
Network Intrusion Detection using Machine
Learning on Resource-Constrained Edge Devices

Pontus Lidholm1, Tijana Markovic2, Miguel Leon2, Per Erik Strandberg1

1Research and Development, Westermo Network Technologies AB, Västerås, Sweden
2School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden

pontus.lidholm@westermo.com, tijana.markovic@mdu.se, miguel.leonortiz@mdu.se, per.strandberg@westermo.com

Abstract—The rapid growth of the Internet has led to the evo-
lution of sophisticated security threats that exploit vulnerabilities
within networks. The defence mechanisms must quickly adapt
to these new threats to ensure that networks stay secure. One
possible mechanism is to use Machine Learning (ML) algorithms
to detect malicious activities. The edge devices that control and
manage the network, such as routers, already have access to
the data that is flowing through the network and may utilize
its own computational resources to host ML algorithms and
use them to detect intrusions. This paper presents a system
for network intrusion detection which is deployed to an edge
device and evaluated for live binary classification of network
traffic. Different ML algorithms (Decision Tree, Random Forest,
and Artificial Neural Network) are evaluated on existing datasets
(Westermo and CIC-IDS-2017). Flow-based data pre-processing
is performed and different labeling strategies and flow durations
are used and compared. The most effective version of each
algorithm is implemented and deployed on the Westermo Lynx-
3510 routing-capable network switch and system performance is
assessed across various scenarios with simulated network attacks.
The experiments showed that Random Forest is the best option,
closely followed by Decision Tree.

Keywords: Intrusion Detection, Machine Learning, Edge Com-
puting, Embedded System

I. INTRODUCTION

In the current age, both the Internet and companies internal
networks are growing in complexity and size. When the
Internet was created, it was almost exclusively composed of
desktop computers. But nowadays, smaller and less sophis-
ticated devices are being connected. These range from quite
advanced devices such as phones, down to Internet of Things
(IoT) devices such as lamps and fridges. There is a huge
variety of those devices and reliance on them is growing.
Companies depend on those devices to function and stay
secure. But at the same time, cyberattacks are becoming more
complex, while the programs to launch such attacks are getting
easier to use. This means that security breaches are more
common, which can lead to damages to companies revenue,
reputation, and reliance [1].

To protect all the connected devices and to keep up with
ever-evolving intrusion methods, one possibility is to arm
the network with advanced intrusion detection algorithms. A
general trend is to move computing power from the cloud
or core networks to the edge to reduce problems of data
transportation, as well as latency and privacy problems. Edge
network devices, such as routers, can host intrusion detection

algorithms since their computational power has increased. Ad-
ditionally, these devices have already access to the data flowing
through the network and may utilize its own computational
resources to detect and take action against attacks or intrusions.

In recent years, Machine Learning (ML) has become a
popular and effective method for intrusion detection [2],
[3], [4]. Various ML algorithms were applied to network
datasets to separate normal traffic from malicious traffic, and
most commonly used methods include Decision Tree (DT)
[5], [6], Random Forest (RF) [7], [8], [9], Artificial Neural
Network (ANN) [10], [11], [12], Support Vector Machine
(SVM) [13], [14], or K-means [15], [3]. Additionally, the
possibility to develop light ML algorithms that can run in a
resource-constrained setting is explored in multiple studies.
For instance, Roy et al. [16], performed intrusion detection
using lightweight methods (K-Nearest-Neighbour (KNN), RF,
and Extreme Gradient Boosting) and revealed promising re-
sults while being efficient. Doshi et al. [17] researched the
performance of different algorithms (KNN, SVM, DT, RF,
ANN) which can be applied for low-cost classification of
attacks originating from IoT devices.

Most of the applications implemented ML algorithms in
the cloud, but bringing them to the edge reduces the need
for data transportation and enhances privacy and security of
network data. Studies presented in [18], [19], [20] explored
intrusion detection using ML in resource-constrained edge
device. This paper continues in this tradition and explores
containerized intrusion detection on the edge devices for
live binary classification of network traffic using different
ML algorithms. Commonly used algorithms (DT, RF, and
ANN) are trained on the server using two existing datasets
with different characteristics (Westermo [21] and CIC-IDS-
2017 [22]) and deployed to an edge device. Several novel
aspects are introduced, including the utilization of a more
recent dataset published in 2023, the analysis of network flows
instead of individual network packets, and the evaluation of
the proposed system using an industrial simulator comprising
multiple physical devices. The main contributions can be
summarized as follows:

• A system for intrusion detection on the edge devices is
presented, including data reading and pre-processing, as
well as ML algorithm training and deployment.

• Evaluation of three ML algorithms is performed on
two existing datasets using two labeling strategies and



different flow durations.
• The best performing version of each ML algorithm was

deployed to an edge device and evaluated for live network
traffic classification, where different network attacks were
simulated.

The paper is organized as follows. Section II presents the
design and implementation of the system. The experimental
settings are presented in Section III, while the results of the
experiments and discussion of the results are given in Section
IV. Lastly, a conclusion and future work are presented in
Section V.

II. SYSTEM DESCRIPTION

Figure 1 shows all components of the system. First, there
is the Server part, where the existing data is used to train a
model. The model is deployed to the second part of the system,
an edge device, where it is used to classify live network
traffic. The two parts are explained in detail in the following
subsections.

A. Machine Learning Training on the Server

There are several possible strategies for training and deploy-
ing ML in edge networks [23]. Sending data for training from
the edge to the cloud requires data transport, whereas training
on the edge requires computational resources and time. In this
paper, pre-existing datasets are used for ML training on the
server and the trained models are exported to the edge device.
Python programming language and Scikit Learn1 are used to
develop this part of the system. It consists of four subsequent
steps which are explained below.

1) Data pre-processing: Pre-existing raw data is pre-
processed to be suitable for ML algorithms.

• Reading packets - A cross-platform library libpcap2 is
used to read packets from a dataset file.

• Packets into flows - Because of the large number of pack-
ets flowing through a network, the packets are processed
into flows, i.e. groups of similar packets. This method
reduces the amount of data, without losing information.
Because of the nature of network traffic, often packets
transceived in a communication between two parts are
similar. This is especially true for the header of the pack-
ets while the payload is different. Therefore, the amount
of data can be reduced by grouping packets that cohere to
the same communication. This is accomplished using the
source IP address, destination IP address, destination port,
and protocol according to IP Flow Information Export
(IPFIX) standard [24]. Multiple packets, within a specific
time frame, are grouped into the same flow if these four
fields are equal.

• Feature engineering - In this phase features are ex-
tracted for each flow, based on the IPFIX standard,
RFC 7012 [24]. The full list of features is given in Table
I. To ensure that the model does not learn to detect attacks

1https://scikit-learn.org/
2https://www.tcpdump.org/

TABLE I: Features calculated for each flow.

Application

ID Feature Description

1. src port Source port of the packets
2. dst port Destination port of the packets
3. protocol identifier protocol field in the IPv4 header
4. IP class service Value of the type of service field

Statistical

ID Feature Description

5. octet delta count Total number of bytes
6. packet delta count Total number of packets
7. flow duration Delta time of first and last packet
8. min IP total length Smallest IP header + payload packet
9. max IP total length Largest IP header + payload packet
10. IP header length Length of the IP header
11. flow byte rate Amount of bytes per second
12. flow packet rate Amount of packets per second
13. packet len min Smallest packet in the flow
14. packet len max Largest packet in the flow
15. packet len mean Mean packet length
16. packet len std Standard deviation of the packet size
17. flow IAT min Minimum inter-arrival time of packets
18. flow IAT max Maximum inter-arrival time of packets
19. flow IAT mean Average inter-arrival time of packets
20. flow IAT std Standard deviation inter-arrival time
21. flow IAT total Total inter-arrival time of packets
22. mcast packet count Amount of multicast packets
23. mcast octet count Total size of multicast packets

Flags

ID Feature Description

24. TCP control bits Flags contained encoded bit fields
25. IGMP type Internet Group Management Protocol field
26. ICMP type code Internet Control Message Protocol type, code
27. FIN flag count N packets with ”No more data from sender”
28. SYN flag count N packets with ”Synchronise sequence”
29. RST flag count N packets with ”Reset the connection”
30. PSH flag count N packets with ”Push Function”
31. ACK flag count N packets with ”Acknowledgement”
32. URG flag count N packets with ”Urgent”
33. CWR flag count N packets with ”Congestion reduced”
34. ECE flag count N packets with ”ECN Echo”
35. IPv4 options IPv4 option encoded in bit fields
36. minimum TTL Minimum time to live for the packets
37. maximum TTL Maximum time to live for the packets
38. fragment offset Data starting position for the packets
39. fragment flags Fragmentation properties of the packets
40. ethernet type MAC client protocol of the payload

in the specific network topology used in the dataset, IP
addresses are completely excluded.

2) Labeling: To enable supervised learning, the dataset
requires labels that mark each flow as positive or negative.
This paper utilizes two different labeling strategies:

• Network Security Tools (NST) [25] - In this approach,
flows are labeled based on their sender. If the flow
contains packets that are sent from the attacker’s PC
during the time of an attack and towards the target node,
then those flows are labeled as an attack. This should
ensure that only the packets which are part of the attack
are labeled as such. This could decrease the amount
of false positives but also strengthen learning about the
attack patterns.



ML Classification (C)

2. Pre-processing

Packets Flows Features

1. Reading packets

3. Classification

ML training (Python)

 

1. Pre-processing

Packets Flows Features

NST/IT2. Labeling

DT/RF/ANN3. Training

SERVER

EDGE

Dataset

4. Model deployment

Live Packets

Fig. 1: The architecture of the system.

• Injection timing (IT) [26] - A more inclusive strategy,
where all flows that include packets that are transmitted
during the time of an attack are labeled as an attack. This
approach may encapsulate not only attacking patterns, but
also the response of the network as this could indicate
that an attack is ongoing. This can occur when an attack
is indirect, i.e., the attack has no direct target but instead
redirects traffic like Man-in-the-Middle (MITM), or when
the network has an invalid configuration (e.g., duplicated
IP addresses). Therefore this approach tries to include all
changes that occur in the network during such attack.

3) Training: ML algorithms are trained using the available
data. Different ML algorithms are used in this paper, including:

• Decision Tree (DT) [27] is used for classification in a
way that it predicts the class label by learning decision
rules from the dataset features. This process starts with
selecting one feature and separating the instances into
groups based on the value of that feature. After that,
additional separations are made using different features
until the termination criteria are satisfied.

• Random Forest (RF) [28] is an ensemble learning al-
gorithm that combines multiple randomized DTs. Each
DT uses different features and a separate fraction of the
dataset to perform the learning process. The final decision
is made by taking the class which is predicted by the
majority of independent DTs.

• Artificial Neural Network (ANN) [29] is inspired by
the human brain. It is composed of artificial neurons
which are organized into layers: an input layer, one or
more hidden layers, and an output layer. The layers are
interconnected and the output of one layer is used as input
to the next layer. Those connections are characterized by
parameters called weights and the goal of the training
process is to find appropriate values for the weights.

A Genetic Algorithm (GA) [30], [31] is used to select the
best combination of hyperparameters for each ML algorithm.

GA is a population-based algorithm that is formed by a
set of individuals, also called population (P), where each
individual is a solution to the problem being optimized. In this
paper, an individual is formed by the hyperparameters of the
ML algorithms, which are randomly initialized under certain
constraints (given in Section III-D). After the population is
initialized a process, called generation, formed by four steps is
repeated several times (number of generations). The steps are:

• Parent Selection: Two individuals (Pi and Pj) are selected
as parents, using a method called Roulette selection [32].

• Crossover: After selecting two individuals in the previous
step, the crossover is applied to create new individuals. In
this paper, BLX-α [30] is used as the crossover method.

• Mutation: Different perturbances are applied to the new
individual by modifying the values. Each value has a 5%
chance to be modified by using a normal density function
with mean equal to max−min

2 +min and standard deviation
of max−min

6 if they are real numbers or rounded if they
are integers. For categorical values, each option has equal
probability.

• Replacement: The mutated individuals replace the worst-
performing individuals in the population.

4) Model deployment: The model is exported as a file. The
file contains all configurations and data needed to use the
model, including the list of required features.

B. Machine Learning on the Edge

The trained ML model is deployed to an edge device, using
a container [33], a virtualization technique used to isolate a
process from other parts of the operating system. The container
is hosted inside the switch and connected to the internal
network bridge via a virtual interface as seen in Figure 2.
Each physical interface is named using eth, to indicate that it
is an Ethernet interface, while the veth, represents a virtual
interface. The veth0 is the external interface of the container,
while veth1 is the internal, which means that it is the only
interface accessible for the model. All packets routed through



Host

Container

Model

Bridge

veth0 veth1

eth1

ethn

eth0

...

Fig. 2: The container with the model loaded inside. The eth
interfaces are physical ports connected to the switch, while the
veth0 and veth1 are virtual interfaces existing only in software.
The model is isolated from the rest of the software.

the device are also sent into the container, but it is possible to
control and filter packets. Also, ports that exist on the device,
but that are not connected to the bridge are not accessible to
the container, and therefore packets on those interfaces can
not be classified.

The classification using the deployed model is performed for
each packet entering the container by conducting steps which
are listed and explained bellow.

1) Reading packets: The libpcap library is used to read
packets directly from a network interface. Because the model
is placed inside a container, a software bridge is used to
connect the interfaces of the devices to the container. This
together with a virtual interface, connects the container to the
network from which the packets are collected, as shown in
Figure 2.

2) Data pre-processing: The raw data is pre-processed in
the same way as on the server (detailed in subsection II-A1).

3) Classification: The trained model is deployed inside the
container. Each flow is binary classified and depending on the
result an action may be taken.

III. EXPERIMENTAL SETTINGS

In this section, we present the datasets used for the exper-
iments (Section III-A), the data pre-processing steps (Section
III-B), the experiments used to evaluate the proposed system
(Section III-C), the hyper-parameters (Section III-D), as well
as the experimental setup and metrics used for the evaluation
(Section III-E).

A. Dataset

The experiments presented in this paper are conducted using
two datasets:

• Westermo network traffic dataset (Westermo)3 [21] was
recorded over 90 minutes and contains 1.8 million packets
with network attacks such as Port Scan, Bad Secure
Shell (SSH), and MITM, as well as misconfigurations
(network anomalies mostly caused by a human error)
such as erroneous or duplicated IP addresses. In addition,
there is normal baseline traffic. The dataset was collected
using six industrial routers, the factory simulator [34]
running on five Raspberry Pi devices, as well as a laptop.

3https://github.com/westermo/network-traffic-dataset

TABLE II: Information and distribution of the datasets after
pre-processing.

Dataset Flow No. of % of attacks % of attacks
Duration instances using NST using IT

Westermo Left 0.1 112418 24.3% 25.3%
Westermo Left 0.5 50133 22.3% 24.4%
Westermo Left 1 48983 22.9% 25.0%
Westermo Left 2 45811 24.6% 26.4%
Westermo Left 5 41764 28.8% 30.2%
Westermo Left 10 40220 34.2% 35.6%

Westermo Right 0.1 26114 18.2% 22.2%
Westermo Right 0.5 15670 14.3% 20.8%
Westermo Right 1 12774 16.0% 21.7%
Westermo Right 2 11123 16.9% 22.1%
Westermo Right 5 8520 20.9% 25.0%
Westermo Right 10 7574 26.2% 29.5%

Westermo Bottom 0.1 357026 9.2% 19.4%
Westermo Bottom 0.5 152633 9.3% 19.5%
Westermo Bottom 1 93371 10.0% 19.9%
Westermo Bottom 2 55149 11.2% 20.6%
Westermo Bottom 5 29123 14.6% 23.0%
Westermo Bottom 10 19726 20.2% 27.8%

CIC-IDS-2017 0.1 1828246 26.2% 54.1%
CIC-IDS-2017 0.5 1473763 26.1% 56.7%
CIC-IDS-2017 1 1377059 25.1% 56.9%
CIC-IDS-2017 2 1215352 24.8% 54.0%
CIC-IDS-2017 5 1092839 26.0% 53.2%
CIC-IDS-2017 10 987562 27.0% 52.7%

The dataset contains three sets of traffic, recorded from
different nodes in the network (left, right, and bottom),
and all the recordings are used in this paper.

• Canadian Institute for Cybersecurity Intrusion Detection
Evaluation Dataset from 2017 (CIC-IDS-2017) [22] was
recorded over five days and contains 2.8 million network
packets with network attacks. It is composed of five
subsets, and only Friday subset is used in this paper
because it contains Port Scan and Denial of Service (DoS)
attacks.

Both datasets are available as raw (PCAP files) and pre-
processed data (CSV files). In this paper PCAP files are used.

B. Pre-processing

The following steps are performed during the dataset pre-
processing phase:

1) Packets into flows - packets are grouped into flows using
different flow durations (0.1, 0.5, 1, 2, 5, and 10 s).

2) Feature extraction - all features presented in Table I are
extracted for each flow.

3) Labeling - each flow is labeled using both labeling
strategies (NST and IT) using log files about source and
timestamps of the attacks.

4) Data normalization - all features are normalized in the
range [0, 1] using the Min-Max normalization technique
with respect to the training set.

Table II shows total number of instances for each subset
using different flow durations, as well as a percentage of at-
tacks in each of them using two labeling strategies. All subsets
from the Westermo dataset are unbalanced, regardless of the



Switch - ML Switch - Misconf.

Container

Factory Factory Factory

Attacker AttackerFactory

Model

Fig. 3: The topology of the network which was used for the
experiment with live network traffic classification.

labeling strategy used, having 9.2% to 35.6% of attack flows.
On the other hand, the CIC-IDS-2017 dataset is unbalanced
when NST labeling strategy is used (24.8% to 27% of attack
flows), but it is well balanced if the IT labeling strategy is
applied (53.2% to 56.9% of attack flows).

C. Experiments

To evaluate our approach, we conducted two experiments,
one on the existing dataset and one for live network traffic
classification.

1) Experiment 1 - Performance on the existing datasets:
Three ML algorithms (DT, RF, and ANN) are evaluated
on how well they can perform intrusion detection and how
different labeling strategies (NST and IT) and different flow
durations (0.1, 0.5, 1, 2, 5 and 10) affect their performance.
The experiment is carried out on two existing datasets (West-
ermo and CIC-IDS-2017).

2) Experiment 2 - Performance for live classification: The
best performing version of each ML algorithm (DT, RF, and
ANN) on the Westermo dataset is evaluated for live network
traffic classification on the edge device. To conduct this
evaluation, a specific network was set up and its topology can
be seen on Figure 3. It was composed of six computers (four
were hosting a simulated factory [34] and two were used to
launch the attacks) and two network switches. ML algorithms
were deployed to the network switched labeled as Switch-ML,
while the second network switch (Switch-Misconf.) was used
to simulate misconfigurations (misconfigured IP address and
duplicated IP address). Three types of attacks were simulated
(MITM, DoS, and Port Scan) in three different scenarios. What
differs between each scenario is the order the attacks were
launched and the time between the start of each attack. The
timings used were 33, 60, and 137 seconds. This means that
each attack was conducted with the aforementioned amount
of seconds in between. The amounts were chosen to decrease
the risk of correlation between the scenarios. Each attack is
conducted for an equal amount of seconds in each scenario,
since it is always initiated using the same command. On the
other hand, the duration of misconfigurations is half of the
interval before switching the configuration back to normal.
Each scenario was repeated three times using the same order
and timing. If an attack is detected, the system indicates this
by blinking a Light Emitting Diode (LED) on an Ethernet port.

TABLE III: All ML hyperparameters and their constraints that
form the individuals in the GA. For ranges, the min and max
is listed.

DT

criterion options gini, entropy, log loss
splitter options best, random
max features options sqrt, log2, none
max depth range [10, n samples]
min samples split range [2, 40]
min samples leaf range [1, 20]
max leaf nodes range [2, n samples]
min impurity decrease range [0, 0.01]
min weight fraction leaf range [0, 0.01]

RF

class weight options balanced, subsample, none
max features options sqrt, log2, none
n estimators range [8, 32]
max depth range [10, n samples]
min samples split range [2, 40]
min samples leaf range [1, 20]
max leaf nodes range [2, n samples]
max samples range [10, n samples]
min impurity decrease range [0, 0.01]
min weight fraction leaf range [0, 0.01]

ANN

activation options identity, log, tanh, relu
solver options adam, lbfgs
learning rate options constant, invscaling, adaptive
shuffle options false, true
hidden layer sizes range [min, 40]
alpha range [0, 0.01]
batch size range [1, n samples]
learning rate init range [0.0001, 0.005]
n layers range [1, 5]

D. Genetic Algorithm and Machine Learning Hyperparame-
ters

During training process, the GA generated an initial popu-
lation of 20, where each gene had a mutation rate of 5%. The
genetic operations run over 100 generations. The individual is
formed of different ML hyperparameters which can be found
in Table III, together with their search space.

E. Experimental description and metrics

Experiment 1 was performed on a laptop with Intel i7-
1255U processor and 16 GB DDR4 memory. Python pro-
gramming language and Scikit Learn4 ML library were used
to implement the experiment. The experiment is performed
with 70-20-10% of data for training, validation, and testing
respectively.

Experiment 2 was performed on the edge device. The edge
device used in this paper is provided, developed, and produced
by Westermo Network Technologies. Out of a plethora of
devices developed by Westermo, only the Lynx-3510 is used.
This routing-capable network switch is powered by NXP
i.MX8 Nano, a quad-core processor running at 1.4 GHz, with a
total amount of 512 MB of RAM and 128 MB of flash storage.
The device operates on the WeOS 5 operating system, which

4https://scikit-learn.org/



is based on Linux and optimized for embedded systems. It is
capable to host LXC-containers, within which the model is
placed.

The performance measure used throughout the entire paper
is F1-score, given in the Eq. (1)

F1 =
2×T P

2×T P+FP+FN
(1)

where T P, T N, FP, and FN, stand for True Positive, True
Negative, False Positive, and False Negative predictions, re-
spectively.

IV. RESULTS AND DISCUSSION

The results of the experiments described in Section III-C
are given and discussed in this section. Firstly, the results
of the ML algorithms on the existing datasets and how they
are affected by different labeling strategies and flow durations
are given in Section IV-A. Secondly, the performance of
the ML algorithms for live network traffic classification and
time/memory usage, is evaluated in Section IV-B.

A. Performance on the existing datasets

The results of the three ML algorithms using the different
labeling strategies as well as different flow durations on
Westermo dataset are given in Fig. 4, while the results on
CIC-IDS-2017 dataset are given in Fig. 5.

The results on the Westermo dataset show that DT and RF
are better than ANN in almost all combinations of subset,
labeling strategy, and flow duration (30 out of 36 options with
DT, and 32 out of 36 options with RF). If RF is compared
against DT, it can be noticed that RF is slightly better (24
out of 36 options). If different subsets of the Westermo
dataset are considered, it can be seen that performance of
all ML algorithms on the bottom subset is lower than on
the left and right subsets. The reason is that the bottom
subset has the lowest portion of attacks (see Table II). This is
confirmed by DF and RF obtaining the best performance on
the left subset, which has the highest percentage of attacks.
If labeling strategies are considered it can be concluded that
all ML algorithm obtain better results using NST labeling
strategy. With regard to flow duration, DT and RF manage to
maintain a similar performance regardless of the flow duration,
except for bottom subset, where considerable improvement is
achieved with longer flow durations. On the other hand, ANN
performance is improved with longer flows in almost all the
cases.

If the results on CIC-IDS-2017 dataset are considered, we
can observe that all algorithms obtained similar performances
when using IT labeling strategy, which gives a balanced data
(see Table II). However, when using NST, ANN obtained the
worst performance, while RF obtained the best. In the case of
this dataset, flow duration does not have a big impact on the
performance of the ML algorithms.

TABLE IV: Time and memory consumption of the ML algo-
rithms when performing live intrusion detection on the edge
device. Time is given in microseconds (µs) for the different
steps. The recording was conducted on the edge device, using
run 1 from the 60-second interval scenario, containing 52901
packets. The flow allocation time is measured for each packet
when they were compared, and placed into a flow. The feature
extraction and classification times are measured per flow. Peak
memory and total memory were measured for the complete
process.

Algorithm Step Time (µs) Memory

Mean Std. Peak Total

DT Flow allocation 6.91 4.64
DT Feature extraction 6.66 2.13 16.1 MB 25.2 MB
DT Classification 5.59 8.5

RF Flow allocation 7.27 4.51
RF Feature extraction 6.21 1.75 17.0 MB 25.7 MB
RF Classification 13.93 15.66

ANN Flow allocation 7.07 4.35
ANN Feature extraction 6.42 1.94 16.5 MB 38.0 MB
ANN Classification 40.94 2.48

B. Performance for live classification

The most effective version of each algorithm was deployed
to the edge device. For all three algorithms the best options
were the ones trained on the Westermo Left using NST
labeling strategy and flow duration of 10. These DT, RF,
and ANN had files sizes of 64.4 kB, 1.4 MB, and 51.1 kB
respectively. The RF consisted of 26 DTs and the ANN had
5 hidden layers, each comprising 37, 19, 10, 5, and 3 hidden
neurons respectively.

Figure 6 shows the results of live network traffic classifica-
tion during simulation of three different scenarios. The results
indicate that Port Scan is successfully detected by all the ML
algorithms, in all runs in all scenarios. For DoS attack, DT
and RF are always successful, while ANN fails to detect it.
DT and RF are sometimes able to detect MITM attack. When
it comes to misconfigurations, all the ML algorithms showed
poor performance, with DT and RF being able to detect it
at least in some cases (DT in Scenario 1 and 3, and RF in
Scenario 2). As a final remark, we can see that with the longer
interval we have more false positives.

If time consumption is considered (Table IV), we can
see that DT is the fastest algorithm, followed by RF, while
ANN is the slowest one. On the other hand, the memory
consumption (Table IV) is consistent among the algorithms
when considering the peak time, while for the total time ANN
takes around 50% more memory than DT and RF.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a system for network intrusion detection
using machine learning on resource-constrained edge devices.
The architecture of the system has two parts, one on a server
where the ML model is trained using existing datasets and the
second one on the edge device where the ML model is used.



left
IT

right
IT

bottom
IT

left
NST

right
NST

bottom
NST

Dataset / Labeling Strategy

0.1

0.5

1

2

5

10

Fl
ow

 D
ur

at
io

n

0.82 0.705 0.096 0.696 0.768 0.189

0.711 0.561 0.213 0.741 0.676 0.16

0.698 0.669 0.135 0.726 0.766 0.238

0.736 0.651 0.207 0.771 0.746 0.335

0.776 0.759 0.377 0.808 0.778 0.505

0.836 0.759 0.511 0.841 0.777 0.642

(a) Decision Tree

left
IT

right
IT

bottom
IT

left
NST

right
NST

bottom
NST

Dataset / Labeling Strategy

0.1

0.5

1

2

5

10

Fl
ow

 D
ur

at
io

n

0.811 0.692 0.264 0.714 0.768 0.23

0.738 0.571 0.333 0.722 0.711 0.2

0.751 0.686 0.339 0.752 0.733 0.299

0.746 0.658 0.335 0.781 0.707 0.39

0.797 0.737 0.463 0.772 0.743 0.502

0.835 0.741 0.572 0.84 0.784 0.632

(b) Random Forest

left
IT

right
IT

bottom
IT

left
NST

right
NST

bottom
NST

Dataset / Labeling Strategy

0.1

0.5

1

2

5

10

Fl
ow

 D
ur

at
io

n

0.083 0.653 0.097 0.094 0.768 0.18

0.548 0.536 0.329 0.675 0.642 0.173

0.556 0.576 0.137 0.292 0.693 0.195

0.648 0.574 0.347 0.702 0.718 0.32

0.487 0.655 0.375 0.738 0.758 0.458

0.757 0.711 0.461 0.768 0.698 0.519

F1-Score
0.0

0.2

0.4

0.6

0.8

1.0

(c) Artificial Neural Network

Fig. 4: F1-Score of DT, RF and ANN using Westermo left, right, and bottom subsets.

DT
IT

DT
NST

RF
IT

RF
NST

ANN
IT

ANN
NST

0.1

0.5

1

2

5

10

Fl
ow

 D
ur

at
io

n

0.702 0.696 0.713 0.846 0.703 0.536

0.723 0.836 0.662 0.849 0.722 0.597

0.721 0.629 0.726 0.786 0.727 0.586

0.701 0.617 0.702 0.77 0.704 0.522

0.693 0.594 0.695 0.776 0.695 0.495

0.691 0.789 0.691 0.671 0.689 0.538

F1-Score
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5: F1-Score of DT, RF, and ANN using CIC-IDS-2017
dataset.

The system is evaluated in two experiments. First, we
evaluate DT, RF, and ANN on the existing datasets using
different labeling strategies and flow durations. In particular it
can be concluded that RF has the best performance, closely
followed by DT. Second, we ran the system on an edge
device where live packets were classified and found that
DT and RF have similar performance in terms of correctly
detected attacks, as well as memory consumption. However,
DT is a faster option than RF, while ANN showed the worst
performance in all comparisons. It is important to mention
that all the ML algorithms fail to detect network anomalies
(misconfigurations) and some further research in this direction
is needed.

As a future work we plan to investigating how the different
features influence the system and if performance can be im-
proved by reducing the number of features used. Additionally,
we would like to deploy our framework in a federated learning
setup, and explore additional ML algorithms, such as recurrent
neural networks.

ACKNOWLEDGMENT

This work has been partially supported by the H2020
ECSEL EU projects Intelligent Secure Trustable Things (In-
SecTT) and Distributed Artificial Intelligent System (DAIS).
InSecTT (www.insectt.eu) has received funding from the EC-
SEL Joint Undertaking (JU) under grant agreement No 876038
and DAIS (https://dais-project.eu/) has received funding from
the ECSEL JU under grant agreement No 101007273. The JU
receives support from the European Union’s Horizon 2020 re-
search and innovation programme and Austria, Sweden, Spain,
Italy, France, Portugal, Ireland, Finland, Slovenia, Poland,
Netherlands, Turkey. The document reflects only the author’s
view and the Commission is not responsible for any use that
may be made of the information it contains.

Parts of the implementation were developed in a Master’s
thesis [35].

REFERENCES

[1] W. Tounsi and H. Rais, “A survey on technical threat intelligence in the
age of sophisticated cyber attacks,” Comput. Secur., vol. 72, 2018.

[2] S. Wang, J. F. Balarezo, S. Kandeepan, A. Al-Hourani, K. G. Chavez,
and B. Rubinstein, “Machine learning in network anomaly detection: A
survey,” IEEE Access, vol. 9, pp. 152 379–152 396, 2021.

[3] M. Leon, T. Markovic, and S. Punnekkat, “Comparative evaluation of
machine learning algorithms for network intrusion detection and attack
classification,” in 2022 international joint conference on neural networks
(IJCNN). IEEE, 2022, pp. 01–08.

[4] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commu-
nications surveys & tutorials, vol. 18, no. 2, pp. 1153–1176, 2015.

[5] M. Kumar, M. Hanumanthappa, and T. V. S. Kumar, “Intrusion detection
system using decision tree algorithm,” in 2012 IEEE 14th International
Conference on Communication Technology, 2012, pp. 629–634.

[6] S. Shilpashree, S. Lingareddy, N. Bhat, and G. Kumar, “Decision tree:
A machine learning for intrusion detection,” International Journal of
Innovative Technology and Exploring Engineering (IJITEE), vol. 8, no.
6S4, pp. 1126–1130, 2019.

[7] N. Farnaaz and M. Jabbar, “Random forest modeling for network
intrusion detection system,” Procedia Computer Science, vol. 89, 2016.

[8] T. Markovic, M. Leon, D. Buffoni, and S. Punnekkat, “Random forest
based on federated learning for intrusion detection,” in IFIP Interna-
tional Conference on Artificial Intelligence Applications and Innova-
tions. Springer, 2022, pp. 132–144.



P
or

t s
ca

n

Attack

DT

RF

ANN

0 33 66 99 132 165 198Time (s)

D
up

li
ca

ti
on

M
is

co
nf

.

M
IT

M

D
oS

1

2

3

1

2

3

2

1

3

A
lg

or
it

hm

R
un

TP
FP
FN

(a) Scenario 1: 33 seconds interval

D
up

li
ca

ti
onAttack

DT

RF

ANN

0 60 120 180 240 300 360Time (s)

P
or

t s
ca

n

D
oS

M
IT

M

M
is

co
nf

.

1

2

3

1

2

3

2

1

3

A
lg

or
it

hm

R
un

TP
FP
FN

(b) Scenario 2: 60 seconds interval

M
is

co
nf

.

Attack

DT

RF

ANN

0 137 274 411 548 685 822Time (s)

D
oS

M
IT

M

P
or

t s
ca

n

D
up

li
ca

ti
on

1

2

3

1

2

3

2

1

3

A
lg

or
it

hm

R
un

TP
FP
FN

(c) Scenario 3: 137 seconds interval

Fig. 6: Results from live network traffic classification on the
edge device. A green plus during an attack indicates a true
positive, a gray minus means failure to detect attack, and a
red x indicates false positives.

[9] A. D. Ghadim, T. Markovic, M. L. Ortiz, D. Söderman, and P. E.
Strandberg, “Federated learning for network anomaly detection in a
distributed industrial environment,” in International Conference on
Machine Learning and Applications 23, December 2023. [Online].
Available: http://www.es.mdu.se/publications/6853-

[10] G. Poojitha, K. N. Kumar, and P. J. Reddy, “Intrusion detection using
artificial neural network,” in 2010 Second International conference on
Computing, Communication and Networking Technologies, 2010.

[11] S. Behera, A. Pradhan, and R. Dash, “Deep neural network architecture
for anomaly based intrusion detection system,” in 2018 5th International
Conference on Signal Processing and Integrated Networks (SPIN).

IEEE, 2018, pp. 270–274.
[12] B. Ingre and A. Yadav, “Performance analysis of NSL-KDD dataset

using ANN,” in 2015 international conference on signal processing and
communication engineering systems. IEEE, 2015, pp. 92–96.

[13] S. Revathi and A. Malathi, “A detailed analysis on NSL-KDD dataset
using various machine learning techniques for intrusion detection,”
International Journal of Engineering Research & Technology (IJERT),
vol. 2, no. 12, pp. 1848–1853, 2013.

[14] T. A. Tuan, H. V. Long, L. H. Son, R. Kumar, I. Priyadarshini, and
N. T. K. Son, “Performance evaluation of Botnet DDoS attack detection
using machine learning,” Evolutionary Intelligence, vol. 13, no. 2, pp.
283–294, 2020.

[15] V. Kumar, H. Chauhan, and D. Panwar, “K-means clustering approach to
analyze NSL-KDD intrusion detection dataset,” International Journal of
Soft Computing and Engineering (IJSCE) ISSN, pp. 2231–2307, 2013.

[16] S. Roy, J. Li, B.-J. Choi, and Y. Bai, “A lightweight supervised
intrusion detection mechanism for IoT networks,” Future Generation
Computer Systems, vol. 127, pp. 276–285, 2022. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0167739X21003733

[17] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning DDoS
detection for consumer internet of things devices,” in 2018 IEEE Security
and Privacy Workshops (SPW), 2018, pp. 29–35.

[18] A. Huč, J. Šalej, and M. Trebar, “Analysis of machine learning algo-
rithms for anomaly detection on edge devices,” Sensors, vol. 21, no. 14,
p. 4946, 2021.

[19] M. Tsukada, M. Kondo, and H. Matsutani, “A neural network-based on-
device learning anomaly detector for edge devices,” IEEE Transactions
on Computers, vol. 69, no. 7, pp. 1027–1044, 2020.

[20] M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli, “Passban ids:
An intelligent anomaly-based intrusion detection system for iot edge
devices,” IEEE Internet of Things Journal, vol. 7, no. 8, 2020.

[21] P. E. Strandberg, D. Söderman, A. Dehlaghi-Ghadim, M. Leon,
T. Markovic, S. Punnekkat, M. H. Moghadam, and D. Buffoni,
“The westermo network traffic data set,” Data in Brief, vol. 50, p.
109512, 2023, data available online at: https://github.com/westermo/
network-traffic-dataset, last accessed 2024-01-10.

[22] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
ICISSp, vol. 1, pp. 108–116, 2018, data available online at: https://www.
unb.ca/cic/datasets/ids-2017.html, last accessed on 2023-11-07.

[23] H. Hua, Y. Li, T. Wang, N. Dong, W. Li, and J. Cao, “Edge comput-
ing with artificial intelligence: A machine learning perspective,” ACM
Computing Surveys, vol. 55, no. 9, pp. 1–35, 2023.

[24] B. Claise and B. Trammell, “Information Model for IP Flow
Information Export (IPFIX),” RFC 7012, 2013. [Online]. Available:
https://www.rfc-editor.org/info/rfc7012

[25] J. L. Guerra, C. Catania, and E. Veas, “Datasets are not enough:
challenges in labeling network traffic,” Computers & Security, 2022.

[26] A. Lemay and J. M. Fernandez, “Providing {SCADA} network data sets
for intrusion detection research,” in 9th Workshop on Cyber Security
Experimentation and Test (CSET 16), 2016.

[27] J. R. Quinlan, “Decision trees and decision-making,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 20, no. 2, pp. 339–346, 1990.

[28] S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach,”
in Malaysia: Pearson Education Limited., 2016.

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[30] S. Picek, D. Jakobovic, and M. Golub, “On the recombination operator
in the real-coded genetic algorithms,” in 2013 IEEE Congress on
Evolutionary Computation, pp. 3103–3110, ISSN: 1941-0026.

[31] D. Goldberg, “Genetic algorithm in search, optimization and machine
learning,” in Addison-Wesley, New York, 1989.

[32] S. L. Yadav and A. Sohal, “Comparative study of different selection
techniques in genetic algorithm,” International Journal of Engineering,
Science and Mathematics, vol. 6, no. 3, pp. 174–180, 2017.

[33] O. Oleghe, “Container placement and migration in edge computing:
Concept and scheduling models,” IEEE Access, vol. 9, pp. 68 028–
68 043, 2021.

[34] A. Dehlaghi-Ghadim, A. Balador, M. H. Moghadam, H. Hansson,
and M. Conti, “ICSSIM—a framework for building industrial control
systems security testbeds,” Computers in Industry, vol. 148, 2023.

[35] P. Lidholm and G. Ingletto, “Anomaly detection for network traffic
in a resource constrained environment,” Master’s thesis, Mälardalen
University, 2023.

http://www.es.mdu.se/publications/6853-
https://linkinghub.elsevier.com/retrieve/pii/S0167739X21003733
https://github.com/westermo/network-traffic-dataset
https://github.com/westermo/network-traffic-dataset
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.rfc-editor.org/info/rfc7012
http://www.deeplearningbook.org

