j ∈ V \ {i}| (j, i) ∈ E}.
Similarly, the set of out-neighbors of agent i is denoted as
N out

i = {j ∈ V \ {i}| (i, j) ∈ E}. A graph G is called K-
regular if ∀i ∈ V , |N out

i | = |N in
i | = K, i.e. each

agent has K in-neighbors and K out-neighbors. A graph
G is defined undirected if the communication links are
bidirectional, i.e., if (i, j) ∈ E implies that (j, i) ∈ E ,
and is defined directed otherwise. A path πi,j between
nodes i and j is a sequence of consecutive edges, start-
ing from node i and ending in node j, i.e., it is com-
posed of the edges {(i, v1) , (v1, v2) , . . . , (vm, j)} ⊂ E , where
{i, v1, v2, . . . , vm, j} ⊂ V . A directed graph G is defined as
strongly connected if there exists a directed path between
each pair of nodes (i, j) in V . In case each edge (j, i) ∈ E
is associated with a positive weight, aij > 0, then the
graph G is called weighted. The matrix A = [aij ] ∈ Rn×n

collecting the weights is defined as adjacency matrix, i.e.,
aij > 0 if (j, i) ∈ E and aij = 0 otherwise. A square
matrix A ∈ Rn×n with non-negative entries and with each
row (column) summing to 1 is called row (column) stochastic.
Moreover, A is called doubly stochastic if it is jointly row
and column stochastic. Finally, if the edge weights aij(k)
are time-varying, then the weighted graph is time-varying as
well and is denoted by G(k) = (V, E(k)). Let EB(k) be the
aggregated set of edges E (k) in the time interval [k0, k0+B),

i.e., EB(k) =
B−1
∪

k=0
E (k0 + k). For k0 ∈ N, a time-varying

graph G(k) is defined as jointly strongly connected if there
exists a finite positive integer B such that the graph (V, EB(k))
is strongly connected for all finite k0.

III. PROBLEM STATEMENT

Consider a network of TCLs interacting with each other.
Assume that each agent i represents a TCL with its power
outlet plugged into a Smart Power Socket (SPS) adaptor. These
SPSs are equipped with processing units and communication
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Fig. 1. Reverse hysteretic control of thermostats in TCLs (top), and cycles
of thermostatically controlled temperatures within a bound centered on T set

i
(bottom). Red and blue lines denote ON and OFF conditions, respectively.

capabilities. The network topology at each time step tk ∈ R+

can be described by the graph G(tk) = (V, E(tk)), where
E(tk) ⊆ {V × V} represents the set of edges that indicate
interactions among agents.

Each SPS can monitor the active power pi(tk) ∈ R+

consumed by the associated TCL. Additionally, it can control
the power supply to the TCL by manipulating its internal
switch state si(tk) ∈ {0, 1}. For instance, si(tk) = 1 signifies
that the ith TCL is connected to the power supply. Conversely,
si(tk) = 0 indicates that the ith TCL is disconnected, resulting
in pi(tk) = 0. Let Pi ∈ R+ represent the nominal power of the
TCL. Then, the absorbed power at time tk ≥ 0 (with k ∈ N0)
is approximated as:

pi(tk) = Pi · si(tk) · hi(tk), (1)

where hi(tk) denotes the internal thermostat state of the ith

TCL. For water heaters and radiators, the thermostat state is
typically updated using a reverse hysteretic control defined as
follows:

hi(tk+1) :=


0 if Ti(tk) > Tmax

i , (2a)
1 if Ti(tk) < Tmin

i , (2b)
hi(tk) otherwise, (2c)

where Ti(tk) ∈ R is the temperature of TCL i, and Tmax
i ≥

T set
i ≥ Tmin

i > 0 denote the hysteresis window, and T set
i

represents the adjusted setpoint of TCL i as set by its owner.
On the other hand, in refrigerators or cold flow conditioners,
the high and low conditions in (2a)-(2b) are reversed. Fig. 1
illustrates the hysteresis behavior of the thermostat in TCLs, as
introduced in (2a)-(2c), along with cycles of thermostatically
controlled temperatures within a range centered on T set

i when
no control action takes place (i.e., si(tk) = 1 for all tk ≥ 0).
The initial thermostatically controlled temperature, Ti(0), is
lower than Tmin

i in Fig. 1. Therefore, according to (2b) and
since we assumed si(0) = 1, the TCL consumes its rated
power, Pi, as per (1). The TCL will remain ON until it reaches
the thermostat’s upper limit, Tmax

i . Subsequently, the TCL
switches off until the temperature drops to Tmin

i , and the
process repeats.

If Tmin
i < Ti(0) < Tmax

i , the internal thermostat relay

toff

Tmin
i

T set
i

Tmax
i

toff Time

0

Pi

Fig. 2. Shifting the normal power consumption intervals of Type1 TCLs
(shown by the dashed line) using control signal (3).

state of the TCL in the first time step after plug-in, denoted
as hi(1), is equal to hi(0). Some TCLs have hi(0) = 1,
while others have hi(0) = 0. We categorize these two
types of TCLs as Type1 (with hi(0) = 1) and Type2 (with
hi(0) = 0). This property enables a control room to adjust
the power consumption intervals of TCLs by appropriately
switching OFF and then ON the SPS, all while maintaining
the thermostatically controlled temperature within the range
[Tmin

i , Tmax
i ]. For example, the control signal

si(tk) =

{
0 if tk = toff,

1 otherwise.
(3)

could be applied to a Type1 TCL. This control shifts the TCL’s
power consumption, as illustrated in Fig. 2.

For simplicity, let us consider the power consumption of
two TCLs. As depicted in the left column of Fig. 3, an
unfortunate coincidence can occur where these two TCLs run
unnecessarily simultaneously, leading to an increased peak
load. A high peak load is undesirable in power systems as
it necessitates investments in infrastructure, contributes to en-
vironmental pollution by requiring the operation of inefficient
backup power plants, and raises power costs in the electricity
market, which negatively impacts both residential and indus-
trial customers. Therefore, the preference is to desynchronize
the power consumption of TCLs. This is illustrated in the
second column of Fig. 3, where desynchronizing TCL loads
reduces the peak load.

Now, let’s discuss the minimum peak load without changing
the QoS or, equivalently, without altering power consumption.
Consider a sufficiently large time span denoted by K. Let’s
define the duty cycle of each TCL i as dci ∈ [0, 1], representing
its ON ratio over the time span K,

dci =

∑
k∈K

si(tk) · hi(tk)

K
. (4)

Since time shifts generally do not change the duty cycle
value, we choose not to restrict K to a specific time span.
However, it should be sufficiently large to mitigate the effects
of noise and disturbances that might alter the actual duty
cycle of an appliance in short intervals. In this article, we
assume that dci is constant in control. To find dci, the values
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Fig. 3. Individual (top) and aggregated (bottom) power consumption of two TCLs. The left column represents the worst-case scenario where TCLs
simultaneously consume energy within an interval. The second column depicts a favorable scenario in which the power consumption of TCLs does not
overlap. The third column illustrates the best achievable scenario in which the power consumption of TCLs is spread out over the entire time domain.

of si(tk) and hi(tk) should be measured over a sufficiently
large time span K. These measurements are conducted over
an uncontrolled TCL i, as the value of dci is necessary
for executing our proposed control algorithm. It is worth
mentioning that although we assume dci to be constant in
short horizons, it could be sensible to update dci occasionally,
e.g., every week or month.

From (1), the average power consumption of TCL i over
time span K is∑

k∈K pi(tk)

K
=

Pi ·
∑

k∈K si(tk) · hi(tk)

K
(5)

Therefore, according to (4), Pi · dci represents the average
power consumption of TCL i over the same time span, K.

As shown in the third column of Fig. 3 in a simple example
of two TCLs, the lowest peak load involves spreading the
power consumption across the entire time domain.

Let’s define the total instantaneous absorbed power associ-
ated with the network of TCLs as

P t(tk) =

n∑
i=1

pi(tk). (6)

In our problem, we assume that switching SPSs ON and OFF
is the only control action. In other words, si(tk) is the control
signal, and our goal is to maintain P t(tk) close to the desired
aggregated power, which leads to the lowest peak load, given
by:

P t
d =

n∑
i=1

dci · Pi, (7)

while ensuring the privacy of customers.

IV. PRIVACY-PRESERVING DISTRIBUTED GREEDY
CONTROL FRAMEWORK

To obtain the necessary information for implementing our
proposed algorithm, we first introduce a distributed optimiza-
tion problem. The solution of this problem is not going to
be used for resource allocation but rather to determine, in a

distributed and privacy-preserving manner, whether the current
accumulated power consumption of the TCLs’ network is less
than, or greater than P t

d . Consider the following optimization
problem:

minimize
n∑

i=1

(xi − pi(tk))
2
,

subject to:
n∑

i=1

(xi − dci · Pi) ≤ 0.
(8)

where xi is a virtual decision variable. It’s important to empha-
size that xi does not correspond to a physical parameter of the
TCLs. Consequently, there is no need to impose boundaries on
xi. Problem (8) relates only indirectly to our main objective,
which is finding an appropriate control signal si(tk), as it
doesn’t include si(tk), and in addition, it doesn’t explicitly
address the tracking of the desired aggregated power in (6).
However, we demonstrate how one can determine whether the
current accumulated power consumption of the TCLs’ network
is less than, or greater than P t

dwhen applying primal-dual
methods to solve (8). Consider the Lagrangian function as

Λ(x, λ) =

n∑
i=1

Λi(xi, λ) = (9)

n∑
i=1

{
(xi − pi(tk))

2
+ λ (xi − dci · Pi)

}
,

where λ ∈ R+ is the Lagrange multiplier. Therefore, the dual
function is

φ(λ) = min
x∈Rn

{Λ(x, λ)} . (10)

where x = [x1, x2, . . . , xn]
T ∈ Rn. Eq. (10) can be written as

φ(λ) =

n∑
i=1

φi(λ) =

n∑
i=1

min
xi∈R

{Λi(xi, λ)} (11)

Therefore, the dual of (8) can be expressed as

max
λ∈R+

min
x∈Rn

Λ (x, λ) = max
λ∈R+

n∑
i=1

φi (λ), (12)
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In this paper, we utilize the constraint-coupled distributed
optimization algorithm introduced in [20], which is based
on dual decomposition, to solve (8). Through this approach,
we determine whether the trivial optimal solution of (8),
xi = pi(tk) for all i ∈ V , satisfies the coupling constraint.
Notably, if the trivial solution meets the coupling constraint
in (8), then by substituting xi with pi(tk) in the coupling

constraint,
n∑

i=1

pi(tk) ≤
n∑

i=1

(dci · Pi), and considering (6) and

(7), it leads to the inequality P t(tk) ≤ P t
d . Conversely, if

n∑
i=1

pi(tk) >
n∑

i=1

(dci · Pi), then the trivial optimal solution of

(8), xi = pi(tk) for all i ∈ V , is no longer valid.
Let λi(tk) denote the Lagrangian multiplier associated with

agent i at time step tk. By implementing the algorithm
introduced in [20], if λi(tk) converges to 0, agent i can infer
that the coupling constraint is satisfied by the trivial optimal
solution of (8), xi = pi(tk) for all i ∈ V , and consequently,
P t(tk) < P t

d . Otherwise, if λi(tk) > 0, then agent i infers that
the aggregated power consumption exceeds the threshold, i.e.,
P t(tk) > P t

d . Thus, intuitively, each agent i takes a control
action (switching on or off the SPS) based on the value of
λi(tk). λi(tk) > 0 indicates that the total aggregated power
consumption exceeds the desired threshold, while λi(tk) = 0
signifies that the total aggregated power consumption is at or
below the desired threshold, as defined in (7).

Remark 1. The convergence rate of the distributed resource
allocation algorithm introduced in [20] is O(log(k)). Several
methods in the literature utilize primal-dual perturbation al-
gorithms to solve (8), such as [21]–[23], which may exhibit
better convergence rates. However, we have selected [20] for
our framework due to the following reasons:
• In both [21], [22], information related to the primal prob-

lem is exchanged among agents, potentially raising privacy
concerns.

• In [21], [22], each agent needs to be aware of the coupling
constraint within the primal problem.

• The application of algorithms such as [21]–[23] requires
the existence of a known Slater point known to all agents.
In contrast, in [20], only the existence of such a point is
necessary.

• While the communication network is assumed to be time-
invariant in [23], it can be time-varying in [20]. ■

The distributed resource allocation solver in [20] requires
convexity and zero duality gap, which are satisfied in (8), and
the graph representing the network of TCLs should satisfy the
following necessary assumptions:

Assumption 1. There exists a constant 0 < µ < 1 such that
for all i, j ∈ V and k ≥ 0, aii (k) ≥ µ and either aij (k) = 0
or aij (k) ∈ [µ, 1). □

Assumption 2. The graph representing the network of TCLs is
jointly strongly connected and its adjacency matrix is doubly
stochastic. □

Algorithm 1 presents our distributed framework for desyn-
chronizing the aggregated power consumption of the network.
First, (8) is solved. Since convergence to the consensus value

Fig. 4. Block diagram of the network connecting TCLs to implement
Algorithm 1.

of λ is asymptotic, we choose a sufficiently small threshold,
denoted as ϵ > 0, and consider values less than this threshold
as zero. As discussed earlier, the consensus value of λi(tk)
allows us to determine whether P t(tk) < P t

d or P t(tk) > P t
d .

Next, appropriate control actions are applied. λi(tk) < ϵ,
implies P t(tk) < P t

d . Therefore, if hi(tk) = 0 and λi(tk) < ϵ,
then si(t

+
k : tk + γi) = 0. This indicates that the SPS

disconnects the power for γi seconds in Type 1 TCLs. Here,
γi represents the required time for resetting the internal
thermostat. This control action turns ON the Type1 TCLs if
Ti(tk) falls within the range [Tmin

i , Tmax
i ].

Elseif λi(tk) > ϵ and hi(tk) = 1, the SPS disconnects
the power of Type2 TCLs for a duration of γi seconds, as
specified in lines 5 to 7 of Algorithm 1. This action turns
OFF the TCLs if Ti(tk) falls within the range [Tmin

i , Tmax
i ].

The block diagram depicting the network connecting TCLs to
implement Algorithm 1 is shown in Fig. 4.

Algorithm 1 (Asynchronously implemented within each TCL
i ∈ V)

1: Solve (8) and find λi(tk)

2: if i ∈ Type1 TCLs then
3: if hi(tk) = 0 AND λi(tk) < ϵ then
4: si(t

+
k : tk + γi) = 0

5: if i ∈ Type2 TCLs then
6: if hi(tk) = 1 AND λi(tk) ≥ ϵ then
7: si(t

+
k : tk + γi) = 0

Remark 2. It’s important to note that solving (8) using the
algorithm introduced in [20] only requires agents to share
their estimates of Lagrangian multipliers. The Lagrangian
multiplier does not encompass any private details about local
states, power consumption, or appliance temperatures. As a
result, customer privacy is preserved during the execution of
Algorithm 1. Interested readers can refer to [20] for an in-
depth privacy analysis of the distributed resource allocation
solver selected in this article. . ■

Remark 3. While security concerns extend beyond the focus
of this work, it’s important to acknowledge that adversaries or
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system failures can potentially disrupt distributed optimization
algorithms [24]. It is noteworthy that Algorithm 1 can enhance
resilience against cyberattacks or failures affecting a subset
of TCLs, particularly when a resilient distributed resource
allocation algorithm, such as the algorithms proposed in [25],
[26], are employed to solve (8). ■

In this step, let’s discuss and compare the communication
burden and scalability of Algorithm 1 with approaches like
[9], which require a central server to aggregate agent data.
In Algorithm 1, solving (8) to a certain degree using a
distributed resource allocation algorithm is necessary, and
this process inherently demands communication among agents
over iterations.

Let mtk represent the count of iterations needed by the
distributed resource allocation algorithm to address (8) within
the interval (tk−1, tk). Accordingly, the cumulative num-
ber of transmitted data packets for control at tk would be

mtk

n∑
i=1

|Nout
i |. In contrast, star networks generally entail

agents only sending information to the central server and
receiving control decisions from it. Hence, the total transmitted
data packets in a single control step amount to 2n. Recall that
for a graph representing the network, strong connectivity is a
requirement. Consequently, |Nout

i | ≥ 1 holds for all i ∈ V .
Hence, mtk > 2 indicates that executing Algorithm 1 leads to
a greater overall package transfer compared to typical server-
based methods. However, the advantage of Algorithm 1 lies
in the fact that communication is distributed across all agents
within the network. In Algorithm 1, each agent i is responsible
for compiling |N in

i | data packages per iteration, irrespective
of the total number of agents, denoted by n. Conversely, in a
star-graph topology, a server must receive and analyze n data
packages, which could potentially pose scalability challenges
and result in a substantial communication load concentrated
at a single point.

Subsequently, we present a formal proof that the execution
of Algorithm 1 effectively aids in desynchronizing the power
consumption of appliances.

Theorem 1. Let Assumptions 1 and 2 hold. Let us define the
aggregated absolute desynchronization error by

e(K) =

K∑
tk=0

∣∣P t(tk)− P t
d

∣∣ (13)

and assume that ec(K) and eu(K) represent the desynchro-
nization error in a network controlled by Algorithm 1 and an
uncontrolled network, respectively. Then,

ec(K) ≤ eu(K).

Proof. As previously discussed, λi converges to 0 for all i ∈ V
when P t(tk)− P t

d ≤ 0, and λi > 0 for all i ∈ V when
P t(tk)− P t

d > 0. According to line 3 of Algorithm 1, the
control action and activation of the TCLs occur when λi(tk) <
ϵ, which is equivalent to P t(tk)− P t

d < 0.
Applying Algorithm 1 does not alter the network’s energy

demand. Consequently, if Algorithm 1 turns on a TCL during
a period when P t(tk)− P t

d < 0, the corresponding energy

TABLE I
WATER HEATER MODEL PARAMETERS

ρ Water density 1 [kg/dm3]
cp Water specific heat 4186 [J/(C◦kg)]
Ri Thermal resistance 0.0488 [m2C◦/W]
Si Tank surface 0.536 [m2]
Vi Tank volume 100 [dm3]
Pi Heater power 1500 [W]

consumption must be offset by reductions from other time
steps, such as tr. When P t(tr)− P t

d < 0, it does not alter the
desynchronization error. However, if P t(tr)− P t

d > 0, the
desynchronization error is decreased. This results in:

ec(K) ≤ eu(K).

A similar argument applies when P t(tr)− P t
d < 0.

V. NUMERICAL SIMULATION

To evaluate Algorithm 1, we consider a network of
n = 1000 water heaters, whose temperatures Ti(tk) evolve
according to the model described in [27].

Ti(tk+1)=AkTi(tk)+Bk

(
αiT

r
i +βi(tk)T

in
i +γihi(tk)si(tk)

)
,

Ak = e−(αi+βi(tk))∆t, Bk =

(
1− e−(αi+βi(tk))∆t

)
αi + βi(tk)

, (14)

αi =
Si

ρcpRiVi
, βi(tk) =

wi(tk)
Vi

, γi =
cpPi

ρVi
, (15)

where si(tk) is the control input designed to desynchronize
the power consumption of TCLs while ensuring that Ti(tk)
remains within the range of Tmin

i = 50◦C and Tmax
i = 60◦C.

T r
i = 20◦C represents the room temperature, and wi(tk)

accounts for an unknown disturbance simulating the cold
water refill process within each water heater following water
withdrawal. Additionally, T in

i = 15◦C stands for the inlet
cold water temperature. We assume that the graph representing
the communication network of water heaters is directed and
randomly generated 100-regular.

For our simulation, we assume that all water heaters are
identical, sharing the model parameters outlined in Table I. At
the beginning of the simulation, the initial temperatures TCLs
are randomly chosen from the interval [Tmin

i , Tmax
i ], with half

of them having an initial thermostat state of hi(0) = 1.
The disturbance wi(tk) is modeled as a specially crafted

stochastic process to replicate increased hot water demand
during peak hours, as depicted in Fig.5. Lastly, we model calls
to Algorithm 1 as a Poisson point process with an average
rate of 20 calls per second. These calls are evenly distributed
between Type1 and Type2 TCLs.

We compare our simulation results with the priority-based
control algorithm introduced in [9] to evaluate our proposed
algorithm. The algorithm proposed in [9] shares similarities
with our approach as it is also model-free and aims to
desynchronize the power consumption of TCLs in a network,
same as the objective of Algorithm 1. However, in the priority-
based control method outlined in [9], all water heaters’ energy
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Fig. 5. Top: Aggregated daily hot water demand for the considered network
of water heaters. Bottom: Daily water demand for a generic water heater.
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Fig. 6. Aggregated power consumption of TCLs’ network by implementing
Algorithm 1, priority-based control [9], and uncontrolled network.

consumption must be transmitted to a central server at each
time step. Consequently, the server can readily determine
whether the aggregated network power consumption surpasses
the average at any given time step. This ease of access enables
the server to apply appropriate control actions effectively. In
contrast, our proposed algorithm equips water heaters with
data from only a limited subset of neighboring appliances as
depicted in Fig. 4. Furthermore, these water heaters do not
receive private information concerning their neighbors’ power
consumption. As a result, an individual water heater cannot
directly ascertain the aggregated energy consumption of the
TCL network.

Given these explanations, we do not anticipate achieving
superior results compared to the priority-based control method.
Our objective, instead, is to present relatively comparable
results while incorporating scalability, privacy preservation, a
fully distributed architecture, and compatibility with existing
appliances. In Fig. 6, a comparison is presented between
the aggregated power consumption of the uncontrolled TCL
network, the TCL network controlled by the priority-based
method, and the network implementing Algorithm 1.

As depicted in Fig. 6, during the time frame from 3 am to
6 am, the aggregated power consumption remains below the
average for both the priority-based control and Algorithm 1.
This outcome arises due to the preservation of customers’
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Fig. 7. Comparison of the aggregated absolute desynchronization error index
defined in (13) by implementing Algorithm 1, priority-based control [9], and
uncontrolled network.

authority to set the temperature of their respective appliances.
Consequently, water heaters avoid increased consumption to
avoid violating the upper temperature limit Tmax

i during off-
peak hours.

Fig. 7 compares the aggregated absolute desynchronization
error index, as defined in (13). It is evident that the imple-
mentation of Algorithm 1 leads to a substantial reduction in
the error index compared to the uncontrolled scenario, and the
reduction is relatively similar to that achieved by the priority-
based control method.

VI. CONCLUSIONS

This paper introduces a novel model-free, privacy-
preserving, asynchronous greedy control framework designed
to desynchronize the power consumption of TCLs within a
fully distributed architecture. In our framework, agents exclu-
sively share their Lagrange multiplier estimates, preserving
the confidentiality of agents’ private data regarding power
consumption and temperature. We establish a distributed opti-
mization problem where the consensus value of the Lagrange
multiplier, once solved, provides agents with meaningful infor-
mation to guide appropriate control actions. In the simulation
section, we benchmark our proposed method against a priority-
based control approach, feasible only within a star architecture
requiring agents to transmit private data to a central server.
Our simulation results showcase the potential of achieving
comparable outcomes while incorporating critical attributes
such as scalability, privacy preservation, a fully distributed
architecture, and adaptability to off-the-shelf appliances.
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