
Bridging the Gap: An Interface Architecture for
Integrating CAN and TSN Networks

Aldin Berisa1, Benjamin Kraljusic1,2, Nejla Zahirovic1,3, Mohammad Ashjaei1,
Masoud Daneshtalab1, Mikael Sjödin1, and Saad Mubeen1

1Mälardalen University, Västerås, Sweden
2Arcticus Systems, Järfälla, Sweden

3HIAB, Hudiksvall, Sweden
{firstname.lastname}@mdu.se

Abstract. The increasing complexity of modern embedded systems high-
lights the limitations of CAN networks in data handling and transmission
speed. The IEEE Time-Sensitive Networking (TSN) task group devel-
oped standards to enhance switched Ethernet with high bandwidth, low
jitter, and deterministic communication. Despite these advances, CAN
and TSN will likely coexist in the automotive industry due to the cost-
effectiveness of CAN. This paper explores the development and evalua-
tion of an interface architecture that integrates CAN and TSN networks.
Using realistic scenarios, we evaluate various gateway forwarding strate-
gies and how they affect the delays of CAN frames passing through the
TSN network. We also show how these strategies impact the bandwidth
utilization of the TSN network by these frames. Our experiments demon-
strate that encapsulating a single CAN frame within a TSN frame ef-
fectively minimizes the end-to-end delay of CAN frames, in particular
when a high-speed TSN network is used. Furthermore, we compare the
performance of Time-Aware Shaper (TAS) and Weighted Round Robin
(WRR) on the TSN network, finding that WRR offers improved delays
for CAN frames compared to TAS due to the lack of synchronization
between CAN and TSN.

Keywords: Controller Area Network · Time-sensitive Network · Gate-
way · Automotive embedded systems.

1 Introduction

The automotive industry has significantly advanced through the adoption of em-
bedded systems. As vehicles incorporate more features, the number of Electronic
Control Units (ECUs) has increased to several tens per vehicle [10]. This large
number of ECUs requires a network capable of handling higher data throughput
with low latency and real-time requirements.

The Controller Area Network (CAN) [18], referred to as classical CAN in this
paper, has been the most widely used in-vehicle network due to its simplicity
and reliability. However, with an 8-byte data size limit and a maximum speed



2 A. Berisa et al.

of 1 Mbit/s, classical CAN cannot meet the high data-rate demands in modern
vehicles. In response, CAN Flexible Data-rate (FD) [5] was developed to increase
the payload size and data rates. Despite these enhancements, CAN FD still falls
short of meeting the high data-rate requirements in modern vehicles.

Switched Ethernet, offering speeds over 10 Gbit/s, can address these demands
but lacks low-jitter and timing-predictable communication [9]. These limitations
in the traditional switched Ethernet are addressed by a set of Time-Sensitive
Networking (TSN) standards developed by the IEEE TSN task group. These
standards provide numerous features such as high-bandwidth, low-latency, low-
jitter, and timing-predictable communication, among others [2].

While real-time Ethernet networks like TSN are expected to eventually re-
place CAN, this transition will be gradual due to the continued use of low-cost
legacy networks like CAN [22]. During this transition, CAN and TSN will need
to communicate via a gateway node [4]. Several gateway techniques enable com-
munication between CAN and TSN, allowing multiple CAN frames to be encap-
sulated in a single TSN frame for efficient bandwidth use [17]. However, this can
cause delays for CAN frames awaiting encapsulation. Gateway techniques can
minimize these delays using timers and marking frames as “urgent” [7, 8, 19].

This paper presents an experimental evaluation of gateway techniques ex-
plored by Berisa et al. [4] on a CAN-to-TSN interface architecture. Many TSN
networks use unscheduled and unsynchronized off-the-shelf end-systems, such as
cameras and LiDARs [3]. We investigate the impact of different traffic shaping
mechanisms, such as Time-Aware Shaper (TAS) and Weighted Round Robin
(WRR) traffic schedulers, on encapsulated CAN frames in an unsynchronized
CAN-to-TSN network. These two schedulers are selected because TAS provides
deterministic scheduling which is crucial for time-sensitive applications, while
WRR offers a balance between fairness and efficiency, making it suitable for
mixed-criticality traffic. The key contributions in this paper are as follows.

– We develop an interface architecture for CAN-to-TSN communication using
existing gateway techniques.

– We conduct comparative evaluation of the impact of TAS and WRR sched-
ulers on TSN frames that are transmitted from the gateway in an unsyn-
chronized TSN network.

– We evaluate the CAN-to-TSN gateway and the effect of traffic shapers on
TSN frames that are transmitted from the gateway in a realistic automotive
use case. Our experiments conclude that encapsulating a CAN frame in a
TSN frame is preferable on a 1 Gbit/s TSN network. Additionally, TSN
frames transmitted from the gateway experience increased delays using TAS
compared to a WRR shaper in an unsynchronized TSN network.

2 Background and Related Work

2.1 Controller Area Network (CAN)

In 1985, Bosch developed the CAN [18] to reduce vehicle weight by decreasing
the number of cables needed to connect various ECUs. CAN connects multiple



Integrating CAN and TSN: Interface Architecture 3

nodes to a single network, simplifying architecture and control. It is an asyn-
chronous multi-master serial data bus that uses fixed-priority non-preemptive
scheduling, meaning once a frame starts transmission, it cannot be aborted, and
the highest priority frame is transmitted first. Classical CAN operates at speeds
up to 1 Mbit/s with frame payloads holding up to 8 bytes.

2.2 CAN Flexible Data-Rate (FD)

CAN FD [5] is an ISO standard that improves on the classical CAN protocol by
allowing higher data throughput with payloads up to 64 bytes and data rates
up to 8 Mbit/s. Its main advantages are reduced frame transmission times and
support for larger frame formats. CAN FD can coexist with classical CAN on the
same network by distinguishing transmission bit rates between arbitration and
data bits. During arbitration, arbitration bits are transmitted at rates compatible
with classical CAN, while data bits are transmitted at higher rates during the
data phase.

2.3 Time-Sensitive Networking (TSN)

TSN is a set of IEEE 802.1 standards supporting high-bandwidth, time-critical,
and low-latency communication over switched Ethernet [1]. TSN relies on a com-
mon notion of time and traffic scheduling. IEEE 802.1AS provides precise clock
synchronization with sub-microsecond accuracy. TSN supports both offline and
online traffic scheduling. IEEE 802.1Qbv introduces a transmission gate mecha-
nism known as Time-Aware Shaper (TAS) for switch port egress queues, allowing
traffic to transmit according to a pre-set schedule, which is known as Gate Con-
trol List (GCL), enabling latency-free offline scheduled traffic (ST). TSN, build-
ing on IEEE 802.1AVB (Audio-Video Bridging), also supports the credit-based
shaper (CBS) for real-time rate-constrained traffic, scheduled online. TSN hard-
ware can also support the Weighted Round Robin (WRR) scheduler instead of
CBS. WRR is an online scheduling mechanism sharing bandwidth according to
predefined proportions. Each queue is assigned a weight, determining bandwidth
allocation, and the scheduler cycles through queues in a round-robin fashion,
serving each based on its weight.

2.4 Related Work

Various design strategies for connecting CAN and Ethernet gateways have been
explored in prior studies, primarily utilizing Ethernet to facilitate communication
between multiple CAN domains.

Early research on gateways between CAN and Ethernet networks was con-
ducted by Scharbarg et al. [17]. They presented techniques for encapsulating
CAN frames into Ethernet frames, including single CAN frame encapsulation
and multiple CAN frames within a single Ethernet frame (buffered approach).
To minimize buffering delays, they introduced a timer mechanism that triggers
encapsulation and transmission of the buffered CAN frames.



4 A. Berisa et al.

Kern et al. [8] introduced a dynamically reduced timer upon the arrival of
high-priority CAN frames and proposed “urgent” CAN frames, allowing imme-
diate encapsulation and transmission of high-priority frames. Nacer et al. [13]
demonstrated that traffic shaping can reduce the load on the receiving CAN bus
caused by frames released by the CAN-Ethernet gateway.

Herber et al. [7] introduced a CAN-AVB gateway approach that evaluated
different queuing techniques for forwarding CAN messages to the AVB network.
AVB frames are transmitted cyclically, with periods determined by the number
of CAN frames encapsulated in each AVB frame. Berisa et al. [4] were the first to
investigate CAN-to-TSN gateway solutions, showing that encapsulating multiple
CAN frames into a single TSN frame may not be optimal for high-speed TSN
networks.

Xie et al. [21] developed a CAN-TSN gateway prototype, proposing a low-
congestion scheduler using a TSN-to-CAN gateway to forward encapsulated
CAN frames. Their scheduler prioritizes frames based on a “Maximum Awaiting
Time” (MAT) strategy, giving priority to frames with the least time until their
deadline. Their experiments showed improved schedulability of CAN frames but
required modifications to the TSN frame header and did not consider the effect
of different traffic shapers on the TSN network.

To the best of our knowledge, there is no existing work that has experimen-
tally evaluated a CAN-to-TSN gateway and the effect of different traffic shapers
on an unsynchronized TSN network. This paper demonstrates that using TAS
on an unsynchronized TSN network may not be the most efficient approach
concerning the delays experienced by encapsulated CAN frames.

3 CAN-to-TSN Gateway Architecture and Forwarding
Techniques

This section presents the proposed CAN-to-TSN gateway including the gateway
architecture and forwarding techniques used by the gateway.

3.1 Interface Architecture of the Gateway

Communication between CAN and TSN networks is facilitated through a gate-
way node that interfaces with both networks. In this work, we focus on a CAN-
to-TSN gateway where CAN frames received at the gateway are transmitted to
the TSN network using encapsulation and forwarding techniques. The maximum
number of CAN frames that can be encapsulated in a single TSN frame is limited
by the maximum payload size of 1500 bytes. The maximum size of a classical
CAN frame is 17 bytes, while a CAN FD frame can be up to 74 bytes.

The gateway can generate periodic TSN frames of class AVB but does not
support class ST due to the event-driven nature of CAN, which uses online
scheduling, whereas class ST is scheduled offline. Sporadic CAN frames are also
not supported, as they would require a more sophisticated encapsulation tech-
nique for sporadic TSN frames.



Integrating CAN and TSN: Interface Architecture 5

A high-level interface architecture of the CAN-to-TSN gateway is shown in
Figure 1. When a CAN frame is received at the CAN PHY of the gateway, it is
stored in the receive buffer, and an interrupt is generated to the dispatcher. The
dispatcher then forwards the frame to the appropriate memory queue based on
the destination in the TSN network. The order in which frames are stored in the
queues depends on the queuing technique used, which can be First-In-First-Out
(FIFO), Fixed-Priority (FP), or one-to-one.

A TSN frame is generated from the memory queues by forwarding a spec-
ified number of CAN frames from the queue to the Ethernet MAC. After an
encapsulation delay, the generated TSN frame remains in the buffer until the
specified period for the TSN frame. This cyclic transmission of frames allows
for transmission predictability while limiting the delay experienced by the CAN
frame. Finally, the frame is sent to the Ethernet PHY for transmission across
the TSN network.

Fig. 1: High-level interface architecture of a CAN-to-TSN gateway.

3.2 Gateway Forwarding Techniques

One-to-one Technique: The one-to-one mapping technique is the simplest
approach for encapsulating CAN frames into TSN frames. In this technique,
a CAN frame is encapsulated into a TSN frame as soon as it arrives at the
gateway. This minimizes delays at the gateway since there is no queuing of
frames. However, TSN frames experience overhead due to the small size of CAN
frames (up to 17 bytes for CAN and up to 74 bytes for CAN FD), and the
minimum size required for a TSN frame is 64 bytes. Padding is necessary to
meet the minimum size of a TSN frame. Additionally, creating a TSN frame for
each CAN frame utilizes more bandwidth compared to encapsulating multiple
CAN frames in a TSN frame.

First-In-First-Out (FIFO) Technique: When utilizing the FIFO forwarding
technique, CAN frames are dequeued in the order in which they were added to the
message queue. This technique ensures fair forwarding of CAN frames regardless



6 A. Berisa et al.

of their priority, but it may result in significant delays for higher-priority CAN
frames.

Fixed-Priority (FP) Technique: With the FP forwarding technique, CAN
frames are forwarded for encapsulation into TSN frames based on priority, which
is determined by their ID. The lower the ID, the higher the priority of the CAN
frame. The advantage of this technique is that high-priority frames experience
significantly less forwarding delay, as they are prioritized. However, implementing
the FP technique is more complex compared to other strategies, and lower-
priority frames may experience significantly larger forwarding delays.

4 Configuration of TSN Network

The configuration of the TSN network can impact the delays experienced by the
encapsulated CAN frames. In this section, we discuss how to configure the TAS
and WRR traffic schedulers in the TSN network and define the periods of the
TSN frames transmitted by the gateway.

4.1 Period of TSN Frames Transmitted by the Gateway

To determine the period of TSN frames transmitted from the gateway, we will
use Equation (1) proposed by Herber et al [7]:

TTSN (q) = β/
∑

∀i∈fwd(q)

1

Ti
(1)

Where β is the number of CAN frames encapsulated into a single TSN frame,
and fwd(q) represents the set of CAN frames forwarded to queue q.

It’s important to consider the period of TSN frames transmitted from the
gateway when using the one-to-one forwarding technique. This technique involves
immediately encapsulating and transmitting a CAN frame upon its arrival at the
gateway. Depending on the CPU of the gateway, a large number of CAN frames
arriving at the gateway and requiring immediate encapsulation and transmis-
sion can lead to loss of the CAN frames if not handled properly. To address this,
we suggest using a one-to-one mapping technique that involves periodic encap-
sulation of CAN frames. The period for encapsulation should besmaller than
the smallest period of CAN frames being forwarded to the queue q as shown in
Equation (2).

Tcycle ≤ min
∀i∈fwd(q)

(Ti) (2)

The forwarding period should be large enough to ensure timely encapsulation
and transmission of the CAN frame to the TSN network. A short period for TSN
frames encapsulating CAN frames helps maintain the short end-to-end delays
characteristic of one-to-one mapping.



Integrating CAN and TSN: Interface Architecture 7

4.2 Configuration of TSN Schedulers

Time-Aware Shaper (TAS): The TAS operates by opening the gate at queue
q of a TSN output port based on the GCL schedule. This schedule repeats in a
cycle with a predefined period denoted as Tcycle. To determine the gate opening
time O(q), shown in Equation (3), we must first find the transmission time of the
largest frame being transmitted to queue q. The transmission time is calculated
by dividing the frame length L by the link transmission rate R.

O(q) =
max∀i∈q(Li)

R
(3)

For the GCL schedule to be feasible, the sum of all gate opening times of
each queue qi should be less than or equal to the GCL schedule cycle Tcycle, as
shown in Equation (4), where Q represents the set of queues of a TSN output
port.

Tcycle ≥
∑
∀i∈Q

O(qi) (4)

Weighted Round Robin (WRR) Scheduler: The WRR scheduler ensures
that transmission queues receive available bandwidth based on their assigned
weights. The scheduler processes the queues in a round-robin fashion, but instead
of treating all queues equally in one cycle, it allocates bandwidth to each queue
based on its weight. This means that a queue with a higher weight receives a
larger share of the bandwidth.

As explained by Walrand et al. [20], the long-term transmission rate of queue
qi can be calculated using the WRR scheduler with Equation (5). In this equa-
tion, Ri represents the long-term transmission rate of qi, wi is the weight of
queue qi, and Sw is the sum of all weights assigned to the queues.

Ri = R
wi

Sw
(5)

In real-life scenarios, where the long-term transmission rate of the devices
sending to queue qi is known, we can derive the weight of the queue needed to
guarantee the necessary bandwidth for the queue using Equation (6).

wi = Sw
Ri

R
(6)

5 Experimental Setup of the CAN-to-TSN Network

This section provides a detailed description of the experimental setup, includ-
ing insights into the architecture shown in Figure 2. The experimental setup is
based on a realistic automotive system provided by our industrial partners where
control signals are transmitted over CAN to the TSN network.



8 A. Berisa et al.

Fig. 2: Model of the experimental set-up of CAN-to-TSN network.

5.1 Implementation of the CAN Network

The CAN network consists of two nodes and a gateway. The CAN and CAN
FD nodes are implemented using two Microchip PIC32CMJH01 boards [11].
These boards feature a 48 MHz Arm Cortex M0+ Core microcontroller unit with
512 KB Flash memory, 64 KB SRAM, and two CAN controllers that support
classical CAN and CAN FD. CAN frames are transmitted using tasks in FreeR-
TOS [6] that operate with a period equal to the frame it transmits. To ensure
consistency and repeatability in our experimental setup, both CAN nodes start
their schedulers only upon simultaneously receiving an external signal and stop
frame transmission after a predefined number of hyperperiods This approach
ensured that CAN messages always appear on the bus in the same order, which
is crucial for comparing different gateway strategies under consistent conditions.

5.2 Implementation of the TSN Network

The TSN network consists of two cameras, a TSN switch, two nodes that gen-
erate traffic, and one node that serves as the destination for the encapsulated
CAN frames and the gateway. The TSN switch and cameras are provided by
our industrial partners and support features such as TAS, WRR, and, in the
case of cameras, the ability to stream video feed at 18 Mbit/s. We are using
RELY-TRAF-GEN [14] traffic generators capable of producing TSN traffic up
to 3 Gbit/s. The destination is a Monitoring node, which is a PC that receives
the encapsulated CAN frames. Since the end-stations were not initially intended
for integration in a TSN network, they are unable to synchronize with the TSN
network.



Integrating CAN and TSN: Interface Architecture 9

5.3 Implementation of the CAN-to-TSN Gateway

The CAN-to-TSN gateway is implemented on the Renesas RZ/N2L RSK de-
velopment board [16]. The board is equipped with an Arm Cortex processor
running at 400 MHz, 256 KB flash memory, and 1.5 MB RAM. It also features
a TSN switch that supports various TSN mechanisms including IEEE 802.1Qbv
and 802.1AS, as well as a CAN FD controller. Message buffers for storing CAN
messages are implemented as software buffers, constructed using C arrays. The
interrupt routine, CAN ISR, is activated upon the arrival of each CAN frame.
During this phase, the interrupt routine stores each frame in the designated
buffer. The encapsulation routine is a periodic task executed on the gateway
CPU, with the predefined period determined by Equations (1) and (2). This
function extracts β CAN frames from the reception buffer and encapsulates
them into a data field of an encapsulating TSN frame. The TSN frame is then
forwarded to the Ethernet PHY as shown in Figure 1 and transmitted to the
network.

5.4 Measuring the End-to-End Delays

Measuring the end-to-end delays of CAN messages requires a precise technique
due to the lack of synchronization between devices on the CAN bus and the TSN
network. This lack of a unified time reference introduces difficulties in accurately
determining end-to-end delays. To address these limitations, we propose a tech-
nique that decomposes the end-to-end delay measurement of CAN/CAN FD
messages into three distinct components: delays on the CAN/CAN FD network,
delays through the gateway, and delays across the TSN network.

Delays on the CAN/CAN FD bus are obtained using the worst-case response
time for each message on the CAN bus, calculated using the MPS-CAN Ana-
lyzer [12]. The delay experienced at the gateway is measured internally by the
gateway itself. To measure delays within the TSN network, we use the RELY-
TSN-LAB device [15], which measures network delay by timestamping packets
at the input and output of the network.

6 Evaluation

In this section, we evaluate the CAN-to-TSN gateway implementation using
an automotive use case. The experimental evaluation involves various gateway
techniques discussed in Section 3. We encapsulate CAN frames using different
values of β (1, 3, 6, 9, 12) and both FP and FIFO enqueueing of frames. For
β = 1, we have selected TTSN to be 100 µs based on Equation (2). Additionally,
we evaluate the impact of the TAS and WRR traffic schedulers in the TSN
network. All experiments are conducted in a controlled setting to measure the
worst-case end-to-end delay experienced by the encapsulated CAN frames. To
ensure the validity of the experiments, each experiment is run for 4 hyperperiods
of the CAN frames being forwarded to the gateway.



10 A. Berisa et al.

6.1 Evaluation Scenarios Description

In the first scenario, we assess the delays experienced by the CAN frames using
different gateway forwarding techniques and increasing encapsulation size β.
Fifteen CAN frames are sent from the CAN nodes to the Monitoring node. The
properties of the CAN frames are shown in Table 1. We conduct the evaluation
for both classical CAN and CAN FD. Classical CAN operates at 500 Kbit/s.
For CAN FD, the message size is increased by a factor of 8 to accommodate
the larger supported payloads. The arbitration phase of CAN FD also runs at
500 Kbit/s, while the data phase runs at 2 Mbit/s. The links on the TSN network
operate at speeds of 100 Mbit/s and 1 Gbit/s.

Table 1: CAN frames ID 0-14 used in the automotive use case. Periods (T) and
their Data Length Code (DLC).

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T (ms) 50 100 500 20 20 20 20 50 100 100 500 20 1000 40 500
DLC 7 8 3 2 2 8 8 8 4 8 3 8 2 6 8

In the second scenario, we examine the effects of the TAS and WRR traffic
schedulers on the delays of encapsulated CAN frames in Table 1 with different
gateway forwarding techniques. In this scenario, the cameras stream data at
rates of 18 Mbit/s to the Monitoring node. Additionally, the traffic generators
also stream data at rates of 40 Mbit/s. The TSN network operates at 100 Mbit/s
to effectively demonstrate the impact of the traffic shapers on a high-load TSN
network. Because the CAN-to-TSN gateway transmits the highest priority data
in the TSN network, the GCL cycle time of the TAS in our experiments is set
to be the transmission period of TSN frames originating from the gateway. The
weights for the WRR are set as described in Section 4 to ensure the necessary
bandwidth for the end-systems. The CAN frames are then transmitted to the
Monitoring node, with the CAN network utilizing classical CAN operating at
500 Kbit/s.

6.2 Evaluation Results: Gateway Forwarding Techniques

The experimental evaluation for the first scenario for classical CAN is depicted
in Figure 3 while for CAN FD, it is depicted in Figure 4. The graphs show that
the encapsulation size β significantly impacts the delays experienced by the CAN
frames. When β is set to 1, the frames experience the least amount of delay even
though the full one-to-one mapping is not supported by the gateway processor.
As we increase β the delays experienced by frames also increase significantly, es-
pecially when β = 15. This is because the period of the TSN frame encapsulating
the CAN frames is calculated using β and the period of the CAN frames being
transmitted to the gateway. As β increases, the period of the TSN frame be-
comes larger, resulting in less frequent transmission. Consequently, CAN frames
wait longer in the queue for encapsulation.



Integrating CAN and TSN: Interface Architecture 11

Fig. 3: Evaluation results for various gateway forwarding techniques when using
classical CAN.



12 A. Berisa et al.

Fig. 4: Evaluation results for various gateway forwarding techniques when using
CAN FD.



Integrating CAN and TSN: Interface Architecture 13

The delays are also affected by the gateway forwarding technique used. Us-
ing FP provides smaller delays for high-priority frames, while low-priority frames
experience significantly larger delays, especially with higher values of β. Thus,
FIFO might be preferred for lower-priority frames. Lower-priority frames ex-
perience high delays with FP because they must wait longer due to the high
frequency of high-priority frames arriving in the queue.

When using CAN FD instead of classical CAN, we observed similar trends,
with frames experiencing the least delays when β = 1, and low-priority frames
experiencing significantly larger delays with FP.

Lastly, we evaluate the bandwidth utilization on the TSN network depend-
ing on the gateway technique used. The graphs depicted in Figure 5 show the
TSN network running at 100 Mbit/s and 1000 Mbit/s with different encapsu-
lation sizes for both CAN FD and classical CAN. It is noticeable that using a
1000 Mbit/s TSN network with classical CAN does not show a significant differ-
ence when encapsulating multiple CAN frames compared to encapsulating only
one CAN frame, with bandwidth usage around 0.5 % and 1.5 %, respectively.
For CAN FD, we see 1.5 % bandwidth usage when encapsulating multiple CAN
frames and 2.5 % when encapsulating only one. When reducing the TSN link
speed to 100 Mbit/s, the difference becomes more noticeable. With β = 1 and
classical CAN, bandwidth usage is 15 %, which can be reduced to 3 % with
β = 15. For CAN FD at 100 Mbit/s, bandwidth usage is 25 % with β = 1 and
15 % with β = 15. The larger bandwidth utilization with CAN FD is due to the
larger frame sizes, making the TSN frames larger and increasing transmission
times.

Fig. 5: Evaluation of TSN network bandwidth utilization of TSN frames trans-
mitted from the gateway

Even though using β = 1 consumes more bandwidth in the TSN network than
using larger β values, the lower delays experienced by the CAN frames make it
preferable, especially with a 100 Mbit/s TSN network. For slower networks, such
as 100 Mbit/s or 10 Mbit/s, encapsulating multiple CAN frames makes sense.
Selecting the gateway technique depends on whether high-priority CAN frames



14 A. Berisa et al.

can tolerate delays. If immediate transfer is needed, FP is preferred; otherwise,
FIFO is recommended to limit delays for lower-priority frames.

6.3 Evaluation Results: TAS and WRR Traffic Shapers

Fig. 6: Comparison of end-to-end delays of encapsulated CAN messages for dif-
ferent TSN traffic schedulers

In the second evaluation scenario, we compared the performance of TAS and
WRR traffic shapers, as well as no interference, for the encapsulated CAN frames
in the TSN network. The results are presented in Figure 6. TAS performed worse
compared to WRR due to the lack of synchronization between the TSN and CAN
networks and the devices on the TSN network. TAS delays increased up to one



Integrating CAN and TSN: Interface Architecture 15

cycle of the GCL because frames could arrive at any point before the next GCL
cycle. Sudden increases and decreases in frame delays, particularly noticeable in
FIFO forwarding, occur when a frame arrives just after encapsulation, causing
it to wait until the next cycle, increasing delay. Conversely, a decrease in delay
occurs when a frame arrives just before encapsulation. WRR performed better
with lower delays because frames did not have to wait for an extra cycle while
ensuring the necessary bandwidth for encapsulated CAN frames. The notable
exception is the one-to-one technique, where TSN frames are transmitted at a
high frequency of 100 µs. In this case, TAS and WRR had comparable effects.

Although these findings suggest that WRR is preferable to TAS in this spe-
cific experimental case, it is important to note that TAS is designed for synchro-
nized networks with dedicated offline scheduling to achieve optimal performance.
In such cases, TAS is expected to outperform WRR.

7 Conclusion

In this paper, we developed a prototype of an interface architecture for a CAN-to-
TSN gateway and evaluated various gateway forwarding techniques. Moreover,
we also investigated the impact of Time-Aware Shaper (TAS) and Weighted
Round Robin (WRR) traffic schedulers on the encapsulated CAN frames in an
unsynchronized TSN network. The techniques assessed included First-In-First-
Out (FIFO), Fixed-Priority (FP), and one-to-one mapping. Our experiments,
conducted using an experimental hardware setup based on a real-world automo-
tive use case, demonstrated that combining multiple CAN frames into a single
TSN frame does not significantly increase bandwidth usage on high-speed links
compared to encapsulating a single CAN frame. In terms of delay, the one-to-one
forwarding technique is preferred, as it simplifies the gateway design and pro-
vides lower delays. Additionally, in our experiments, we found that due to the
lack of synchronization in the TSN network, the WRR scheduler is more effective
than TAS. WRR provided lower delays and ensured the necessary bandwidth
for encapsulated CAN frames, making it a preferable choice in unsynchronized
TSN networks.

Acknowledgments. This work is supported by the Swedish Governmental Agency
for Innovation Systems (VINNOVA) via the INTERCONNECT and PROVIDENT
projects and by the Swedish Knowledge Foundation via the projects SEINE. We would
like to thank our industrial partners HIAB, ABB and Arcticus Systems.

References

1. IEEE Time-Sensitive Networking (TSN) Task Group, 2016,
http://www.ieee802.org/1/pages/tsn.html

2. Ashjaei, M., Lo Bello, L., Daneshtalab, M., Patti, G., Saponara, S., Mubeen, S.:
Time-sensitive networking in automotive embedded systems: State of the art and
research opportunities. J. Syst. Archit. 117(C) (aug 2021)

3. Barzegaran, M., Reusch, N., Zhao, L., Craciunas, S.S., Pop, P.: Real-time guar-
antees for critical traffic in IEEE 802.1 qbv TSN networks with unscheduled and
unsynchronized end-systems. arXiv preprint arXiv:2105.01641 (2021)



16 A. Berisa et al.

4. Berisa, A., Ashjaei, M., Daneshtalab, M., Sjödin, M., Mubeen, S.: Investigating
and analyzing CAN-to-TSN gateway forwarding techniques. In: IEEE ISORC. pp.
136–145 (2023)

5. Bosch, R.: CAN with flexible data-rate specification. Robert Bosch GmbH,
Stuttgart (2012)

6. FreeRTOS: Freertos: Real-time operating system for microcontrollers. https://
www.freertos.org

7. Herber, C., Richter, A., Wild, T., Herkersdorf, A.: Real-time capable can to avb
ethernet gateway using frame aggregation and scheduling. In: DATE. pp. 61–66.
IEEE (2015)

8. Kern, A., Reinhard, D., Streichert, T., Teich, J.: Gateway strategies for embedding
of automotive CAN-frames into ethernet-packets and vice versa. In: ARCS. pp.
259–270. Springer (2011)

9. Lim, H.T., Völker, L., Herrscher, D.: Challenges in a future IP/Ethernet-based
in-car network for real-time applications. In: DAC. pp. 7–12 (2011)

10. Lo Bello, L., Mariani, R., Mubeen, S., Saponara, S.: Recent advances and trends
in on-board embedded and networked automotive systems. IEEE Transactions on
Industrial Informatics 15(2) (2019)

11. Microchip: PIC32CM JH family of microcontrollers (2024), https://www.
microchip.com/en-us/products/microcontrollers-and-microprocessors/
32-bit-mcus/pic32-32-bit-mcus/pic32cm-jh

12. Mubeen, S., Mäki-Turja, J., Sjödin, M.: MPS-CAN analyzer: Integrated implemen-
tation of response-time analyses for controller area network. Journal of Systems
architecture 60(10) (2014)

13. Nacer, A.A., Jaffres-Runser, K., Scharbarg, J.L., Fraboul, C.: Strategies for the
interconnection of CAN buses through an ethernet switch. In: 2013 8th IEEE
SIES. IEEE (2013)

14. Relyum: RELY-TRAF-GEN, Time-Sensitive Traffic Generator (2023), https://
soc-e.com/rely-traf-gen/, accessed: 2024-05-13

15. Relyum: RELY-TSN-LAB, Time-Sensitive Networking Testing Tool (2023), https:
//www.relyum.com/web/rely-tsn-lab/, accessed: 2024-05-13

16. Renesas: RZ/N2L RSK, renesas starter kit for RZ/N2L (2024), https:
//www.renesas.com/us/en/products/microcontrollers-microprocessors/
rz-mpus/rzn2l-rsk-renesas-starter-kit-rzn2l

17. Scharbarg, J.L., Boyer, M., Fraboul, C.: CAN-Ethernet architectures for real-time
applications. In: IEEE ETFA. vol. 2, pp. 8–pp. IEEE (2005)

18. Standard, I.: 11898: Road vehicles—interchange of digital information—controller
area network (CAN) for high-speed communication. International Standards Or-
ganization, Switzerland (1993)

19. Thiele, D., Schlatow, J., Axer, P., Ernst, R.: Formal timing analysis of CAN-
to-Ethernet gateway strategies in automotive networks. Real-time systems 52(1),
88–112 (2016)

20. Walrand, J.: A concise tutorial on traffic shaping and scheduling in time-sensitive
networks. IEEE Communications Surveys & Tutorials (2023)

21. Xie, G., Zhang, Y., Chen, N., Chang, W.: A high-flexibility CAN-TSN gateway
with a low-congestion tsn-to-can scheduler. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2023)

22. Zinner, H., Noebauer, J., Gallner, T., Seitz, J., Waas, T.: Application and real-
ization of gateways between conventional automotive and IP/Ethernet-based net-
works. In: DAC. pp. 1–6 (2011)


