
Taming Tardiness on Parallel Machines: Online
Scheduling with Limited Job Information

Shaik Mohammed Salman∗, Alessandro Vittorio Papadopoulos∗, Saad Mubeen∗, and Thomas Nolte∗
∗Mälardalen University,, Västerås, Sweden

Abstract—We consider the problem of scheduling n jobs on
m ≥ 2 parallel machines in online settings with the objective
of minimizing total tardiness. Since no bounded competitive
algorithms exist to minimize the general problem of weighted
total tardiness of the form

∑
wjTj , we consider an objective of

the form
∑

wj(Tj + dj), where wj , Tj , and dj are the weight,
tardiness, and deadline of each job, respectively and develop
competitive algorithms dependent on jobs’ processing times.

I. INTRODUCTION

We consider an online scheduling problem where n jobs
arrive at arbitrary times and should be completed before or
close to their deadlines on a set of m parallel machines. At any
given time, a job can be scheduled on at most one machine.
All jobs that arrive must run to completion. They cannot be
abandoned or rejected. Preemption and possibly migration are
allowed. A natural objective for this problem is to minimize
tardiness (Tj), which is the difference between the completion
time of a job and its deadline if the job completes after its
deadline. A generalization of this objective is to minimize
the weighted total tardiness. In this context, each job has a
deadline constraint and a weight. In Graham’s α|β|ϵ notation,
where α is the machine environment, β describes the job char-
acteristics and constraints, and ϵ specifies the objective func-
tion, these settings can be described as the online variants of
P |rj , pj , dj , pmtn|

∑
wjTj and R|rj , pj , dj , pmtn|

∑
wjTj

where rj , pj and dj denote release time, processing time and
deadline of each job j. P and R represent identical and
unrelated machines’ settings, respectively.

This problem is well-known to be NP-hard even on a single
machine. Due to the inherent difficulty in developing com-
petitive algorithms for this problem, we consider a modified
tardiness objective of the form

∑
wj(Tj + dj). This modified

objective was introduced in the offline version of the problem
with unit weights in which all jobs have a common deadline
by Kovalyov and Werner [1]. Kolliopoulos and Steiner [2]
considered the general version of the problem with arbitrary
weights and showed a reduction to the problem of finding
an approximate solution to the problem of weighted total
completion time. Their result showed that any ρ-approximation
algorithm for the problem of minimizing total weighted com-
pletion time was an (ρ + 1)-approximation algorithm for the
problem of minimizing weighted modified total tardiness. Liu
et al. [3] extended this idea to online settings in addition to an
availability constraint on the machines. They provided O(1)-
competitive algorithms for clairvoyant scenarios. Specifically,

for the single-machine version of the problem with weights,
they showed a 2-competitive lower bound and a 3-competitive
algorithm as an upper bound. For the multiple-machine version
of the unit weight problem, they provided a lower bound of
1.309 and a 3-competitive algorithm. Kolliopoulos and Steiner
[2] considered a stochastic version of the problem where
the processing times of the jobs are assumed to be random
variables with known distributions.

As clairvoyant information is difficult to obtain in several
practical applications, this paper examines semi-clairvoyant
and prediction-clairvoyant scenarios where the processing time
information of a job is limited at its release time. In this
context, limited refers to the fact that a scheduling algorithm
utilizes a proxy that either depends on the knowledge of the
range or on an estimation of the job’s processing time instead
of its true processing time. For these scenarios, we develop
competitive algorithms addressing the modified total tardiness
objective. Specifically, we make the following contributions.

• In prediction-clairvoyant settings: an O(µ log P̂ )-
competitive algorithm without migration for parallel
identical machines with unit weights.

• In semi-clairvoyant settings: an O(logP )-competitive al-
gorithm for parallel identical machines with unit weights.

• In speed-prediction settings: an O(µ)-competitive al-
gorithm for parallel unrelated machines with general
weights and clairvoyant processing times.

II. PRELIMINARIES

Each job j arrives at a time rj and has a deadline dj such
that rj ≤ dj . The job has an actual processing time pj . Upon
arrival, either an estimated processing time p̃j or its job class
lj is available. Let Cj denote the time at which a job completes
its execution. Reusing terminology and notation from [4], we
let µ1 = maxj

pj

p̃j
be maximum underestimation error among

all the arriving jobs. Similarly, we let µ2 = maxj
p̃j

pj
be

maximum overestimation error among all the arriving jobs and
µ = µ1 · µ2 be the distortion parameter.

We let P be the ratio between the maximal actual processing
time and the minimal actual processing time among the jobs,
i.e., P =

maxj pj

minj pj
. Additionally, we let P̂ be the ratio between

the maximal estimated processing time and the minimal esti-
mated time among the jobs, i.e., P̂ =

maxj p̃j

minj p̃j
. Furthermore,

we use the following definitions.



Definition 1 (Predicted job class). We define the predicted
class ℓ̃j of a job j, as an integer k such that p̃j ∈ [2k, 2k+1].

Definition 2 (Job class). We define the class ℓj of a job j, as
an integer k such that pj ∈ [2k, 2k+1].

Definition 3 (Tardiness). we define tardiness Tj of a job j as
max(Cj − dj , 0).

Definition 4 (Modified Tardiness). we define modified tardi-
ness T̃j of a job j as Tj + dj .

Definition 5 (Total Modified Tardiness). we define total
modified tardiness as

∑
T̃j .

Definition 6 (Total Completion Time). we define total com-
pletion time as

∑
Cj .

Definition 7 (Total Flow Time). we define total flow time as∑
Cj − rj .

III. PREDICTION-CLAIRVOYANT SCHEDULING ON
PARALLEL MACHINES

In this section, we focus on our first contribution, which
addresses the problem of minimizing the total modified tar-
diness on parallel identical machines utilizing predicted job
processing times. For this, we reuse the prediction-based
algorithm by Azar et al. [4] that was developed for the problem
of minimizing the total flow time with a competitive ratio
of O(µ log P̂ ). This algorithm satisfies the consistency and
robustness properties [5] desired from prediction-based online
algorithms. When the value of the distortion parameter is close
to one due to high-quality predictions, the algorithm has a
competitive ratio O(log P̂ ), which matches the lower bound
for clairvoyant settings, satisfying the consistency property. We
prove that this algorithm has an identical competitive ratio for
the objective of modified total tardiness. Formally, we prove
the following result.

Theorem 1. Algorithm 1 is O(µ log P̂ )-competitive for mini-
mizing modified total tardiness on parallel identical machines
with predicted job processing times.

A. Algorithm

Algorithm 1 utilizes job classes based on the predicted
processing time to prioritize jobs. When a new job arrives,
it is placed at the top of the stack of an available machine
or a machine currently processing a job of a higher class.
Otherwise, it is added to a central queue. It assigns higher
priority to jobs with lower classes. Higher-class jobs wait
in the central queue until a machine becomes available or
a lower-class job completes processing. Preempted jobs are
returned to the machine stack on which they were preempted
and resumed later on the same machine.

B. Analysis

Algorithm 1 was originally developed to minimize total flow
time, and we reuse it without modifications for the objective
of total modified tardiness. To show that this algorithm indeed
works for our objective, we use a proof method similar to the

Algorithm 1 Distortion Oblivious Non-Migrative Scheduling
Algorithm

1: function UPONJOBRELEASE(j)
2: if exists an idle machine or a machine that currently

processes a job of a class higher than ℓ̂j then
3: Insert j to the top of that machine stack.
4: else
5: Insert j to the pool.
6: end if
7: end function
8: function UPONJOBCOMPLETION(j)
9: Denote by mj the machine j was processed on.

10: Pop j from the stack of mj , and let j′ be the next job
in that stack.

11: if the job with lowest class in the pool j′′ has class
strictly less than that of j′ or j′ does not exist then

12: Remove j′′ from the pool and insert it to the top
of the stack of mj .

13: end if
14: end function

one used in [2] and [3]. We first utilize the result that reducing
the problem of the total completion time minimization to
the problem of total flow time minimization increases the
competitive ratio by a constant multiplicative factor of 2. We
then utilize the result that reducing the tardiness minimization
problem to the problem of total completion time minimization
problem increases the competitive ratio by an additive constant
1. Lastly, we plug in the asymptotic bound of Algorithm 1.
Formally, we need the following lemmas to prove Theorem 1.

Lemma 1. (Theorem 1 from [2]) Consider a mem-
ber α0|β0|

∑
j wjCj of the family of scheduling problems

α|β|
∑

j wjCj for which there is a γ-approximation algorithm.
Then the same algorithm achieves a (γ+1)-approximation for
the problem α0|β0|

∑
j wj(Tj + dj).

Proof. See [2] for a comprehensive proof.

As two of the algorithms we consider in this paper address
the problem of total flow time, we use the results from [6]
that provide a reduction from the problem of minimizing total
completion time to the problem of minimizing total flow time.
Combining Theorem 7.3 and lemma 7.6 from [6], we have the
following result.

Lemma 2. Consider the problem of minimizing the total
weighted flow time, for which a s-speed, c-competitive algo-
rithm exists. The same algorithm is 2cs-competitive for the
problem of minimizing total weighted completion time.

Proof. See chapter 7 in [6] for a comprehensive proof.

The next lemma states the competitiveness of Algorithm 1
for the objective of total flow time.



Lemma 3. (Theorem 2 from [4]) Algorithm 1 is O(µ log P̂ )-
competitive for inputs with distortion µ for the problem of
minimizing total flow time on parallel identical machines.

Proof. See [4] for a comprehensive proof.

Proof of Theorem 1 With the preceding lemmas in place, we
are now ready to prove Theorem 1. Let Cj(alg) and Tj(alg)
be the completion times and tardiness of n jobs, respectively,
due to the scheduling policy of Algorithm 1. Let Cj(opt)
and Tj(opt) be the completion times and tardiness due to an
optimal algorithm for the same instance of jobs.

By definition, we have the following equality.∑
(Tj + dj) =

∑
max(Cj , dj) (1)

The left-hand side of Eq. (1) represents the total modified
tardiness as the sum of tardiness of individual jobs and
their respective deadlines. This is equivalent to the sum of
the maximum between the completion time Cj(alg) and the
deadline dj of each job j.

Splitting the sum of the right-hand side into two separate
sums, we have the following inequality.∑

max(Cj(alg), dj) ≤
∑

Cj(alg) +
∑

dj (2)

Similarly, we have the following lower bound.∑
max(Cj(opt), dj) ≤

∑
Cj(opt) +

∑
dj (3)

From the definition of competitive ratio, we have the fol-
lowing inequality bounding the total completion time.

∑
Cj(alg) +

∑
dj ≤ c ·

∑
Cj(opt) +

∑
dj (4)

Since Algorithm 1 minimizes total flow time, from
Lemma 2, we know that any algorithm that is c-competitive for
minimizing total flow time bounds the total completion time
by a multiplicative factor of 2c of the optimal completion time.
Using this fact, we have the following inequality.

∑
max(Cj(alg), dj) ≤ 2 · c ·

∑
Cj(opt) +

∑
dj (5)

Dividing the above equation with the respective lower
bounds, we get∑

max(Cj(alg), dj)∑
max(Cj(opt), dj)

≤ 2 · c ·
∑

Cj(opt) +
∑

dj∑
Cj(opt) +

∑
dj

(6)

Splitting the right-hand side of the above inequality into two
separate terms, we get

2 · c ·
∑

Cj(opt)∑
Cj(opt) +

∑
dj

≤ 2 · c (7)

Similarly, ∑
dj∑

Cj(opt) +
∑

dj
≤ 1 (8)

Combining Eq. (7) and Eq. (8) and rearranging the terms in
equation Eq. (6), we get

∑
max(Cj(alg), dj) ≤ (2·c+1)·

∑
max(Cj(opt), dj) (9)

From Lemma 3, we can replace the constant c with asymp-
totic bound O(µ log P̂ ) of Algorithm 1. Ignoring the constant
factors, we have the following inequality.

∑
max(Cj(alg), dj) ≤ O(µ log P̂ ) ·

∑
max(Cj(opt), dj)

(10)
Using the definition from Eq. (1) and rewriting the above

equation, we get

∑
(Tj(alg) + dj) ≤ O(µ log P̂ ) ·

∑
(Tj(opt) + dj) (11)

The claim follows. □

IV. SEMI-CLAIRVOYANT SCHEDULING ON PARALLEL
MACHINES

This section focuses on our contribution related to the semi-
clairvoyant settings. This is an alternative approach to address
the problem of the unavailability of precise processing times
at the time of their release. Here, a scheduler utilizes the
approximate knowledge of the processing time of a job in
terms of its class to determine the order in which the jobs are
processed instead of its actual processing time. A job’s class
is an integer value that identifies the processing time range
of the job. While one can assume that a job’s class is known
precisely, it is possible to consider the scenario in which a job’s
class is also predicted. For each of these scenarios, the lowest-
class-first (LCF) algorithm developed by Bechetti et al. [7]
has been proven to be O(logP ) and O(µ log P̂ ) competitive
for the total flow time objective, respectively. These bounds
match proven lower bounds for the total flow time objective.
We reuse this algorithm to minimize modified total tardiness.
Formally, we prove the following results.

Theorem 2. Algorithm 2 is O(logP )-competitive for the
problem of minimizing modified total tardiness on parallel
identical machines in semi-clairvoyant settings.

Theorem 3. Algorithm 2 is O(µ log P̂ )-competitive for the
problem of minimizing modified total tardiness on parallel
identical machines in semi-clairvoyant settings with job class
predictions.

A. Algorithm

Algorithm 2 assumes that each job reveals its actual (pre-
dicted) class on its arrival. When a new job arrives, it is
assigned to an available machine or a machine currently
processing a job of a higher class. Otherwise, it is added to
a central queue. This approach assigns higher priority to jobs
with lower classes, while higher-class jobs wait in the central
queue until a machine becomes available or a lower-class job
completes processing.



Algorithm 2 Lowest Class First Scheduling Algorithm
1: function UPONJOBRELEASE(j)
2: if exists an idle machine or a machine that currently

processes a job k of a class higher than ℓj(ℓ̂j) then
3: Preempt k and insert it into the pool.
4: Run j.
5: else
6: Insert j into the pool.
7: end if
8: end function
9: function UPONJOBCOMPLETION(j)

10: Denote by mj the machine j was processed on.
11: if there exists a job in the pool j′′ then
12: Remove j′′ with the lowest class from the pool

and run on mj .
13: end if
14: end function

B. Analysis

To show that Algorithm 2 is competitive for the objective
of modified tardiness minimization, our analysis follows an
identical approach to our proof of Theorem 1. Specifically, we
utilize the reduction in Lemma 2 that bounds the total com-
pletion time by a factor of 2c of the optimal total completion
time when using an algorithm designed to minimize total flow
time. We then utilize the reduction in Lemma 1 that bounds the
total modified tardiness by a factor of c+ 1. Finally, we plug
in the asymptotic upper bound for flow time minimization.
Formally, to prove Theorem 2, we need an additional result
stated in Lemma 4.

Lemma 4. (Theorem 15 from [7]) Algorithm 2 is O(logP )-
competitive for the problem of minimizing total flow time on
parallel identical machines.

Proof. See [7] and [8] for a comprehensive proof.

Proof of Theorem 2 Let Cj(alg) and Tj(alg) be the com-
pletion times and tardiness of n jobs, respectively, due to the
scheduling policy of Algorithm 2. Let Cj(opt) and Tj(opt) be
the completion times and tardiness due to an optimal algorithm
for the same instance of jobs.

The left-hand side of Eq. (1) represents the total modified
tardiness as the sum of tardiness of individual jobs and
their respective deadlines. This is equivalent to the sum of
the maximum between the completion time Cj(alg) and the
deadline dj of each job j.

Splitting the sum of the right-hand side of Eq. (1) into two
separate sums, we have the following inequality.

∑
max(Cj(alg), dj) ≤

∑
Cj(alg) +

∑
dj (12)

Similarly, we have the following lower bound.∑
max(Cj(opt), dj) ≤

∑
Cj(opt) +

∑
dj (13)

From the definition of competitive ratio, we have the fol-
lowing inequality bounding the total completion time.

∑
Cj(alg) +

∑
dj ≤ c ·

∑
Cj(opt) +

∑
dj (14)

Since Algorithm 2 minimizes total flow time, from
Lemma 2, we know that any algorithm that is c-competitive for
minimizing total flow time bounds the total completion time
by a multiplicative factor of 2c of the optimal completion time.
Using this fact, we have the following inequality.

∑
max(Cj(alg), dj) ≤ 2 · c ·

∑
Cj(opt) +

∑
dj (15)

Dividing the above equation with the respective lower
bounds, we get

∑
max(Cj(alg), dj)∑
max(Cj(opt), dj)

≤ 2 · c ·
∑

Cj(opt) +
∑

dj∑
Cj(opt) +

∑
dj

(16)

Splitting the right-hand side of the above inequality into two
separate terms, we get

2 · c ·
∑

Cj(opt)∑
Cj(opt) +

∑
dj

≤ 2 · c (17)

Similarly, ∑
dj∑

Cj(opt) +
∑

dj
≤ 1 (18)

Combining Eq. (17) and Eq. (18) and rearranging the terms
in equation Eq. (6), we get

∑
max(Cj(alg), dj) ≤ (2 · c+ 1) ·

∑
max(Cj(opt), dj)

(19)
Using the result from Lemma 4 and ignoring the constant

factors, we have the following inequality.

∑
max(Cj(alg), dj) ≤ O(µ logP ) ·

∑
max(Cj(opt), dj)

(20)
Using the definition from Eq. (1) and rewriting the above

equation, we get

∑
(Tj(alg) + dj) ≤ O(µ logP ) ·

∑
(Tj(opt) + dj) (21)

The claim follows. □
To prove Theorem 3, we need the following result.

Lemma 5. (Theorem 14 from [4]) Algorithm 2 is O(µ log P̂ )-
competitive for inputs with distortion µ for the problem of
minimizing total flow time on parallel identical machines with
predicted job classes.

Proof. See [4] for a comprehensive proof.

Proof of Theorem 3 Our proof is identical to the proofs
of Theorem 1 and Theorem 2. By plugging in the result of
Lemma 5, the claim follows. □



V. SCHEDULING TO MINIMIZE WEIGHTED MODIFIED
TARDINESS ON UNRELATED MACHINES

We now consider a generalization that aims to minimize
weighted modified total tardiness on unrelated machines. Here,
the processing speed of the jobs is different on different
machines. For this, we rely on the algorithm and analysis by
Megow et al. [9].

We consider the model where an algorithm can access a
predicted processing speed for each machine and job. we
represent this as ŝij while sij is the actual processing speed.
Additionally, we assume a clairvoyant model, i.e., each job’s
exact (normalized) processing time is known upon arrival.
Similar to the distortion parameter considered for the case of
predicted job processing times, we let µ1 = max

sij
ŝij

be the
maximum underestimation error among all the arriving jobs.
Similarly, we let µ2 = max

ŝij
sij

be maximum overestimation
error among all the speed predictions and µ = µ1 · µ2 be the
distortion parameter.

In this section, we prove the following result.

Theorem 4. Algorithm 3 is O(µ)-competitive for the problem
of minimizing weighted modified total tardiness on unrelated
machines with speed predictions.

A. Algorithm

The Maximum Density Scheduling Algorithm prioritizes
jobs based on their density. The density is calculated for
each active job by considering its weight, predicted speeds,
and known processing times. The algorithm determines the
maximum number of jobs to run based on available machines
and the number of currently active jobs. It selects at most M
jobs that maximize the sum of the densities to run.

Algorithm 3 Maximum Density Scheduling Algorithm
1: function UPONJOBRELEASE(j)
2: Compute density δ̂ij =

wj ŝij
pj

for all active jobs

3: Find k = min(M, |J(t)|) jobs that maximize (
∑

k δ̂ij)
4: Run k jobs
5: end function
6: function UPONJOBCOMPLETION(j)
7: Compute density δ̂ij =

wj ŝij
pj

for all active jobs

8: Find k = min(M, |J(t)|) jobs that maximize (
∑

k δ̂ij)
9: Run k jobs

10: end function

B. Analysis

To prove Theorem 4, we need the following result.

Lemma 6. (Theorem 2.2 from [9]) Algorithm 3 has a
competitive ratio of at most 8µ for minimizing the total
weighted completion time on unrelated machines with speed
predictions.

Proof. See [9] for a comprehensive proof.

Proof of Theorem 4 Let Cj(alg) and Tj(alg) be the com-
pletion times and tardiness of n jobs, respectively, due to the
scheduling policy of Algorithm 1. Let Cj(opt) and Tj(opt) be
the completion times and tardiness due to an optimal algorithm
for the same instance of jobs.

By definition, we have the following equality.

∑
wj(Tj(alg) + dj) =

∑
wj max(Cj(alg), dj) (22)

Similarly,∑
wj(Tj(opt) + dj) =

∑
wj max(Cj(opt), dj) (23)

The left-hand side of Eq. (22) represents the total weighted
modified tardiness as the sum of weighted tardiness of indi-
vidual jobs and their respective deadlines. This is equivalent
to the weighted sum of the maximum between the completion
time Cj(alg) and the deadline dj of each job j.

We have the following inequality by splitting the sum of
the right-hand side into two separate sums.

∑
wj max(Cj(alg), dj) ≤

∑
wjCj(alg) +

∑
wjdj (24)

Similarly, we have the following lower bound.∑
wj max(Cj(opt), dj) ≤

∑
wjCj(opt) +

∑
wjdj (25)

From the definition of competitive ratio, we have the fol-
lowing inequality bounding the total completion time.

∑
wj max(Cj(opt), dj) ≤ c ·

∑
wjCj(opt) +

∑
wjdj

(26)
Dividing the above equation with the respective lower

bounds, we get

∑
wj max(Cj(alg), dj)∑
wj max(Cj(opt), dj)

≤ c ·
∑

wjCj(opt) +
∑

wjdj∑
wjCj(opt) +

∑
wjdj

(27)
Splitting the right-hand side of the above inequality into two
separate terms, we get

c ·
∑

wjCj(opt)∑
wjCj(opt) +

∑
wjdj

≤ c (28)

Similarly, ∑
wjdj∑

wjCj(opt) +
∑

wjdj
≤ 1 (29)

Combining Eq. (28) and Eq. (29) and rearranging the terms
in equation Eq. (6), we get

∑
wj max(Cj(alg), dj) ≤ (c+1) ·

∑
wj max(Cj(opt), dj)

(30)
Using the result from Lemma 6, we can replace the constant

c with asymptotic bound O(µ) of Algorithm 3. Ignoring the
constant factors, we have the following inequality.



∑
wj max(Cj(alg), dj) ≤ O(µ)

∑
wj max(Cj(opt), dj)

(31)
Using the definition of Eq. (22) and Eq. (23) and rewriting

the above equation, we get

∑
wj(Tj(alg) + dj) ≤ O(µ)

∑
wj(Tj(opt) + dj) (32)

The claim follows. □

VI. CONCLUSION

We considered the problem of minimizing modified total
tardiness on parallel machines with different levels of informa-
tion about job processing times and provided algorithms with
competitive guarantees. One natural direction is to address the
generalized version of the problem by including weights on
identical machines. Another direction is to relax the require-
ment of clairvoyance for scheduling on unrelated machines.

VII. ACKNOWLEDGEMENT

The research leading to these results has received funding
from the Knowledge Foundation (KKS), under the projects
FIESTA (Project No. 20190034) and SACSys (Project No.

20190021), and under the Swedish Research Council (VR),
under the project PSI (Project No. 2020-05094).

REFERENCES

[1] M. Y. Kovalyov and F. Werner, “Approximation schemes for scheduling
jobs with common due date on parallel machines to minimize total
tardiness,” Journal of Heuristics, vol. 8, pp. 415–428, 2002.

[2] S. G. Kolliopoulos and G. Steiner, “Approximation algorithms for
scheduling problems with a modified total weighted tardiness objective,”
Operations research letters, vol. 35, no. 5, pp. 685–692, 2007.

[3] M. Liu, Y. Xu, C. Chu, and F. Zheng, “Online scheduling to minimize
modified total tardiness with an availability constraint,” Theoretical com-
puter science, vol. 410, no. 47-49, pp. 5039–5046, 2009.

[4] Y. Azar, E. Peretz, and N. Touitou, “Distortion-Oblivious Algorithms for
Scheduling on Multiple Machines,” in Leibniz International Proceedings
in Informatics, LIPIcs, vol. 248, 12 2022, pp. 16:1–16:18.

[5] S. Im, R. Kumar, M. M. Qaem, and M. Purohit, “Non-clairvoyant
scheduling with predictions,” ACM Transactions on Parallel Computing,
vol. 10, no. 4, pp. 1–26, 2023.

[6] N. Bansal, Algorithms for flow time scheduling. Carnegie Mellon
University, 2003.

[7] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs, “Semi-
clairvoyant scheduling,” Theoretical computer science, vol. 324, no. 2-3,
pp. 325–335, 2004.

[8] S. Leonardi, “A simpler proof of preemptive total flow time approximation
on parallel machines,” in Efficient Approximation and Online Algorithms:
Recent Progress on Classical Combinatorial Optimization Problems and
New Applications. Springer, 2006, pp. 203–212.

[9] A. Lindermayr, N. Megow, and M. Rapp, “Speed-oblivious online
scheduling: knowing (precise) speeds is not necessary,” in International
Conference on Machine Learning. PMLR, 2023, pp. 21 312–21 334.


