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Abstract
The edge-cloud computing continuum effectively uses fog and cloud servers to 
meet the quality of service (QoS) requirements of tasks when edge devices cannot 
meet those requirements. This paper focuses on the workflow offloading problem 
in edge-cloud computing and formulates this problem as a nonlinear mathematical 
programming model. The objective function is to minimize the monetary cost of 
executing a workflow while satisfying constraints related to data dependency 
among tasks and QoS requirements, including security and deadlines. Additionally, 
it presents a genetic algorithm for the workflow offloading problem to find near-
optimal solutions with the cost minimization objective. The performance of the 
proposed mathematical model and genetic algorithm is evaluated on several real-
world workflows. Experimental results demonstrate that the proposed genetic 
algorithm can find admissible solutions comparable to the mathematical model and 
outperforms particle swarm optimization, bee life algorithm, and a hybrid heuristic-
genetic algorithm in terms of workflow execution costs.
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1 Introduction

With the prosperity of the internet of things (IoT), the edge-cloud computing 
continuum has received considerable attention in the business and research 
communities as it integrates fog/cloud servers to meet the QoS requirements of 
the user demands, such as deadlines [1, 2]. This computing paradigm provides 
distributed and scalable computing resources to address some of the challenges 
of cloud computing, such as high latency, unpredictable bandwidth, and security 
issues, by locating fog servers closer to the edge devices [3]. When computing 
demands extend beyond an edge device, real-time tasks can be offloaded to the 
fog servers located closer to the edge devices which leads to reducing the latency 
associated with sending data [4, 5]. However, the storage and computing capacity 
of fog servers are limited, and compute-intensive tasks should be offloaded to 
the cloud to reduce the computational burden of fog servers. This computing 
paradigm provides additional computational power, storage capacity, scalability, 
and resilience which are crucial requirements for various systems such as 
industrial IoT [6], smart healthcare [7], smart grids [8], smart cities [9], flying 
vehicles such as drones [10], and autonomous vehicles [11]. In these systems, as 
the level of autonomy increases, more computationally intensive tasks need to be 
performed, and edge devices alone are insufficient to meet the requirements of the 
tasks.

Workflow offloading is a prominent problem in edge-cloud computing. 
A workflow refers to a set of tasks with data dependencies between them that 
perform a specific function. Workflow offloading refers to selecting appropriate 
computing resources from the fog or cloud layer to execute workflow tasks while 
meeting their QoS requirements and data dependencies [12]. QoS requirements 
in workflow scheduling refer to the quality of service criteria that must be met 
for tasks. In this paper, meeting the deadline of a workflow and the security 
requirements of tasks are considered as QoS requirements. Fog servers are located 
closer to the edge devices and users; by offloading tasks with high-security 
concerns to the fog server, sensitive data do not need to travel through the entire 
network to reach a central cloud server. It reduces the risk of unauthorized access 
during transmission. In some cases, compliance requirements necessitate that 
certain types of data remain within a specific geographic location or under strict 
control. Fog computing enables compliance with these regulations by keeping 
high-security data local, rather than transmitting it to a distant cloud server. 
Therefore, the unique advantages of fog computing, such as reduced transmission 
risks, localized control, and compliance with privacy regulations, make it an 
appropriate computing layer for executing tasks with high-security requirements 
[3, 13–15]. Workflow offloading can also consider the security requirements 
of tasks, allowing tasks with high-security concerns to be offloaded to the fog 
servers, while tasks with low-security concerns can be offloaded to the cloud.

Offloading tasks to the proper computing resources in the fog or the cloud 
layer have been a challenge. Such task offloading significantly impact on meeting 
QoS requirements of tasks and utilizing the limited capacity of fog servers. To 
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solve a workflow offloading problem, heuristic and meta-heuristic algorithms, 
mathematical models, and machine learning techniques are the most common 
problem-solving approaches. These approaches are different in the aspect of 
solution quality, time complexity, and the ability to detect an infeasible problem 
[16]. With advancements in parallel processing and increased computing power, 
the use of mathematical programming models has become more prominent in 
solving scientific and engineering optimization problems [17–20]. Workflow 
offloading is one such optimization problem and formulating it with mathematical 
programming models allows us to represent its essential components, including 
decision variables, constraints, and the objective function. Once an optimization 
model is formulated, it can be solved using optimization solvers like CPLEX 
and Gurobi, which are capable of generating globally optimal solutions for many 
real-world problems. Moreover, using mathematical programming also provides 
valuable insight into how close alternative solutions are to the optimal solution. 
Heuristic and meta-heuristic algorithms find good solutions in an acceptable time, 
but they do not guarantee the optimal solution. Furthermore, they cannot deduce 
whether an optimization problem is infeasible, nor do they guarantee to find a 
solution if one exists. Therefore, a hybrid solution of mathematical optimization 
and these algorithms can be used to solve a complex problem.

The complexity of workflow offloading increases when considering workflow 
deadlines and the security requirements of tasks, in addition to managing the data 
dependencies between tasks. This paper addresses this critical challenge by propos-
ing a novel mathematical programming model and a genetic algorithm for optimizing 
workflow offloading in edge-cloud computing. It formulates the problem of workflow 
offloading in edge-cloud computing with a nonlinear programming model. The objec-
tive function is to minimize the monetary cost of executing a workflow while satisfy-
ing constraints related to the data dependency among the tasks, the workflow dead-
line, and the security requirements of tasks. This model provides precise definitions 
of the problem’s components, including decision variables, constraints, and objec-
tive functions. This clarity helps in understanding the problem thoroughly which is 
essential for analyzing and optimizing workflow offloading. It also helps identify and 
understand the relationships between different decision variables and constraints. 
Moreover, inspired by the proposed mathematical model and heuristic algorithms, 
we propose a genetic algorithm for the workflow offloading problem that efficiently 
finds feasible solutions. We define problem-specific crossover and mutation operators 
to generate solutions that satisfy the data dependencies between tasks, the workflow 
deadlines, and the security requirements of the tasks. Furthermore, we integrate the 
stochastic nature of generating the initial population with heuristic rules to generate 
feasible solutions and accelerate the convergence of the algorithm.

Genetic algorithms (GAs) are well-suited for complex optimization problems 
with large search spaces and multiple constraints, such as task scheduling. They 
are an effective approach for solving complex optimization problems, as they can 
explore large search spaces due to their stochastic nature and crossover/mutation 
operations. This ability makes them a good fit for our workflow scheduling prob-
lem. Moreover, GAs are known for their robustness and flexibility in handling vari-
ous types of optimization problems, including those with nonlinear, and discrete 
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characteristics [21]. Our workflow scheduling problem involves such complexities, 
making GA an appropriate choice. With well-understood operators (selection, cross-
over, mutation), GAs are highly flexible and can be adapted to different scheduling 
scenarios. The main contributions of this paper are as follows:

• We propose a nonlinear mathematical model that minimizes the monetary cost 
of executing a workflow including the cost of renting computing nodes and data 
transfer costs. The model also satisfies the data dependencies between tasks, the 
workflow deadline, and the security requirements of tasks.

• We develop a genetic algorithm with specialized mutation and crossover 
operations tailored to satisfy the constraints of data dependency, workflow 
deadline, and security requirements.

• We perform a set of experiments based on existing workflows to compare the 
performance of the genetic algorithm with the proposed mathematical model and 
some meta-heuristic algorithms.

The rest of this paper is organized as follows. Section  2 reviews the related works in 
the area of task offloading in edge-cloud computing. Section 3 introduces the system 
model and workflow model. Section 4 presents the proposed mathematical model for 
the workflow offloading problem, including the objective function and constraints of 
the model. Section 5 presents the proposed genetic algorithm. The simulation results 
of the proposed approaches are reported in Sect. 6, and finally, Sect. 7 concludes the 
paper.

2  Related work

Task offloading in edge-cloud computing has been studied with different 
improvement criteria such as energy consumption, completion time, and monetary 
cost [22]. Moreover, various optimization techniques such as mathematical 
programming, heuristic and meta-heuristic algorithms, machine learning algorithms, 
and queuing theory have been used to solve this problem [23, 24].

Some research has focused on the offloading of tasks, where the tasks are 
independent of each other and there are no data dependencies among the tasks. The 
work in [25] proposes a particle swarm optimization algorithm that minimizes the 
cost and makespan of executing tasks in fog-cloud computing. This paper assumes 
that applications have the Bag-of-Tasks (BoT) structure, where independent tasks are 
submitted to the fog broker, which communicates directly with the mobile users. The 
broker decides to execute tasks on the fog or cloud nodes based on the availability 
of fog resources. The work in [26] proposes a genetic algorithm for task offloading 
in edge-cloud computing with the objective of minimizing energy consumption. 
This paper considers the energy consumption for processing tasks and the energy 
consumption for data transmission. It is assumed that the tasks are parallel and 
there are no data dependencies among tasks. The work in [27] proposes a bee life 
algorithm  (BLA) for parallel task scheduling in fog computing. It minimizes the 
cost of processing tasks while considering the memory requirements of tasks. This 
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paper assumes that several tasks can be assigned to the same fog node and the 
proposed algorithm identifies the order of executing tasks on the assigned nodes. 
The proposed BLA algorithm starts with generating an initial population randomly 
and uses crossover and mutation operators to generate offspring solutions. The work 
in [28] formulates the problem of Bag-of-Tasks (BoT) scheduling as a permutation-
based optimization problem and proposes a scheduling algorithm that minimizes the 
monetary cost under a deadline constraint. It uses a modified version of the genetic 
algorithm to generate different permutations for tasks at each scheduling round. 
Then, the tasks are assigned to VMs that have sufficient resources and achieve the 
minimum execution cost. The work in [29] proposes a task scheduling method based 
on reinforcement learning, a Q-learning algorithm, to minimize the completion time 
of parallel tasks. It considers the delay of transmission, execution, and queuing time 
to formulate the completion time of tasks. It also applies digital twins to simulate 
the results of different actions made by an agent, so that one agent can try multiple 
actions at a time, or, similarly, multiple agents can interact with the environment in 
parallel.

Some research has focused on offloading dependent tasks to fog or cloud servers. 
The work in [30] formulates the workflow scheduling in edge-cloud computing with 
the objective of makespan optimization with mathematical programming. It also 
presents a heuristic algorithm that finds near-optimal solutions for the scheduling 
problem. The mentioned heuristic algorithm prioritizes tasks based on their 
workload and data dependency among tasks then selects a proper edge or cloud 
server based on the earliest finish time policy. The work in [31] proposes multi-
objective workflow offloading in Multi-access Edge Computing (MEC) based on a 
Meta-Reinforcement Learning (MRL) algorithm. The objective is to minimize task 
latency, resource utilization rate, and energy consumption when a local scheduler 
decides to offload the tasks to the MEC host. The work in [32] proposes a genetic 
algorithm that minimizes the makespan of dependent tasks. The work in [33] 
proposes a genetic algorithm that minimizes the energy consumption and makespan 
of the workflows that are generated by IoT devices. Nonetheless, these works do not 
consider the complexity emerging from the heterogeneity of fog and cloud resources 
and workflow requirements such as required memory, or security constraints.

Cost modeling is another critical improvement criterion in edge-cloud comput-
ing [37], and some related works focus on task offloading with cost minimization 
objectives. The work in [34] proposes a mathematical model for task offloading in 
edge-cloud computing with the objective of energy and computational cost optimi-
zation. It only considers the computational cost of tasks, and the data transfer cost is 
not considered. The mentioned paper also proposes a branch-and-bound method for 
solving the proposed mathematical model. The work in [35] proposes a framework 
for resource provisioning in cloud computing with the cost minimization objective 
under deadline constraints. It considers data dependency between tasks and pro-
poses a particle swarm-based algorithm to find the optimal assignment of tasks to 
the virtual machines in cloud computing. The work in [36] utilizes queuing theory to 
study energy consumption and cost when computations are offloaded to fog or cloud 
computing. The mentioned work considers different queuing models in edge-cloud 
computing. It considers the M/M/1 queue at the mobile device layer, the M/M/c 



 S. Abdi et al.

1 3

queue at the fog node with a defined maximum request rate, and the M∕M∕∞ queue 
at the cloud layer. Based on the applied queue theory, it formulates a multi-objec-
tive optimization problem for minimizing energy consumption, delay, and monetary 
cost of parallel tasks. Table  1 summarizes the main idea, the task requirements, 
and improvement criteria that are considered in task offloading problems in related 
works.

Meeting the deadline of a workflow while satisfying the data dependency between 
tasks has been a challenge in edge-cloud computing. In addition, other workflow 
requirements such as security concerns and memory requirements are important 
constraints to consider. To address this problem, this paper proposes a nonlinear 
mathematical programming model. The objective is to minimize the cost while sat-
isfying the above constraints. Moreover, the paper proposes a genetic algorithm to 
find a near-optimal solution while satisfying the mentioned constraints.

3  System model

The proposed edge-cloud computing continuum is depicted in Fig.  1, which 
comprises an edge layer, a fog layer, and a cloud layer. The first layer includes 
heterogeneous IoT devices such as smartphones and healthcare devices, and a smart 
gateway (or access point) which is located at the edge of the network. Since an edge 
device has limited computing and storage capacity, it can request some demands 

Table 1  Summary of related works about task offloading in Edge-cloud computing

Article Main idea Task requirements Improved criteria

Nguyen et al. [25] Particle swarm optimization – Cost
Makespan

Nan et al. [26] Genetic algorithm – Energy consumption
Bitam et al. [27] Bee life Memory Cost
Abohamama et al. [28] Heuristic GA-based algorithm Deadline Execution cost
Wang et al. [29] Reinforcement learning – Completion time of tasks

Digital twin
Lou et al. [30] List-based heuristic algorithm Data dependency Makespan
Liu et al. [31] Reinforcement Learning Data dependency Energy consumption

Task latency
Xu et al. [32] Genetic algorithm Data dependency Makespan
Saeed et al. [33] Genetic algorithm Data dependency Makespan

Energy consumption
Haber et al. [34] Mathematical model – Computational cost

Branch and bound method Energy consumption
Alsurdeh et al. [35] Particle swarm optimization Data dependency Cost

Deadline
Liu et al. [36] Queuing theory – Energy consumption

Cost
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formed as dependent tasks, called a workflow, to run on fog or cloud nodes. 
These demands are received by the smart gateway. The main part of the proposed 
model is an entity called a scheduler, which is deployed in the smart gateway. The 
optimization algorithm is executed in the scheduler, and it decides on the computing 
layer where the tasks of a workflow will be executed. These decisions are based 
on the workflow requirements and the available resource capacity of edge, fog, 
and cloud layers. The fog layer provides limited computing resources closer to 
the source of generated workflows. The cloud layer is the topmost layer, and it is 
a remote centralized cloud that provides scalable computing and storage resources. 
Although communication latency is higher in the latter, in order to meet the 
workflow deadline, computationally intensive tasks should be submitted to the cloud 
layer, as it provides higher computing capacities than the fog layer. In the following 
subsections, the resource model and workflow model are explained. Table 2 shows 
the main notations used in this paper.

3.1  Resource model

As mentioned, we consider a computing continuum comprising an edge layer, a fog 
layer, and a cloud layer, depicted in Fig. 1. These computing layers provide comput-
ing resources; either containers or virtual machines. For the sake of simplicity, we 
call a computing resource a node, and an edge device provides only one node. Nota-
tions of computing layers and provided nodes are described in Table 2. Generally, it 
is assumed that three computing layers participate in the edge-cloud computing con-
tinuum, where the notation CL = {CLedge ∪ CLfog ∪ CLcloud} is the set of computing 

Fig. 1  Overview of the system model
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layers. The notation CLk indicates computing layer k. Since we propose a security-
aware task offloading model, we consider a security tag for each computing layer 
and task. The notation rsk ∈ {spu, ssp, spr} indicates the security tag of kth computing 
layer, i.e., CLk . Here, the cloud layer has a public security tag, i.e., rscloud = spu , the 
fog layer has a semi-private security tag, i.e., rsfog = ssp , and the edge layer has a 
private security tag, i.e., rsedge = spr , where spr < ssp < spu , and a smaller security 
tag indicates that the task or computing layer has a higher security concern. In this 
work, we consider spu = 3 , ssp = 2 , and spr = 1 , where spr < ssp < spu . In the work-
flow model, Sect. 3.2, the security constraint for assigning tasks in the workflow to 
the computing layers is explained in detail.

Table 2  Model parameters and their description

Notation Description

Notations of a workflow
W = (T ,D) Workflow W indicating by task set T and dependency matrix D.
T = {�1, �2, ...�n} A set of n tasks in the workflow W
D ∈ ℝ|T|×|T| Dependency matrix D; element dij in D is the amount of data that must 

be transferred from task �i to �j
eti The computation size of task �i , i.e., Million Instructions (MI)
memi The minimum required memory (RAM) for executing task �i
tsi Security tag of task �i
ri Rank of task �i
prei Set of predecessor task(s) of task �i
suci Set of successor task(s) of task �i
ids1 Input data size of task �1 in data unit size
odsn Output data size of task �n in data unit size
D

w Deadline of the workflow W
Notation of computing layers 

and computing nodes
CL = {CLedge ∪ CLfog ∪ CLcloud} A set of computing layers participating in the edge-cloud continuum
CLk Computing layer k
rsk Security tag of CLk
ITk ⟹ {Ik1, Ik2, ..., Ikq} The set of instance types provided by CLk
Ikj jth instance type provided by CLk
NPkj ⟹ {Nkj1,Nkj2, ...,Nkjp} A node pool provided for instance type Ikj
Nkjl lth node of instance type Ikj
prkj The cost of renting a node of instance type Ikj in the time unit Δt.
pf kj The CPU processing capacity of a node of Ikj , i.e., million instruction 

per second (MIPS)
bwkj Communication bandwidth of a node of instance type Ikj
ramkj The memory capacity (RAM) of a node of instance type Ikj
bw(k,k� ) The communication bandwidth between computing layers k and k′

dtc The price of data transfer cost between two different computing layers 
in the data unit
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Moreover, CLk provides a set of instance types with different prices and 
performance levels, i.e., ITk ⟹ {Ik1, Ik2, ..., Ikq} . The notation Ikj indicates jth 
instance type in the kth computing layer. For each instance type Ikj , a pool of p 
nodes is provided, i.e., NPkj ⟹ {Nkj1,Nkj2, ...,Nkjp} . The notation Nkjl indicates lth 
node of instance type Ikj . Nodes of the same type are provisioned with the same 
characteristics. The notations used to describe the characteristics of instance type Ikj 
are as follows:

The notation prkj denotes the price of renting a node of instance type Ikj per time 
unit Δt . The notation ramkj denotes the memory capacity  (RAM) of a node of 
instance type Ikj . The communication bandwidth of a node of instance type Ikj 
is denoted by bwkj . The notation pfkj indicates the CPU processing capacity of a 
node of instance type Ikj , i.e., the number of instructions that each node of type 
Ikj can process per second (MIPS). Moreover, the notation bw(k,k�) indicates the 
communication bandwidth between computing layers k, k′ . It is assumed that the 
data transfer between nodes in the same computing layer is free, and only data 
transfer between different computing layers is charged. The notation dtc indicates 
the cost of transferring data per data unit, between two different computing layers.

3.2  Workflow model

It is assumed that an IoT device generates applications that are composed of depend-
ent tasks [38]. Different IoT applications such as video analysis [39], object detec-
tion [40], navigator [41], and cognitive assistance [42] are composed of dependent 
tasks. These applications are called workflows and their structure can be modeled as 
a DAG (Direct Acyclic Graph), depicted in Fig. 2. A DAG is a way of representing 
data dependencies among tasks that must be executed in a particular order, where 
the input data of a task is the output data of one or more previous tasks.

Ikj ∶< prkj, ramkj, bwkj, pfkj >

Fig. 2  A sample DAG repre-
senting a workflow
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In this paper, workflow W = (T ,D) is represented by T and D, where T is a set 
of n tasks, i.e., T = {�1, �2, ...�n} , and D ∈ ℝ|T|×|T| is a dependency matrix that 
indicates the data dependencies among tasks. D is an upper triangular matrix 
and all elements in the diagonal are zero. Element dij (i < j) represents data 
dependency among tasks �i , �j . If dij = 0 , there is no data dependency between 
�i , �j . Otherwise, dij indicates the amount of data that must be transferred from 
task �i to �j , and task �j can start after task �i transmits its output data to it. Here, 
�i and �j represent predecessor and successor tasks, respectively. In this work, it 
is assumed that workflow W has a deadline Dw , and all the tasks in the workflow 
should meet the deadline. The notations used to describe the characteristics of 
task �i are as follows:

The notation eti is the computation size of task �i , i.e., million instructions (MI). The 
minimum required memory  (RAM) for executing task �i is denoted by memi . The 
notation tsi ∈ {spu, ssp, spr} is the security tag of task �i . We consider three security 
tags for tasks including public security tag, i.e., spu , semi-private security tag, i.e., 
ssp , and private security tag, i.e., spr , and spr < ssp < spu , where a smaller security tag 
indicates that the task has a higher security concern. Therefore, each task can have 
one of the following values: If tsi = spr , task �i is private, and it can be executed only 
on the edge layer. If tsi = ssp , task �i is semi-private, and it can only be executed on 
the nodes in the edge or fog layer. If tsi = spu , task �i is public, and it can be executed 
on the nodes in the edge, fog, or cloud layer. As mentioned in Sect. 3.1, we consider 
spu = 3, ssp = 2, spr = 1 , where spr < ssp < spu . Accordingly, security constraint for 
assigning task �i to computing layer k can be represented as follows:

According to this constraint, a private task can only be executed in the edge layer 
while a public task can be executed in the edge, fog, or cloud layer. In addition, we 
assume that each task in the workflow has a rank. The notation ri indicates the rank 
of task �i . The rank of a task is determined based on its index, i.e., ri = i . In our 
proposed model, if two independent tasks are assigned to the same node, the task 
with a lower rank will be executed first.

The notation prei is the set of predecessor tasks of �i , i.e., prei = {�t ∣ dti ≠ 0} . 
The notation suci is the set of successor tasks of �i , i.e., suci = {�t ∣ dit ≠ 0} . Task 
�1 is the entry task of the workflow and has no predecessor task(s). Task �n is 
the exit task of the workflow and has no successor task(s). The notations ids1 
and odsn indicate the input and output data size of tasks �1 and �n , respectively. 
Figure  2 shows an example of a workflow with 8 tasks, where �1 is the entry 
task, and �8 is the exit task. The successors of �1 , i.e., suc1 = {�2} , while the 
predecessor of pre6 , i.e., pre6 = {�3, �4, �5}.

𝜏i ∶< eti,memi, tsi, ri, prei, suci >

(1)SCi,k =

⎧
⎪
⎨
⎪
⎩

k ← {CLedge} tsi = 1

k ← {CLedge,CLfog} tsi = 2

k ← {CLedge,CLfog,CLcloud} tsi = 3
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4  Problem formulation

In this paper, we formulate the problem of workflow offloading in an edge-cloud 
computing continuum as a nonlinear mathematical programming model  (MPM) 
and propose a genetic algorithm that finds feasible solutions for the scheduling 
problem. In this section, the constraints of the task offloading problem and the 
decision variables of the mathematical model are introduced. Then, the objective 
function of the model is described. The proposed model fulfills constraints related 
to data dependencies among tasks, the security requirements of tasks, the memory 
required to execute tasks, and the deadline of the workflow. The objective is to 
minimize the monetary cost of executing the workflow, which consists of the cost 
of renting nodes to execute the tasks in the workflow and the cost of transferring 
data between dependent tasks.

It is assumed that workflow W is submitted to the scheduler. As shown 
in Fig.  1, the optimization algorithm is run in the scheduler, and it selects 
the appropriate computing layers and nodes from the edge-cloud computing 
continuum to execute the tasks in the workflow.

4.1  Assignment constraint

Workflow W contains n tasks, and the assignment of a task refers to allocating the 
task to a computing node in an edge-fog-cloud environment. Therefore, a sched-
ule Φ is a set of assignments, i.e., Φ = {Ai | i = 1, ..., n} and the assignment of 
task �i is represented as follows:

This assignment indicates that task �i is assigned to lth node of instance type Ikj , i.e., 
Nkjl and STi and RTi are the start time and run time of the task on the assigned node, 
respectively. To formulate assignment Ai , we define decision variable yikjl where 
yikjl = 1 if and only if task �i is assigned to node Nkjl ; otherwise, it attains 0. The 
assignment constraint is formulated in Eq.  (2). This constraint guarantees that all 
tasks in the workflow are scheduled, and each task is to be scheduled only once.

A schedule Φ is considered feasible if and only if the following constraints are 
satisfied.

Ai ∶< 𝜏i,Nkjl, STi,RTi >

(2)
∑

k∈CL

∑

j∈ITk

∑

l∈NPkj

yikjl = 1 ∀i ∈ T
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4.2  Memory constraint

A task can be assigned to an instance type that satisfies the minimum required 
memory for its execution. This constraint is formulated in Eq.  (3). In this 
equation, 

∑
l∈NPkj

yikjl = 1 if and only if task �i is assigned to a node of instance 
type Ikj.

4.3  Security constraint

Since we propose a security-aware task scheduling model in the edge-cloud computing 
continuum, security tags are considered for tasks and computing layers in Sects. 3.1 and 
3.2. Equation (4) ensures that each task is assigned to a computing layer that satisfies its 
security requirements according to Eq. (1).

In this equation, 
∑

j∈ITk

∑
l∈NPkj

yikjl = 1 if and only if task �i is assigned to a node in 
kth computing layer. According to this constraint, a private task can only be executed 
in the edge layer, a semi-private task can be executed in the fog or edge layer, and a 
public task can be executed in the edge, fog, or cloud layer. If task �i is private then 
tsi = 1 , and according to Eq.  (4), inequality 

∑
j∈ITk

∑
l∈NPkj

yikjl ⋅ rsk ≤ 1 should be 
satisfied. Considering spr = 1, ssp = 2, spu = 3 , expression 

∑
j∈ITk

∑
l∈NPkj

yikjl can 
only take value 1, where rsk = 1 . Since the edge layer has a private security tag, i.e., 
rsedge = 1 , task �i can only be assigned to the edge layer. If task �i is public then 
tsi = 3 , and inequality 

∑
j∈ITk

∑
l∈NPkj

yikjl ⋅ rsk ≤ 3 should be satisfied. In this case, 
task �i can be assigned to the edge, fog, or cloud layer.

4.4  Non‑preemption constraint

In this work, we consider non-preemption resource allocation for tasks, once a task 
starts on a node, it will finish without any interruption, i.e., it cannot be paused or 
migrated until it completes. Given the assignment Ai , this constraint can be represented 
as:

In this equation, decision variable Mi indicates the completion time of task �i on the 
allocated node in assignment Ai . According to this assignment, the run time of task 
�i on a node of instance type Ikj is as follows:

(3)
∑

l∈NPkj

yikjl ⋅ memi ≤ ramkj ∀i ∈ T , ∀k ∈ CL, ∀j ∈ ITk

(4)
∑

j∈ITk

∑

l∈NPkj

yikjl ⋅ rsk ≤ tsi ∀i ∈ T , ∀k ∈ CL

(5)Mi = STi + RTi ∀i ∈ T
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where eti indicates the computation size of task �i , and pf kj represents the CPU 
processing capacity of a node of instance type Ikj which task �i is assigned to it. In 
this equation, 

∑
l∈NPkj

yikjl = 1 if and only if task �i is assigned to a node of instance 
type Ikj.

4.5  Data dependency among tasks and precedence constraint

As mentioned in Sect.  3.2, we consider a workflow consisting of n tasks. 
There are data dependencies among tasks, and the notation prei indicates the 
predecessors of task �i . To fulfill data dependency among tasks in a workflow, 
each task starts only when all its predecessor tasks have been completed and their 
output data have been sent to it. Here, we define the decision variable ReadyTi , 
which indicates the time at which task �i has received all of the input data from 
its predecessor(s) and is ready to start. Since the entry task in the workflow, i.e., 
�1 , has no predecessors, we do not consider this constraint for task �1 . After a 
workflow W is released, the entry task is ready to run on a computing resource 
at the time of zero, thus ReadyT1 = 0 . For other tasks in the workflow, the time 
that a task can start must be later than the time that it receives all input data from 
its predecessor tasks. The data dependency among tasks can be formulated as 
follows:

In Eq.  (8), decision variable Mt indicates the completion time of task �t , and �t,i 
indicates the data transfer time from predecessor task �t to �i , ∀�t ∈ prei . Although 
the use of computing nodes in different layers presents some challenges, such 
as communication congestion, we do not model the effects of communication 
congestion for utilizing bandwidth between different computing layers [43]. The 
notation bw(k,k�) indicates the available bandwidth between computing layers k and 
k′ , and we considered this bandwidth in formulating the data transfer time between 
dependent tasks in different computing layers. To formulate data transfer time 
between task �i and its predecessor task �t , we consider three possible cases and 
define decision variables �it, clit and �it.

• In the case that task �i and its predecessor task �t run in the same node then 
the data transfer time from task �t to �i is 0, i.e., �t,i = 0 . Decision variable 
�it indicates whether tasks �i and �t are assigned to the same node or not. If 
tasks �i and �t are assigned to the same node then �it = 1 ; otherwise, �it = 0 . 
Equation (9) calculates the value of this decision variable. 

(6)RTi >=
∑

l∈NPkj

yikjl ⋅
eti

pf kj

∀i ∈ T , ∀k ∈ CL, ∀j ∈ ITk

(7)ReadyT1 = 0

(8)ReadyTi ≥ Mt + �t,i ∀i ∈ T − {�1}, ∀t ∈ prei
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• In the case that tasks �i and �t run in the same computing layer but different 
nodes, data transfer time is computed by considering the communication 
bandwidth of instance type Ikj that task �t is assigned to it, and �t,i = dti∕bwkj . 
Here, dti is the output data size of task �t which must be transferred to �i . Decision 
variable clit indicates whether �i and �t are assigned to different nodes in the same 
computing layer or not. If tasks �i and �t are assigned to different nodes in the 
same computing layer then clit = 1 ; otherwise, clit = 0 . Equation (10) calculates 
the value of this decision variable. 

• In the case that tasks �i and �t run in different computing layers, �t,i = dti∕bw(k,k�) , 
where bw(k,k�) denotes communication bandwidth between the computing layers k 
and k′ . Decision variable �it indicates whether tasks �i , �t are assigned to different 
computing layers or not. If tasks �i , �t are assigned to different computing layers 
then �it = 1 ; otherwise, �it = 0 . Equation (11) calculates the value of this decision 
variable. 

According to the above, the data transfer time between task �i and its predecessor 
task �t is formulated as follows:

If task �i and �t run on the same node then vit = 1 , clit = 0 , and �it = 0 , so �t,i = 0 ; 
In this case, the data transfer time between the dependent tasks is 0. If task �i and 
�t run on different nodes in the same computing layer then vit = 0 , clit = 1, �it = 0 , 
so �t,i = dti∕bwkj . In this case, the data transfer time between dependent tasks is 
computed by considering the communication bandwidth of instance type Ikj that task 
�t is assigned to it. If task �i and �t run in different computing layers then vit = 0 , 
clit = 0 , �it = 1 , so �t,i = dti∕bw(k,k�) . In this case, the data transfer time between 
dependent tasks is computed by considering the communication bandwidth between 
the computing layers k and k′.

4.6  Assignment dependency constraint

The execution times of tasks assigned to the same node cannot overlap. This is 
because each node can only execute its assigned tasks sequentially. If there is 
data dependency among two tasks assigned to the same node, based on the data 
dependency formulated in Eq. (8), the tasks do not overlap. For two tasks �i and �t 

(9)
vit = yikjl ⋅ ytkjl

∀i ∈ T − {�1}, ∀t ∈ prei, ∀k ∈ CL, ∀j ∈ ITk, ∀l ∈ NPkj

(10)
clit = (1 − vit) ⋅

∑

j∈ITk

∑

l∈NPkj

yikjl ⋅
∑

j∈ITk

∑

l∈NPkj

ytkjl

∀i ∈ T − {�1}, ∀t ∈ prei, ∀k ∈ CL

(11)�it = (1 − clit) ⋅ (1 − vit) ∀i ∈ T − {�1}, ∀t ∈ prei

(12)�t,i = clit ⋅ dti∕bwkj + �it ⋅ dti∕bw(k,k�) ∀i ∈ T − {�1}, ∀t ∈ prei
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that there are no data dependencies between them and assigned to the same node, we 
define the assignment dependency as follows:

where ri indicates the rank of task �i . Thus, adi is the set of predecessor tasks of task 
�i that must be scheduled before it due to the assignment dependency.

We considered the data dependency and the assignment dependency in 
formulating the start time of tasks. The decision variable STi indicates the start time 
of task �i on the assigned node. Task �i starts only when it has received all data from 
its predecessor tasks due to data dependency and when all its predecessor tasks due 
to assignment dependency have been completed. Therefore, the start time of task �i 
is formulated as follows:

where ReadyTi is the time at which task �i receives all input data from its predecessor 
tasks due to data dependency. As mentioned, adi is the set of predecessor tasks of 
task �i that must be scheduled before it due to the assignment dependency. Mt is the 
completion time of task �t and the expression max(Mt) ∀t ∈ adi is the completion 
time of all predecessor tasks of task �i due to assignment dependency.

4.7  Deadline constraint

The exit task of the workflow, i.e., �n , receives the final execution results. Therefore, 
the completion time of a workflow is equal to the exit task’s completion time, i.e., 
Mn . If the exit task is assigned to the fog or cloud layer then the data transfer time 
of its output data to the edge node should be considered. To satisfy the deadline 
constraint, the completion time of the workflow must be less or equal to the deadline 
of the workflow. This constraint is represented as follows:

where k� = {CLedge} and 
∑

j∈ITk

∑
l∈NPkj

ynkjl = 1 if and only if task �n is assigned to a 
node in the fog or cloud layer. In this case, the expression odsn∕bw(k,k�) indicates the 
data transfer time to send the output data of the last task in the workflow to the edge 
device. If the last task of the workflow runs in the edge layer, then, the data transfer 
time of the last task attains 0.

4.8  Objective function

A feasible schedule Φ is evaluated by the monetary cost of executing a workflow, 
formulated in Eq. (16). This cost includes the cost for renting nodes, formulated in 
Eq. (17), and the data transfer cost, formulated in Eq. (18).

(13)adi = {𝜏t | yikjl ⋅ ytkjl = 1 & rt < ri & t ∉ prei & i ∉ pret}

(14)STi ≥ max {ReadyTi, max (Mt)} ∀i ∈ T ,∀t ∈ adi

(15)Mn +
∑

j∈ITk

∑

l∈NPkj

ynkjl ⋅ odsn∕bw(k,k�) ≤ D
w∀k ∈ {CLfog,CLcloud}
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We consider the cost of renting nodes based on the ‘pay-as-you-go’ model. Accord-
ing to this pricing model, the cost of renting a node is charged based on the number 
of time intervals ( Δt ) that it has been allocated to the tasks. To calculate this cost, 
the start and the end timestamps of renting nodes should be determined. Assuming 
that node Nkjl is allocated to the tasks, in Eq. (17), max{Mi ⋅ yikjl} indicates the com-
pletion time of the latest task assigned to the node, and min{STi ⋅ yikjl} indicates the 
start time of the earliest tasks assigned to the node. Therefore, in Eq. 17, the expres-
sion (max{Mi ⋅ yikjl} −min{STi ⋅ yikjl}) indicates the total time of running node Nkjl 
to complete assigned tasks to it. Finally, this time is divided by the time interval Δt 
and rounded up to determine the number of time intervals the node will rent.

Different cloud providers consider various time intervals for charging a VM, for 
instance, AWS charges for EC2 instances on a per-hour basis, while there are some 
cloud providers such as Microsoft Azure that charge for VMs on a per-minute basis. 
As mentioned in Sect. 3, we consider the CPU capacity of nodes as MIPS and the 
task computation size as MI. In the experiments, we consider Amazon EC2 instances 
which are charged on a per-hour basis. Therefore, to bridge the gap between the task 
computation time (e.g., second) and the time interval of renting a node (e.g., hour), 
in Eq. (17), we incorporate the following points:

• We convert the time interval of renting a node from seconds to hours by dividing 
the total time of running a node by Δt = 3600 (the number of seconds in an hour) 
to get the time in hours.

• Cloud providers typically round up to the nearest hour for billing purposes. Thus, 
after converting the time of allocating a node to tasks to hours, we apply the ceil 
function to ensure that we account for the full hourly billing cycle.

The data transfer cost is formulated in Eq. (18). This cost depends on the amount of 
data transferred between dependent tasks. It is assumed that only the data transfer 
between different computing layers is charged. If dependent tasks are assigned to the 
same computing layer, the data transfer is free; otherwise, it is charged.

If task �i and its predecessor task �t are assigned to different computing layers, then, 
�it = 1 and the data transfer is charged; otherwise, �it = 0 and the data transfer is 

(16)
Cost= Minimize (Cc + Cd)

Subject to:

Constraints (2)-(17), (18)

(17)Cc =
∑

i∈T

∑

k∈CL

∑

j∈ITk

∑

l∈NPkj

prkj ⋅

⌈
max{Mi ⋅ yikjl} −min{STi ⋅ yikjl}

Δt

⌉

(18)Cd =
∑

i∈T−{t1}

∑

t∈prei

�it ⋅ dti ⋅ dtc
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free. Here, dti is the amount of data that must be transferred from task �t to �i , and 
dtc is the transmission cost per data unit.

5  Proposed genetic algorithm

Task scheduling problems are known as NP-hard problems [44–46]. This means 
that there are no polynomial-time algorithms that can find optimum solutions to 
these problems. Therefore, this paper proposes a genetic algorithm for solving 
the workflow offloading problems in the edge-cloud computing continuum, called 
WSEFC-GA. The stochastic nature of GAs, combined with their population-
based search, enhances their ability to perform a global search. This makes them 
particularly useful for complex problems while other algorithms such as the 
beluga whale optimization algorithm might get stuck in local optima [47, 48]. 
Moreover, GAs can be designed with different selection, crossover, and mutation 
strategies to suit specific problem requirements. In this work, we develop 
problem-specific crossover and mutation operations, tailored to satisfy the 
defined constraints of our workflow offloading problem, such as data dependency, 
the workflow deadline, memory, and security constraints. These operators ensure 
that offspring solutions are feasible.

Inspired by the proposed mathematical model, WSEFC-GA is concerned with 
finding feasible solutions such that the monetary cost of executing a workflow is 
minimized. Chromosome (solution) representation, population initialization, fitness 
evaluation, and application of evolutionary operators including selection, crossover, 
and mutation are the key elements of the proposed WSEFC-GA algorithm. In addi-
tion, for each chromosome in the initial population and offspring chromosomes, we 
evaluate whether the solution is feasible or not. A solution is considered feasible if 
and only if it satisfies the constraints specified in Sect. 4. The following subsections 
provide a detailed description of the WSEFC-GA algorithm and its key elements.

5.1  Chromosome structure

As mentioned in Sect. 4, a schedule Φ , i.e., a solution, is a set of n assignments, i.e., 
Φ = {Ai | i = 1, ..., n} . Where the assignment Ai is represented as follows:

where assignment Ai indicates that task �i is assigned to lth node of instance type j 
in computing layer k, i.e., Nkjl . The notations STi and RTi indicate the start time and 
run time of task �i on the assigned node, respectively. According to this definition, 
the representation of a chromosome (solution) in the proposed genetic algorithm is 
shown in Fig. 3.

Ai ∶< 𝜏i,Nkjl, STi,RTi >
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It is a structure of length n, consisting of cells and the index of the cells indicate 
the task indexes ( �i ). Each cell consists of the computing layer index (k), the instance 
type index (j), the node index (l), the start time of the task ( STi ), and the run time of 
the task ( RTi ) on the assigned node. Since there are data dependencies among tasks, 
the start time and run time of tasks are included in the chromosome to efficiently 
manage these dependencies and reduce the computational overhead of the schedul-
ing algorithm, inspired by dynamic programming.

5.2  Fitness function

A genetic algorithm uses a fitness function to evaluate the superiority of chromo-
somes and to determine the evolution of the next generations. To evaluate the supe-
riority of the chromosome Φ generated by the proposed WSEFC-GA algorithm, we 
define the fitness function F ∶ Φ → ℝ , where F assigns a real value to the chromo-
some Φ . Similar to the objective function, in Eq. (16), the function F calculates the 
costs of executing a workflow including the cost of renting nodes and the data trans-
fer costs. The fitness function is formulated in Eq. (19).

(19)
F =

∑

Ai∈Φ

prkj ⋅

⌈
max{(STi + RTi)} −min(STi)

Δt

⌉

+
∑

i∈T−{t1}

∑

t∈prei

dti ⋅ �it ⋅ dtc

Fig. 3  Chromosome structure
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5.3  WSEFC‑GA algorithm

The procedure of the proposed WSEFC-GA algorithm is shown in Algorithm 1. It 
starts by assigning algorithm parameters including crossover and mutation rates, 
maximum number of iterations (MI), and other parameters, in lines 3-5. Then the 
initial population is generated by the Initial Population-WSEFC algorithm, in line 
6, presented in Algorithm 2. If the scheduling problem is not feasible, Algorithm 2 
sets Feasible = False , and the WSEFC-GA algorithm ends, in line 8. Otherwise, 
Algorithm 2 generates a population of PS chromosomes such that security, memory, 
deadline, and precedence constraints are satisfied. For each feasible chromosome, 
its fitness value is calculated according to the fitness function defined in Eq.  (19). 
After generating the initial population, evolution operators are repeatedly performed 
by Algorithms 4 and 5 to generate feasible offspring chromosomes, in lines 11-16. 
After each iteration, the PS best chromosomes are selected according to the fitness 
values. Finally, the algorithm returns the best chromosome, i.e., the best schedule Φ , 
based on the computed fitness values, in line 19.

Algorithm 1  WSEFC-GA
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5.4  Initial population

Since workflow offloading is a complex problem, generating a chromosome by 
selecting a random computing resource, e.g., computing layer, and instance type, 
leads to infeasible solutions. Therefore, we propose a problem-specific initial 
population algorithm that generates feasible chromosomes, shown in Algorithm 2. 
To improve the performance of the proposed WSEFC-GA algorithm, we integrate 
the stochastic nature of generating the initial population with heuristic rules to satisfy 
the security and memory constraints. This hybrid approach helps to find feasible 
solutions and accelerate the convergence of the algorithm. Inspired by the problem 
formulation, in line 7, the proposed algorithm selects a computing layer k for each 
task so that its security requirement, described in Eq. (1), is satisfied. Then, list M 
of instance types provided by CLk that satisfy the memory constraint, described in 
Eq. (3), is created. If M is not empty, instance type j is randomly selected from list 
M; then, node l is randomly selected from node pool NPkj , in lines  9-11. If M is 
empty and tsi = 1 , the memory constraint cannot be satisfied and the problem is not 
feasible; in this case, the algorithm set Feasible = False and it ends, in lines 13-15. 
If M is empty and tsi ≠ 1 , the algorithm tries to find an appropriate computing layer 
for the task, line 17. After selecting computing nodes for all tasks, the run time and 
the start time of the tasks are calculated via Algorithm 3, in line 21. The deadline 
constraint is checked, in line 22, when a chromosome is generated. If this constraint 
is satisfied, the fitness of the chromosome is calculated, and it is added to the 
population. This procedure is repeated until the maximum value of the iteration is 
reached. When the algorithm is finished, it checks to see if feasible chromosomes are 
generated. If IntiPop = � , the problem is not feasible and it sets Feasible = False ; 
otherwise, it returns the InitPop.

The chromosome structure in the proposed algorithm is designed to include 
the start time and run time of tasks. As mentioned, Algorithm 3 calculates the run 
time and start time of tasks. This algorithm calculates the run time of each task on 
the assigned node to it, in line 3. Then it calculates the data transfer time between 
dependent tasks according to the identified computing layers and nodes, in line 10. 
Then it computes the ready time of dependent tasks and their start time so that the 
precedence and the assignment dependency constraints, described in Sect. 4.5, are 
satisfied, lines  11-12. By integrating start time and run time, the algorithm can 
efficiently manage and satisfy data dependencies among tasks within a workflow, 
avoiding redundant calculations, and reducing the computational overhead of the 
scheduling algorithm.
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Algorithm 2  Initial Population-WSEFC

5.5  Crossover operator

Selection, crossover, and mutation operators are important components of a 
genetic algorithm, which are utilized to generate offspring solutions. As mentioned 
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above, workflow offloading is a complex problem, and proposing problem-specific 
crossover and mutation operators is a crucial requirement for producing feasible 
offspring solutions. The crossover operator is used to inherit some chromosome 
fragments from excellent individuals to generate the next generations. The proposed 
crossover operator is shown in Algorithm 4.

In this algorithm, we use K-way tournament selection for parent selection, in 
line 7. It selects K chromosomes from the population randomly and selects the best 
out of these, according to the fitness function, to become parent P1. The same pro-
cess is repeated for selecting parent P2.

Algorithm 3  RTST-WSEFC algorithm

Then, we apply uniform crossover to generate feasible solutions for the workflow 
offloading problem, in line 9. The uniform crossover is applied only for changing 
the computing layer, instance type, and node indexes. As described in Sect. 5.4, for 
each task, we select a computing layer and an instance type that satisfies the security 
and memory constraints. Based on the structure of the chromosome and proposed 
uniform crossover, these constraints are satisfied for offspring solutions. Then, the 
run time and the start time of tasks are calculated via Algorithm  3 to ensure the 
precedence and assignment dependency constraints, in line 12. For each generated 
offspring solution, it checks to see if the deadline constraint is satisfied, in line 13. 
If this constraint is satisfied, the fitness of the chromosome is calculated, and it is 
added to the population.
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Algorithm 4  CrossOver-WSEFC

5.6  Mutation operator

The mutation operator in GA replaces some gene values with other values in the 
gene domain to improve population diversity. Similar to the crossover operator 
detailed above, we propose a problem-specific mutation operator for the schedul-
ing problem, shown in Algorithm 5. This algorithm uses K-way tournament selec-
tion for selecting parent P from the current population, in line  7. Then, it selects 
some mutation points (tasks) randomly from the selected parent P. For each selected 
mutation point the following process is performed: If the task of the selected point 
is private, i.e., tsi = 1 , then the algorithm continues without performing the muta-
tion operator since the computing resource cannot be changed for the private task, 
line  11. Otherwise, for the selected mutation point, three mutation operators are 
performed on the computing layer, instance type, and node indexes, respectively, in 
lines 13- 21. Similar to the initial population algorithm detailed above, the mutation 
operators are performed so that the security and memory requirements of the tasks 
are satisfied. After applying the mutation operators on the selected points, the run 
time and start time of tasks are calculated via Algorithm 3 to satisfy the precedence 
and assignment dependency constraints, in line 22. Then, it checks if the deadline 
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constraint is satisfied, in line 23. If this constraint is satisfied, the fitness of the new 
chromosome is calculated, and it is added to the population.

Algorithm 5  Mutation-WSEFC

5.7  Time complexity

The problem of task scheduling is an NP-hard problem. Therefore, as the problem 
size increases, the computational complexity of solving the problem with a math-
ematical programming model increases rapidly. The time complexity of a genetic 
algorithm depends on the genetic operators, the representation of the chromo-
somes, and the population size. Given the usual choices (one-point mutation, one-
point crossover, selection), the time complexity of the WSEFC-GA algorithm is 
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O(g(nm + nm + n)) , where g is the number of generations, n is the population size, 
and m is the size of the individuals.

6  Experimental results

To evaluate the performance of the proposed mathematical model (MPM), we 
linearized the model’s constraints. Furthermore, we solved the model as a quadratic 
objective model with IBM ILOG CPLEX Optimization Studio version 22.1. The 
proposed genetic algorithm  (WSEFC-GA) is also implemented in MATLAB. 
Specifically, experiments are performed on a PC with Intel Core i7 2.3 GHz, 32 GB 
RAM, and a Windows 10 operating system.

6.1  Experimental settings

Specifications of node instances provided by edge, fog, and cloud layers are listed 
in Table 3. The specifications of cloud nodes are based on Amazon EC2 instance 
types, and the cloud layer provides more powerful node instances than the fog layer. 
We assumed that fog servers also use virtualization technology to create and man-
age nodes [49, 50]. We considered different node instances in cloud and fog layers, 
each with a specific memory capacity and performance level. However, in the exper-
iments, we considered limited computing capacity in the edge and fog layers. We 
consider one node in an edge device. In the fog layer, we consider 3 node instances, 
each of which has 5 nodes available for scheduling a single workflow. Since provid-
ing computing nodes for a fog server and cloud provider incurs costs, such as power 
and maintenance expenses, running nodes in the fog/cloud layers are charged. The 
average bandwidth between two different computing layers is set to 10 Mbps and the 
average bandwidth between two different nodes in the same computing layer is set to 
100 Mbps. The data transmission cost is considered dtc = 0.02 ($ per GB).

Table 3  Instance type specifications provided by the edge-cloud computing

Computing layer Instance type Price ($/hour) Performance 
(MIPS)

Memory (GB)

Type 1 0.2 3000 4
Type 2 0.24 3500 8

Cloud nodes Type 3 0.42 5000 16
Type 4 0.48 5500 32
Type 5 0.62 7500 64
Type 1 0.11 1500 4

Fog nodes Type 2 0.14 2200 8
Type 3 0.16 2500 16

Edge node Type 1 0 1000 2
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To investigate the behavior of the MPM and the WSEFC-GA, we evaluate the 
cost of executing some real-world workflows such as the Epigenome, LIGO, Mon-
tage, and CyberShake workflows with small workflow sizes (20 tasks) and large 
workflow sizes (100 tasks). The structures of these workflows are shown in Fig. 4. 
Epigenome workflow is used in the domain of biology, and it is involved in mapping 
the epigenetic state of human cells on a genome-wide scale. The LIGO workflow 
involves several key stages to detect and analyze gravitational waves. CyberShake 
is a computational workflow designed to characterize earthquake hazards using the 
Probabilistic Seismic Hazard Analysis (PSHA) technique. The Montage workflow 
is designed to create large-scale astronomical image mosaics. Since different work-
flows of wide-ranging domains are frequently executed by different research groups 

Fig. 4  The structure of some scientific workflows [51]



1 3

Cost‑aware workflow offloading in edge‑cloud computing using…

or companies on cluster or cloud systems, their characteristics (e.g., structure, task 
execution time, data dependencies, memory, input/output data size) are known 
beforehand [41, 42, 51, 52]. The work in [51] developed a set of workflow profiling 
tools called wfprof to provide detailed information about the various computational 
tasks present in a workflow. Moreover, the characteristics of these workflows (e.g., 
structure, task execution time, data dependencies, memory, input/output data size) 
are available from the Pegasus workflow generator.1

In this section, we have conducted two types of experiments. Some experiments 
evaluate the performance of the proposed genetic algorithm, WSEFC-GA, and the 
proposed mathematical model, MPM, for small workflows, since MPM is time-
consuming for large problem instances. In other experiments, we compared the 
WSEFC-GA algorithm with a heuristic GA-based (HGA) algorithm [28], a PSO-
based technique [35], and a Bee Life Algorithm (BLA) [27] for large workflows. 
These algorithms propose deadline-constrained and cost-optimized task scheduling 
in the literature. Moreover, we implement a constraint satisfaction algorithm (CSA) 
that finds feasible solutions that satisfy all the constraints mentioned in Sect. 4 for 
the workflow scheduling problem without applying any optimization criterion.

• HGA [28] proposes a task scheduling algorithm for bag-of-tasks applications 
in fog-cloud computing. The algorithm formulates task scheduling as a 
permutation-based optimization problem, using a modified genetic algorithm 
to generate permutations for arriving tasks at each scheduling round. For each 
proposed permutation, the tasks are assigned in the given order to VMs, which 
offers the minimum expected finish time. Additionally, the chosen VMs must 
have sufficient memory capacity to accommodate tasks. The objective function 
of this scheduling algorithm is to optimize the total execution cost while 
satisfying the deadline constraint.

• The objective of the PSO [35] is to generate workflow scheduling in order to 
minimize the cost and meet the workflow deadline. PSO relies on the exchange 
of information between individuals, called particles, within a population, called 
a swarm. Each particle updates its trajectory based on its own previous best 
position (local best) and the best position achieved by the entire swarm (global 
best).

• The BLA algorithm [27] minimizes the cost of processing tasks while consid-
ering the memory requirements of tasks. It assumes that several tasks can be 
assigned to the same fog node and identifies the order of executing tasks on the 
assigned nodes. The BLA algorithm starts by randomly generating an initial 
population and uses crossover and mutation operators to generate offspring solu-
tions. For generating offspring solutions, the population is sorted according to 
the fitness function, with the top individual selected as the queen, the following 
D bees classified as drones. The queen mates with a group of drones to produce 
offspring using crossover and mutation operators.

1 https:// pegas us. isi. edu/

https://pegasus.isi.edu/
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Since the compared PSO, BLA, and HGA algorithms did not consider security 
requirements in the task offloading problem, in the experiments in which WSEFC-
GA is compared with these algorithms, all tasks are considered public tasks. In the 
experiments, the population size is 100 while the number of generations is 250. The 
crossover and mutation rates are 85% and 1% , respectively. Parent selection is based 
on K-way tournament selection which K = 3 in the experiments. We also normal-
ized the execution cost of a workflow by dividing its execution cost by costmin since 
various workflows have different characteristics. Table 4 indicates the parameter set-
tings of the evolutionary algorithms.

6.2  Results

Figure 5 shows the normalized cost over changes in the deadline for small Epige-
nome workflow. This workflow is used in the domain of Biology and its structure 
is depicted in Fig. 4a. We performed experiments for this workflow over changes 
in the deadline. Tasks of this workflow are compute-intensive, and all tasks are 
considered public tasks. It can be seen from Fig. 5, with the increase in the dead-
line the cost decreases since in tight deadlines more powerful node instances from 
fog or cloud are selected which are more expensive. Notably, solutions generated 
by WSEFC-GA show some variance from the optimal solutions of MPM particu-
larly when deadlines are tight. Mathematical programming models like MPM find 
globally optimal solutions even in complex constrained scenarios such as those 
with tight deadlines. However, as the deadline extends, WSEFC-GA demonstrates 
an ability to produce solutions that closely approximate the optimal solutions

A comparison among the normalized cost for WSEFC-GA, PSO, BLA, HGA, 
and CSA for large Epigenome workflow is depicted in Fig. 6. In this experiment, 
the problem is feasible for deadlines greater than Dw >= 0.2 (h) . Furthermore, 
WSEFC-GA finds more cost-effective solutions compared to other algorithms, 
especially when the deadline is tight, i.e., the problem becomes more complex. 
While the HGA algorithm generally outperforms BLA and PSO, all these algo-
rithms outperform CSA, which can only produce feasible solutions.

Figure 7 indicates the normalized cost over changes in the data size of tasks 
for the Montage workflow. The structure of the Montage workflow is shown in 
Fig.  4d. This workflow processes an image and we performed the experiments 
with different values for the image size, namely DS = {1, .., 10} GB. In this 

Table 4  WSEFC-GA, BLA, PSO parameters

BLA WSEFC-GA  PSO

Population size Queen: 1 Drones: 30 Workers: 69 100 100
Number of generations 500 500 500
Crossover rate 85% 85% c1 = c2 = 1.5

Mutation rate 1% 1% w = 0.9 �→ 0.1
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experiment, the deadline is fixed, i.e., Dw = 0.4 (h) , and the edge device cannot 
perform all the workflow tasks.

Figure  7 demonstrates that the normalized cost of WSEFC-GA and MPM 
increases with the increase in the data size  (DS). With an increase in DS, the 
data transfer time also increases, necessitating the selection of more powerful 
node instances to meet the workflow deadline. It is observed that WSEFC-GA 
achieves solutions close to the optimal cost. However, as the data size increases, 

Fig. 5  Normalized cost over changes in the deadline for small Epigenome workflow

Fig. 6  Normalized cost over changes in the deadline for large Epigenome workflow
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WSEFC-GA solutions diverge somewhat from the optimal cost, indicating 
increased complexity in addressing the problem.

Figure  8 shows the comparison of normalized cost for WSEFC-GA, PSO, 
BLA, HGA, and CSA for a large Montage workflow. WSEFC-GA finds cost-
effective solutions compared to PSO, HGA, and BLA. The CSA algorithm gave 
the worst results among the algorithms. The cost-decreasing trend for the CSA 
algorithm with increasing data size is due to the narrowing set of feasible solu-
tions. As the data size increases, the data transfer time increases, and spreading 
dependent tasks across different computing nodes leads to infeasible solutions.

Fig. 7  Normalized cost over changes in the data size for small Montage workflow

Fig. 8  Normalized cost over changes in the data size for large Montage workflow
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Figure 9 shows the impact of security requirements on the normalized cost for 
small CyberShake workflow. As mentioned, when a task is private, it can only be 
executed in the edge layer while a public task can be executed in the edge, fog, or 
cloud layer. To perform this experiment, we considered a scenario in which work-
flow tasks are compute-intensive and executing all the tasks in the edge device is 
not feasible to meet the deadline. Therefore, the scheduler outsources some or all 
tasks to the fog or cloud layers to meet the workflow deadline.

In this experiment, when the security factor is 0, all the tasks are private while 
the security factor 1 indicates that all tasks are public, and for example, security 
factor= 0.2 indicates that 20 percent of tasks are public. In Fig. 9, when the secu-
rity factor = 0 , the normalized cost is not shown, because executing all tasks in the 
edge layer are not feasible. As shown, the optimal solutions of MPM are not affected 
by the changes in the security factor. However, the cost of WSEFC-GA and CSA 
increases with the increase in the security factor. WSEFC-GA and CSA are random-
based approaches and with the increase in security factor, the set of feasible solu-
tions increases since for each public task, a node in the edge, fog, or cloud can be 
selected. However, WSEFC-GA is much more cost-efficient than CSA.

6.3  Convergence Analysis and Running Time

In this subsection, we express the convergence analysis and running time of the 
MPM, WSEFC-GA, PSO, HGA, and BLA approaches. Figure  10 illustrates the 
convergence of three evolutionary algorithms, namely WSEFC-GA, PSO, and 
BLA, applied to the LIGO workflow, tracked over 500 generations. Since HGA 
is a heuristic algorithm, it is excluded from this experiment. The population was 
observed every 10 generation, and the average fitness value of the entire popula-
tion was recorded. Notably, both PSO and BLA exhibited rapid convergence after 

Fig. 9  Normalized cost over changes in the data size for CyberShake workflow
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approximately 200 generations, albeit producing solutions with high fitness values 
compared to those achieved by the WSEFC-GA algorithm with a cost minimization 
objective. In contrast, WSEFC-GA converged after 250 generations, maintaining 
population diversity and demonstrating the capability to reach more cost-effective 
solutions.

Table  5 shows the running time of the approaches for small (20 tasks) and 
large (100 tasks) instances of Epigenome, Montage, Cybershake, and LIGO 
workflows. For fair comparisons, the mathematical model is excluded from this 
experiment, as it was only run for small instances of workflows. It is observed 
that the computational overhead increases as the number of tasks increases for 
all algorithms. Moreover, the running time of WSEFC-GA is better than that of 
the other algorithms because we proposed problem-specific crossover, mutation, 
and initial population strategies that generate feasible solutions efficiently. Since 
BLA involves more complex operations, such as recruiting other workers to 
collect food, it has more computational overhead than the PSO algorithm. HGA 
uses a permutation-based scheduling algorithm and has the highest computational 
overhead. Nevertheless, the running time of the proposed WSEFC-GA algorithm 
is negligible compared to the workflow execution time. These results show that 

Fig. 10  Convergence comparison between three evolutionary algorithms

Table 5  Running time of the 
approaches for the workflows in 
seconds with different sizes

Epigenome LIGO  Montage  Cyber-
shake

Approches 20 100 20 100 20 100 20 100
WSEFC-GA 9.4 124.8 9.8 110.6 9.4 96.6 9.8 98.3
PSO 9.6 128.3 10.3 125.2 10.2 110.7 11.2 113.8
HGA 16.8 178.8 16.3 176.3 15.2 171.2 16.5 173.7
BLA 12.3 143.4 13.4 139.6 11.9 137.8 12.8 139.1
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the PSO algorithm converges faster in terms of iterations, but the proposed GA 
has a lower computational overhead. This is because the proposed problem-
specific crossover, mutation, and initial population operators generate feasible 
solutions more effectively. Moreover, the chromosome structure in the proposed 
algorithm is designed to include the start time and run time of tasks. By 
integrating start time and run time, the algorithm can efficiently manage and 
satisfy data dependencies among tasks within a workflow, avoiding redundant 
calculations, and resulting in a faster and more efficient scheduling algorithm.

7  Conclusion and future works

This paper addressed the problem of workflow offloading in the edge-cloud 
computing continuum. It proposed a nonlinear mathematical programming 
model, called MPM. This model minimizes the monetary cost of workflow 
execution under security and deadline constraints. This paper also proposed a 
genetic algorithm, called WSEFC-GA, for the problem of workflow offloading. 
The WSEFC-GA is proposed with these key insights: (1) The stochastic nature 
of generating the initial population is combined with heuristic rules to ensure 
that the problem constraints are satisfied. (2) Problem-specific crossover and 
mutation operators are proposed to fulfill security and other constraints of the 
problem when generating offspring chromosomes. (3) It finds near-optimal 
solutions that minimize the cost of executing workflow. (4) Inspired by dynamic 
programming, start time and run time of tasks are considered in the chromosome 
structure to reduce the computational overhead. The proposed model was solved 
with the CPLEX solver, and the WSEFC-GA was implemented in MATLAB. 
We also proposed an algorithm that finds feasible solutions without applying any 
optimization criterion, called CSA. Experimental evaluation shows that MPM can 
efficiently deal with the data dependency among tasks. The comparison of MPM, 
WSEFC-GA, PSO, BLA, HGA, and CSA shows that WSEFC-GA can find a good 
approximation for the optimal solutions in a reasonable time.

In future work, we intend to extend our proposed approach to take into account 
communication congestion in the workflow offloading problem. As part of 
our future work, we also plan to extend our proposed approach for scheduling 
of parallel workflows. This will involve addressing more complex scheduling 
policies and the associated challenges.
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