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Abstract—In its broadest sense, collaboration can be defined
as a united effort to accomplish activities that ultimately lead to
the achievement of shared objectives. This requires the sharing of
information, planning, risks, and rewards between collaborating
entities to a certain extent. In the case of systems of systems (SoS)
where diverse and autonomous constituent systems (CS) interact
to achieve shared goals, collaboration presents multifaceted
challenges resulting from its distinct characteristics, including
interconnectedness among the CS, heterogeneity, scalability con-
cerns, dynamic environments, emergent behavior, stakeholder
alignment challenges, and intricate decision-making processes. In
order to enhance the achievement of the SoS goals, we propose a
policy-guided collaboration approach. In this regard, we establish
a learning-based policy generation process with the goal of
guiding the decision-making behavior of CS. The practicality of
the proposed approach is illustrated through a focused analysis
of a high-rise building fire incident response system. Based
on simulation results, the proposed approach performs better
than the conventional approach in terms of SoS specific task
completion time, performance with changes in simulation inputs,
and efficiency. We also conducted a sensitivity analysis of task
completion time by varying independent decision variables such
as the number of CS instances and the size of collaborative tasks.

Index Terms—Policy-guided collaboration, collaborative deci-
sion making, policy generation, system of systems engineering

I. INTRODUCTION

The definitions and methods of a collaboration can vary
across disciplines and even within the same field. Of the
many possible reasons, the differences could be due to means-
end point of views. Some focus on the process aspect of a
collaboration, others on its effects and results. In the most
general sense, a collaboration can be viewed as a unified
effort to accomplish activities that eventually contribute to
shared goals. This, to some extent, requires the sharing of in-
formation, planning, risks, and rewards between collaborating
entities. Particularly, the systems of systems (SoS) paradigm,
characterized by the integration of diverse and autonomous
constituent systems (CS), presents multifaceted challenges to
collaboration towards achieving shared goals.

In this paper, we focus on heterogeneous (in terms of
their capabilities) systems’ collaboration challenges and the
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solution approach towards achieving a shared goal. It has
become a necessity to many organizations to recognize the
needs and requirements of and work together with other
organizations at different level. For example, the success of
the air transport system is no longer dependent on only
its parts. It is affected by the efficiency and effectiveness
of subway systems, train ways, bus systems, taxi systems,
booking systems, hotel services, financial services, airport
systems, cargo and delivery systems, and many more. The
ecosystem where an organization exists influence the effec-
tiveness of its operations in different ways. We view such
complex problem from the perspective of system of systems
engineering, frame the solution as a guided collaboration to a
dynamically changing operational environment, and propose a
learning-based collaboration technique.

The concept of SoS does not fit neatly into a single common
definition, but most often SoS is said to be composed of a num-
ber of CS working together to achieve certain shared goals [1]–
[3]. The shared goals can only be achieved by a systematic
collaboration. From SoS context, some CS involvement can
be temporary and may only exist until the shared goals are
achieved [4]. Guiding the decision making behavior of the CS
in the direction that creates favorable global outcomes for the
shared goal is one of the challenges that is still not adequately
addressed in the system of systems engineering (SoSE) [5].

From the SoS context, collaboration is defined as the
utilization of the capabilities inherent in CS to collectively
achieve common objectives [6], [7]. These capabilities of
the CS serve as the means through which the SoS mission
is accomplished by executing tasks specific to collaboration,
known as collaborative tasks. In essence, a CS within an SoS is
generally perceived as an autonomous decision-making entity
with the capability to execute and transform states related to
collaborative tasks [1], [2], [8], [9]. Collaborations in SoS
context have generally received limited attention, particularly
concerning the development and utilization of techniques
aimed at achieving shared goals. This research holds a degree
of uniqueness in its focus on this particular aspect.

From a structural perspective, a policy contains a set of
conditions, and the respective set of actions aiming to govern
the behavior of entities [10]–[13]. In another dimension, an
operational perspective; a policy has a specifier with specific



goals which can be embedded in the set of conditions and a
performer with capabilities to execute the set of actions. We
use policies with emphasis on the latter perspective, and our
policies aim at effective collaboration towards achieving the
shared goals by dictating the decision-making behavior of the
CS. This approach somehow addresses the downward causa-
tion challenge to some extent, at least within the collaboration
time range to a specific goal [14]. This can be achieved by
analysing decision making patterns of the CS and leveraging
specific learning technique that incorporates each CS response
behavior to policies.

The primary contributions of this study cover two key
aspects. First, it introduces a policy-guided collaboration ap-
proach that improves the achievement of SoS goals. Second,
it presents the implementation of dynamic policies to guide
the decision-making behavior of the CS.

This paper is structured as follows. In Section II, we review
the existing literature and state of the art for collaborations
in the SoS context. The proposed approach is discussed
in detail in Section III. Section IV presents a case study,
namely the high-rise building fire incident response system,
to demonstrate the practical utility of the proposed approach.
In Section V, we discuss the challenges, opportunities and
potential impact of policies in SoS collaborations. Finally, the
conclusion and directions for future research will be presented
in Section VI.

II. RELATED WORK

Widely used models for cooperation in multi-agent systems
(MAS)-based systems depend on a static framework and are
hierarchical. Such approaches assume that agents are designed
to fulfill common goals or that agents’ behaviors are known
and can be manipulated externally [15]–[18]. However, these
prevalent models of cooperation exhibit limitations when
applied to the dynamics of SoS. Their reliance on static
frameworks and hierarchical structures is restrictive within the
evolving and interconnected nature of SoS.

In the case of service oriented architecture (SOA), based
on time of collaboration establishment and service discovery,
there are three kinds of architecture: static, dynamic, and
dynamic collaboration [19]. Typically, services do not have
operational and managerial independence characteristics. This
implies that services lack the ability to make autonomous
decisions by interacting with or reacting to the environment
in which they are situated. Services are designed to be part of
a system, not a system itself. Hence, they are not operatable
by themselves. They first need to be part of certain business
logic to be realized, unlike CS.

Negotiation is a very essential concept in establishing a
collaboration between autonomous systems. An incentive-
based negotiation model is proposed to acquire CS for the
commitment of SoS-level goals [20]. The main challenge in
the incentive-based negotiation approach is the characteristics
of the negotiation token, that is, the means of negotiating with
various numbers and types of CS. Both assumptions, such
as using a common negotiation token and a specific token

for each particular case, have strong viability (practicality)
challenges. Coordinated adaptation is the main focus of the
research conducted by Watzoldt et al. [21]. Different coor-
dination schemes that should be considered in the modeling
language of collaborative systems with dedicated adaptation
activities in the form of MAPE-K are identified. Collaboration,
as used in Watzoldt et al. work, aims to fulfill each individual’s
goal and not to achieve a global goal that requires the
individual’s contributions.

With regard to using policies for collaboration purposes,
Cunnington et al. proposed policies for guiding systems’
behavior to adapt to new contexts [15]. It considers and uses
policies as a means of self-adaptation to new environments.
The intentions and decisions of other actors are not considered
as important factors in generating the new policies. Omid’s
work addresses collaboration challenges between different
level autonomic managers in policy-based management sys-
tems [22]. A hierarchical model is proposed that relies on
message-based communication to organize autonomic man-
agers. Collaboration focuses on self-optimization with the use
of expectation policies. Each autonomic manager operates on
the basis of a set of policies stored in a central repository. It
does not take into account collaborative behaviors that change
dynamically. It is also firmly bounded to a static architecture.
With the objective of managing dynamically evolving SOA,
Tsai et al. propose a policy generation technique to generate
policies when collaboration protocols are just established, at
run-time [19]. Collaboration policies are considered as the
composition of local policies applicable for workflows gen-
erated at run-time. Such policies are limited and can only be
used to enforce the common interests of participating parties.

III. COLLABORATION APPROACHES FOR SOS

This section focuses mainly on the collaboration approach
proposed for SoS, presented in two subsections. The overview
subsection discusses the existing generative policy architec-
ture, and the subsequent subsection presents the proposed
policy-guided collaboration approach.

A. Overview

The generic policy derivation (generation) architecture as-
sumes two role-specific systems working in collaboration: a
management system that produces initial policies and managed
devices that generate policies based on the initial policies to
cope with their environment [23].

The architecture focuses mainly on enabling managed de-
vices to exercise autonomy in generating their own policies
for their operational circumstances. Instead of the traditional
policy-based management approach where the policy refining
(PRF) and the policy decision point (PDP) reside in the man-
agement system and the only policy enforcement point (PEP)
in the managed devices, the proposed architecture pushes the
PDP and PRF further down to the managed devices. This
enables managed devices to generate and apply policies at their
discretion. Managed devices generate policies to operate in
new environments where there are new expectations. However,



Fig. 1. Generative policy architecture (Extended) [23]. The extended archi-
tecture considers two separate systems for the policy generation and policy
enforcement, namely the moderator and CSs respectively.

it is not clear how this approach can be used for new
requirements that necessitates collaboration between managed
devices for a common goal.

The managed device, in the newly proposed architecture,
has three components to process policy information, as shown
in Fig. 1 in gray: (1) policy refinement (PRFD), policy decision
point (PDP), and policy enforcement point (PEP). PRFD
identifies entities and attributes that can be affected by the
managed device actions based on the interaction graph the
management systems prescribes. It analyzes the device state
and generates a plan of actions along with a list of policies
that will be processed further by PDP. PDP is responsible
for making decisions on which policies to apply for which
plan of actions based on analysis of historical data, contextual
information, and interaction attributes. It generates policy
decisions that the PEP shall consider. PEP consults PDP for
actions, and enforces those actions that enable the device to
exist and adapt in its environment by ensuring its priorities.

As a result of PEP, certain effects are induced into the
environment, which can be observed as the behavior of the
managed device. This could be decision to continue providing
already started capabilities, initiating new services, halting
interactions with some other specific managed devices, or
denying access to local resources. The management system
policy refinement component (PRFM) can be optimized by
learning from the observed behavior. However, the existing
generative policy architecture relies only on human direct input
to make revision and improvement on PRFM.

We extend the generative policy architecture by introducing
a policy learning point (PLP). PLP is a component where
behaviors exhibited by the managed device system as a result
of the recommended actions are accumulated, associated and
learned to improve PRFM action recommendations.

PLP is an essential component to influence decision making
behavior towards the shared goals in an environment where
both the managed devices and management systems are au-
tonomous systems, a typical case in SoS. In such cases, each
system can have its own priorities, and there is less hierarchical
authority to enforce the interest of one over the other. Instead,

Fig. 2. PLP overall diagram for policy-guided collaboration.

by learning the decision-making behavior, it is possible to
influence how one behaves during collaboration.

B. Policy-Guided Collaboration Approach

From an operational perspective, a policy has a specifier
with specific goals that can be embedded in the set of condi-
tions, and a performer with the capabilities to execute the set
of actions. Hence, policies can be considered as information
mechanism between two independently managed systems, for
example SoS moderator and CS.

As discussed in the related work section, the static policy
specification, the listing of a fixed set of conditions, and
the respective set of actions are inefficient to be used to
achieve effective collaboration in the SoS context, discussed
in detail in [24]. Towards to dynamic policy specification, we
proposed integrating the PLP component into the generative
policy architecture, as shown in Fig. 2. This approach offers a
dual benefit: the ability to specify policies dynamically and
enables collaboration guided by policies. This means that
the conditions within the policy can be adjusted or entirely
new conditions and actions can be constructed by learning
from the CS responses. This learning process, combined with
a predictive model, can also be used to enhance SoS goal
achievement.

The learning model is where the moderator uses interaction
experiences with the CS to improve its policy and value
functions over time. It takes inputs from CS responses for
recommended actions, workflow and collaborative tasks from
PRFM, and interaction state and decision patterns from the
collaboration environment. Different learning techniques, such
as reinforcement learning, can be considered. The output of
the learning model updates the decision pattern repository with
new learned patterns and generates new or modified associa-
tions of conditions and actions of policies. The CS responses to
policies depend on their decision-making behavior, especially
when determining whether they should make their capabilities
available for specific collaborative tasks or not. There is no



one-size-fits-all decision-making strategy, and there are no
common metrics to measure how recommended actions will
affect the CS decision-making behavior. Heuristic approaches
can be used to satisfy such requirements for modeling and
simulation purposes.

The predictive model uses historical data and statistical
or machine learning techniques to make predictions about
actions that a candidate CS is likely to enforce. It generates a
recommended set of actions that the PRFM can communicate
to CS based on the new associations learned. It considers
interaction states and patterns from interaction states and
decision pattern repository, respectively. Techniques such as
stochastic predictive (based on occurrence frequency of similar
decisions), case-based reasoning, drawing lessons from third-
party’s observations, or machine learning can be used to
predict the recommended set of actions.

The collaboration environment model contains simulated
SoS scenarios in the intended domain specific environment.
The states of the interactions and the decision patterns from
the simulated scenario serve as a data source for the learning
and predictive models. It is continuously updated to reflect new
or revised associations between states, decisions and policies.

For experimentation purposes, we use the reinforcement
learning (RL) technique and employ the stochastic technique
based on statistical analysis of decision patterns for the learn-
ing and prediction model, respectively. The RL views fit to
describe the SoS moderator and CS interactions to achieve
the common goals. The SoS moderator has a specific goal
to achieve by utilizing the CS capabilities, and CS show their
interest by approving/declining the collaboration requests. The
state-action pairs – the building block of RL, can be explained
as the collaboration tasks completion level and the actions the
SoS moderator can take (or the actions the SoS moderator
recommends via policies for the CS). These actions are finite.
Any of the actions, if approved by any of the CS, will change
the state of course of actions of the respective CS capability. In
turn, the collaborative task state will be changed, and the SoS
moderator can learn how good the action was by observing
the state changes (evaluating how good the state changes are
towards achieving the common goals).

One essential thing to note is when using RL for agents,
as commonly called, such as robots, games (game playing),
or self-driving cars, the notion of a policy is associated with
the strategy the agent learns from the RL processes – that
determines what action to take when the agent is in a specific
state. In the SoS case, there are two aspects of the policy in
the RL processes, (1) we consider the moderator actions as the
policies recommended for the CS, while still (2) the moderator
learns its internal policies from the RL processes. For the
former case, unlike the other domains, the moderator actions
did not directly affect the collaboration. Rather, it recommends
policies to the CS. If the recommended policies are enforced
by the CS, the collaboration state will change accordingly, and
the SoS moderator can observe the state changes. Our focus is
on these particular policies that the CS are expected to enforce.
For the internal policies, the moderator learns simply by taking

the maximum return from choosing the specific action on the
current state.

IV. EMERGENCY RESPONSE SOS CASE STUDY

We examine a case study and carry out a simulation-driven
experiment to demonstrate the implementation of the proposed
approach. The primary objective of this analysis is to ascertain
the comparative benefits of the proposed approach in contrast
to conventional methods, specifically in achieving collabora-
tive objectives by leveraging diverse capabilities sourced from
a range of CS. Additionally, this assessment aims to validate
the practicality and feasibility of the proposed approach.

We develop a policy-guided collaboration simulator based
on the Agent-based Modeling & Simulation (ABMS) method-
ology [25], using the Java agent development framework
(JADE) [26]. ABMS can represent complex systems, such
as SoS, with minimal knowledge of the parameter values
or without fully knowing the optimal parameter states to
describe the real-world environment. It can be used to model
the CS decision-making with regard to planning, vulnerability
analysis, interaction and collaboration facilities, and real-time
response behavior. In a previous work, we demonstrated an
action recommendation strategy taking into account SET-based
properties using ABMS [27].

A. Emergency Response SoS

Emergency response systems, such as high-rise building fire
incident response systems, use a number of heterogeneous
systems to manage and control incidents that could be over-
whelming to a single system. Often, the participant systems
are not designed to operate in a hierarchical organization,
i.e. manager-subordinate mode. Participant systems have the
autonomy to decide whether to participate in collaborative
tasks and contribute their capabilities or not.

The emergency response system is recognized as a collab-
orative SoS type [28], [29]. Each participant system has the
freedom to join, leave or stay in the collaboration, therefore,
they are fully independent in their managerial and operational
aspects. They also readily exchange information concerning
their capabilities and task accomplishment status – which
satisfies geographic distribution characteristics. Effectiveness
of the common goals, for example, rescuing as many victims
at risk as possible, is determined based on emergent behaviors
that result in the evolutionary development of interactions
among constituting systems.

B. Simulation Design Overview

We model the SoS scenario based on ABMS. The SoS
scenario tells the story of interactions between the CS and
the moderator to achieve the shared goals. It aims to perform
collaborative tasks using CS capabilities guided by policies.
We abstract the following autonomous systems as agents in
our simulation:

• CS - A CS is managerially and operationally independent
system that has one or more capabilities to execute and
transform certain collaborative tasks specified for a SoS



purpose. It has the freedom to choose when and how
its capabilities should be activated, stopped, suspended,
or resumed. For example, an ambulance is a CS in the
case of emergency response collaborations. One of the
capabilities of an ambulance is to transport victims from
the incident scene to selected hospitals.

• Moderator - The moderator is a dedicated system that
acts on behalf of the SoS interests. It facilitates the
CS decisions towards achieving the SoS purpose. The
moderator is in charge of generating policies, dispatching
collaborative tasks and policies, monitoring collaborative
task completion progresses, and observing and taking
measure of selected properties of RTAM.

• Real-time Activity Monitor (RTAM) - RTAM embodies
distinct simulation attributes and behaviors that describe
and mimic collaboration in the real environment. Notably,
specific properties define its uniqueness, such as, set of
selected collaborative tasks and their completion levels,
set of selected CS (constellation [4]) to provide capa-
bilities, relationships between collaborative tasks, and
the relationship between collaborative tasks and set of
capabilities. The mechanisms governing and overseeing
the behavior of these properties, as well as the monitoring
of interactions with both the moderator and CS, are singu-
larly tailored to each collaboration. In our simulation, we
conceive of a reactive system that functions as an agent
that dynamically represents a real-time collaboration,
denoting it as the Real-time Activity Monitor.

The simulation design revolves around three primary agent
classes: the CS, the moderator, and the RTAM. Within this
design, the moderator takes on the responsibility of generating
policies that dictate the collaborative course of action. These
policies are then communicated to the CS, providing them
with guidelines on how to allocate their respective capabilities
towards the collaborative tasks at hand.

The decision-making process of a CS can be influenced
by these policies, as they have partial and incomplete deci-
sion information about the collaboration. Importantly, these
decisions made by the CS have a direct impact on the prop-
erties monitored by the RTAM. These monitored properties
encapsulate various aspects such as the completion status of
collaborative tasks, the involvement of CS capabilities, and the
overall progression towards achieving the collaborative goal.

The moderator, in turn, observes and evaluates these effects
as presented by the RTAM properties. This observation al-
lows the moderator to gauge the effectiveness of the policies
implemented, assessing how they influence and steer the
collaborative efforts toward the ultimate goal. The intricate
interactions among these agents and their consequential impact
on the collaborative process are visually represented in the
accompanying Fig. 3.

C. Policy-Guided Collaboration in Simulation

The simulation-based policy-guided collaboration has two
phases. The first phase deals with generating policies. This

Fig. 3. ABMS-based simulation design for emergency response SoS.

involves systematic learning and prediction techniques, as out-
lined in the approach section. We use the RL technique for the
moderator’s decision-making strategy. Learning in RL occurs
through trial and error [30]–[32]. The moderator evaluates the
effectiveness of the policy based on the behavior exhibited by
the CS. Regarding the prediction of policies, we employ the
stochastic technique based on statistical analysis of decision
patterns. The second phase is policy-guided collaboration. This
phase uses policies generated from the first phase. When the
moderator decides to guide the decision-making behavior of
the CS, it recommends a set of actions that reinforce the
probability of achieving the SoS goals. The two phases are
strongly coupled and are codependent on each other.

We use public information about the Grenfell Tower fire
incident to establish initial conditions for simulation purposes.
The sources of the public information and data are various
reports including inquires and hearings, police investigation
reports and media outlets about the incident and the emergency
response operations [33]. According to investigation reports,
about 250 firefighters, 9 search drones, 30 emergency vehicles,
and 6 hospitals participated in the response to the Grenfell
tower fire incident. One of the shared goals that binds all the
participating response systems was saving as many trapped
individuals as possible. There were 80 deaths and 70 injuries,
a total of 150 homes destroyed, burned about 60 hours [34].
We use the data to make estimates of values for the simulation
scenarios, define interactions and data for the interactions,
define CS and their capabilities, and define type of policies
in the collaboration.

We consider first responders to the established hypothetical
fire incident that includes police, fire fighters, rescue, ambu-
lance, and hospitals to constitute and arrange for the SoS
of emergency response. In addition, victims are also a CS.
The common goal is evacuating and rescuing more number
of individuals at risk with in a reduced time. The selected
capabilities of each CS considered for the simulation purpose
are shown in Table I.

We run several hundred simulation by varying scenario
configurations. A configuration contains the number of in-
stances of each CS, the capabilities that each CS commits to
collaborative tasks, and a probabilistic estimate of the approval



TABLE I
CSS AND THEIR CAPABILITIES CONSIDERED IN THE SIMULATION

CSs Capabilities
Police Coordinating, Establishing cordons, Preserving order

Fire fighter Extinguish fire, Search victims, Rescuing victims
Rescue service Searching victims, Rescuing victims

Ambulance First aids, Triaging, Transport
Hospital Clinical treatment
Victims Signal location and status

TABLE II
DIVERSE SCENARIO CONFIGURATIONS

Police Fire fighter Rescue service Ambulance Hospital
Conf3 1 27 14 22 3
Conf2 1 39 20 27 3
Conf1 2 46 30 28 5

of the recommended actions by the moderator. Table II shows
a handful scenario configurations only to illustrate and make
a comparative analysis between the proposed and baseline
approach.

We investigate effectiveness of the proposed approach in
terms of achieving a reduced time for completing the collab-
orative tasks. For comparison purpose, we implemented the
commonly practiced collaboration approach in distributed and
cooperative environment, as described in [35]. We select this
approach as a base line because it deals with autonomous
agents (or managed systems) and assumes unpredictable avail-
ability of constituents’ capabilities. The compiled simulation
result is shown in Fig. 4 and Fig. 5.

D. Simulation Results

As shown in the summarized simulation results, Fig. 4 and
Fig. 5, the first observation is that the completion time of
the proposed approach is shorter compared to the baseline
approach, especially as the number of victims increases. The
case is not the same when the number of victims is smaller,
for obvious reason that the collaborative tasks to rescue small
number of victims got completed in much shorter time.

The red box shows the completion time of multiple sim-
ulations conducted for the same number of victims, varying
the simulation configuration attributes, including the number
of instances of heterogeneous CS. In the case of Fig. 4,
the minimum is around 0.6 hours, and the maximum is
1.8 hours to complete the collaborative tasks for the victim
number of thirty (30). The time range is largely distributed,
compared to the case in Fig. 5 which is about 2.2 to 2.6
hours. This indicates that the proposed approach is more
sensitive to the changes in the number of instances of the
CS, despite it completes the collaborative task in a reduced
time. The reason for this largely distributed completion time
is due to more interactions with the moderator when there are
more CS instances. PLP adds communication overhead and
computational cost for knowledge association; therefore, the
number of CS in the collaboration is expected to affect the
performance of the proposed approach.

Fig. 4. Proposed approach completion time across diverse scenarios.

Fig. 5. Baseline approach completion time across diverse scenarios.

The red bar-line shows change in completion time when
number of victims changes. For example, a change in victim
number from 12 to 16 causes a small change in the maximum
completion time in the case of Fig. 4, but a much larger change
in the case of Fig. 5. This indicates that the baseline approach
is much more sensitive to changes in task size compared to
the proposed approach.

Based on the observation, as expected the baseline approach
exhibits a linear increment which is closely the same as
the sum of the increment in number of victims i.e. a 200%
increment. The proposed approach still can manage the scaled
phenomenon, only costing close to a 100% increase in the
completion time of collaborative tasks. Again, the baseline ap-
proach is observed to show a drift increase in task completion
time in some of the scenario configurations, which is about 4
times the proposed approach (more than a 400% increase).

As can be seen in the two simulation results, the proposed
approach manages the scaled environment costing less in
completion time. The substantial performance advantage of
the proposed approach over the baseline approach can be
attributed to the PLP component introduced to incorporate the
decision-making behavior of the CS in the dynamic policy
specification.

V. DISCUSSION

Effective and efficient collaboration in the SoS context
is super complex for several reasons. For example, it deals
with unpredictable CS decision-making behavior, involves or-
chestration of heterogeneous capabilities, exhibits evolutionary



development on different levels, and goal fulfilment is highly
dependent on emergent behaviors. We use policies to enforce
guiding constraints on collaborating CS to ensure the execution
of services, workflows, and applications that enhance the
achievement of SoS purpose. In the following subsections, we
present the discussion points.

A. Limitations of Static Policies for SoS

The limitations of static policy specification for SoS col-
laboration are obvious. Essentially, a static policy primarily
functions as a regulator, overseeing and directing the behavior
of the system to operate optimally in alignment with its
predefined design objectives. It operates by outlining a set
of conditions and their corresponding actions, serving as rigid
boundaries that confine the behavior of the system. Anything
beyond these predefined parameters is typically considered
undesired system behavior. This static approach can directly
contradict the essence of a SoS, as emergent behaviors play a
pivotal role in fulfilling its purpose.

The static nature of these policies, where conditions and
corresponding actions are pre-established, proves restrictive
as emergent behaviors, crucial for SoS functionality, might
not be encompassed within these predefined boundaries. In
the case of SoS, the conditions and actions are selectively
determined based on available information and the specific
mission’s nature.

Hence, there arises a need to explore the creation of
global policies capable of enforcing diverse global constraints
or properties, considering the newly established interaction
behaviors within the SoS.

B. Dynamic Policies and Policy-Guided Collaboration

One way to address the limitations of the static policy,
as presented in this paper, involves integrating the response
behavior of the CS through learning models. By incorporating
learning and prediction models that forecast future collab-
orative behaviors, there exists an opportunity to bridge the
gap between static policies and the evolving dynamics of
collaborative interactions within the SoS.

Directing the CS decision-making behavior to effectively
contribute to the overarching purpose of a SoS poses sig-
nificant challenges, especially when faced with two specific
conditions. Firstly, the necessity to recognize a CS autonomy
is one of the essential characteristics of a SoS-based analysis.
Autonomy is associated with the level of managerial and
operational independence i.e., the authority that the system
has to manage its resources, and the ability to decide when
and how to perform its functions [1], [8]. A global policy
can affect a CS decision-making behavior only if the CS
has consent to. Our approach tries to ensure the consent
of CS to the recommended policies through learning and
systematic prediction. With this regard, we expand the policy-
based decision-making components of the management system
(as described in the policy architecture [23]) by including PLP
that learn and associate new knowledge for PRFM.

Secondly, achieving effective policy specification becomes
challenging when intricate knowledge about the decision-
making factors influencing CS behavior is lacking. The ab-
sence of precise insight into these decision-making factors
hampers the ability to craft policies that accurately guide CS
towards the SoS purpose. This limitation impacts the quality
and effectiveness of the policies designed to steer CS behavior,
potentially leading to less effective contributions to the overall
SoS objectives.

These conditions, the need to maintain the autonomy of
the CS, and the absence of detailed knowledge about the
decision-making factors of the CS collectively influence the
formulation and impact of policy specifications in the context
of SoS. Balancing these factors is crucial to devise policies that
guide the decision-making behavior of CS effectively without
compromising their autonomy while navigating the complex
landscape of an evolving SoS.

C. ABMS-Based Evaluation

We use ABMS to verify the efficacy of the proposed
approach and perform a comparative analysis with the effec-
tiveness of the baseline approach. ABMS is useful in two
ways: On the one hand, it enables investigations of how
decisions of the CS change the SoS behavior from the bottom-
up perspective. On the other hand, a moderator can alter
scenario configurations to improve the behavior of a system
from a top-down perspective. One of the application strengths
of ABMS that helps to make a SoS analysis rigorous is that
it most likely reveals unanticipated emergent behavior due
to its bottom-up approach. The emergent behavior observed
is clearly dependent upon the implementation of the CS as
agent; therefore, determining the correct level of fidelity and
identifying which system characteristics to model within each
CS is key and is, in itself, a complex activity. ABMS also
provides highly scalable modeling and analysis that can be be
constructed with simplified agent behaviors; and modularity of
agents enables extension of behavioral complexity if required
[36].

D. Dynamic Policy Challenges

A dynamic policy is shown to be more effective compared to
a static policy in achieving SoS collaboration goals. However,
it is also less predictable for CS, as it may already have
allocated resources when policy modifications are made or new
ones are introduced. This increases the risks for CS and could
make them more hesitant to join or exit a constellation due
to possible policy changes. A topic such as this merits further
research, for example, how to maintain CS engagement in SoS
collaboration during a period of policy changes.

VI. CONCLUSION

The underlying motivations for the work presented in this
paper are the unique characteristics of SoS, and the inherent
challenges associated with the characteristics in the design
and development of SoS systems. A SoS aims to achieve its
goals by harnessing CS capabilities. We explored the use of



policies for guiding the CS decision-making behavior in order
to achieve the SoS purpose. The policies in the proposed
approach are intended to be used in the real world system.
Hence, the development of the proposed approach, with due
considerations of the timing of events within the real-world
system will result in more accurate and valid policies. As
part of the future work, it would be interesting to investigate
the virtual prototyping design method for policy-guided SoS
collaboration.
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