®

Check for
updates

Safety Argumentation for Machinery
Assembly Control Software

Julieth Patricia Castellanos-Ardila®™), Sasikumar Punnekkat, Hans Hansson,
and Peter Backeman

Mailardalen University, 721 23 Visteras, Sweden
{julieth. castellanos,sasikumar.punnekkat,hans.hansson,
peter.backeman}@mdu.se

Abstract. Assemblies of machinery commonly require control systems
whose functionality is based on application software. In Europe, such
software requires high safety integrity levels in accordance with the
Machinery Directive (MD). However, identifying the essential regula-
tory requirements for the safety approval is not an easy task. To facili-
tate this job, this paper presents a process for Safety Argumentation for
Machinery Assembly Control Software (SAMACS). We are inspired by
patterns provided in the Goal Structuring Notation (GSN) and the use
of contracts in safety argumentation. SAMACS contribution is aligning
those methods with the MD by adopting EN ISO 13849. In particu-
lar, we define safety goals based on expected software contribution to
control system safety and the standard guidance. Software safety goals
are detailed into software safety requirements and expressed further as
contracts, which shall be verified with prescribed techniques. We apply
SAMACS to a case study from a European mining company and discuss
the findings. This work aims at helping practitioners compose the safety
case argumentation necessary to support machinery integration approval
in Europe.

Keywords: Software Safety Case - GSN - Control systems - EN
ISO 13849

1 Introduction

Machinery in Europe has to be CE-marked to be approved for operations. The
CE (“Conformité Furopéenne”) is granted to machinery assemblies (i.e., machin-
ery integrated to function as a whole [15]) if machinery and their protective func-
tions conform to the health and safety requirements of the Machinery Directive
(MD) [26]. EN ISO 13849:2023 [16] is a newly released version of the standard
for safety-related parts of control systems (SRP/CS), which provides guidance
that can be used to show conformance with the MD. In particular, protective
measures based on control software require high safety integrity, which can be

This Research is supported by Vinnova via the project ESCAPE-CD, Ref: 2021-03662.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Ceccarelli et al. (Eds.): SAFECOMP 2024, LNCS 14988, pp. 251-266, 2024.
https://doi.org/10.1007/978-3-031-68606-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68606-1_16&domain=pdf
https://doi.org/10.1007/978-3-031-68606-1_16

252 J. P. Castellanos-Ardila et al.

represented with PLs (Performance Levels). PLs limit the probability of dan-
gerous failures of the safety functions and are defined in EN ISO 13849:2023.
This standard is expected to be considered by the European Commission in the
harmonization process of the Machinery Regulation [8] (to be enforced in 2027).

In general, the site integrator can demonstrate safety-related confidence lev-
els for machinery assemblies by using safety assurance cases, i.e., an argument
structure showing that the system is acceptably safe in a specific context [18]. For
software, in particular, the assurance case can be constructed by arguing that
software failure modes, i.e., the failures that can give rise to, or contribute to,
hazards at the system level, are mitigated [20]. However, composing the software
safety arguments for SRP/CS can be challenging. In particular, it is difficult to
identify the mandatory aspects that must be strengthened at design time since
creating convincing arguments requires skills and experience [7]. Thus, standard
recommendations and mandatory requirements can be considered as a starting
point to facilitate the definition of such arguments, which can be populated later
with more refined arguments as the development life cycle evolves.

Following the previous reasoning, this paper presents a process for Safety
Argumentation for Machinery Assembly Control Software (SAMACS). We took
inspiration from the structural reasoning capabilities provided by GSN (Goal
Structuring Notation) [25]) and the use of contract-based desing [21] in safety
argumentation (e.g., [2,11]). SAMACS’s particular contribution is aligning those
methods with the MD requirements by adopting the guidance provided in the
standard EN ISO 13849:2023. As a result, we present two levels of arguments.
At the top level, we consider the definition of an argumentation structure based
on expected software contribution to SRP/CS safety, i.e., providing and protect-
ing the intended functionality. The contributions are mapped to the standard
requirements to provide safety goals. At the lower level, we present supporting
arguments. In particular, safety goals are detailed into software safety require-
ments and expressed as contracts. For safety, contracts provide a description
made up of assumptions (pre-conditions) and guarantees (post-conditions) that
must be ensured by executing the safety function [24]. Safety contracts facilitate
verification techniques as prescribed by the standard’s performance levels (PL).
We also present a case study from a European mining company and discuss
our findings. This work aims at helping practitioners compose the safety case
argumentation necessary to support machinery integration approval in Europe.

This paper is structured as follows. Section2 presents the essential back-
ground information required in this paper. Section 3 presents a detailed descrip-
tion of SAMACS. Section 4 presents an application of SAMACS to a case study.
Section 5 presents a discussion of the findings. Section 6 presents related work.
Finally, Sect. 7 presents conclusions and future work.

SAMACS 253

2 Background

2.1 EN ISO 13849:2023

EN ISO 13849:2023 [16] provides requirements for designing and integrating
safety-related parts of control systems (SRP/CS) for machinery. It uses perfor-
mance levels (PL), i.e., a level between a to e, with e being the most stringent,
to specify the ability of a system to perform a safety function. In clause 7, the
standard includes requirements for embedded and application software, allocated
to the activities included in a V-like lifecycle model. All relevant activities, i.e.,
those defined as essential during the specific development, must be documented,
including traceability links between those activities.

From the risk assessment at the system level, the designer decides the contri-
bution of the SRP/CS to the risk reduction, i.e., the safety function specification.
Based on this input, the software specification, which shall be expressed using
the criteria in Tablel, is created and used during the software development.
Verification activities are chosen according to the assigned PL. In particular,
functional testing and reviews are required regardless of the PL, while extended
functional testing is prescribed for PL ¢ to d. Semi-formal methods must be used
to describe data and control flow in software with PL ¢ to e.

Table 1. Safety-related Software Specification Criteria

No. Criteria

1 Safety Functions with required PL and associated operating modes

Performance criteria, e.g., reaction times.

Communication interfaces

Detection and control of hardware failure to achieve the required DC and
fault reaction

2.2 Assurance Cases

Assurance is the ground for justified validity of a claim [14] (i.e., a true-false state-
ment about the limitations on the values of a property). Assurance information
is commonly collected in an assurance case, a document that presents arguments
with specified confidence levels supporting the claims. Assurance cases are used
in safety, where the argumentation structure is done to demonstrate that the sys-
tem under consideration is acceptably safe [18]. The validity of the arguments
is bound to the context in which the system will be operating, as well as spec-
ified assumptions and justifications regarding such operations. In particular, to
demonstrate safety, the arguments have to be in accordance to the risk reduction
expected by the system. For software, the arguments are commonly oriented to
justify that its functionality does not contribute to system-level hazards [28].

254 J. P. Castellanos-Ardila et al.

There are different notations to document assurance cases. We focus on the
Goal structuring Notation (GSN), which uses graphical elements (see Fig. 1) [25].
GSN argumentation starts with a top-level goal supported by a strategy that con-
nects the goal with subgoals and solutions. Goals and strategies require assump-
tions and justifications in a particular context to explain why the claim in a goal
is acceptable. Those elements (see Fig. 1a) are connected with two types of rela-
tionships: SupportedBy (link claims with strategies/solutions) and InContextOf
(link claims/strategies with contextual information). GSN provides decorators
(see Fig. 1b). For example, the hollow diamond, added to a goal, represents an
undeveloped goal, i.e., a goal to which the line of argument still needs to be
developed. GSN structures can also be partitioned into separate packages (see
Fig. 1c), e.g., an away goal represents a claim presented in another module.

Goal {Identifier} Context {Identifier} Strategy {Identifier}
{Goal Statement} {Context Statement} {Strategy Statement}

Justification {ldentifier}

Undeveloped Goal {Identifier}
{Goal Statement}

b) Decorations

Assumption {ldentifier

Solution {Identifier}
{Solution Statement}

Away Goal {Identifier}

{Assumption Statement} {Away Goal Statement}

{Justification Statement}

A

{Module Identifier}

SupportedBy ' InContextOf

a) Basic Elements c) Modular Extension

Fig. 1. GSN Elements.

2.3 Contract-Based Design

Contract-based design is an approach where correctness requirements are
expressed as a contract between a method and its callers [21]. Contracts are
made up of pre-conditions (that must be true before the operation call) and
post-conditions (that must be ensured by the execution of the call given the
pre-conditions satisfaction). In this way, contracts can ensure that the behav-
ior of such interactions occurs as expected. Contracts have been used in safety
assurance [2,11,24]. In such a context, they are called safety contracts (C). They
explicitly handle a pair of properties representing the assumptions (A) on the
environment (pre-conditions) and the guarantees (G) of the system under these
assumptions (post-conditions). Assumptions and guarantees in a contract, which
are represented as the pair C = (A;G), can be used in the safety case to illustrate
the agreed relationships in an argumentative way. Safety contracts support the
generation of different types of evidence required to support confidence levels.
In particular, each assumed safety requirement is satisfied by at least one safety
contract, and each safety contract can have supporting evidence regarding con-
sistency, completeness, and correctness regarding the represented requirements.

SAMACS 255

For example, evidence that supports contract correctness can be a report with
analysis results used to derive the contract.

3 SAMACS: Safety Argumentation for Machinery
Assembly Control Software

In this section, we present SAMACS, a practitioner-centric context-specific safety
argumentation process targeting software in SRP/CS, which is used in the con-
trol system of machinery assemblies. In particular, software in SRP/CS needs to
comply with the requirements included in the standard EN ISO 13849:2023 (see
Sect. 2.1) to be in line with European regulatory frameworks, i.e., the Machin-
ery Directive (MD). SAMACS is aimed at helping practitioners build safety
assurance cases in GSN (see Sect.2.2) supported with the definition of safety
contracts (see Sect.2.3), which facilitate the argumentation structure required
for safety conformance. Figure2 depicts an overview and the methodological
steps of SAMACS, which include the elements previously mentioned to iden-
tify the information required to build a top-level and supporting arguments to
demonstrate that the software in an SRP/CS is sufficiently safe.

Inputs to SAMACS

Limits of System Safety System
machinery requirements Architecture EN ISO
13849 Test Scenarios
=) — e

AMACS Process steps

Establishment Definition of Identification N Identification

of Software Software of Software ’ ieiteaton . of Verification

e % of Contracts
Responsibility Safety Goals Requirements

al
BE E

Test Scenarios Scppe Requirements Contracts

Test cases

Verification &

Validation

Techniques

|§

esults
Goal: Strategy: Strategy:
[Context] Safet Clalm Top Level Supporting
¥ Argument Arguments
Assumptlons

Outputs/work products and Safety case elements

Fig. 2. SAMACS process overview

Task-1: Establishment of software responsibility
Protective measures identified at the system level are allocated to the control
software via a safety specification (see Sect.2.1). This specification, which
contains the system safety requirements, the system architecture, and the
limits of the machinery, is used in this task to frame the context of the top-
level argument by providing the scope and the test scenarios.

256 J. P. Castellanos-Ardila et al.

Task-2: Definition of software safety goals
Software safety goals must ensure that the software does not contribute to
system-level hazards. For this, the software in the SRP/CS needs to provide
the intended (protective) safety functionality corresponding to the protec-
tive measurement established in the system-level risk assessment. As such
functionality is essential (i.e., it shall not fail), it has to be protected from
malfunctions and malpractices. Such contributions are mapped to the infor-
mation requirements of EN ISO 13849:2023 (see Table1). This information
is used as the first argumentation strategy in the top-level structure.
Task-3: Identification of software requirements
Every software safety goal from Task-2 is then developed in supporting argu-
ments. For this, each goal is detailed in terms of software safety requirements
by considering the software scope resulting from Task 1.
Task-4: Definition of contracts
The software safety requirements resulting from Task-3 are expressed as con-
tracts and are used to provide arguments regarding fulfilling such require-
ments by considering assumptions on the system (or the environment)
and guarantees (the expected properties/functionality). As safety contracts
are based on assumptions and guarantees (see Sect.2.3), they facilitate
input/output validation and the creation of error-handling specifications.
Task-5: Identification of verification techniques
Before proceeding with verification and validation, it is important to iden-
tify the right verification techniques as expected/prescribed by the standard
(e.g., according to the specified PL). This is to ensure that the verification
results/reports produced are in compliance with the applicable standards
Task-6:Verification and validation
Scenarios obtained in Task-1 are used to create the test cases, which are the
basis for the actual validation and verification activities performed in this
step. The resulting reports of this activity form the evidence and confidence
levels required to support the safety claims.

4 Case Study

In this case study, we provide safety case arguments for the software of a Safety
Control System (SCS) for traffic operations in an underground mine. The oper-
ations are mixed, i.e., autonomous haulers are used to transport the extracted
ore, while manned-driven vehicles are used to transport personnel and materials.

4.1 Establishment of Software Responsibility

First, we collect system-level information. As depicted in Fig. 3a), the tunnel has
an Autonomous Operating Zone (AOZ) (area in blue color) with entrance/exit
areas where autonomous machines (shown in yellow) and manned vehicles
(shown in orange) operate. Both types of vehicles have buffer areas (in gray)
for waiting their turn to enter the AOZ. Manned vehicles have specific in/out

SAMACS 257

areas (in orange). Meeting areas (red rectangles) and prospected drilling areas
(a side tunnel ending in a dead-end room) are alongside the tunnel. We assume
that the AOZ does not have human operators on foot.

Check-in/out Machine
Unit +__I/B-St-a s -pu Safety Control
System
. (scs)
Localization g__Machine g

Unit Position T x

]

|
I

Machine Safety

b) System Architecture

drilling area

PL d: The ASSC shall halt autonomous machines that are in
dangerous proximity to manned machines withing {t}
milliseconds after detecting such dangerous proximity.

a) Limits of the machinery c) System Safety Requirement.

Fig. 3. Scope of the Control System.

The architecture (see Fig.3b)) contains the system under consideration,
i.e., a Safety Control System (SCS), which is in charge of providing an
automated safety stop command (ASSC) to meet the system safety require-
ment (see Fig.3c)). The SCS receives inputs from the localization unit, i.e.,
machines position, and the check-in/out unit, i.e., a value indicating whether
the machines enter and leave the AOZ. The SCS communicates the ASSC to
the machine safety controller (MSC), which converts it to a brake signal
that is further sent to the machine brakes. The SCS and the MSC maintain a
bidirectional heartbeat signal for communicating their operational availability.

Second, we determine the scope of the software function and the test sce-
narios. The scope is given by the system safety requirement (with PL d), which
shall be allocated to the software. The limits of the machinery are used to select
the test scenarios for verifying the software functionality. In our case, the control
system is designed to halt autonomous machines that operate in an underground
mine. So, the test scenarios can be derived systematically using the taxonomy
describing the Operational Design Domain for Underground Mines (ODD-UM)
provided in [5]. An excerpt of the ODD-UM related to the scenery with the case
study specifications (colored in green) is depicted in Fig. 4. It says that the func-
tionality of the SCS has to be tested in specific areas, i.e., moving and meeting,
with one lane operating in both directions, i.e., up to down/down to up

258 J. P. Castellanos-Ardila et al.

| Scenery |
Area | Lane Spelciﬁcation |
Loading Extracting —— ———
- . No.Lanes | | Direction |
Dumping Moving
Charging Meeting | 1 | |UPt0d0Wn || Down to up |

Fig. 4. ODD-UM-Scenery [5].

4.2 Definition of Software Safety Goals

Safety-related software goals have to be aligned with the mitigation strategies
expected from the SCS. In general, the software is required to provide a control
function (i.e., the ASSC). In that sense, the first expected contribution is that the
software satisfies the intended functionality, i.e., the software provides the ASSC
in the specified conditions (SC1). In addition, the software has to protect such
functionality to avoid a hazardous action in mixed traffic, e.g., an autonomous
machine does not stop because it is not detected or the detection parameters are
out of range. Thus, the second contribution is that the software in the ASSC is
protected from component malfunctions and malpractices (SC2). SC1 and SC2
can be seen in the rows colored with dark gray in Table 2.

Table 2. Software Safety Goals

ID |Goal

SC1: The software provides the ASSC in the specified conditions.

SS1 | Definition of the intended functionality (i.e., provision of the ASSC).

SG1 |The intended functionality (i.e., the provision of the ASSC) is properly designed.

SG2 |The intended functionality satisfies defined performance criteria.

SC2: The functionality is protected from components malfunctions and malpractices.

SS2 |Mitigation of system component’s failure that contributes to software failure.

SG3 |The SCS’s communication interface with external components must ensure safe operation.

SG4 |The software system provides detection and control of components failure.

SS3 | Mitigation of systematic failure.

SG5 |Relevant process requirements in compliance with EN ISO 13849:2023 have been followed.

Software contributions SC1 and SC2 are matched with strategies. In partic-
ular, the definition of the intended functionality, i.e., the provision of the ASSC
(SS1), is the suited strategy for reaching SC1 since the safety control system does
not have more responsibilities. Two different strategies were considered appro-
priate for SC2, i.e., the mitigation of system component failure that contributes

SAMACS 259

to software failure (SS2) and the mitigation of systematic software failure (SS3).
SS1, SS2, and SS3 are shown in the rows colored with light gray in Table 2.

Finally, each strategy is mapped to the criteria in Table1. In particular,
criteria 1 and 2 are related to the provision of the expected functionality (SS1),
while criteria 3 and 4 refer to mitigation of the system’s component failure
(SS2). Systematic failure (SS3) can be reached by providing evidence regarding
applicable process-related requirements proposed by the standard. SG1 to SG5
are shown in the white rows in Table 2.

4.3 Identification of Software Safety Requirements

Initial brainstorming is done to identify the software safety requirements in
alignment with the goals defined in Table3. In particular, for SG1, which is
related to the intended functionality, two requirements have been considered,
i.e., SSR1.1 (i.e., monitoring the distance between the two types of vehicles) and
SSR1.2 (i.e., provision of the ASSC in case of minimum safety distance violation).
SG2 is related to performance criteria, which in this case concerns the response
time (i.e., SSR2.1 and SSR2.2.) and availability (SSR2.3) of the safety function.
In the case of SG3, two requirements are initially defined, i.e., monitoring and
diagnostics of communication failures (SSR3.1), as well as validation of integrity
data before processing (SSR3.2). For SG4, it is determined that self-tests shall be
performed at startup and during operations to ensure component functionality
(SSR4.1). In addition, the ASSC shall be issued in case of controller failure
(SSR4.2) or input devices failure (SSR4.3). SG5 can be populated with process-
related aspects that result from decisions made during software development.
For this case study, the decisions corresponding to verification activities (see
Sect. 4.5) were relevant. In particular, the functionality is developed in UPPAAL!
for model checking and automatically translated to software (SSR5.1) that has
to be properly included in a simulation tool (SSR5.2) for further verification.
Both the UPPAAL and the simulation tool shall support the investigation of
the system under consideration (SSR5.3). This could mean that quality control
of such tools has to be provided.

Table 3. Software Safety Requirements

SG. ID|Software Requirement

SG1 |SSR1.1: The SCS shall monitor the distance between the autonomous machines and the manned vehicles for the specified operating zones of the AOZ

SSR1.2: The Automated Safety Stop Command (ASSC) shall be issued if an autonomous machine viol

s the safety distance with respect to a manned vehicle

SG2 |SSR2.1: The ASSC shall be computed within {#;} milliseconds after a violation of the safety distance is detected
SSR2.2: The ASSC shall be send within {t5} milliseconds after it is computed
SSR2.3: The ASSC shall be sent if the periodic heartbeat signal from the MSC stops

SG3 [SSR3.1: The SCS shall include real-time monitoring and diagnostics to detect communication delays, packet loss, or data corruption
SSR3.2: The S
SG4 |SSR4.1: The SCS shall perform self-tests at startup and during operation to ensure all components are functioning properly

SSR4.1: The ASSC shall be issued in case of controller failure

all validate the integrity of incoming data before processing it to avoid hazards caused by corrupted data

SSR4.2: The ASSC shall be issued if control inputs from the position and check-in/out units are missing or are out of range

SG5 |SSR5.1: UPPAAL models shall be correctly modeled and translated into software code
SSR5.2: The software code shall be properly included in the simulation tool

SSR5.3: Tools (UPPAAL & Simulator) shall support the investigation of the system

! https://uppaal.org/documentation/.

https://uppaal.org/documentation/

260 J. P. Castellanos-Ardila et al.

4.4 Definition of Contracts

Contracts consider the expected behavior described in the software requirements,
i.e., the guarantee, as well as the analysis required to identify assumptions. In
Table 4, we show contracts for SSR1 (i.e., SC1.1) and SSR2 (i.e., SC2.1).

Table 4. Software Safety Contracts

ID |Contract

SC1.1]A1.1: (AM[i].I/O-Status =IN) AND (MM][j].I/O-Status = IN);

G1.1: implies monitoredDistance(AM][i].position,MM]j].position);
SC1.2|A1.2: safetyDistance = {MinimumSafetyDistance}

G1.2: monitoredDistance > SafetyDistance implies (ASSC = TRUE);

Contract SC1.1 assumes that at least one autonomous machine (AM][i]) and
one manned vehicle (MM]j]) are inside the AOZ (i.e., I/O-status = IN, provided
by the Check-in/out unit). Such an assumption is essential since the SCS does
not react to other configurations, i.e., only autonomous machines or only manned
vehicles in the AOZ. This assumption establishes a guarantee regarding mon-
itoring such vehicles to provide the current distance between them based on
the vehicle’s positions (i.e., AM[i].position and MM][j].position, provided by the
localization unit). Contract SC1.2 assumes a previously defined minimum safety
distance to be maintained between these two types of vehicles. The guarantee
is that if the minimum safety distance is violated, i.e., monitoredDistance >
SafetyDistance) then the ASSC is issued (ASSC = TRUE).

4.5 Identification of Verification Techniques and Evidence Provision

In our case study, evidence regarding verification shall be aligned with PL d
(see Sect.2.1). In particular, expert reviews are suitable for work products that
require manual analysis. i.e., specifications. The code also required reviews.
Automated techniques are suitable for software unit testing. We decided to pro-
vide a higher level of confidence considering model-checking results for the soft-
ware by using the UPPA AL model checker. Model checking also allows describing
data and control flow in software, which is mandatory for PL d. Simulations are
considered relevant at the component and system levels, so complete functional-
ity is probed. A simulation is one of the extended functional techniques suitable
for functionality with PL d. As we provide arguments at design time, we can
also check the compliance of the process plans. This aspect is out of the scope of
this paper, but examples of techniques for providing such compliance checking
can be seen in our previous work (see, for example, [3]).

SAMACS 261

4.6 Composing the Safety Case Arguments

The top-level argument for the safety case is presented in Fig. 5. It starts with the
main goal G1, i.e., the software is sufficiently safe in a given context. Sufficiently
safe is a general assumption corresponding to the expected software contributions
(SC1 and SC2) to safety presented in Table 2. The context C1 corresponds to the
scope of the software function identified in Fig.3. The arguments develop over
the considerations of strategies SS1 to SS3 presented in Table 2, which result in
the five away goals SG1 to SG5, also presented in Table 2.

Al: Sufficiently safe: G1: The software in the Safety Control System
. L. . . C1: Scope
SC1 & SC2 A (SCS) is sufficiently safe in the given context C1.

A 4
S1: Argument overf [SS2: Argument over S$S3: Argument
proper definition [/ mitigation of system over mitigation
A2 Intended of the intended [fomponents failure that of systematic
functionality. [/ contribute to sw failure, failures.
A I
v v v v v
SG1: The intended || SG2: Functionality || SG3: Communication SG4: The software || SG5: Relevant
funcitonality is satisfies specified || interfaces with external |[system provides software lifecycle
properly designed. || performance criteria. || components is safe detection & control practices have
of external failure. been followed.
SCS et
.) | Performance Communication ontrol externall Relevant
E’ Functionality, |E'Criteria Def. E’ interaces E'Eailure E’ Pragtices
< N < N4

Fig. 5. Top Level Argument

Figure 6 presents a supporting argument for the away goal SG1. Three strate-
gies are identified to support this goal. The first strategy (S1.1) is the proper
definition of individual requirements for SG1, which is then developed further
with two goals, i.e., SG1.1 and SG1.2, corresponding to the software require-
ments SSR1.1 and SSR1.2 (see Table3). Those goals are further augmented
with the contracts corresponding to each requirement i.e., SC1.1 and SC1.2
(see Table4). The second strategy (S1.2) regards the sufficiency of requirements
SSR1.1 and SSR1.2 in the implementation of the goal SG1. This argumenta-
tion branch reaches the final stages by showing two evidence elements, E1.1
(i.e., expert review) and E1.2 (i.e., simulations results). Finally, the third strat-
egy (51.3) is the integration of SG1 with other software goals. This branch also
reaches a final stage by providing evidence E1.3 (i.e., simulation results). As E1.3
includes the whole integration, it can also be a validation test. Thus, extra evi-
dence related to the user acceptance test results can also be added to strengthen
the argument. The strategy S1.3. is the same for the away goals SG1 to SG4
developed at the top-level argument (see Fig.5). Therefore, this strategy can
instead be located in a specific branch related to integration testing at such an
argumentation level.

262

J. P. Castellanos-Ardila et al.

| SG1: The intended software functionality (i.e. provision of the ASSC) |
is properly designed.

S1.1: Argument over proper individual

A
$1.2: Argument over proper / §1.3: Argument over proper
definition of requirements for SG1. f[integration of requirements for SG1. [[integration of SG1 with other goals.,

A 4

SG1.1 (SSR1.1): The SCS| sG1.2 (SSR1.2): The | | SG1.3: SSR1.1 & SSR1.2

shall monitor the distancell Assc shall be issued | | are sufficientfor the £ Too SG1.4: SG1 Implementation
between autonomous|f i autonomous implementation of SG1 Scenario is compatible with remaining
machines and the manned|| machines violates | | and do not contradict software safety goals.

vehicles for the specified|| the safety distance. each other.
operating zones of the AOZ.

$1.7: Argument over

Y v
{V y $1.6: Argument over

[

$1.4: Argument over 1.5: Argument over
the definition of the definition of
contracts for SSR1.1. contracts for SSR1.2.

proper composition
of software safety
goals.

proper composition of
contracts SC1.1 &
SC1.2

A 4 Y
SC1.1: Definition & §C1.2: Definition
implementation of & implementation E1.1: E1.2:
contract SC1.1. of contract SC1.2. Expert Simulation
E'SCLL 12, Review. Results
X

N

Fig. 6. Argumentation Structure of SG1.

Finally, in Fig.7, we present the structure for the argument supporting

SC1.1 (see Table4), which corresponds to the definition and implementation
of the safety contract linked to requirement SSR1.1. In this case, the argu-
ment starts by the contract assumption Al.1 (i.e., (AM][i].I/O-Status=IN) AND

(MM

[i].I/O-Status=IN)), which means that at least one machine of each type

is inside the AOZ. Such an assumption supports the expected contract guar-
antee, G1.1 i.e., distance monitoring between AM and MM. This argument is
extended with strategies regarding contract definition (i.e., S1.1.1), which is

Al.1: At least one
machine of each type is
inside the AOZ.

SC1.1: The contract is properly defined and
implemented to support the monitoring of
A distance between AM and MM.

v)
$1.1.1: Argument over the $1.1.2: Argument over
correct definition of distance consistent implementation in
monitoring between AM & code distance monitoring J1.1.1: Formal
MM in SSC1.1. between AM & MM in SSC1.1, verification supports

PLd

E1.1.3:

E1.1.1: E1.1.2: Formal
Copltratit Code verification
Specification verification (UPPAAL
Review review results)

Fig. 7. Argumentation Structure of SC1.1.

SAMACS 263

manually reviewed (E1.1.1), and consistent implementation, which is also man-
ually reviewed (E1.1.2) as well as formally verified (E1.1.3). The formal verifica-
tion is done against the test scenarios (i.e., C1.1.1) and based on the justification
that, according to the standard, formal verification supports PL d (i.e., J1.1.1.).

5 Discussion

It is challenging to provide a reasonable argument about the safety of software
systems. The reason is that predicting quantifiable failure rates (commonly done
for hardware) is difficult for software, which behaves uniquely. Thus, we need a
strategy that helps us to think about what can go wrong in a specific context.
This is especially important when the software function is safety-related and
should not fail, as it occurs with software functions allocated to SRP/CS. The
accepted practice is based on the qualified confidence given as performance levels
(PLs) provided by industry standards. However, it could be challenging to select
the appropriate standard, and once selected, its guidance could be difficult to
interpret and use in a safety argument. In particular, the guidance for software
construction in standards is often process-oriented. However, a careful view of
such recommended practices can provide ideas of how to justify safety by con-
sidering the software as a product without leaving aside the required processes.

In Sect. 3, we presented a process where the guidance provided by the stan-
dard EN ISO 13849:2023 is used to reason about the software functionality. In
particular, we departed from the safety-related software specification’s structure
as described in the standard (see Table 1) to align the safety case with the pre-
scribed practices. From this guidance, we created the software safety goals and
used them as safety case modules independent of each other. Such independence
allows the creation of new arguments as the software process evolves without
changing the initial safety case structure, a feature that can be also aligned with
agile practices. The modules also provide readability to the software safety case
since it can grow without looking excessively complex.

The structure of the resulting safety assurance case also permits practitioners
to conduct brainstorming sessions regarding relevant software functionalities in
the SRP/CS, as well as the implications in terms of supporting software functions
to protect such functionality. For example, in our case study (see Sect. 4), we con-
sidered performance criteria related to response time and availability. However,
further iterations can consider other relevant criteria, e.g., resource consump-
tion. Cybersecurity implications also have a place in this argumentation since
those practices aim at protecting software functionality. The last argumentation
structure presented in Fig.7 shows the information on the software unit that
is traceable to the software safety requirements and component integration in
Fig.6 up to the claim in goal G1 in Fig.5. In this way, we present a journey
covering all the software development lifecycle steps. Thus, this process can be
applied to concrete scenarios to create convincing stories that make the safety
assurance argument communicable and comprehensible to all stakeholders.

264 J. P. Castellanos-Ardila et al.

6 Related Work

GSN has been used in the creation of safety argumentation patterns for soft-
ware. In particular, Weaver [28] presents a framework for articulating software
safety arguments based on evidence categorization. Argument patterns for COTS
(Commercial-Off-The-Shelf) software are also proposed in Ye’s work [29]. We
have a similar view as these two approaches regarding evidence provision about
the mitigation of software contribution to system-level hazards. However, these
works are standards agnostic, which we consider essential in our approach. The
Pegasus framework presents safety argumentation related to automated driving
systems [19], which is interesting but difficult to apply in the argumentation
related to SRP/CS, which is, in essence, less complicated than the required in
autonomy systems (i.e., SRP/CS functionality is very reduced and punctual).
Ayoub et al. [1] propose the common characteristics map with results in process-
oriented evidence. It emphasizes evidence from verification activities consider-
ing the techniques, tools, human expertise, and artifacts produced. However, it
does not consider the specific software description as we do in our work. Gen-
eral discussions regarding argument sufficiency for software safety are presented
in [6,12,13] among others. However, we aim at proposing a context-specific argu-
mentation process that can support practitioners in the machinery context.

Creating convincing arguments for demonstrating machinery safety requires
experience in the field and argumentation skills. However, few published general
works in this field are available for supporting practitioners. For example, in the
work of Gallina et al., [9], there is a knowledge management strategy for handling
process artifacts in compliance with the MD, which can be useful for creating
evidence artifacts at such a level. In [10], a list of elements that can be used
as evidence for creating a safety assurance case is provided. However, these two
works do not present structures that support the argument development. In [27],
an overall safety assurance argument in GSN is sketched. However, it lacks the
level of detail required for a complete argumentation structure. In addition, it
only relates to a specific operation (i.e., transportation), which is difficult to
extrapolate to machinery aspects beyond such operation. The works presented
in [4,17] cover more argumentation details (including the criticality levels pre-
scribed in standards) but do not cover software at the control level, which is
our main focus. Methodologies for designing SRP/CS following EN ISO 13849
are provided in [22,23]. However, none of the previous works present explicit
argumentation structures covering SRP/CS software in line with the standards
harmonized with the MD.

7 Conclusions and Future Work

SAMACS is a process aimed at helping practitioners compose the safety assur-
ance case arguments required to support machinery integration approval in the
European context. In particular, SAMACS supports the creation of a safety case
for the software included in SRP/CS by adopting current practices in software

SAMACS 265

safety argumentation, i.e., GSN structure and contracts, and the guidance pro-
vided by the standard EN ISO 13849:2023. This standard is relevant since it
provides accepted guidance for conformance with the Machinery Directive and
is expected to be considered for conformance with the Machinery Regulation.

Future work includes providing more case studies to assess the effectiveness of
this work’s methodological steps in practice. We will also present the process and
the resulting safety cases to practitioners and safety assessors to evaluate their
perceptions regarding the argument’s comprehensiveness and level of coverage.
In addition, tools for supporting our process are planned to be investigated.

References

1. Ayoub, A., Kim, B.G., Lee, 1., Sokolsky, O.: A systematic approach to justifying
sufficient confidence in software safety arguments. In: Ortmeier, F., Daniel, P. (eds.)
SAFECOMP 2012. LNCS, vol. 7612, pp. 305-316. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33678-2_26

2. Bate, I., Hawkins, R., McDermid, J.: A contract-based approach to designing safe
systems. In: 8th Workshop on Safety-critical Systems and Software (2003)

3. Castellanos Ardila, J.P., Gallina, B., Governatori, G.: Compliance-aware engineer-
ing process plans: the case of space software engineering processes. In: Artificial
Intelligence and Law, pp. 1-41 (2021)

4. Castellanos Ardila, J.P., Punekkat, S., Hansson, H., Grante, C.: Arguing opera-
tional safety for mixed traffic in underground mining. In: 18th Annual System of
Systems Engineering Conference (2023)

5. Castellanos Ardila, J.P., Punnekkat, S., Fattouh, A., Hansson, H.: A context-
specific operational design domain for underground mining (ODD-UM). In: Euro-
pean Conference on Software Process Improvement, pp. 161-176. Springer, Heidel-
berg (2022). https://doi.org/10.1007/978-3-031-15559-8_12

6. Chechik, M., Salay, R., Viger, T., Kokaly, S., Rahimi, M.: Software assurance in
an uncertain world. In: Hahnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS,
vol. 11424, pp. 3-21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
16722-6_1

7. Cheng, J., Goodrum, M., Metoyer, R., Cleland, J.: How do practitioners perceive

assurance cases in safety-critical software systems? In: Workshop on Cooperative
and Human Aspects of Software Engineering, pp. 57-60 (2018)
Europen Parliament and the Council: Regulation (EU) 20258/1230 (2023)
9. Gallina, B., Olesen, T.Y., Parajdi, E., Aarup, M.: A knowledge management strat-
egy for seamless compliance with the machinery regulation. In: European Confer-
ence on Software Process Improvement, pp. 220-234. Springer, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-42307-9-17
10. Global Mining Guidelines Group: Systems Safety for Autonomous Mining (2021)
11. Graydon, P., Bate, I.: The nature and content of safety contracts: challenges and
suggestions for a way forward. In: 20th Pacific Rim International Symposium on
Dependable Computing, pp. 135-144. IEEE (2014)

12. Habli, I., Hawkins, R., Kelly, T.: Software safety: relating software assurance and
software integrity. Int. J. Crit. Comput.-Based Syst. 1(4), 364-383 (2010)

13. Hawkins, R., Kelly, T.: Software safety assurance-what is sufficient? In: 4th IET
International Conference on Systems Safety 2009. Incorporating the SaRS Annual
Conference, pp. 1-6. IET (2009)

®

https://doi.org/10.1007/978-3-642-33678-2_26
https://doi.org/10.1007/978-3-031-15559-8_12
https://doi.org/10.1007/978-3-030-16722-6_1
https://doi.org/10.1007/978-3-030-16722-6_1
https://doi.org/10.1007/978-3-031-42307-9_17

266

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

J. P. Castellanos-Ardila et al.

ISO/IEC JTC 1/SC T7: ISO/IEC/IEEE 15026:2019. Systems and software engi-
neering - Systems and software assurance (2019)

ISO/TC 199: ISO 12100:2010. Safety of machinery - General Principles for design
- Risk Assessment and Risk Reduction (2010)

ISO/TC 199: EN ISO 13849-1:2023. Safety of machinery - Safety-related parts of
control systems - Part 1: General principles for design (2023)

Javed, M.A., Muram, F.U., Hansson, H., Punnekkat, S., Thane, H.: Towards
dynamic safety assurance for Industry 4.0. J. Syst. Arch. (2021)

Kelly, T.P.: Arguing safety: a systematic approach to managing safety cases. Ph.D.
thesis, University of York (1999)

Maus, A.: Pegasus safety argumentation (2018). https://www.pegasusprojekt.de/
files/tmpl/pdf/PEGASUS%20Safety %20Argumentation.pdf

McDermid, J.A.: Software safety: where’s the evidence? In: 6th Australian Work-
shop on Safety Critical Systems and Software, pp. 1-6 (2001)

Meyer, B.: Applying design by contract. Computer 25(10), 40-51 (1992)

Porras, A., Romero, J.A.: A new methodology for facilitating the design of safety-
related parts of control systems in machines according to ISO 13849:2006 standard.
Reliabil. Eng. Syst. Saf. 174, 60-70 (2018)

Soderberg, A., Hedberg, J., Folkesson, P., Jacobson, J.: Safety-related Machine
Control Systems using standard EN ISO 13849-1 (2018)

Soderberg, A., Johansson, R.: Safety contract-based design of software components.
In: International Symposium on Software Reliability Engineering (2013)

The Assurance Case Working Group (ACWG): GSN Community Standard. Ver-
sion 3 (2021)

The Council of the European Parliament: Machinery - Directive 2006/42/EC
(2006)

Volvo Technology AB - Advanced Technology & Research: Automated Safe and
Efficient Transport System - VINNOVA Project- Ref: 2015-00612 (2015). https://
www.vinnova.se/en/p/automated-safe-and-efficient-transport-system/

Weaver, R.A.: The safety of software: constructing and assuring arguments. Ph.D.
thesis (2003)

Ye, F.: Justifying the use of COTS Components within safety critical applications.
Ph.D. thesis, Citeseer (2005)

https://www.pegasusprojekt.de/files/tmpl/pdf/PEGASUS%20Safety%20Argumentation.pdf
https://www.pegasusprojekt.de/files/tmpl/pdf/PEGASUS%20Safety%20Argumentation.pdf
https://www.vinnova.se/en/p/automated-safe-and-efficient-transport-system/
https://www.vinnova.se/en/p/automated-safe-and-efficient-transport-system/

	Safety Argumentation for Machinery Assembly Control Software
	1 Introduction
	2 Background
	2.1 EN ISO 13849:2023
	2.2 Assurance Cases
	2.3 Contract-Based Design

	3 SAMACS: Safety Argumentation for Machinery Assembly Control Software
	4 Case Study
	4.1 Establishment of Software Responsibility
	4.2 Definition of Software Safety Goals
	4.3 Identification of Software Safety Requirements
	4.4 Definition of Contracts
	4.5 Identification of Verification Techniques and Evidence Provision
	4.6 Composing the Safety Case Arguments

	5 Discussion
	6 Related Work
	7 Conclusions and Future Work
	References

