
Unveiling Cognitive Biases in Software Testing:
Insights from a Survey and Controlled Experiment

Eduard Paul Enoiu∗, Alexandru Cusmaru∗∗, Jean Malm∗
∗Mälardalen University, Västerås, Sweden.

∗∗Siemens Mobility, Germany.

Abstract—Biases are hard-wired behaviours that influence soft-
ware testers. Understanding how these biases affect testers’ ev-
eryday behaviour is crucial for developing practical software tools
and strategies to help testers avoid the pitfalls of cognitive biases.
This research aims to assess the extent to which software testers
know the influence of cognitive biases on their work. Our study
was conducted in two incremental steps: a survey and a controlled
experiment. Firstly, we developed a questionnaire survey designed
to reveal the extent of software testers’ knowledge about cognitive
biases and their awareness of these biases’ influence on testing.
We contacted software professionals in different environments
and gathered valid data from 60 practitioners. The survey
results suggest that software professionals are aware of biases,
specifically preconceptions such as confirmation bias, fixation,
and convenience. Additionally, biases like optimism, ownership,
and blissful ignorance were commonly recognized. In line with
other research, we observed that software professionals tend to
identify more cognitive biases in others than in their judgments
and actions, indicating a vulnerability to bias blind spot. To build
on these findings, we performed a controlled experiment with 12
participants to investigate the behaviour and biases exhibited by
humans when attempting to solve a hypothetical test problem.
Through thematic analysis, we identified prevalent biases such
as confirmation bias, pattern recognition and overreliance, sunk
cost fallacy, and anchoring bias among participants. Additionally,
we found that collaborative problem-solving was a prominent
feature, often leading to biases like groupthink.

I. INTRODUCTION

Cognitive biases are behaviours that influence testers’ and
developers’ actions and the tools they use. These biases can
lead to suboptimal testing results [1], [2], potentially impact-
ing software quality and increasing the risk of undetected
defects. While some researchers (e.g., [3], [4]) have found
that cognitive biases occur in development and testing tasks
in both controlled lab or industrial studies (e.g., confirmation
bias 1, selective perception 2, IKEA effect 3, anchoring and
adjustment 4 [5]), we still do not know how these biases
affect humans performing manual testing or using different
tools (e.g., test automation tools) in their everyday behaviour.

Cognitive biases have been extensively studied in various
fields, including psychology [6] and sociology [7]. Still, their

1Confirmation bias: the tendency to search for, interpret, and recognise
information in a way that confirms one’s preconceptions.

2Selective perception: the tendency to notice and retain information that
aligns with one’s own beliefs while ignoring information that contradicts them.

3IKEA effect: the tendency for people to place a disproportionately high
value on results they partially created.

4Anchoring and adjustment: the tendency to rely too heavily on an initial
piece of information (the "anchor") when making decisions and to adjust
insufficiently from that starting point.

impact on software engineering, particularly software testing,
is an emerging area of research [3], [8]. Cognitive biases in
software testing [4] can manifest in various ways, such as
confirmation bias, anchoring bias, and overconfidence bias,
each affecting the outcomes of testing activities differently.

Confirmation bias [2] is a common issue in software testing,
where testers seek or interpret data to confirm their pre-
conceptions. For example, a tester who considers a feature
works correctly might only focus on test cases that confirm
its expected behaviour, potentially missing defects that appear
under specific conditions.

Our research employed a two-step approach, combining a
survey and a controlled experiment to investigate biases in
software testing. The motivation for this two-step approach
was to assess the widespread awareness of cognitive biases
among testers through a broad survey and then to explore
specific biases and behaviours in a controlled setting.

In the first step, we developed a questionnaire to uncover
the extent of software testers’ knowledge about cognitive
biases and their awareness of how they impact their work.
By reaching out to software professionals across various envi-
ronments, we collected responses from 60 practitioners. The
survey revealed that testers are generally aware of confirmation
bias, fixation, and convenience. Additionally, they recognized
biases such as optimism, ownership, and blissful ignorance.
Consistent with existing research [4], [9], [10], our findings
indicate that testers are more likely to perceive cognitive
biases in others rather than in their judgments, highlighting
a bias blind spot. Building on the survey results, the second
step involved a controlled experiment with 12 participants.
This experiment explored individuals’ specific behaviours and
biases when solving a hypothetical testing problem. Through
thematic analysis, we identified common participant biases,
such as confirmation bias, groupthink, pattern recognition and
overreliance, sunk cost fallacy, and anchoring bias. Further-
more, collaborative problem-solving emerged as a significant
factor, often leading to groupthink bias.

II. RELATED WORK

Cognitive biases in software engineering have been a subject
of research since the 1990s, with over 200 biases identified,
around 37 of which have been thoroughly investigated and
evidenced in the context of software development [11]. These
biases have been found to impact various stages of software



Survey 
Questionnaire 

Design

Draft Survey

Pilot Evaluation 
- Academy 
- Industry

Finalised 
Survey

Running the 
Survey

Data Collection 
- industry 

participants
Data Analysis

Controlled 
Experiment 

Design

Thematic 
Analysis

Fig. 1: Overview of the research method used in this study.

development, including requirement gathering, design, coding,
and testing, thereby affecting overall software quality.

One of the most extensively studied biases in software
engineering is confirmation bias, the tendency to search for, in-
terpret, and remember information in a way that confirms one’s
preconceptions [12]. This bias can lead to significant software
quality and testing issues, as highlighted by some studies (e.g.,
[4], [12]). For instance, Jørgensen and Papatheocharous [12]
demonstrated that software managers tend to interpret project
data in ways that confirm their preferred contract types, which
can lead to misleading conclusions and suboptimal decisions.

Cognitive biases affecting software testing have been less
frequently studied, but the existing research [11], [13] indi-
cates that they can significantly disrupt the testing process.
For example, confirmation bias can lead testers to focus on
confirming that the software works rather than on identifying
potential defects [11]. This bias towards positive testing strate-
gies can result in higher defect densities and compromised
software quality [13]. Salman [11] emphasized the importance
of understanding and mitigating cognitive biases in software
quality and testing to improve overall software reliability. This
involves recognizing the factors that trigger these biases within
organizational contexts and devising strategies to counteract
their negative effects.

Despite identifying numerous biases, the research [4] under-
scores a lack of mitigation strategies, calls for more empirical
research to develop debiasing techniques and emphasizes the
need for a better comprehensive understanding of cognitive
biases in software engineering. This understanding is crucial
for improving software engineering practices and outcomes.
Our study aims to fill these gaps by providing empirical
evidence on the manifestation of biases in testing practice.

III. METHOD

We outline the research method in this study in Figure 1.
It starts with designing a survey questionnaire and a pilot
evaluation with academic and industry experts. Based on their
feedback, the survey is refined and finalized. The survey is then
distributed, and data is collected from industry participants.

This data undergoes analysis, which informs the design of
a controlled experiment. The experiment is conducted, and
the results are analyzed through thematic analysis, identifying
common themes and biases observed.

We developed a study to reveal the extent of software
practitioners’ knowledge about cognitive biases and their
awareness of how they influence testing. Unconscious biases
are behaviours that influence testing and can lead practitioners
in the wrong direction. Understanding how these biases affect
testers’ everyday actions is crucial for mitigating them and
developing more effective tools and strategies to help them
avoid cognitive pitfalls. Therefore, we devised a survey and
controlled experiment to answer the following research ques-
tion: To what extent are practitioners aware that cognitive
biases influence their work? This question guided our research
and formed the basis of our investigation.

We contacted software professionals in various environ-
ments and gathered valid data from 60 practitioners through
18 open-ended and close-ended questions focused on specific
bias categories. Building on the insights from the survey, we
conducted a controlled experiment with 12 participants to in-
vestigate how biases would impact problem-solving in testing
scenarios. In this experiment, we aimed to observe specific
behaviours and decisions influenced by cognitive biases during
the testing process. Additionally, we aimed to understand how
problem-solving might contribute to these biases.

A. Survey Design

We designed the survey to get an overview of participants’
perspectives on the influence of biases when involved in
testing-related activities based on their experiences. To achieve
the aim of this investigation, the survey was developed follow-
ing the steps shown in Figure 1. We defined the survey goals
during this phase and designed the questionnaire through iter-
ations. The survey included closed and open-ended questions,
with a Likert scale for the closed-ended ones.

The questionnaire questions were designed to identify and
understand the cognitive biases in software engineering (CB1
to CB10 bias categories), as detailed by [3]. As a result, the



Q# Question
Q1 Which role are you presently working in?
Q2 How long have you been working with testing?
Q3 What kinds or level of testing do you perform?
Q4 Can you summarize what you typically do in your current role (for example typical tasks, duties, etc.)?
Q5 What kind of prior beliefs, expectations, preconceptions, or biases have you encountered (yourself or when working with others) in your

current role?
Q6 Prior beliefs, expectations, preconceptions, or biases represent a cause for concern in testing.
Q7 When testing, your own judgments and actions are influenced by prior beliefs, expectations, preconceptions, or biases.
Q8 An experienced tester is less likely to be influenced by prior beliefs, expectations, preconceptions, or biases than a tester with less experience.
Q9 Prior beliefs, expectations, preconceptions, or biases are less of a problem in testing than in other domains of software or system engineering.
Q10 When writing a new test case (either test specification or test implementation), do you usually/often modify/adapt an existing test case or

write it from scratch?
Q11 If you had to test a date field (MM/DD/YY) by writing the three most valuable test cases, which input data would you consider?
Q12 Besides your regular test oracles (requirements, user stories, other descriptions), do you use other test approaches to discover undocumented

features/behaviours (e.g., exploratory testing, pairwise testing, letting other roles test)?
Q13 When using automated regression, do you usually rely solely on the results of your automated test suite?
Q14 When implementing test cases, do you perform (before or after the implementation) a manual test execution?
Q15 Do you usually re-use the same test values throughout test suites (e.g., the used user is always "test", check-box is always deactivated) even

when the usage is not regulated by test oracles (requirements, user stories, other descriptions)?
Q16 If it were to assess the composition of your test suite, which percentage of negative (indirect) test cases does it contain?

TABLE I: Survey Questions

survey consists of 16 questions. Table I summarizes the survey
questions. The questions were designed to gather information
about the respondents’ roles (Q1), experience levels (Q2), and
types of testing performed (Q3). They also sought insights into
daily tasks (Q4), encountered cognitive biases (Q5, Q6, Q7),
and perceptions of how biases impact their testing process.
Additional questions explored whether experience mitigates
biases (Q8), compared the impact of biases in testing to other
domains (Q9), and examined the respondents’ approaches to
creating new test cases and selecting test scenarios (Q10,
Q11). The survey also looked into the use of additional testing
approaches (Q12), reliance on automated test suites (Q13),
the role of manual testing (Q14), and the consistency of test
values used (Q15). Finally, the survey aimed to evaluate the
proportion of negative test cases (Q16).

Questions Q1, Q4, and Q5 in Table I explore roles and activ-
ities to address preconceptions (CB1 category in [3]). Question
Q10 examines ownership bias by asking about modifying tests
(CB2). Question Q11 focuses on a specific test (CB3) to
reveal fixation bias. Question Q15 investigates the reuse of
test values to highlight the resort to default (CB4). Questions
Q6 and Q7 address optimism bias by checking the recognition
of biases (CB5). Convenience bias is explored in Question
Q13 by looking at reliance on automated test results (CB6).
Question Q8 examines subconscious actions by questioning
the impact of experience on biases (CB7). Blissful ignorance
is identified through Question Q14, which looks at manual
testing practices (CB8). Question Q12 checks for superficial
selection by asking about diverse test approaches (CB9).

B. Pilot Evaluation
After designing the survey, we conducted a pilot study

with one practitioner and two software testing researchers
to verify question clarity and gather suggestions. Based on
their feedback, we added brief definitions for terms like prior
belief and expectation to ensure consistency in interpretation.
We also refined specific questions—changing QA to QA/Test

for clarity, adding examples to Question 3, and aligning the
response scales for Questions 6 to 10. These changes im-
proved clarity and consistency while maintaining the survey’s
exploratory nature. With these adjustments, we finalized the
survey and conducted our study.

C. Survey Sampling and Data Collection

Our survey targeted software practitioners involved in
testing-related activities. We used a non-probabilistic sampling
technique, selecting participants based on their expertise rather
than availability. To reach this group, we distributed the survey
through the Software Center 5 project’s email list, which
includes experts from over 15 industrial partners. Additionally,
we leveraged email lists from several European projects like
VeriDevOps 6 and personal contacts within companies in
Germany and Sweden, particularly in the Mälardalen area.

We designed the survey using the Microsoft Forms platform
and advertised it as an anonymous survey link. The survey
was advertised through different practitioner mailing lists and
company contacts, focusing on software practitioners involved
in testing-related activities.

D. Controlled Experiment Design

Our controlled experiment aimed to study the behaviour
and biases of humans attempting to solve a hypothetical test
problem. The research was intended to identify the biases ex-
perienced, and assessing the impact of bias awareness training
on their problem-solving performance.

To address these questions, we defined two independent
variables: the training in bias awareness (theoretical pre-
sentation vs. practical training) and the configuration of the
hypothetical test problem. The dependent variables included
the identified biases, the steps to resolve the test problem, and
other relevant measurements.

5https://www.software-center.se/
6https://sites.mdu.se/veridevops

https://www.software-center.se/
https://sites.mdu.se/veridevops


QA Management Developer Other
Role

0

5

10

15

20

25

30

Co
un

t

33

14

10

3

Role Distribution

10+ 5-10 2-5 0-2
Years of Experience

0

5

10

15

20

25

Co
un

t

25

14

11
10

Experience Distribution

No Yes It is not applicable in my case
Re-use of Test Values

0

5

10

15

20

25

Co
un

t

25

21

14

Re-use of Test Values

between 5% and 25% over 25% less than 5% I really don't know
Percentage of Negative Test Cases

0

5

10

15

20

Co
un

t

23

17

12

8

Percentage of Negative Test Cases

Fig. 2: An overview of the survey results: roles, experience, test value reuse, and negative test case distribution.

The experiment consisted of two phases during a two-hour
session: training and game phases. The control group was
given training through a presentation on bias awareness. In
contrast, the experimental group had an additional practical
training session inspired by the three numbers in ascending
order rule proposed by Wason [14]. It was adapted from the
original by 1) running it on software and 2) accepting numbers
in hexadecimal form as valid input.

After the training, the groups then played the following
game: Given a group of players and an instructor, players are
provided with a set of dice varying in colour, shape, material
and how numbers are represented7. The game rules are: 1)
Select five dice, 2) Roll five dice, 3) Present the resulting roll
to the instructor, who responds with a number, and 4) All other
rules may be broken. The player’s goal is to figure out how
the instructor arrived at that number, with no other information
provided. Due to time constraints, participants were informed
they had a limited set of rolls to attempt before the game
ended. The relational rule applied during the dice game is as
follows: If no dice in the presented set contain any dots, the
result is an error. Otherwise, the sum of all dots surrounding
a centrally placed dot on the rolled face is the result. This
is illustrated in Figure 3, where the numbers below the dice
reflect its contribution to the summed number.

This setup allowed us to study the problem-solving abilities
of humans in a testing context and identify various biases

7e.g., as numerals or a set of dots

Fig. 3: Example of how dice are scored using normal 6-sided
dice. Image is adapted from https://en.ac-illust.com/clip-art/
25727029/dice-roll--1-to-6.

that emerged during the problem-solving process. Participants
were encouraged to write or verbalise their thoughts during the
sessions to capture the participants’ thought processes while
they worked on their tasks. Video and audio recordings were
made of each session, which were later analyzed using verbal
protocol analysis [15] and thematic analysis [16] to iden-
tify problem-solving processes and biases. The game, which
seems simple, required participants to constantly question
their assumptions and think analytically, mirroring the thought
processes essential in software testing. This method helped
highlight the biases and thought patterns that participants
relied on while solving testing problems.

https://en.ac-illust.com/clip-art/25727029/dice-roll--1-to-6
https://en.ac-illust.com/clip-art/25727029/dice-roll--1-to-6


IV. SURVEY RESULTS

The following section outlines some of the survey’s primary
results. Figure 2 provides an overview of these results.

A. Demographics

We report some results related to the demographics of our
participants. 65% of the participants in our study worked with
testing for at least five years, and we had participants working
both with development and testing as well as managers. 55%
of the participants worked with quality assurance and testing.
Also, we asked participants about their typical testing duties
and the types of testing they perform. Even if the number
of participants can be considered relatively small, as shown
in Figure 2, we have a diverse crowd of 60 practitioners
performing different testing tasks such as manual testing,
testing supported by test automation, test analytics, and test
team management. These participants perform various types
of testing, such as unit-level testing, regression test selection,
stress testing, usability testing, and exploratory testing.

B. Overall Results

Our results suggest that professionals are indeed aware of
biases. Specifically, they are aware of preconceptions such
as confirmation bias, fixation, and convenience. In addition,
optimism, ownership, and blissful ignorance were other com-
mon biases. In common with other research, we observed that
people tend to identify more cognitive biases in others than in
their judgments and actions, indicating a vulnerability to bias
blind spot. Our results suggest that 87% of participants believe
biases, such as prior beliefs, expectations, and preconceptions,
are a cause of concern in testing. Furthermore, 70% recognize
that these biases influence their judgments and actions during
testing. However, awareness of biases alone does not neces-
sarily equip individuals with the knowledge or strategies to
mitigate them. Research indicates that biases can persist even
when we know them, suggesting some might be inescapable
[17]. Despite this, creating an environment that encourages
diverse perspectives and random directions can help reduce
the risk of becoming stuck on the wrong track [18].

When analyzing the open-ended questions using thematic
analysis, we categorized the prior beliefs, expectations, pre-
conceptions, or biases encountered into two main classes (as
shown in Table II): statements about the "victims" of certain
biases and preconceptions about testing. This categorization
allowed us to identify specific patterns and understand the
common biases and misconceptions present among testers.

In the first category (Victims of Biases in Table II), we
observed several instances where testers were victims of
specific biases. Confirmation bias and happy-path testing were
prevalent, where testers tended to focus on scenarios that
confirmed their existing beliefs or the expected functionality.
The "what you see is all there is" bias was also common,
leading testers to rely only on visible information without
considering other possibilities. There was a strong emphasis
on "automating as much as you can", reflecting a bias towards
automation at the expense of manual testing. Another common

bias was assuming they knew what the customer needed
without sufficient user feedback, leading to potential misalign-
ment with actual requirements. Testers also exhibited tool-
less approaches, relying on their judgment without effectively
leveraging available tools. The "narrow framing effect" was
evident, with testers focusing narrowly on specific aspects of
testing rather than considering a broader perspective.

The second category focused on preconceptions about test-
ing itself (Preconceptions About Testing in Table II). A notable
preconception was that testing does not add value, under-
mining the importance of thorough testing in the software
development lifecycle. Another misconception was equating
testing with mere checking, reducing testers’ role to verify
predefined conditions rather than exploring and uncovering
unknown issues. There was a belief that testing is for program-
mers who cannot code, devaluing the specialized skills and
knowledge that testers bring. Many held the view that testing
is solely the responsibility of testers, ignoring the collaborative
nature of quality assurance in software development. Testing
was often perceived as boring and easy, failing to recognize
the complexity and critical thinking involved. Some believe
that testing increases quality, which, while true, oversimpli-
fies the multifaceted contributions of testing. Lastly, manual
testing was seen as having no value, reflecting a bias towards
automation and undervaluing the insights gained from manual
testing practices.

This categorization highlights the diverse biases and pre-
conceptions influencing testers’ behaviour and perceptions.
Understanding these patterns is crucial for addressing and
mitigating cognitive biases in testing, ultimately leading to
more effective and comprehensive testing strategies.

C. Ownership Bias

Ownership bias occurs when test practitioners give too much
weight to artefacts already created or created by themselves.
The IKEA effect is a special case where people place too much
value on things they partially create. Our results suggest that
60% of the participants prefer to modify and adapt existing test
cases, 59% do this through the reuse of test values, while the
remaining participants write them from scratch. This indicates
that a considerable number of people may have a preference
for existing or self-created test artefacts. While there is a belief
that this behaviour might influence less experienced testers,
the data indicates that even seasoned professionals exhibit
preferences that align with ownership bias, such as modifying
existing test cases and reusing familiar test values. While the
results are interesting, they are somewhat inconclusive.

D. Congruency and Confirmation Bias

We also asked participants how much they use other ap-
proaches to discover undocumented behaviours besides their
regular test oracles, addressing congruency and confirmation
biases; 62% of the participants use other solution space explo-
ration techniques, while 8% do not use or have oracles. Only
a minority, 25% of the participants, rely solely on regular test
oracles. There was no significant influence of experience on



Category Bias/Preconception Description

Victims of Biases

Confirmation Bias Testers focus on scenarios that confirm the expected functionality.
Happy-path Testing Testers tend to test only the expected positive scenarios.
"What You See Is All There Is" Reliance only on visible information, neglecting hidden or less obvious issues.
Bias Toward Automation Strong emphasis on automating as much as possible, potentially neglecting the

value of manual testing. "Write automation scripts in Selenium/Java, based on
existing test cases."

Assumed Customer Knowledge Testers assume they know what the customer needs without sufficient user
feedback. "Always letting the project requirement drill down into detail with
who and what will be impacted."

Tool-less Approaches Testers rely on their judgment without effectively leveraging available tools.
"Defect fixes and implementation of user stories, without relying on specific
testing tools."

Narrow Framing Effect Focus on specific aspects of testing without considering a broader perspective.
"Specify, design, and implement test cases in accordance with the requirements,
often focusing on narrow aspects."

Preconceptions About Testing

Testing Does Not Add Value Belief that testing is not valuable in the software development lifecycle.
Testing Equals Checking Misconception that testing is only about verifying predefined conditions.
Testing Is for Non-coders Belief that testing is for programmers who cannot code.
Sole Responsibility of Testers View that testing is only the responsibility of testers, not a collaborative effort.
Testing Is Boring and Easy Perception that testing lacks complexity and critical thinking.
Testing Increases Quality Oversimplification that testing alone increases quality without recognizing its

multifaceted contributions.
Manual Testing Has No Value Bias towards automation, undervaluing the insights from manual testing.

TABLE II: Summary of biases and preconceptions in testing experienced by participants.

the responses to this question. Examples of techniques partic-
ipants use to mitigate predefined oracles include exploratory
testing, pair testing, heuristic testing, strategy model testing,
customer feedback, letting other roles test, and domain-specific
testing.

Additionally, related to confirmation bias, we asked partic-
ipants to evaluate the test suites they create and how they
design such test suites in terms of negative test cases (i.e.,
testing in ways for which the system was not intended to be
used). As shown in Figure 2, 28% of participants estimated
their test suites contain over 25% negative test cases, while
58% reported less than 25%. Interestingly, 72% of quality
assurance practitioners and testers fell into the latter category.
Conversely, many participants in other roles, such as man-
agement and developers, estimated their test suites to contain
more than 25% negative test cases.

Our results show that less experienced participants are more
inclined to estimate their test suites contain more positive
(fewer negative) test cases. Participants may be more inclined
to create test cases that confirm the system works as intended
rather than testing for unexpected uses or edge cases. There is
also a noticeable discrepancy between different groups regard-
ing the proportion of negative test cases, which could reflect
varying levels of understanding, priorities, or approaches to
testing within organizations.

E. Automation Bias

We also examined automation bias, which is the over-
reliance on automated aids and decision support systems in
testing. Therefore, we asked our participants if they rely solely
on their automated test suite results when using automated
regressions. The results showed that 40% of the participants
rely exclusively on the outcomes of their automated tests,
indicating a significant level of trust in these test automa-
tion systems. In addition, another 40% do not rely solely

on automated test suites while the remaining 20% of the
participants do not use automated regression test suites at
all, highlighting a segment that either lacks access to or
chooses not to employ these automated tools. Furthermore, we
asked whether participants performed manual test executions
either before or after the implementation of test scripts. An
overwhelming 76% of respondents confirmed that they do
perform such manual tests, suggesting a widespread practice
of validating automated results with manual verification.

These findings suggest practitioners try to balance over-
reliance on test automation, but we do not fully understand
how biases affect its use. Investigating the motivations and
experiences could reveal gaps in current strategies and improve
practices. Future research should explore these aspects through
qualitative or longitudinal studies to understand the interaction
between automation, manual testing, and test effectiveness.

V. CONTROLLED EXPERIMENT RESULTS

In this section, we detail the observations from the con-
trolled experiment. Our analysis highlights the presence of
various cognitive biases in the testing process, including
confirmation bias, groupthink, pattern recognition and over-
reliance, sunk cost fallacy, and anchoring bias. Significant
themes include collaborative problem-solving, risk aversion,
resource optimization, memory biases, and overconfidence.

Although detailed demographic data were considered be-
yond the scope of this study, the 12 participants were
university-affiliated individuals either pursuing or having com-
pleted a doctoral degree in fields related to software engineer-
ing. The participants’ ages ranged from 27 to 45.

Participants’ notes from the experiment abstracted crucial
information needed to identify the true relational rule, focusing
only on some properties of the inputs and results. For example,
Figure 4 shows participants noted the colour, shape, and num-
bers rolled for the inputs. This parallels software testing, where



Theme Description
Confirmation Bias Preference for information that confirms pre-existing beliefs or hypotheses, often

disregarding contradictory evidence during testing.
Groupthink Tendency to conform to the majority opinion in testing teams leads to consensus without

thoroughly exploring alternative testing strategies.
Pattern Recognition Strong inclination to find and rely on patterns in test results, often overlooking alternative

explanations or simpler solutions.
Sunk Cost Fallacy Reluctance to abandon a testing approach that has already consumed time and effort

despite contradictory test results.
Anchoring Bias Significant influence of initial test results on subsequent judgments, limiting the

exploration of other testing possibilities.
Collaborative Problem-Solving Emphasis on building on each other’s ideas within testing teams highlighting both good

collaboration and the pitfalls of consensus.
Risk Aversion Cautious approach to selecting test strategies to minimize errors, potentially missing

more informative test cases.
Efficiency Seeking Mindfulness of limited testing resources, aiming to maximize information gained from

each test case.
Memory Biases Influence of faulty recollection of previous test results on the interpretation of current

test outcomes and formulation of new test hypotheses.
Learning Through Trial and Error Fundamental approach to learning and problem-solving in testing through hypothesizing,

testing, and adjusting based on outcomes.
Overconfidence Overestimation of understanding or skills in testing, leading to undue certainty in test

strategies despite limited evidence.

TABLE III: Main Themes related to Cognitive Biases in a Testing Scenario.

Fig. 4: Sample of participants’ notes taken during the session.

testers may not capture all relevant system state information
during execution, hindering issue understanding.

By analyzing the transcript of each session and the notes
taken during and after each session, we identified a set of
emergent themes related to biases in testing. In Table III, we
outline the main biases observed in the controlled experiment.

A. Confirmation Bias
Participants showed a preference for information that con-

firmed their pre-existing beliefs or hypotheses. Despite con-
trary evidence, they often argued for hypotheses and tended to
confirm initial hypotheses about the game’s rules. For example,
when a player suggested using floating numbers and the test
did not match the pattern, it reinforced the belief that only
integers are part of the pattern. Additionally, statements like "
Yeah, it must pass. It should pass." indicates a preconceived
idea that specific inputs should pass, focusing on confirming
beliefs rather than considering cases where they might not.

Moreover, participants interpreted new data to support their
initial hypotheses. There was a clear indication that partic-
ipants were fixated on initial ideas, such as the hypothesis
that dice rolls involving certain numbers should produce zero.
Statements like, "So if it is a six it’s immediately zero..."
illustrate this tendency to cling to initial beliefs and disregard
contradictory outcomes.

The bias also manifested in the way participants selected
and interpreted test cases. For instance, when participants
noted that a six-sided die (d6) consistently gave a particular
result, they began to discard other options, focusing only on
confirming the behaviour associated with d6s. This led to
an overemphasis on confirming their expectations about the
die behaviour rather than exploring other potential patterns or
rules. Furthermore, the participants often sought validation for
their preconceived notions, asking for confirmation from the
moderator or their colleagues. For example, in one session, a
participant sought to confirm that certain inputs would produce
expected results by stating, " Can we just ask [the instructor]
for the correct answer?". Overall, these instances underscore
the nature of confirmation bias in the participants’ approach.

B. Groupthink

Groupthink was observed as participants conformed to the
majority opinion. Participants quickly agreed on dice charac-
teristics without much questioning and tended to seek quick
consensus. This bias led to consensus without thoroughly
exploring alternative testing ideas, potentially hindering op-
timal problem-solving. Throughout the sessions, the tendency
to conform to group opinions was evident. When a partic-
ipant suggested a hypothesis, others quickly agreed without
examining or challenging the test case. For example, when
one participant proposed that a particular die type might be
key to solving the problem, the group quickly accepted this



hypothesis. The group focused on testing it, often disregarding
other possibilities.

This rush to agreement often led to poorly thought-out
decisions. Participants built upon each other’s test cases in
several instances without pausing to consider whether those
suggestions were based on sound logic or sufficient evidence.
Moreover, the influence of dominant voices in the group was
notable. Certain participants, who appeared more confident or
assertive, often convinced the group’s decisions, leading to
a situation where their test cases were implemented without
adequate reasons.

C. Pattern Recognition and Overreliance
There was a strong inclination to find and rely on patterns.

Participants focused on numerical sequences and dice types,
demonstrating a natural tendency to seek order and pre-
dictability. However, this over-reliance on perceived patterns
often led to overlooking alternative explanations or more
straightforward solutions, contributing to confirmation bias.
For instance, they frequently hypothesized that certain sums
or specific dice configurations would consistently produce
predictable outcomes.

The participants’ fixation on perceived patterns often re-
sulted in the neglect of other potential variables or simpler
rules that could explain the game’s mechanics. For example,
when faced with a consistent outcome from using a particular
die type, participants would repeatedly test similar configura-
tions to validate their initial pattern-based hypotheses. This led
to repetitive testing and diverted their attention from exploring
other viable hypotheses that did not fit the established pattern.

Searching for patterns sometimes led participants to over-
complicate the problem-solving process. Instead of consid-
ering more straightforward explanations, they would devise
complex theories based on specific testing patterns they be-
lieved to have identified. This tendency to complicate rather
than simplify further impeded their understanding of the
game’s rules. Additionally, participants often assumed that the
presence of a pattern implied a higher level of complexity in
the game’s design. This assumption made them overestimate
the problem’s difficulty and overlook more straightforward test
cases.

D. Sunk Cost Fallacy
Participants were reluctant to abandon a line of thinking

they had invested time in despite contradictory test results.
They persisted with repeated dice rolls and continued testing
of similar hypotheses, reflecting the sunk cost fallacy where
participants persisted with unproductive strategies due to prior
investments.

Throughout the sessions, participants were unwilling to let
go of hypotheses and strategies they had spent considerable
time and effort developing. Even when faced with evidence,
they often continued exploring the same lines of thinking. For
example, participants frequently repeated dice rolls and re-
tested similar hypotheses, hoping to obtain test results that

would eventually confirm their initial assumptions. This was
evident when they continually tested the identical numerical
sequences or dice types despite receiving results that should
have prompted them to reconsider their approach.

Moreover, the group dynamics reinforced the sunk cost fal-
lacy. Participants encouraged each other to stick with familiar
strategies, making it even more challenging for individuals
to break away from the established approach and consider
alternative test cases.

E. Anchoring Bias

Initial test cases set the stage for future assumptions, and
early dice roll results disproportionately influenced subsequent
strategies and interpretations. Anchoring on initial ideas lim-
ited exploring other possibilities, such as when participants
anchored on mapping dice values to ASCII characters. Once
this idea was proposed, participants explored this mapping
extensively, allowing it to dominate their thinking and strategy
development.

Moreover, the influence of early information extended be-
yond specific hypotheses to the overall approach used by
the participants. Initial test successes or failures with certain
interpretations of the dice values often set the tone for the
group’s overall strategy.

F. Collaborative Problem-Solving

Throughout the sessions, participants tended to work to-
gether and use the group’s collective input. This collaborative
approach enabled the sharing of diverse perspectives and ideas,
often facilitating the development of creative and comprehen-
sive hypotheses. In addition, nonverbal communication played
a significant role in the collaborative process. Good collabora-
tion was noted, but it also highlighted the pitfalls of consensus.
Participants mentioned biases, nonverbal communication, and
building on each other’s ideas.

G. Risk Aversion and Fear of Failure

A theme of risk aversion and fear of failure was identified,
with participants showing a cautious approach to selecting
dice and formulating hypotheses. This cautiousness reflects
a preference for strategies perceived as less likely to lead to
errors, potentially missing more test cases.

Throughout the sessions, participants demonstrated a notice-
able tendency to avoid taking risks in their problem-solving
approach. This risk aversion was evident in their careful selec-
tion of test cases and hypotheses, as they often chose options
they believed to be safer or more likely to yield predictable
results. For instance, by repeatedly testing configurations they
believed to be correct, participants inadvertently sought to
confirm their initial assumptions rather than explore alternative
explanations. As a result, the group’s problem-solving process
lacked the breadth and creativity that might have emerged from
a different approach.



H. Efficiency Seeking
Participants were mindful of the limited test cases and

attempted to be more efficient. Through verbal reminders such
as "we have a limited number of attempts " and "we did not
get any new information", participants aimed to maximize
information gained from each test case, reflecting a general
bias towards resource optimization and efficiency-seeking.

This focus on efficiency was evident in their strategic selec-
tion of test cases. Participants consistently reminded each other
of the constraints and made deliberate choices to avoid wasting
attempts on redundant or less insightful tests. However, it
is important to note that this efficiency-seeking behaviour
coexisted with instances of sunk cost fallacy. While partic-
ipants aimed to be efficient, they sometimes persisted with
repeated dice rolls that were perceived to confirm their initial
hypotheses. This indicates an approach where an unwillingness
to abandon supported test strategies sometimes surpasses the
efficiency goal.

I. Memory Biases
Memory biases, such as faulty recollection of previous

results, affected participants’ hypotheses. This bias influenced
the interpretation of test outcomes and the formulation of
subsequent hypotheses.

Participants occasionally misremembered previous test re-
sults throughout the sessions, which led to incorrect assump-
tions. For example, after discussing prior outcomes, they
sometimes inaccurately recall the specifics of those results,
leading to misguided strategies based on these faulty memo-
ries. Statements like " If we put 5 dice [answer is a] 6. No,
when we did [previous test] we got a zero. " illustrate how
these memory errors impacted their problem-solving process.

J. Experimentation and Learning Through Trial and Error
The process of hypothesizing, testing, and adjusting based

on outcomes was emphasized as a fundamental approach to
learning and problem-solving in testing.

Participants engaged in a cycle of experimentation, where
they proposed hypotheses, tested them and then refined their
ideas based on the results. However, this trial-and-error method
also revealed the influence of various biases. Confirmation
bias, for example, often led participants to favour hypotheses
that aligned with their initial beliefs. Statements like " Yeah,
it must pass. It should pass." highlighted how they sometimes
attached to their preconceived notions rather than fully con-
sidering the test results.

K. Overconfidence and Underestimation of Complexity
Initial attempts and conversations indicated overconfidence

in quickly solving the test problem or underestimating its
complexity. This theme is relevant to cognitive biases such
as the Dunning-Kruger effect [19], where individuals might
overestimate their understanding or skills. Despite limited
evidence, participants sometimes expressed certainty in their
knowledge of the game’s rules or outcomes.

From the beginning of the sessions, participants tended
to assume that the problem would be easily solvable. This

overconfidence was evident in their initial hypotheses and
conclusions from early test cases. Statements like "It must be
this ", made with little supporting evidence, highlighted their
belief that they had quickly grasped the game’s rules.

L. Comparison of Theoretical and Practical Training Phases

Our study also sought to understand how different theo-
retical and practical methods impacted participants’ problem-
solving behaviour. In the first session, during the theoretical
training phase, participants were familiarised with cognitive bi-
ases. In the second session, during the practical training phase,
participants experienced biases in action. In both sessions, con-
firmation bias and anchoring bias were prevalent. Groupthink
remained a challenge, with participants often seeking quick
consensus.

However, the second session (containing the practical train-
ing phase) highlighted some differences. Participants exhibited
greater risk aversion, showing caution in selecting test cases to
avoid errors. They were mindful of optimizing resources and
carefully planning their tests to maximize information gain, a
theme less evident in the first session.

Despite these observations, our study’s results remain incon-
clusive. While we identified some patterns and differences be-
tween the training methods, more in-depth studies are needed
to understand better the impact of theoretical versus practical
bias awareness training. Future research should include larger
sample sizes and explore additional variables to provide clearer
insights into the effectiveness of these training methods.

VI. COMPARATIVE ANALYSIS OF SURVEY AND
EXPERIMENT RESULTS

The survey showed that professionals are aware of confirma-
tion bias, focusing on tests that confirm expected functionality.
The experiment similarly found that participants sought test
cases confirming their beliefs. The sunk cost fallacy was not
emphasized in the survey but was noted in the experiment,
where participants were reluctant to abandon unproductive
strategies. The survey did not highlight overconfidence or
underestimation of complexity, but the experiment found par-
ticipants often overconfident and underestimated testing task
complexity.

The controlled experiment provided new insights that were
not evident from the survey:

• Detailed Observation of Biases in Action. The experiment
provided concrete examples of how biases manifest in
real-time problem-solving situations, offering a deeper
understanding of the dynamics involved.

• Impact of Training on Bias Mitigation. By comparing
the effects of theoretical versus practical bias awareness
training, the experiment revealed differences in partici-
pants’ problem-solving behaviour, highlighting the need
for more in-depth studies on training methods.

• Complexity of Collaborative Dynamics. The experiment
underscored the dual nature of collaboration, where work-
ing together could both aid and hinder problem-solving



in testing due to groupthink and consensus-seeking be-
haviours.

• Behavioral Adaptations and Strategy Shifts. Observations
from the experiment showed how participants adapted
their testing strategies over time, providing insights into
the iterative nature of problem-solving and the persistence
of certain biases despite awareness.

VII. THREATS TO VALIDITY

The controlled experiment examined how testers handle a
hypothetical test problem. Despite efforts to create realism
in a code-agnostic way, the task’s simplicity may not fully
capture real-world software testing complexity. Nevertheless,
the experiment provided insights into participants’ testing-
related problem-solving behaviours and biases.

Other potential threats to validity included the influence of
the moderator’s comments on participants’ strategies, which
limited the solutions attempted by the participants. This un-
derscores the need to minimize external influences.

Participant selection posed another concern for the sur-
vey. Non-probability sampling might introduce selection bias.
While diverse practitioners were included, they may not fully
represent the broader software testing population. This lim-
itation was recognized, and efforts were made to include
participants with varied industrial backgrounds.

Strategies to address these threats included pilot testing the
survey and procedures, establishing consistent protocols, and
validating findings using multiple data sources, such as survey
responses, verbal protocols, and thematic analysis.

VIII. CONCLUSIONS

This study explores the impact of cognitive biases on
software testing through a survey and a controlled experiment,
focusing on confirmation bias, fixation, and optimism bias
among testers. While many testers are aware of these biases,
they often struggle to identify them in their own work,
suggesting the presence of a bias blind spot. The controlled
experiment underscored instances of common biases, such as
confirmation bias, groupthink, and the sunk cost fallacy. Al-
though collaboration in testing can be beneficial, it sometimes
contributes to groupthink and a preference for agreement over
considering alternative testing strategies.

The study offers insights into sunk cost fallacy and overcon-
fidence in software testing, which have been less emphasized
in previous research on testing-related biases. Moreover, the
initial findings suggest that practical bias awareness training
could be more beneficial than theoretical training.

IX. FUTURE WORK

In our future work, we plan to investigate how training can
help mitigate some effects of bias. We plan to create version
two of the questionnaire and send it to more participants,
which would require the help of the testing community. In
addition, we plan to look deeper into the answers to some of
the questions related to test design.

X. ACKNOWLEDGEMENTS

The Software Center project and Vinnova partially funded
this work through the SmartDelta project. We want to express
our gratitude to Dr Thomas Lindner, Principal Key Expert for
Integration, Test, and Validation at Siemens Mobility GmbH,
for his valuable comments and insights on the draft of this
study.

REFERENCES

[1] G. Çalıklı and A. B. Bener, “Influence of confirmation biases of
developers on software quality: an empirical study,” Software Quality
Journal, vol. 21, pp. 377–416, 2013.

[2] I. Salman, B. Turhan, and S. Vegas, “A controlled experiment on time
pressure and confirmation bias in functional software testing,” Empirical
Software Engineering, vol. 24, pp. 1727–1761, 2019.

[3] S. Chattopadhyay, N. Nelson, A. Au, N. Morales, C. Sanchez, R. Pan-
dita, and A. Sarma, “A tale from the trenches: cognitive biases and
software development,” in ICSE’20, 2020.

[4] R. Mohanani, I. Salman, B. Turhan, P. Rodríguez, and P. Ralph,
“Cognitive biases in software engineering: a systematic mapping study,”
IEEE Transactions on Software Engineering, vol. 46, no. 12, pp. 1318–
1339, 2018.

[5] P. Slovic and A. Tversky, Judgment under uncertainty: Heuristics and
biases. Cambridge university press, 1982.

[6] M. G. Haselton, D. Nettle, and P. W. Andrews, “The evolution of
cognitive bias,” The handbook of evolutionary psychology, pp. 724–746,
2015.

[7] R. O’Gorman, D. S. Wilson, and R. R. Miller, “An evolved cognitive
bias for social norms,” Evolution and Human Behavior, vol. 29, no. 2,
pp. 71–78, 2008.

[8] M. Shepperd, C. Mair, and M. Jørgensen, “An experimental evaluation
of a de-biasing intervention for professional software developers,” in
Proceedings of the 33rd Annual ACM Symposium on Applied Computing,
2018, pp. 1510–1517.

[9] M. Petre, “Technical perspective: Exploring cognitive bias’ in the wild’,”
Communications of the ACM, vol. 65, no. 4, pp. 114–114, 2022.

[10] M. Swillus and A. Zaidman, “Sentiment overflow in the testing stack:
Analyzing software testing posts on stack overflow,” Journal of Systems
and Software, vol. 205, p. 111804, 2023.

[11] I. Salman, “Cognitive biases in software quality and testing,” 2016
IEEE/ACM 38th IEEE International Conference on Software Engineer-
ing Companion, 2016.

[12] M. Jørgensen and E. Papatheocharous, “Believing is seeing: Confir-
mation bias studies in software engineering,” 2015 41st Euromicro
Conference on Software Engineering and Advanced Applications, 2015.

[13] G. Calikli and A. Bener, “Empirical analyses of the factors affecting
confirmation bias and the effects of confirmation bias on software
developer/tester performance,” Proc. 6th Int. Conf. Predictive Models
in Software Engineering, 2010.

[14] P. C. Wason, “On the failure to eliminate hypotheses in a
conceptual task,” Quarterly Journal of Experimental Psychology,
vol. 12, no. 3, pp. 129–140, 1960. [Online]. Available: https:
//doi.org/10.1080/17470216008416717

[15] A. Green, “Verbal protocol analysis.” The psychologist, 1995.
[16] V. Braun and V. Clarke, Thematic analysis. American Psychological

Association, 2012.
[17] Y. Okan, F. Blanco, D. Petrova, M. Capra, and J. C. Perales,

“Understanding and overcoming biases in judgment and decision-
making with real-life consequences,” Frontiers in Psychology, vol. 13,
p. 917896, 2022. [Online]. Available: https://doi.org/10.3389/fpsyg.
2022.917896

[18] R. Team, “Educational strategies in the health professions to mitigate
cognitive and implicit bias impact on decision making: a scoping
review,” BMC Medical Education, 2022. [Online]. Available: https://
bmcmededuc.biomedcentral.com/articles/10.1186/s12909-022-03474-8

[19] D. Dunning, “The dunning–kruger effect: On being ignorant of one’s
own ignorance,” in Advances in experimental social psychology. Else-
vier, 2011, vol. 44, pp. 247–296.

https://doi.org/10.1080/17470216008416717
https://doi.org/10.1080/17470216008416717
https://doi.org/10.3389/fpsyg.2022.917896
https://doi.org/10.3389/fpsyg.2022.917896
https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-022-03474-8
https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-022-03474-8

	Introduction
	Related Work
	Method
	Survey Design
	Pilot Evaluation
	Survey Sampling and Data Collection
	Controlled Experiment Design

	Survey Results
	Demographics
	Overall Results
	Ownership Bias
	Congruency and Confirmation Bias
	Automation Bias

	Controlled Experiment Results
	Confirmation Bias
	Groupthink
	Pattern Recognition and Overreliance
	Sunk Cost Fallacy
	Anchoring Bias
	Collaborative Problem-Solving
	Risk Aversion and Fear of Failure
	Efficiency Seeking
	Memory Biases
	Experimentation and Learning Through Trial and Error
	Overconfidence and Underestimation of Complexity
	Comparison of Theoretical and Practical Training Phases

	Comparative Analysis of Survey and Experiment Results
	Threats to Validity
	Conclusions
	Future Work
	Acknowledgements
	References

