
Time-Sensitive Networking’s Scheduled Traffic
Implementation on IEEE 802.11 COTS Devices

Pablo Gutiérrez Peón∗†, Paraskevas Karachatzis∗, Wilfried Steiner∗, and Elisabeth Uhlemann†
∗TTTech Computertechnik AG, Vienna, Austria

†School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden
Email: {pablo.gutierrez-peon, paraskevas.karachatzis, wilfried.steiner}@tttech.com, elisabeth.uhlemann@mdu.se

Abstract—Wired real-time network deployments based on
time-sensitive networking (TSN) are becoming increasingly pop-
ular in several application fields including industrial automation
and the automotive area. This is to a great extent due to the
scheduled traffic (ST; IEEE 802.1Qbv), a TSN mechanism that
precisely triggers transmissions at pre-defined instants from a
set of independent hardware queues. Unfortunately, the wireless
counterparts based on IEEE 802.11 (Wi-Fi) currently lack
standardized or functional solutions that would be able to fulfill
strict real-time requirements. This work proposes the use of ST
over IEEE 802.11, taking advantage of an existing but overlooked
mechanism from commercial off-the-shelf (COTS) equipment. An
extensive set of tests, spanning different implementation config-
urations, traffic patterns, and levels of interference evaluates the
proposal in terms of reliability and delivery delays and serves
as a proof of concept. The tests also evaluate the much-needed
clock synchronization quality of an out-of-the-box software-only
implementation of the precision time protocol (PTP) due to its
relevance in enabling ST.

I. INTRODUCTION

The local area network (LAN) standards IEEE 802.3 (Ether-
net) and IEEE 802.11 (Wi-Fi) are the prevailing technologies
to enable data exchange between computer systems in home
and office environments. Their unbeatable success, founded
on easy-to-configure, fast and low-cost technologies, has not
passed unnoticed in other fields where computer networks
are present, including industrial automation, the automotive
area, or aerospace. However, in contrast to home and office
environments, these application fields have a set of require-
ments in common, namely the need for providing real-time
guarantees. More specifically, bounded data delivery delays
and high reliability are required and imposed by an environ-
ment that feeds the system with sensor inputs and expects
a timely response via actuators [1]. Unfortunately, the real-
time performance from Ethernet and IEEE 802.11 suffers
when data frames coming from various sources interfere while
accessing shared resources, particularly when stored in the
network device queues before the transmission [2]. Further,
collisions at the medium access control (MAC) level are often
preventing IEEE 802.11 from being reliable [3].

In the case of IEEE 802.11, many alternatives have been
formulated to provide a bounded medium access time and a
more reliable MAC. The first efforts from the IEEE standards
in such a direction were part of IEEE 802.11e. Despite the
improvements, they only mitigated but did not solve the prob-
lem as collisions can still occur, and only a reduced number of

devices are supported in a network [3]. In the case of Ethernet,
several network technologies have tried to enable a real-time
service. From PROFINET in the industrial field to AFDX in
aerospace, a collection of proprietary field-specific Ethernet
extensions were deployed that require special hardware and
consequently suffer from limited interoperability.

This scenario has changed with the introduction of the
standardized mechanisms proposed by IEEE 802.1 “Time-
Sensitive Networking” (TSN), notably due to IEEE 802.1Qbv
“Enhancements for Scheduled Traffic” (ST) and IEEE
802.1AS-Rev “Timing and Synchronization for Time-Sensitive
Applications” with its clock synchronization mechanism based
on the precision time protocol (PTP). Both mechanisms com-
bined allow for bounded-delay medium access on Ethernet, en-
abled by network-wide, coordinated scheduled transmissions
[4]. As a result, TSN has experienced a warm reception,
becoming the cutting-edge networking technology to apply in
crucial use cases like in-car communication backbones [5] or
communications between heterogeneous industrial machines
[6].

Although TSN’s ST conception has Ethernet switches in
mind, the mechanism is not restricted to Ethernet’s physical
layer (PHY). Applying an ST-like mechanism also in IEEE
802.11 enables the fulfillment of the real-time requirements of
the data exchanges by scheduling the medium access. Further,
having the ST mechanism supported both over Ethernet and
IEEE 802.11 allows for network-wide scheduling of data
exchanges facilitating end-to-end real-time guarantees.

This paper presents a proof-of-concept implementation of
the use of TSN’s ST over IEEE 802.11. The implementation
modifies the driver in Linux systems (ath9k) that man-
ages the commercial off-the-shelf (COTS) Atheros 802.11n
PCI/PCIe chips to enable several built-in hardware mecha-
nisms to work in the same fashion as the ST from IEEE
802.1Qbv. The proposal has the advantage of using already
commercially available hardware without requiring any hard-
ware redesign and is in theory applicable to other chip models
providing comparable hardware support. The proof-of-concept
evaluation is carried out by comparing different MAC config-
urations with and without ST support. An evaluation of the
PTP clock synchronization protocol is also presented based
on a software-only implementation.

The remainder of the paper is structured as follows. Section
II presents the background on IEEE standards for Ethernet



and IEEE 802.11 and their support for real-time guaran-
tees. Section III reviews related work. Section IV describes
how to enable ST over IEEE 802.11. Section V covers the
performance evaluation of the implementation. Finally, the
conclusion is presented in Section VI.

II. IEEE LOCAL AREA NETWORK STANDARDS AND THEIR
REAL-TIME SUPPORT

A. IEEE 802.3 - IEEE standard for Ethernet

The carrier sense multiple access with collision detection
(CSMA/CD) protocol regulates the medium access on Eth-
ernet. CSMA/CD checks if the transmission medium is free
before attempting a transmission and while it is taking place.
If some other signal is detected on the wire, a random backoff
waiting time is introduced, making the access time depend
on other users sharing the medium. However, most of the
current Ethernet deployments use switch-based topologies with
the end systems connected via switches and switches that
can as well be linked together. Dedicated full-duplex wired
connections are placed between each pair of network devices,
effectively avoiding interference from other devices at the
medium level. Unfortunately, frames still have a chance to
interfere in the queues at the switches while waiting to be
transmitted. If the traffic pattern generation at the end systems
is random, frames might experience varying delays when
accumulating at the queues and even get lost if they overflow
them [2].

B. Time-Sensitive Networking (TSN)

A successful attempt to overcome the randomness of Eth-
ernet in the framework of IEEE standards has been made
through TSN and its offer that includes mechanisms to support
guaranteed latencies with low jitter. In TSN, each frame carries
a priority in the range of 0-7 that goes into the Ethernet
frame header as part of the so-called VLAN tag field (IEEE
802.1Q). After the switching engine redirects the frame to
the corresponding port based on its destination, the priority
filter uses the frame priority to place frames on 8 separate
queues that exist on each port (Figure 1), allowing a priority-
based partition of the traffic through the entire TSN network.
Each queue is followed by a shaper that controls the flow of
frames. Among the several shapers described in the standard,
the credit-based shaper (CBS; IEEE 802.1Qav) can evenly
distribute the amount of traffic in time, which is beneficial
for streaming applications.

Right after the shapers phase, traffic goes through the
transmission gates (TGs; IEEE 802.1Qbv). A TG adopts two
states: open allows traffic to go through while closed holds it.
The state of the TGs over time is defined in the gate control list
(GCL). The GCL commands what frames can go through at
every instant, enabling ST by adopting a time-division multiple
access (TDMA) scheme with time-triggered transmissions. In
case more than one of the gates is simultaneously open, frames
are selected for transmission according to their priority. It
should be highlighted that the standard does not describe how

TSN switch

architecture Port C

...Priority 

filter

Switching 

engine

Port A 

(in)

Port B 

(in)

Queue 0Queue 0

Gate 

control list

Port C 

(out)

Queue 7Queue 7

S
h

a
p

e
r

S
h

a
p

e
r

Port D

...Priority 

filter

Queue 0Queue 0

Gate 

control list

Port D 

(out)

Queue 7Queue 7

S
h

a
p

e
r

S
h

a
p

e
r

TG

TG

TG

TG

...

...

...

...

Fig. 1. TSN switch architecture.

to create a schedule, and the implementation is left open, but
scheduling solutions are already available [4].

Both the CBS and the TGs mechanisms are meant to be
implemented in hardware in pursuance of a better timing
performance. Only the TGs are needed for traffic requiring
a precise latency and low jitter, while the prior shaping phase
can be disregarded [4].

Sharing a common notion of time is essential for the TGs to
let traffic go through in such way exchanges are coordinated
across a set of independent devices. In IEEE 802.1AS-Rev,
a single node, the grand master, is selected either manually
or as an outcome of the so-called best-master protocol. The
grand master serves as the reference to which other nodes,
the slaves, synchronize their clocks. The value of the grand
master clock is sent periodically to the slaves as part of a Sync
message. Depending on the implementation, an accurate value
of the sending time of the Sync message might be included as
part of the message itself (one-step) or sent in a Follow_Up
message (two-step). Having received the sending time, slaves
can calculate their offset from the grand master and correct
their clocks accordingly. The impact of the propagation delay
is also considered in the correction and based on a per-link
measurement procedure realized with a sequence of message
exchanges between the two nodes connected to each link.

Network devices implementing IEEE 802.1AS-Rev should
comply with the requirement to have a maximum offset
between clocks of 1 µs for up to 7 links. To reach such
precision, hardware support is highly recommended. These
numbers are easily achievable in wired settings. In contrast, the
results in Section V will show that a less stable outcome can
be observed over wireless links with a software-only imple-
mentation, limited due to the lack of hardware timestamping.
However, it is possible to deal with the impediments of
software timestamping and achieve an acceptable performance
[7].



C. IEEE 802.11 - The baseline MAC

The baseline MAC in IEEE 802.11, termed distributed
coordination function (DCF), is founded on the carrier sense
multiple access with collision avoidance (CSMA/CA) pro-
tocol. CSMA/CA is a variant of CSMA/CD constrained by
the current limitation of off-the-shelves wireless radios to
perform CD due to their inability to transmit and receive
simultaneously on the same frequency. In CSMA/CA, the
medium is sensed for some duration, the DCF interframe space
(DIFS), seeking other transmissions and deferring access if
detected. If several devices sense the same transmission and
defer access, they could collide once the ongoing transmission
is over. In order to avoid this, an extra random time in
the range of a contention window (CW) is added. In DCF,
acknowledgment frames (ACK) give feedback to the data
sender whether a transmission succeeded. If the ACK is not
received, a retransmission could be triggered.

An additional MAC mechanism in the IEEE 802.11 standard
is the point coordination function (PCF), which is applicable
when end systems, referred to as stations by the standard, are
connected through an access point that takes the coordinator
role. In PCF, the medium access is divided into periodic
phases having two parts: one contention-free using the PCF
mechanism and one contention-based using DCF. The PCF
mechanism gives a station the right to transmit after receiving
a polling frame (CF-Poll) coming from a coordinator node.
The PCF mechanism forces a sensing medium wait of PCF
interframe space (PIFS), which is shorter than DIFS, thus
prioritizing frames using PCF over DCF. With PCF, delay-
bounded channel access is achievable, but it is not mandatory
in the standard and the mechanism has some scalability
limitations [3].

D. IEEE 802.11e - MAC quality of service enhancements

The standard amendment IEEE 802.11e aims to provide
quality of service enhancements targeting delay-critical appli-
cations by defining two new coordination functions: enhanced
distributed channel access (EDCA) and HCF controlled chan-
nel access (HCCA).

In EDCA, frames are assigned a priority carried as part of
the quality of service (QoS) field in the frame header. Such
priorities are tied the so-called access categories (AC), which
translate to different values for the CW and the IFS, and
different queues where to store the frames before transmission.
The IFS is renamed arbitration inter-frame space (AIFS) in the
standard amendment. Still, the default values for the CW make
the range of possible sensing times between different priorities
overlap, which might cause frames from lower priority ACs
to get access before higher priority ones even if they start to
arbitrate simultaneously [8].

The HCCA mechanism is similar to PCF but allows for
the initiation of contention-free phases inside the contention
period. For both EDCA and HCCA, once access to the medium
is provided, it is possible to perform transmissions for a
duration of a transmission opportunity (TXOP). However,
its polling mechanism results in a significant communication

overhead when transmitting frames with a small payload [9].
Further, currently COTS devices do not implement HCCA,
and it is unclear if and when the industry will adopt HCCA
in the future.

III. RELATED WORK

Several academic works have proposed and implemented
real-time wireless solutions based on IEEE 802.11. Most of
them suggest TDMA schemes to organize the medium access.
The access is often carried out in cycles, with some time slots
precisely assigned and some accessed through CSMA/CA.
The actual schedule of the slots differs from using EDF
[10], round-robin [11] or time-triggered [12][13][14][15]. The
work in [16] provides a framework where different scheduling
policies could be applied and relies, like this paper, on one-shot
mechanisms from the hardware. The synchronization of the
nodes to the network coordinator is done with a transmission
triggered from the coordinator before each data transmission
[10] with the consequent overhead, using the IEEE 802.11
beacon frame [13][14] or through specific synchronization
messages [11][12][15]. The schedule for the next cycle might
be included as part of the beacon or sent in a specific frame.
Several of the analyzed works present implementations using
modified versions of the ath9k driver, with numbers being
quite promising in terms of reliability and jitter, especially
when compared to standard DCF, yet highly dependent on the
interference scenario. The work in [10] shows that results over
99% of frames delivered on time can be achieved if including
planned retransmissions. In [11], improvements concerning
throughput and timeliness are provided over comparable fac-
tory automation use cases. The proposal from [13], named RT-
WiFi, brings major improvements in terms of frame delivery
latency compared to DCF after removing retransmissions but
at the price of losing between 7% to 10% of the frames in
office interference scenarios. An implementation of RT-WiFi
adopting a software-defined radio (SDR) approach instead of
COTS hardware is presented in [17]. The SDR option offers
a hardware alternative in such cases where an open source
driver controlling the hardware does not exist or parts of the
required hardware functionality are not openly available. The
authors in [16] use the built-in one-shot mechanism from
Atheros chipsets to achieve 99% of frames delivered with
low jitter, similar to the numbers in [14], with 95% of the
frames delivered on time and µs range jitter in scenarios with
moderate interference. In contrast, the work in [15] controls
the transmissions without specific hardware support, incurring
larger overheads.

Based on the adoption of TSN in wired deployments, recent
years have shown a progression towards wireless solutions
based on TSN, as opted for in this paper. The contribution
from [18] leaves out COTS equipment and decides on a new
FPGA-based hardware design with the proposal of a new
PHY. The customized hardware exhibits promising results in
terms of delivery latency, but for now, it is not compliant
with TSN or IEEE 802.11. In [19], the behavior of ST is
emulated and some preliminary results are provided, focused



on showing the performance degradation in terms of delays
when compared to the use of ST on the wired network
and the penalties introduced by the lack of a more precise
control of the hardware. Finally, the authors in [20] present
an implementation of ST over IEEE 802.11. Their results
are mainly tackled to describe the impact of enabling ST
on the behavior of a particular use case dealing with robots,
lacking a comprehensive analysis of the performance in terms
of reliability and delays.

IV. ENABLING SCHEDULED TRAFFIC IN IEEE 802.11

The support for ST is enabled on the Atheros AR928X
chipset via modifications on the Linux device driver that is
in charge of its management.

A. Linux IEEE 802.11 support and clock synchronization

The operation and control of the hardware in Linux are
done by device drivers in the form of kernel modules. The
modules are dynamically loaded into the kernel at runtime
when needed, typically when the hardware associated with
the driver is detected. Despite the great variety of hardware
options, operating systems like Linux aim to offer unified
interfaces to the applications that hide the details of the devices
behind standardized calls. This unified interfacing translates
in Linux into three main types of device drivers classified
according to the way they transfer data: character drivers,
accessed as a stream of bytes in a file; block drivers, with data
being transferred in memory blocks; and network drivers, with
the transfer happening via sockets and formatted as network
packets, i.e., an operating system’s typical name for frames.

Once a network device driver is loaded into the kernel, it
provides a network interface to exchange frames and addi-
tional administrative features like assigning network addresses,
setting transmission parameters, or keeping statistics. Due to
the particularities of wireless transmissions, the IEEE 802.11’s
MAC layer in Linux is handled by the Media Access Control
Sublayer Management Entity (MLME). MLME tries to tackle
the varying reliability, security issues, and power constraints in
wireless networks by defining a set of operations for managing
the networks’ scanning, joining, association and re-association,
power management, and time synchronization. Depending on
the hardware architecture, MLME can be completely done in
hardware (full MAC) or software (soft MAC). The latter has
the advantage of simplifying hardware and providing more
flexibility. Two kernel modules, mac80211 and cfg80211,
take the MLME responsibility for all IEEE 802.11-based soft
MAC network devices in Linux (Figure 2). Mac80211 also
receives frames from and to the socket applications and the
hardware-specific modules. Other important responsibilities
are building the IEEE 802.11 frame header, including the
QoS field, updating statistics, segmenting the frames if they
are larger than what IEEE 802.11 allows, and enqueueing
them if the hardware queues are not available. Under the
Linux MLME, there are hardware-specific modules, which are
addressed in Section IV-B.

Kernel space

User space

mac80211

cfg80211

ath_tt

ath9k_tt_hw

ath9k_tt_common

ath9k_tt

PTPSocket app

ieee80211_ops

cfg80211_ops

net_device_ops

Hardware

ath_hw_ops

nl80211_ops

ioctl

Fig. 2. Architecture and interfaces of the Linux IEEE 802.11 MAC and the
modified ath9k driver modules.

Along with the MAC driver, the option chosen in this paper
to synchronize the Linux end systems is the PTP software
ptpd that runs as a user-space application. PTP is part of
IEEE 1588, a superset of the IEEE 802.1AS-Rev.

B. Enabling scheduled traffic on an IEEE 802.11 chipset

The implementation relies on the Atheros AR928X chipset,
an IEEE 802.11n compliant solution in the 2.4 GHz band,
reaching up to 150 Mbps throughput. The chipset covers the
PHY, and MAC layers, both accessible for configuration and
status reports from the host device by a set of registers. For
such purposes, the ath9k driver was used, given that its
code is available as open source. The modifications made in
the implementation described here are related to the MAC
layer and thus independent of the role of stations and access
points. An implementation of the proposal over other hardware
models is in theory possible, subject to the existence of a
mechanism to control the exact time when to trigger the
transmission of data frames.

The chipset MAC offers ten transmission queues (Figure
3). Mapping to the queues is configurable, but by default, data
frames go into queues Q0 to Q3 based on their EDCA priority
specified as part of the frame header. Queues Q4 to Q7 are left
unused but can as well be dedicated to data frames if needed
so that the whole range of EDCA priorities is covered. Lastly,
queues Q8 and Q9 are reserved for beacon frames. For frames
transmitted over both the IEEE 802.11 and Ethernet networks,
the EDCA priority value is often selected to match the priority
from the VLAN tag. The partition of traffic into different
queues based on their priority effectively prevents traffic of
higher criticality to interfere with traffic of lower criticality in
the device memory. Each transmission queue comprises two
modules that manage the frame sending together: the queue
control unit (QCU), which selects the frames to be transmitted
based on the so-called QCU frame scheduling policy, and the
distributed coordination function unit (DCU), which carries
out the EDCA channel access.



P
C

Ie
 i

n
te

rf
a
c

e

Q
0

: 
A

C
_

B
K

DCU

0-1023 slots7 slots

AIFS CW

<frame sched

policy>

QCU

Q
1

: 
A

C
_

B
E

DCU

0-63 slots

AIFS CW

<frame sched

policy>

QCU

3 slots

Q
2

: 
A

C
_

V
I

DCU
AIFS CW

<frame sched

policy>

QCU

2 slots 0-15 slots

Q
3

: 
A

C
_

V
O

DCU
AIFS CW

<frame sched

policy>

QCU

0-7 slots2 slots

D
C

U
 

a
rb

it
ra

ti
o

n

P
C

U

P
H

Y

Fig. 3. Chipset MAC queues. Only the queues Q0-Q3 are shown, correspond-
ing to the default chipset mapping between ACs and EDCA priorities.

The interface between the chipset and the host is based
on PCIe. The interface serves to access the registers and
perform the frame exchange. The first version of the driver
was developed over a USB-accessed chipset, but the delay
introduced into tasks like writing registers was in the order
of ms, while the PCIe interface offers delays in the order of
µs. After the frame is sent over the PCIe interface, it is stored
in the chipset in a buffer in the form of a FIFO linked list.
The responsibility of the corresponding QCU is to select the
frames from the linked list and make them available to the
DCU to proceed with the transfer.

The decision on when a frame is selected for transmission
depends on the QCU frame scheduling policy. Except for
beacon-dedicated queues that trigger the beacon frame period-
ically, all other queues apply an as-soon-as-possible policy by
default, with frames sent to the DCU as soon as no other frame
is in the DCU. Among the rest of the available policies, the
one that best resembles a time-triggered scheduling as enabled
by the TGs is CBR. CBR allows the selection of a frame for
transmission periodically, but unfortunately, it does not fully
fit the purpose since the TGs mechanism is not restricted to
periodic transmissions only. One option could be to change
the value of the CBR period each time a frame has to be
sent out, but testing showed that the hardware did not cope
well with the dynamic change of the period, and frames were
not dispatched on time. Luckily, the chipset offers a solution
that enables choosing the specific moment when a queue is
allowed to transmit data. The solution relies on the one-shot
mechanism (Figure 4), used in combination with the CBR
QCU frame scheduling policy. First, the user shall write which
QCUs should select frames for transmission. Then, the one-
shot mechanism is used to trigger a frame transfer from each
active QCU to the corresponding DCU.

Further, the chipset QCU frame scheduling policies allow

Ready time = Channel time

CWAIFS Frame 1

S
IF

S

Frame 2

S
IF

S

Frame 3

t

One-shot trigger

Fig. 4. Example of the transmission of three frames and the use of one-shot,
ready-time, and channel-time mechanisms to access the channel.

the transmission of one frame at a time instead of a set of
them, like in the TGs or TXOP mechanisms. This behavior
can be amended using the ready-time mechanism from the
chipset. Ready time specifies the duration during which the
QCU marks the frames as ready to be sent to the DCU,
emulating the effect of the TG being open for a user-defined
duration.

Once the QCU makes the frame available to the DCU, the
EDCA channel access protocol is followed. The CW values
can be adjusted accordingly to avoid the problem of overlap-
ping priorities with the default AC parameters. In this regard,
the channel-time mechanism from the chipset requires only
the first frame in some user-defined duration to arbitrate for
channel access. The rest of the frames would avoid waiting for
AIFS and CW, leaving just the SIFS in between (Figure 4). The
lack of continuous arbitration efficiently reduces the overhead
of the DCU channel access for each frame. Furthermore, the
duration can be set to be equal to the ready time, allowing the
scheduler to put as many frames as possible inside the ready-
time duration. After the DCU grants the medium access to a
frame, it is handed over to the protocol control unit (PCU),
which is responsible for sending the frame to the baseband
logic and performing other DCF-compliant tasks.

The kernel modules ath_tt, ath9k_tt_hw,
ath9k_tt_common and ath9k_tt from Figure 2
are the modified version in this paper of the ath9k driver
modules provided in the Linux kernel. These modules are
in charge of setting the proper configuration values for the
described mechanisms and performing the transfer of frames
from the mac80211 module to the chipset and vice versa
over the PCIe interface. To enable the TGs mechanism, a
schedule shall be configured in the aforementioned kernel
modules. The schedule is made available to the kernel
modules by exposing them as character drivers, allowing a
direct path to user applications via ioctl calls. Currently,
the distribution of the schedule configuration is done prior to
the network operation. However, the driver can load a new
schedule dynamically, so the configuration mechanisms from
the TSN’s IEEE 802.1Qcc “Stream Reservation Protocol
(SRP) Enhancements and Performance Improvement” could
be used in the future. Having a schedule available, the times
when to open and close the gates are programmed using Linux
kernel timers. When the timers expire, their handling routines
are programmed to reconfigure the one-shot, ready-time, and
channel-time mechanisms.



V. PROOF-OF-CONCEPT EVALUATION

A. Evaluation description

The purpose of the evaluation is to assess the concept
of applying ST over IEEE 802.11. A comparison of the
performance between the MAC using ST and DCF is made.
Additionally, the impact on the performance of two other MAC
configuration options is evaluated: default vs. prioritized chan-
nel access and active vs. inactive channel time. The considered
performance measures are reliability, delay between packet
arrivals, and clock synchronization precision. Reliability is
calculated as the portion of packets arriving at the destination
from those sent. Since there are two reasons why packets
might not be delivered, a distinction is made. On the one
hand, packets that are not transmitted due to the hardware
being overflown by too many transmission requests. On the
other hand, packets that are transmitted but not received due
to channel conditions. Furthermore, the time between data
arrivals and, more interestingly, the jitter for such measure
indicates the uncertainty regarding the timing of packets, being
low jitter the desired outcome. Finally, it is relevant to assess
the quality of the clock synchronization, which is required by
ST to operate and useful for applications relying on a shared
time-base between nodes.

The Atheros AR928X IEEE 802.11 chipset used in the
implementation is installed via PCIe interface on five industrial
PCs model MFN-100 running a non-real-time version of Linux
to serve as a proof of concept for the use of industrial equip-
ment. The five nodes, attached in an infrastructure topology
(Figure 5) are placed evenly over an area of 150 m2 in an
office building. Three additional Raspberry Pi nodes are used
to generate interference, of which two are senders and one is
receiver.

MFN 1

Access point

Data receiver

PTP master

MFN 2

Station

Data sender

PTP slave

MFN 3

Station

Data sender

PTP slave

MFN 4

Station

Data sender

PTP slave

MFN 5

Station

Data sender

PTP slave

RasPi 1

Interf. receiver

RasPi 2

Interf. senderRasPi 3

Interf. sender

Fig. 5. Evaluation scenario.

The performance of the implementation is evaluated by
comparing 72 scenarios resulting from the combination of
different protocol-related, traffic-related, and fault-injection-
related parameters.

The protocol-related parameters, summarized in Table I
include the MAC protocol used, either DCF or ST, also
whether default or prioritized channel access parameters are

used and finally if channel time is active. Table I also de-
scribes the mapping of different kinds of transmissions into
priorities. The data generated to be exchanged are assigned
a medium priority, whereas the network services and clock
synchronization data are assigned a low priority. The low-
priority assignment is not generally considered a drawback for
protocols like PTP, since they are often transmitted without any
kind of prioritization. Also, the wireless network broadcasts
beacon frames periodically. These messages are transmitted
on the highest priority and will have some impact on the
data frames. This interfering effect has not been thoughtfully
studied and tackled and is left as future work. Retransmissions
via automatic repeat request (ARQ) have also been disabled,
giving every packet just one chance to be delivered. The
nodes are synchronized using ptpd, an implementation of
PTP for Linux, with one node statically selected as the PTP
master. Ptpd runs as a user-space application on the nodes
and lacks hardware timestamping support in this evaluation.
Further, timestamping is performed in a two-step process. The
evaluation of the clock synchronization provides an idea of
how good the synchronization can be under such non-ideal
conditions and whether it can be used to enable ST.

TABLE I
PROTOCOL-RELATED EVALUATION PARAMETERS.

Parameter Value

MAC protocol DCF
ST

Channel access:
AIFS [slots], CW [slots]

Default: 2, [0-1023]
Prioritized: 0, 0

Channel time (ST only) Inactive
Active and equal to the duration of
the current ST slot

Priority mapping Beacon frame (high priority), gener-
ated data (medium priority), network
services and clock synchronization
(low priority).

ST schedule 10 ms long, with two segments trig-
gering medium- and low-priority data
respectively, and a 1 ms buffer be-
tween the two.

Acknowledgement frames (ACK) Enabled

Automatic repeat request (ARQ) Disabled

Fragmentation Disabled

Hidden node handling RTS/CTS disabled

Rate adaptation Enabled

Maximum rate [Mbps] 54 (IEEE 802.11g)

Clock synchronization protocol PTP (ptpd software)

Clock synchronization times-
tamping

Software-only two-step process

Beacon frame period [ms] 100

Wi-Fi security options WPA

In the case of traffic-related evaluation parameters, summa-
rized in Table II, these cover the evaluation of different packet
sizes classified into small, medium and large, and different
levels of utilization of the available bandwidth, divided into



low and mid-high utilization and resulting on different burst
sizes dependant on the packet size. At least 10000 data packets
are generated on each test. Other parameters are applicable to
all scenarios and include the generation of data randomly over
the whole period and using non-blocking socket calls in Linux,
which makes the application drop the data in case transmission
requests flood the underlying hardware.

TABLE II
TRAFFIC-RELATED EVALUATION PARAMETERS.

Parameter Value

Packet size [B]
Estimated utilization [%] (burst size)

Small: 32
Low: 1.1% (1x)
Small: 32
Mid-high: 28.6% (26x)
Medium: 512
Low: 1.8% (1x)
Medium: 512
Mid-high: 29.1% (16x)
Large: 2048
Low: 4.1% (1x)
Large: 2048
Mid-high: 28.4% (7x)

Number of generated packets ≥ 10000

Packet generation period [ms] 50

Generation pattern Random over the period

Addressing Unicast, with one hop to the ac-
cess point

Linux socket calls Non-blocking

Finally, the fault-injection evaluation parameters, summa-
rized in Table III, indicate the type of interference that has
been present during the evaluation, either the default office
background noise that exists in the experimentation environ-
ment or the office noise complemented with the additional
disturbance generated from a couple of Raspberry Pis.

TABLE III
FAULT-INJECTION-RELATED EVALUATION PARAMETERS.

Parameter Value

Type of interference Office noise
Office noise + additional disturbance

Additional disturbance
characteristics

Data size [B]: 256
Burst size: 20x
Period [ms]: 100
Number of generating nodes: 2x
Estimated utilization: 5.7%

B. Results

Table IV depicts the reliability results for each protocol,
traffic and fault-injection parameter, obtained after aggregating
the results from all the scenarios where the given parameter is
present. The results are also provided after considering only
the parameter options that lead to the best and worst scenarios,

which will be detailed in the analysis below. The proportion of
delivered packets (del.) is provided for each. Then a distinction
is made between the packets dropped due to overload before
attempting the transmission (drp.) and those sent but interfered
(int.).

When considering all the scenarios, the ST-based MAC
protocol outperforms DCF, having default parameters for
channel access is generally better than using prioritized ones,
and activating the channel time feature is more beneficial
than having it deactivated. Further, scenarios with a high-
medium utilization tend to exhibit worse performance due to a
more congested medium, which is also applicable to scenarios
where an additional disturbance is present. The analysis of
the results shows that the best scenarios are those where the
concurrence of DCF as MAC protocol, prioritized channel
access, and a mid-high medium utilization does not occur.
Under those beneficial conditions, values over 0.95 reliability
are easily achievable, and DCF and ST provide similar results.
In turn, the set of scenarios providing the worst results, the
complement of those scenarios in the best set, counts with
reliability values lower than 0.4 and as low as 0.1. A few
conclusions can be inferred from the reliability results. First,
the MAC protocols DCF and ST do not provide diverging
results unless other parameters like prioritized channel access
are considered, which harms DCF and should not be used
in combination. The reason is that several prioritized nodes
could try to access the medium at the same time in DCF,
which results in collisions. Second, results also confirm the
obvious, that a more congested medium, either due to a mid-
high utilization from the traffic generated in the network or
due to the additional disturbance, decreases reliability. Thus,
it is essential to highlight that scheduling transmissions, as in
ST, does not translate per se to better reliability. A large part
of the reliability improvement comes from admission control
mechanisms. By default, DCF is not used in combination with
admission control and the nodes are not aware of the medium
usage quota they shall not exceed to avoid overflowing the
channel capacity. Such DCF nodes try to send data as soon
as they have some data to exchange available, which could
compromise the reliability of the transmissions. Finally, the
proportion of packets dropped and interfered increases with
mid-high utilization and additional interference. Such a sce-
nario causes the wireless channel to be congested, translating
the issue to the network interface, which is not able to accept
more sending requests from the application, dropping the
packets before they get a chance to be sent.

Table V summarizes the results for the delay between packet
arrivals. The results are again provided for each configuration
parameter after aggregating all the scenarios where the given
parameter is present. The results for the parameters that result
in the best and worst scenarios, which will be clarified in
the analysis that follows, are also included. In all cases, the
packet size and utilization parameters are excluded due to the
lack of interest, e.g., bursty scenarios will naturally have a
shorter delay between arrivals than scenarios where packets
are individually sent. Hence, the interest is in evaluating if the



TABLE IV
RELIABILITY RESULTS.

Parameter Results all scenarios Results best scenarios Results worst scenarios
Del. Drp. Int. Del. Drp. Int. Del. Drp. Int.

MAC protocol DCF 0.7868 0.0673 0.1459 0.9763 0.0137 0.0100 0.2185 0.2281 0.5534
ST 0.9582 0.0025 0.0393 0.9582 0.0025 0.0393 - - -

Channel access Default 0.9347 0.0102 0.0551 0.9347 0.0102 0.0551 - - -
Prioritized 0.8675 0.0380 0.0945 0.9973 0.0000 0.0027 0.2185 0.2281 0.5534

Channel time Inactive 0.8630 0.0357 0.1013 0.9550 0.0082 0.0367 0.2185 0.2281 0.5534
Active (ST only) 0.9774 0.0009 0.0218 0.9774 0.0009 0.0218 - - -

Packet size,
utilization

Small, low 0.9983 0.0000 0.0017 0.9983 0.0000 0.0017 - - -
Small, mid-high 0.8431 0.0318 0.1251 0.9395 0.0056 0.0549 0.3612 0.1632 0.4757
Medium, low 0.9984 0.0000 0.0016 0.9984 0.0000 0.0016 - - -
Medium, mid-high 0.8247 0.0341 0.1412 0.9511 0.0025 0.0464 0.1923 0.1923 0.6154
Large, low 0.9980 0.0000 0.0020 0.9980 0.0000 0.0020 - - -
Large, mid-high 0.7442 0.0785 0.1773 0.8726 0.0285 0.0989 0.1020 0.3287 0.5692

Type of
interference

Office noise 0.9223 0.0265 0.0513 0.9874 0.0074 0.0052 0.2059 0.2359 0.5582
Office noise + additional disturbance 0.8799 0.0217 0.0984 0.9389 0.0036 0.0574 0.2311 0.2202 0.5487

rest of the parameters make the delay between arrivals differ
much between packet instances or not.

One of the desired and confirmed outcomes of having the ST
MAC protocol is having fewer deviations in the delay between
packet arrivals, i.e., jitter, than with DCF. Similarly, an active
channel time mechanism reduces the time variance between
arrivals due to removing the need to sense the channel for the
subsequent packets in a burst. Surprisingly, prioritized channel
access does not deliver a minor variance between packet
arrivals. This behavior is likely due to the higher amount
of packets lost when combining DCF and prioritized channel
access. No significant differences are seen due to the different
types of interference. The results show that the scenarios where
the combination of DCF and prioritized channel access does
not occur provide the best outcome. The difference between
the best and the worst results is of one order of magnitude.
Further, the use of ST is expected to benefit the delivery
latency in the scenarios where the applications generating and
consuming the data are synchronized with the ST schedule. In
such cases, it might be possible to align the data generation,
transmission and consumption steps so that the end-to-end
latencies are minimized.

Finally, Table VI presents the clock synchronization quality
results for the packet size and utilization, and type of inter-
ference parameters, given these two parameter groups are the
most influential for the clock synchronization. The outcome
is provided after aggregating the results from all the scenarios
where the given parameter is present and also filtering to have
the parameters, which will be clarified below, that lead to the
best and worst scenarios. The aim is to have a synchronization
offset of at most ±1 ms to be able to follow the ST schedules.

The mean of the offset values X is provided to show that
the offset variations are happening around zero, as expected.
The standard deviation around that mean value is kept lower
than 1 ms for low utilizations and the office-only interference,

TABLE V
DELAY BETWEEN PACKET ARRIVALS RESULTS.

Parameter σ[s] results scenarios
All Best Worst

MAC protocol DCF 0.0790 0.0196 0.1383
ST 0.0189 0.0189 -

Channel access Default 0.0200 0.0200 -
Prioritized 0.0579 0.0176 0.1383

Channel time Inactive 0.0491 0.0194 0.1383
Active (ST) 0.0186 0.0186 -

Type of
interference

Office noise 0.0382 0.0187 0.1362
Office noise + add. 0.0396 0.0195 0.1405

showing that a higher utilization and more interference greatly
impact the clock synchronization. For the best configurations,
those leaving out the higher congestion medium, the nodes still
go out of sync at least 10% of the time, which shows how
vulnerable a software-based wireless synchronization based
on PTP could be. However, even though the nodes might get
out of sync for some time, this does not seem to hinder the
ability of ST schedules to be followed and obtain better results
concerning reliability and delay jitter than DCF as shown in
Table IV. Thus, a software-based-only clock synchronization
protocol could be good enough in systems without tight timing
requirements.

VI. CONCLUSION

The increasing adoption of TSN mechanisms like ST in
wired real-time deployments based on Ethernet and the search
for a reliable and real-time version of the wireless IEEE 802.11
technology makes ST over IEEE 802.11 a sensible move.
The implementation presented in this paper relies on existing
hardware mechanisms from IEEE 802.11 COTS, configured
via a custom-based Linux driver version, and is in theory



TABLE VI
CLOCK SYNCHRONIZATION QUALITY RESULTS.

Parameter Results all scenarios Results best scenarios Results worst scenarios
X [s] σ [s] In sync X [s] σ [s] In sync X [s] σ [s] In sync

Packet size,
utilization

Small, low 0.0000 0.0006 0.9094 0.0000 0.0006 0.9094 - - -
Small, mid-high 0.0000 0.0014 0.7483 0.0003 0.0013 0.7841 -0.0003 0.0016 0.7126
Medium, low 0.0001 0.0007 0.9005 0.0001 0.0007 0.9005 - - -
Medium, mid-high -0.0001 0.0014 0.8007 -0.0002 0.0009 0.9065 -0.0001 0.0019 0.6948
Large, low 0.0000 0.0008 0.8617 0.0000 0.0008 0.8617 - - -
Large, mid-high -0.0001 0.0018 0.7988 0.0000 0.0013 0.8874 -0.0003 0.0023 0.7103

Type of
interference

Office noise 0.0001 0.0008 0.9103 0.0001 0.0008 0.9103 - - -
Office noise + additional disturbance -0.0001 0.0014 0.7629 0.0000 0.0009 0.8199 -0.0002 0.0019 0.7059

applicable to other models having a similar hardware sup-
port. Different MAC protocol configurations have been tested
against different traffic patterns and levels of interference.
Results show that reliability can dramatically be affected by
the protocol configuration, but overall the introduction of ST
does not directly translate to an improvement in reliability
when compared to DCF. In fact, it is the admission con-
trol mechanism, often associated with the use of scheduling
mechanisms like ST, that makes the difference in avoiding a
congested medium that could lead to poor reliability. Results
also show an improvement with ST compared to DCF in
terms of delivery jitter, which has a positive impact on real-
time applications having delivery jitter requirements. ST can
as well help in minimizing the end-to-end latency between
senders and receivers if these are synchronized and coordi-
nated with the ST schedule. Finally, a software-only version
of PTP has been used to synchronize the nodes and enable
a consistent view of the ST schedules on them. The results
on clock synchronization quality show the limitations of not
having hardware timestamping and the high sensibility and
subsequent performance decrease under a congested medium.
Yet, the ST mechanism proves to be functioning even in the
presence of phases when synchronization is lost.

ACKNOWLEDGEMENTS

This work has been supported and funded by the Austrian
Research Promotion Agency (FFG) via the Austrian Compe-
tence Center for Digital Production (CDP) under the contract
number 881843.

REFERENCES

[1] E. A. Lee, “Cyber Physical Systems: Design Challenges,” in Proc. IEEE
ISORC, Orlando, USA, 2008, pp. 363–369.

[2] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing Real-Time Com-
munication over COTS Ethernet switches,” in Proc. IEEE WFCS, vol. 6,
Torino, Italy, 2006, pp. 295–302.

[3] R. Costa, P. Portugal, F. Vasques, C. Montez, and R. Moraes, “Lim-
itations of the IEEE 802.11 DCF, PCF, EDCA and HCCA to handle
real-time traffic,” in Proc. IEEE INDIN, Cambridge, United Kingdom,
2015.

[4] S. S. Craciunas, R. Serna Oliver, M. Chmelík, and W. Steiner, “Schedul-
ing Real-Time Communication in IEEE 802.1Qbv Time Sensitive Net-
works,” in Proc. RTNS, Brest, France, 2016.

[5] M. Ashjaei, L. Lo Bello, M. Daneshtalab, G. Patti, S. Saponara,
and S. Mubeen, “Time-Sensitive Networking in automotive embedded
systems: State of the art and research opportunities,” Journal of Systems
Architecture, vol. 117, p. 102137, 2021.

[6] D. Bruckner, M.-P. Stănică, R. Blair, S. Schriegel, S. Kehrer, M. See-
wald, and T. Sauter, “An Introduction to OPC UA TSN for Industrial
Communication Systems,” Proc. IEEE, vol. 107, no. 6, pp. 1121–1131,
2019.

[7] A. Mahmood, R. Exel, and T. Sauter, “Delay and Jitter Characterization
for Software-Based Clock Synchronization Over WLAN Using PTP,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1198–
1206, 2014.

[8] J. R. Betiol Junior, J. Lau, L. de Oliveira Rech, A. Schiaffino Morales,
and R. Moraes, “Experimental Evaluation of the Coexistence of IEEE
802.11 EDCA and DCF Mechanisms,” in Proc. IEEE ISCC, Natal,
Brazil, 2018, pp. 847–852.

[9] C. Casetti, C. F. Chiasserini, M. Fiore, and M. Garetto, “Notes on the
Inefficiency of 802.11e HCCA,” in Proc. IEEE VTC-Fall, vol. 4, Dallas,
USA, 2005, pp. 2513–2517.

[10] L. Seno, G. Cena, S. Scanzio, A. Valenzano, and C. Zunino, “Enhancing
Communication Determinism in Wi-Fi Networks for Soft Real-Time
Industrial Applications,” IEEE Transactions on Industrial Informatics,
vol. 13, no. 2, pp. 866–876, 2016.

[11] D. K. Lam, K. Yamaguchi, Y. Shinozaki, S. Morita, Y. Nagao,
M. Kurosaki, and H. Ochi, “A Fast Industrial WLAN Protocol and its
MAC Implementation for Factory Communication Systems,” in Proc.
IEEE ETFA, Luxemburg, 2015.

[12] P. Bartolomeu, J. Fonseca, and F. Vasques, “Implementing the Wireless
FTT Protocol: A Feasibility Analysis,” in Proc. IEEE ETFA, Bilbao,
Spain, 2010.

[13] Y.-H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka,
“RT-WiFi: Real-Time High-Speed Communication Protocol for Wireless
Cyber-Physical Control Applications,” in Proc. IEEE RTSS, Vancouver,
Canada, 2013.

[14] H. Trsek, S. Schwalowsky, B. Czybik, and J. Jasperneite, “Implemen-
tation of an advanced IEEE 802.11 WLAN AP for real-time wireless
communications,” in Proc. IEEE ETFA, Toulouse, France, 2011.

[15] C. Lusty, V. Estivill-Castro, and R. Hexel, “TTWiFi: Time-Triggered
Communication over WiFi,” in Proc. ACM DIVANet, Alicante, Spain,
2021.

[16] G. Cena, S. Scanzio, and A. Valenzano, “SDMAC: A Software-Defined
MAC for Wi-Fi to Ease Implementation of Soft Real-time Applications,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3143–
3154, 2018.

[17] Z. Yun, P. Wu, S. Zhou, A. K. Mok, M. Nixon, and S. Han, “RT-WiFi
on Software-Defined Radio: Design and Implementation,” in Proc. IEEE
RTAS, Milan, Italy, 2022, pp. 254–266.

[18] Ó. Seijo, J. A. López-Fernández, and I. Val, “w-SHARP: Implemen-
tation of a High-Performance Wireless Time-Sensitive Network for
Low Latency and Ultra-Low Cycle Time Industrial Applications,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3651–3662,
2020.

[19] B. Schneider, R. C. Sofia, and M. Kovatsch, “A Proposal for Time-
Aware Scheduling in Wireless Industrial IoT Environments,” in Proc.
IEEE/IFIP NOMS, Budapest, Hungary, 2022.

[20] S. Sudhakaran, V. Mageshkumar, A. Baxi, and D. Cavalcanti, “Enabling
QoS for Collaborative Robotics Applications with Wireless TSN,” in
Proc. IEEE ICC, Montreal, Canada, 2021.


