
Vol.:(0123456789)

Real-Time Systems
https://doi.org/10.1007/s11241-024-09431-7

Efficiently bounding deadline miss probabilities of Markov 
chain real‑time tasks

Anna Friebe1   · Filip Marković1,2 · Alessandro V. Papadopoulos1 · 
Thomas Nolte1

Accepted: 16 September 2024 
© The Author(s) 2024

Abstract
In real-time systems analysis, probabilistic models, particularly Markov chains, have 
proven effective for tasks with dependent executions. This paper improves upon an 
approach utilizing Gaussian emission distributions within a Markov task execution 
model that analyzes bounds on deadline miss probabilities for tasks in a reservation-
based server. Our method distinctly addresses the issue of runtime complexity, prev-
alent in existing methods, by employing a state merging technique. This not only 
maintains computational efficiency but also retains the accuracy of the deadline-
miss probability estimations to a significant degree. The efficacy of this approach is 
demonstrated through the timing behavior analysis of a Kalman filter controlling a 
Furuta pendulum, comparing the derived deadline miss probability bounds against 
various benchmarks, including real-time Linux server metrics. Our results confirm 
that the proposed method effectively upper-bounds the actual deadline miss prob-
abilities, showcasing a significant improvement in computational efficiency without 
significantly sacrificing accuracy.
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1  Introduction

Soft real-time systems permit limited deadline misses, impacting the Quality of 
Service (QoS) (Clark et al. 1992) or Quality of Control (QoC) (Martí et al. 2002) 
to a tolerable degree. The tolerance is often modeled as a constraint on the num-
ber of deadline misses to maintain an acceptable level of QoS or QoC (Buttazzo 
et  al. 2005). Findings from a recent survey by Åkesson et  al. (2022) indicate a 
predominant presence of soft real-time systems in the industry, underscoring the 
significance of their analytical study.

Hidden Markov Models (HMMs) have been effectively utilized to model 
execution times in systems with dependencies that exhibit regular variations. 
An introduction to the HMM concept can be found in Rabiner (1989). Studies 
like (Abeni et al. 2017; Frías et al. 2017) have employed Markov models with dis-
crete emission distributions, particularly in estimating the probability of missing 
deadlines under a Constant Bandwidth Server (CBS). Additionally, continuous-
emission distributions have been explored by Friebe et al. (2020, 2021, 2023).

While HMMs with continuous emission distributions have been applied in 
execution time estimation  (Friebe et  al. 2020, 2021), the extension to workload 
distribution inference and deadline-miss probabilities has been a recent develop-
ment  (Friebe et  al. 2023). As in previous work  (Abeni et  al. 2017; Frías et  al. 
2017), this analysis is done with a reservation-based scheduling approach, that 
allows for analysis of each server separately, due to the timing isolation property. 
This newer exploration has shown potential but highlighted challenges in compu-
tational efficiency when dealing with complex systems.

Building upon these recent findings, our paper specifically targets the computa-
tional efficiency issue identified by Friebe et al. (2023). We propose an enhanced 
method for bounding the deadline-miss probability of real-time tasks using 
HMMs with continuous emission distributions. A key contribution of this work 
is developing a state-merging technique that enhances computational efficiency in 
terms of time and space complexity, where traditional methods are computation-
ally intensive or even infeasible (Sect. 6).

The evaluation, presented in Sect. 7, employs a task managing a Furuta pendu-
lum (Vreman et al. 2021). It compares the derived bounds with real-time deadline 
miss ratios under Linux’s CBS implementation, SCHED_DEADLINE (Lelli et al. 
2016), alongside estimates from a discrete-emission Markov Model  (Frías et al. 
2017, 2018), and simulation-based estimates.

The paper’s organization is as follows: Related work is reviewed in Sect.  2. 
Section 3 defines the notation and system model. The execution time model and 
methodology for deriving and analyzing the deadline miss probability bounds are 
presented in Sect.  4. The iterative update process for the bounds is detailed in 
Sect. 5. State reduction techniques and their impact on time complexity are dis-
cussed in Sect. 6. Section 7 showcases evaluations and results, and Sect. 8 con-
cludes the paper with a discussion on future work.
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2 � Related work

The surveys by Davis and Cucu-Grosjean (2019a, 2019b) offer a detailed over-
view of the field of probabilistic schedulability and timing analysis in real-time 
systems. Two of the many challenges highlighted in their surveys are the proba-
bilistic analysis of dependent tasks and the safe estimation of deadline-miss prob-
abilities (DMP) for such tasks.

The issue of dependence in execution-time distributions and its impact on the 
potential unsound estimation of DMP when independence is assumed was ini-
tially identified by Tia et al. (1995). The importance of assuming independence 
among jobs of the same task for deriving sound response time distribution was 
first recognized by Díaz et  al. (2002), while in the concluding remarks of their 
paper, they restated the fact that many systems do not adhere to the independence 
assumption. For this reason, a fundamental concept of stochastic pessimism for 
proper upper-bounding of the execution-time distributions was explored by Diaz 
et al. (2004). Over the years, several research directions have evolved to address 
the above-mentioned issues.

One of the most used approaches was the one based on the probabilistic Worst-
Case Execution Time (pWCET), which is supposed to upper-bound the ground-
truth execution-time distribution of a job such that it can be safely used with 
convolution and independence-assuming analytical approaches in spite of possi-
ble dependence with other jobs. In this line of research, Cucu-Grosjean (2013) 
established the relation between the ground-truth execution-time distributions 
and pWCET, while Davis et al. (2017) clarified the difference between the confi-
dence-based pWCET and the upper-bounding one. The surveys (Davis and Cucu-
Grosjean 2019a, b) also provide extensive investigation on the definition and use 
of pWCETs. More recently, Bozhko et al. (2023) formalized a rigorous, axiomatic 
definition of pWCET, using the Coq proof assistant.

Many probabilistic schedulability analyses have been proposed over the years 
using pWCET and similar independence-assuming distributions for fixed-priority 
fully-preemptive scheduling. von  der Brüggen et  al. (2018) used the Hoeffding 
and Bernstein inequalities for the estimation of DMP, while Chen et  al. (2019) 
used Chernoff bound. Marković et al. (2021) contributed an optimal resampling 
strategy and an efficient circular-convolution algorithm. Bozhko et  al. (2021) 
introduced a method based on Monte-Carlo sampling. In contrast, von  der 
Brüggen et al. (2021) suggested a method to approximate the DMP under Earliest 
Deadline First (EDF) scheduling, accommodating dependencies across a limited 
number of consecutive jobs. More recent work by Chen et  al. (2022) corrected 
an error in the critical-instant assumption commonly found in various independ-
ence-based methods. Zagalo et  al. (2022) have developed queuing theory-based 
approximations for the response-time distributions, while Markovic et al. (2022) 
utilized the Berry–Esseen theorem to approximate response-time distributions. In 
the context of other scheduler assumptions, Marković et al. (2018) provided prob-
abilistic analysis for limited-preemptive scheduling, which is a generalization 
over fully and non-preemptive scheduling. Most recently, Günzel et  al. (2023) 
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proposed a probabilistic reaction time analysis for cause-effect chains based on 
sporadic tasks.

The issue of dependence has also been addressed within the framework of 
Extreme Value Theory (EVT), particularly in its application to measurement-based 
statistical analysis for both execution times (Cucu-Grosjean et al. 2012; Lima et al. 
2016; Lima and Bate 2017) and response times (Lu et al. 2010a, b, 2012).

Despite the widespread adoption of EVT in both academic research and practical 
applications, it is not without certain limitations (de Barros Vasconcelos and Lima 
2022). EVT relies on the premise that statistical limit laws are applicable to the sam-
ple set at hand (Coles 2001). EVT analysis necessitates certain conditions like the 
assumption of stationarity (Leadbetter et al. 1978) or extremal independence in the 
distribution under consideration (Santinelli et al. 2014).

Regarding the works that do not consider independence-assuming distributions, 
Bernat et al. (2005) introduced the concept of copulas in timing analysis. Copulas 
model dependencies between random variables, a copula transforms marginal dis-
tributions of random variables into a joint probability distribution. Ivers and Ernst 
(2009) developed an approach for fixed-priority preemptive scheduling systems, uti-
lizing completely known ground-truth probability distribution for each task. Their 
method, incorporating copulas and Frechet bounds, facilitated the derivation of 
probabilistic response-time bounds. Recently, Marković et  al. (2023) introduced a 
correlation-tolerant analysis for DMP estimation, leveraging upper bounds on both 
the expected values and standard deviations of job execution-time distributions. 
Their analysis improves upon Cantelli’s inequality to derive sound probabilistic 
response times in the presence of possibly correlated distributions.

More in line with this work, in the context of server-based schedulers, Mills 
and Anderson (2011) derived bounds for response time and tardiness for soft real-
time tasks with stochastic execution times, focusing on execution time dependence 
within distinct time windows. In a related development (Liu et al. 2014) proposed 
the concept of independence thresholds, positing that execution times above a cer-
tain threshold can be treated as independent. One major advantage of server-based 
scheduling is that it provides timing isolation, allowing for analysis of each server 
separately.

The Constant-Bandwith Server (CBS), was originally introduced by Abeni and 
Buttazzo (1998) and later used for deriving probabilistic deadlines to ensure Qual-
ity of Service (QoS) guarantees  (Abeni and Buttazzo 1999). In later works, it has 
also been analyzed with probabilistic execution times(Abeni and Buttazzo 2001; 
Palopoli et al. 2016) and probabilistic interarrival times (Abeni et al. 2012; Manica 
et al. 2012).

In one of the seminal papers for probabilistic analysis of real-time systems, Díaz 
et al. (2002) conducted a response time analysis for periodic tasks characterized by 
independent random execution times, demonstrating that the backlog in this context 
can be modeled as a Markov chain.

Recent studies, diverging from the worst-case DMP that has been prevalent in 
the previously cited works, have embraced the long-run frequency interpretation of 
DMP. In this vein, Abeni et al. (2017) and Frías et al. (2017) utilized Markov chain 
models with discrete emission distributions under CBS. Their work concentrated on 
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analyzing the steady-state response time distribution and included comparisons with 
results obtained under Linux’s SCHED_DEADLINE. They noted that the analysis 
duration is influenced by factors such as the range of execution times, the number 
of states, and the scaling factor used for resampling (Frías 2018), which can signifi-
cantly affect the analysis time and space complexity.

Furthermore, the estimation of the execution times modeled as continuous Gauss-
ian distributions within Markov chains have been explored by Friebe et al. (2020, 
2021), while the analysis in terms of deadline miss probabilities was conducted 
recently (Friebe et  al. 2023). Friebe et  al. (2023) addressed the DMP estimation, 
applying Hidden Markov Models (HMMs) with Gaussian emission distributions for 
schedulability analysis. This approach, akin to the work of Frías et al. (2017) and 
Abeni et  al. (2017), explicitly incorporates dependencies within the HMM frame-
work, with the CBS providing task isolation, thereby focusing the workload analysis 
on the specific task rather than the entire system. Although the analysis by Friebe 
et  al. (2023) offered improvements due to utilizing the continuous-based HMM 
model of execution times, they showed that the analysis still may suffer from time 
and space complexity.

In Sect.  6 of this paper, we introduce state-merging techniques designed to 
enhance the time and space efficiency of the methods presented by Friebe et  al. 
(2023). These techniques are developed to maintain high accuracy in DMP estima-
tions. In Table 1 the HMM approaches with continuous and discrete emission distri-
butions are compared, and the contributions of this paper are outlined.

3 � System model and notation

Table 2 contains the notation used in the paper. Superscript * indicates true values, 
↑ , and ↓ indicate upper and lower bounds.

We use the concept of upper bounding random variables according to Defini-
tion 1. This is also referred to as the usual stochastic order (Shaked 2007) or first-
order statistical dominance (Diaz et al. 2004). This paper uses the term upper bound 
as in Davis and Cucu-Grosjean (2019b).

Definition 1  (cf. Diaz et al. 2004; Davis and Cucu-Grosjean 2019b; Shaked 2007) 
Let X  and Y be two random variables. We say that X  is greater than or equal to Y 
(i.e., X  upper bounds Y ) if the Cumulative Distribution Function (CDF) of X  is 
never above that of Y . We denote this relation by X ≥ Y.

We define a partial Gaussian distribution in Definition  2, that is used to upper 
bound workload distributions. Consider a Gaussian N(�, �2) with probability den-
sity function f (x|�, �2) . Let Φ(x) be the cumulative density function of the standard 
normal distribution.

Definition 2  A partial Gaussian distribution Ntail(�, �2, �) , originated from a 
Gaussian distribution N(�, �2) , is defined by the probability density function:
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The probability of values lower than � is set to zero in the partial Gaussian dis-
tribution. The probability density of the remaining values are normalized, so that 
the distribution integrates to one.

We use convolutions, as defined in Definition 3, in the derivation of workload 
distributions.

(1)f tail(x|𝜇, 𝜎2, 𝛼) =

{
0, x ≤ 𝛼

1

Φ
(

𝜇−𝛼

𝜎

) ⋅ f (x|𝜇, 𝜎2) x > 𝛼 .

Table 2   Overview of notation used in this paper

Symbol Description

Basic notation
T Task period
Ji Job at task period i
ai Arrival time of Ji
di Absolute deadline of Ji
D Relative deadline
P Server period
Q Server budget
n Number of server periods in a task period
k Number of server periods in a relative deadline
S Number of Markov states
M State transition matrix
N Number of task periods in workload accumulation
Values of random variables
ci Execution time of Ji
fi Finishing time of Ji
vi Workload at task period i
h Accumulation sequence of state visits in Markov chain since workload 

depletion
h̃ Accumulation vector of the number of visits in each Markov state since 

workload depletion
Probability distributions and probabilities
C Execution time distribution
Vh,Vh̃ Workload distribution associated with an accumulation sequence or vector
mi,j Transition probability from state i to state j
�(s) Stationary probability of being in s
pin(s, h̃) Probability of entering s with h̃
pco(s, h̃) Probability that h̃ in s carries workload to the next task period
pwd(s) Probability of workload depletion in s
pdm Deadline miss probability
�(s)N Probability of being in state s with h longer than N
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Definition 3  The convolution of f and g, denoted with the ∗ operator is:

3.1 � Task model

Let the real-time task � consist of a sequence of jobs Ji , i ∈ ℕ . Each job Ji has the 
arrival time ai , execution time ci and finishing time fi . The task is periodic and jitter-
free, i.e., ai+1 = ai + T  , a0 is the arrival time of the first job. Jobs can be preempted, 
fi ≥ ai + ci . The execution time is modeled as a random variable. The random vari-
able R models the response time, the duration from activation time to finish time of 
a job.

A job Ji has the deadline di determined by a relative deadline D such that 
di = ai + D . Jobs are executed until completion, even if deadlines are missed. The 
relative deadline may be longer than the task period. The probability that a randomly 
selected job finishes after the deadline, pdm = ℙ(R > D) is the main concern of this 
paper.

3.2 � Scheduling algorithm

The task is served as the sole task of a reservation-based server, and guaranteed 
to receive Q units of processing time within each server period. The bandwidth 
B = Q∕P is the fraction of the processing time dedicated to the task. T = n ⋅ P , 
that is the task period is an integer multiple of the server period. The relative dead-
line is also an integer multiple of the server period, D = k ⋅ P . In the evaluation a 
CBS is used, a CBS with a properly selected server period fulfills the necessary 
requirements.

The task model and reservation-based server are illustrated in Fig. 1. Here, we 
have n = 3 , T = 3 ⋅ P . In the illustration the relative deadline is longer than the 

[
f ∗ g

]
(z) = ∫

∞

−∞

f (z − x) ⋅ g(x) dx.

Fig. 1   An illustration of the task model and the reservation-based server
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period. With a deadline longer than the period, a longer job may steal computation 
time from the next job of the task. If the next job is short, they may both meet their 
deadlines.

4 � Execution time model and analysis

4.1 � Markov chain execution times

The execution times of the task we consider are described by a Markov model 
defined by a set of S states � , a S × S state transition matrix M and a set ℂ of S 
execution time distributions or emission distributions related to the respective state, 
S ∈ ℕ . We have � = {1, 2,… , S} . In M the element ma,b represents the probability of 
the task being in state b at task period i + 1 , given that it is in state a at task period i. 
ℂ = {C1,C2,… ,CS} where each Cs is modeled as Gaussian distributions with mean 
�s , and variance �2

s
 , i.e., Cs ∼ N(�s, �

2
s
) . The Markov Chain is irreducible, that is 

a chain where from any state you can reach any other state in a sequence of steps. 
For an irreducible finite-state Markov Chain, stationary probabilities of the different 
states (Harchol-Balter 2024) exist and are unique. The stationary probabilities repre-
sent the long-run proportion of jobs with execution times described by the different 
Gaussian distributions.

Example 1  When introducing the ideas and analysis, we will use an example execu-
tion time Markov Model and reservation-based server. The parameters are chosen 
mainly for illustration, and to arrive at simple numerical answers in some of the 
applications of the example. The Markov Model is defined by:

In this example all transition probabilities are strictly positive, so the Markov Chain 
is clearly irreducible and we can calculate the stationary probabilities. These are 
0.875 for state 1 and 0.125 for state 2. In our example, the CBS is defined as n = 2 
and Q = 1 . The deadline is defined by k = 4.

The representation of Gaussian emission distributions requires only a few distri-
bution parameters, for example, the emission distribution associated with state 1 in 
Example 1 is fully specified by the mean 1 and the variance 0.25. With discrete dis-
tributions probabilities for each execution time value need to be stored, with respect 
to a chosen scaling factor. For Example 1 we might choose to represent execution 
times with a resolution of 0.01. For state 1 we could list execution times from 0.01 
to 4.01, where each of these is associated with a probability. The probability associ-
ated with 2.01 would be the probability of execution times et, 2 < et ≤ 2.01 . Gauss-
ian emission Markov models are shown to be applicable, in Friebe et al. (2020) for 
a video decompression use case, and in Friebe et  al. (2021) in a dynamic setting 

S = 2, M =

(
0.9 0.1

0.7 0.3

)
, C = {N(1, 0.25),N(2, 1)}.
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with model adaptation. The Gaussian distribution may appear simplistic. How-
ever, general distribution shapes can be approximated by a combination of Gauss-
ians. The assumption of independent execution times within each state implies that 
more states may be necessary in the model to capture dependencies in the transition 
matrix. A close to discrete model can be envisioned with states where the emis-
sion-distribution variance is near zero. The fact that a representation with Gaussian 
emission distributions may require more states is a disadvantage of this approach. 
With discrete representation, pessimism is introduced with the scaling factor and if 
downsampling is needed. With continuous representation, pessimism is introduced 
at other points, for example in our case when upper bounding the workload distribu-
tions. Further, there are other options for continuous representations, for example 
Zagalo et al. (2022) use inverse Gaussian mixture distributions for response times. 
In our approach we rely on the simplicity of convolution of Gaussian distributions.

4.2 � Problem formulation

We bound the expected deadline miss probability of a randomly selected job of a 
task. Task execution times are defined as in Sect. 4.1, and the task is served by a 
reservation-based server as described in Sect. 3.2.

In the survey on schedulability analysis by Davis and Cucu-Grosjean (2019a) 
three interpretations of the probability of a deadline miss are listed: 

1.	 “As a probability with a long-run frequency interpretation equating to the 
expected number of missed deadlines divided by the total number of deadlines 
in a long (tending to infinite) time interval.

2.	 As the probability that a randomly selected job will miss its deadline, which is 
broadly equivalent to the long-run frequency interpretation.

3.	 As a bound on the probability that any specific job will miss its deadline.”

 Chen et al. (2024) refer to the same concept as the deadline miss rate, and formulate 
the question: “What is the ratio of jobs missing their deadlines in the long run?” We 
agree with Davis and Cucu-Grosjean that interpretations 1 and 2 are broadly equiva-
lent. Extending interpretation 2 to include the average component that is in focus in 
interpretation 1, we focus on the expected deadline miss probability of a randomly 
selected job. The intention is to remove any ambiguity with interpretation 3 or the 
Worst Case Deadline Failure Probability, an upper bound on the probability that any 
single job of a task misses its deadline (Davis and Cucu-Grosjean 2019a). We find 
the term deadline miss probability more natural compared to deadline miss rate in 
our context with states with different execution time distributions.

4.3 � Overview of the proposed approach

We will obtain an upper bound on the expected deadline miss probability of a ran-
domly selected job of the task in a reservation-based server.
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The proposed method is based on a workload accumulation scheme. The main 
idea is outlined below, followed by the details in the remaining subsections. The 
starting point of the approach is that the deadline miss probability of a job depends 
on the execution time of the job, and on the amount of remaining work from previ-
ous jobs that have not been completed yet. We categorize jobs into different classes 
with different deadline miss probabilities. By calculating or bounding the deadline 
miss probabilities of jobs belonging to each class, and the probability of randomly 
selecting a job from each class, we bound the expected deadline miss probability of 
a randomly selected job.

In each task period, task � is guaranteed nQ units of processing time. The pending 
workload at the i-th task period is denoted as vi and defined as in Abeni and But-
tazzo (1999):

where the first term accounts for the previous workload, that is 0 for the first period, 
and for task periods where all work from previous jobs has been completed before 
the new job arrival. In these periods, jobs arrive at idle points with 0 carry-in work-
load and vi = ci , in particular v1 = c1.

Observation 1  The pending workload at a job arrival is affected by the execution 
time requirements of jobs arriving since the last idle point.

In our proposed method, the job classes are related to the state sequence since the 
last idle point. In Example 1, let the jobs arriving at an idle point when the task is 
in the first state of the Markov Model belong to one specific class. When selecting a 
job at random, there is a probability of about 0.78 that the job belongs to this class. 
The deadline miss probability for this class of jobs only depends on the execution 
time distribution for the first state and the server properties. It is the survival func-
tion or 1-CDF of N(1, 0.25) at 4, about 9.8 ⋅ 10−10.
Observation 2  The deadline miss probability for a class of jobs is at most 1.

In the proposed method, we will derive more precise bounds for several classes. 
For the remaining, we will use Observation 2 to upper bound the deadline miss 
probability. We construct an approximate bound of the expected deadline miss prob-
ability of a randomly selected job from Example 1 to illustrate the idea:

To model a state sequence from the latest idle point, we introduce the concept 
of workload accumulation sequences. Illustrations of workload accumulation 
sequences for some classes in Example 1 are displayed in Fig. 2.

The class where, at a job arrival, the task is in state 1, and there is no carry-in 
workload, is displayed as the black node at task period 1. The workload accumula-
tion sequence is h = (1) . The gray node and arrow represent the class of jobs where 

(3)
vi = max(0, vi−1 − nQ)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
carry-in workload

+ci.

(4)DMP ⪅ 0.78 ⋅ 0.98 ⋅ 10−10 + 0.22 ⋅ 1



	 Real-Time Systems

jobs arrive in state 1 and in the second task period after an idle point, with the first 
period in state 2. The accumulation sequence h = (2, 1) . The black node and dashed 
arrows represent the class of jobs arriving at the fifth task period after the latest idle 
point, with h = (2, 2, 1, 2, 2) . The accumulation sequence is modeled as a random 
variable H that can take the values of any possible workload accumulation path. In 
Fig. 2, with the gray path we illustrate one possible value h = (2, 1) , taken by H.
Definition 5  Each arrival of a job Ji results in an accumulation sequence h(Ji) . Let b 
denote the task state at the arrival of Ji . If there is an idle point directly prior to the 
arrival, the resulting h(Ji) = (b) . If there is carry-over workload from the previous 
job, let h(Ji−1) = (… , a) denote the accumulation sequence resulting from the prior 
job arrival. Then h(Ji) = (… , a, b).

In this way, each job that arrives is related to one specific h that describes the 
accumulated workload since the last idle point, and the task’s state at the arrival of 
this job is always in the last component of the corresponding h.

The evolution of H is described by an infinite-state Discrete-Time Markov Chain, 
and each workload accumulation sequence represents one job class and one state 
in this chain. State transitions occur at job arrivals. The possible transitions from a 
state h = (… , a) are: 

1.	 A transition from h to (… , a, b) has strictly positive probability if ma,b > 0.
2.	 A transition from h to (b)(b) has strictly positive probability if ma,b > 0.
3.	 No other transitions from h are possible.

The probability of randomly selecting a job resulting in a certain accumulation 
sequence is the stationary probability of the state in the Markov Chain. This sta-
tionary probability exists for an infinite-state Discrete-Time Markov if the chain 
is ergodic  (Harchol-Balter 2024)—that is when the chain is irreducible, aperi-
odic and recurrent. The accumulation sequence Markov Chain is irreducible if 
the execution time Markov Chain is irreducible. If all states can be reached from 
all states in the execution time Markov Chain, the same is true for the accumula-
tion sequence Markov Chain. The accumulation sequence Markov Chain is also 
aperiodic, which means that the greatest common divisor of the set of integers n, 
such that you can get from one state to the same state in n steps, is 1 for all states. 
In an infinite-state Markov Chain, either all states are recurrent, and the chain is 
recurrent, or all states are transient. A state is recurrent if when we start in that 
state, the probability is 1 that we ever return to the same state. The workload in 
the server can be seen as a queue, and a queue is in steady-state if the average 
arrival rate is lower than the average service rate (Medhi 2003). This is equivalent 

Fig. 2   Illustration of workload 
accumulation sequences of the 
example
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to the average utilization of the task being lower than the server’s bandwidth. 
Under this condition the accumulation sequence Markov Chain is recurrent. 
Returning to Example 1, the average computation requirement over a task period 
is 0.875 ⋅ 1 + 0.125 ⋅ 2 = 1.125 , resulting in an average utilization of 1.125

2⋅P
=

0.5625

P
 . 

Since the server’s bandwidth is 1
P
 , the task’s computational requirement is met 

over time, and the accumulation sequence Markov Chain is ergodic.

Definition 6  The probability pin(h) of randomly selecting a job resulting in the accu-
mulation sequence h is the stationary probability of this state in the accumulation 
sequence Markov Chain.

Definition 7  The conditional probability that a job resulting in h misses its deadline 
is defined as pdm(h) = ℙ(R > D|H = h).

Definition 8  The Deadline Miss Probability DMP(j) for the j-th job since the last 
depletion point is defined as

where the set H(j) represents accumulation sequences resulting from job arrivals at 
the j-th task period from the last idle point.

Returning to Example  1, there are two accumulation sequences in 
H(1), arriving at an idle point. We already discussed h = (1) . The sec-
ond is h = (2) , and the probability of randomly selecting a job resulting in 
h = (2) is about pin((2)) ≈ 0.099 . The deadline miss probability pdm((2)) is 
the survival function of N(2, 1) at 4, about pdm((2)) ≈ 0.023 . In our example, 
DMP(1) ≈ (7.6 ⋅ 10−10 + 0.099 ⋅ 0.023)∕(0.78 + 0.099) ≈ 2.6 ⋅ 10−3.

Definition 9  The Deadline Miss Probability DMP is the expected deadline miss 
probability of a randomly selected job from the task. Given a task with execution 
times described by the model in Sect. 4.1, and served by a reservation-based server 
with a bandwidth exceeding the average task utilization, DMP is obtained as

Since pin(h) are the stationary probabilities of the accumulation sequence Markov 
Chain (Definition 6), the sum of pin(h) over all h equals 1.

Problem  The sum of Eq. (6) has a countably infinite number of terms. This paper 
investigates finding a bound for DMP with a finite number of terms.

(5)DMP(j) =
1∑

∀h∈H(j) pin(h)

�
∀h∈H(j)

pin(h) ⋅ pdm(h)

(6)DMP =

∞∑
i=1

DMP(i)
∑

∀h∈H(i)

pin(h).
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Observation 3  Consider a job that arrives with a carry-in workload, i.e., it does not 
arrive directly after an idle point. Then this job arrives j + 1 task periods after the 
last idle point, and it succeeds a job arriving j task periods after the last idle point. 
The probability of randomly selecting a job with workload accumulation from j + 1 
periods is never higher than the probability of randomly selecting a job arriving with 
workload accumulation from j periods.

The main idea is to find tighter bounds DMP(i) for the first terms in Eq. (6), since 
due to Observation 3 the weighting sums over pin are highest for the first terms. For 
larger i, when the sums over pin are small, we let DMP(i) = 1.

Returning to Example 1, using the information from the first task period, we have:

The bound is still very pessimistic. However, going from one accumulation sequence 
h = (1) in Eq. (4) to two h = (1) and h = (2) reduces the bound from 0.22 to 0.12.

4.3.1 � Outline of the remainder of this section

An upper bound on DMP is obtained by deriving upper bounds on pin and pdm . The 
probability pin(h) of randomly selecting a job with the accumulation sequence h 
depends on the execution time distributions along h , the transition probabilities, and 
the probability of workload depletion in each state. The conditional deadline miss 
probability pdm(h) for jobs where the arrival results in h depend on the execution 
time distributions in h . We divide the workload accumulation process in two steps. 
We first compute upper bounds on pin and pdm up until N task periods from the lat-
est idle point. As N grows, the sum of the products of pin(h) and pdm(h) approaches 
the true deadline miss probability. Second, the sum of pin values in the remaining 
accumulation sequences of length N + 1 to infinity, is upper bounded. We refer to 
this sum as � . We assume that the pdm is 1 for jobs that result in these accumulation 
sequences, and this gives a safe upper bound on DMP in Eq. (40).

The steps for deriving a safe bound on  DMP are outlined in the following 
sections:

Section 4.4: Upper bounding pdm and pin for the terms in Eq. (6) requires upper 
bounding the pending workload distributions associated with each accumulation 
sequence. In this section we describe how to derive the parameters of an upper 
bounding partial Gaussian distribution as given in Eqs. (19)–(21). The bounds on pin 
also rely on a lower bound on the pending workload distributions. The parameters 
for a lower bounding Gaussian distribution are derived as Eqs. (19) and (20).

Section 4.5: For jobs arriving at an idle point, pin depends on the probability of 
workload depletion pwd for each state, the stationary state probabilities and the tran-
sition probabilities ma,b . Upper and lower bounds are provided in Eqs. (24) and (23). 

(7)

DMP =

∞∑
i=1

DMP(i)
∑

∀h∈H(i)

≈ 2.3 ⋅ 10−4 +

∞∑
i=2

DMP(i)
∑

∀h∈H(i)

pin(h)

≤ 2.3 ⋅ 10−4 +

∞∑
i=2

∑
∀h∈H(i)

pin(h) ≈ 0.12
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Jobs arriving with carry-in workload have pin depending on transition probabilities, 
and the probability of jobs with shorter accumulation sequences resulting in carry-
over workload. We find that all pin bounds are linear combinations of pwd for the dif-
ferent states, and given in in Eqs. (28) and (27).

Section 4.6: Bounds on pwd are derived, relying on stationary probabilities and 
the sum of pin in accumulation periods after N , denoted as �.

Section 4.7: A bound on � is derived and given in Eq. (37). This bound is utilized 
for computing the lower bounds on pin , pco , and finally pwd.

Section 4.8: An upper bound on pdm is presented, using the bounds on workload 
distributions, pin and � . The pdm for a state is upper bounded in Eq. (39). Each job’s 
deadline miss probability is accounted for with the accumulation sequence resulting 
from the job’s arrival. This is the case even with long relative deadlines, when actual 
deadlines are not missed until after the arrivals of subsequent jobs.

The iterative workload accumulation process connects all these different parts, 
and is presented in Sect. 5 with an example. An illustration of the process with refer-
ences to relevant sections is provided in Fig. 3. The workload distribution bounds 
from Sect. 4.4 are used in all remaining sections and are not specifically referenced 
in the figure.

4.4 � Bounding the conditional pending workload distribution associated 
with a workload accumulation sequence

Upper and lower bounds of pending workload distributions conditioned on the 
job arrival resulting in a given accumulation sequence since the last idle point 
are derived. To derive upper bounds on pdm we require the upper bounds on the 
workload distributions. To derive upper and lower bounds on pin , pco , � and pwd 
we require upper and lower bounds on the workload distributions. With an exam-
ple from Fig. 2, we consider the pending workload distribution for jobs arriving 
in state 1, in the second task period from the last idle point, given that the first job 
after the idle point arrived in state 2, that is the path marked as gray, h = (2, 1).
Definition 10  The conditional pending workload distribution Vh for jobs resulting in 
a given accumulation sequence h has the probability density function ℙ(v|H = h).

Fig. 3   The workload accumulation process
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We will derive bounds for this conditional pending workload distribution that 
are independent of the order of the state visits in the accumulation sequence, and 
only dependent on the number of visits in each state. For this purpose we define 
the random variable H̃ that takes S-dimensional vector values, where each ele-
ment denotes the number of visits in the corresponding state since the last idle 
point. As an example, the dashed line in Fig.  2 showing h = (2, 2, 1, 2, 2) and 
another accumulation sequence h = (2, 2, 2, 1, 2) illustrated in Fig. 4 contribute to 
the same accumulation vector. Both sequences result from jobs arriving 5 task 
periods after the latest idle point, and they have the same number of visits in each 
state, h̃ = [1, 4] . Let h̃[s] denote taking the s-th element of h̃ , and h̃+s is the accu-
mulation vector with elements: h̃+s[i] = h̃[i], i ≠ s, h̃+s[s] = h̃[s] + 1 . This simpli-
fies the notation of the workload distribution of jobs arriving in state s with carry-
in workload from h̃.

In a system with S states, the number of accumulation vectors of length N is (
N + S − 1

N

)
=

(N+S−1)!

N!(S−1)!
 . If we take ordering into account, there are SN accumula-

tion sequences of length N . The number of accumulation vectors increases with the 
length N as O(NS−1) for a fixed number of states S.

We derive an upper bounding pending workload distribution V↑

h̃
≥ Vh , recalling 

Definition 1.
We show that a partial Gaussian distribution (see Definition 2) is an upper bound 

to the conditional pending workload distribution. An illustration based on Exam-
ple 1 is shown in Fig. 5. The dashed curve illustrates the exact convolution result 
of the workload of the gray accumulation sequence from Fig. 2. The carry-in work-
load is the partial Gaussian distribution of Ntail(2 − n ⋅ Q, 1, 0) , that is the normal-
ized part of the computation time distribution in the second state that remains after 
the budget of n ⋅ Q = 2 has been exhausted. The carry-in distribution is convolved 
with the computation time distribution of the first state, N(1, 0.25) , resulting in the 
dashed curve. When we replace it with the partial Gaussian distribution shown in 
Fig.  5 as the black curve and line, the probabilities of lower workloads (the light 
gray area) are moved to higher workloads (the dark gray area), providing an upper 
bound.

Theorem  1  Ntail
(
𝜇(h̃), 𝜎2(h̃), 𝛼(h̃, s)

)
 upper bounds the conditional pending work-

load distribution Vh̃ associated with each state s and accumulation vector h̃.

Fig. 4   Illustration of a workload 
accumulation sequence that 
contributes to the same work-
load accumulation vector as the 
dashed sequence in Fig. 2
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The proof is by induction. We state Lemma  2 for the base case and further 
Lemma 3 combined with Lemma 4 for the inductive step.
Lemma 2  The partial Gaussian distribution Ntail

(
𝜇s, 𝜎

2
s
, 0
) ≥ Vh̃ in state s at a job 

arrival immediately after a point of workload depletion, with Vh̃ being the condi-
tional pending workload distribution.

Proof  At the first job arrival after a point of workload depletion, the conditional 
pending workload distribution Vh is the execution time distribution of the entered 
state s . Ntail

(
�s, �

2
s
, 0
)
 excludes the negative workload values from N

(
�s, �

2
s

)
 . Nor-

malization increases the probability of positive values. The probability density is 
moved from lower workload values to higher, providing an upper bound. 	�  ◻

In the following, we consider the case with non-zero carry-over workload when 
a job arrives in state s transitioning from state sp . In sp the accumulation vector is h̃ , 
and Ntail(𝜇(h̃), 𝜎2(h̃), 𝛼(h̃, sp)) upper bounds the workload distribution. We show that 
the partial Gaussian distribution Ntail(𝜇(h̃+s), 𝜎

2(h̃+s), 𝛼(h̃+s, s)) is an upper bound 
on the conditional pending workload distribution. In Eqs.  (8) and (9) below we 
define 𝜇(h̃+s) and 𝜎2(h̃+s) . To simplify the starting value 𝛼(h̃+s, s) of the upper bound 
on the pending workload distribution defined in Eq. (12), we define Eqs. (10) and 
(11). sf−1(q,�, �2) in Eq. (12) denotes the inverse survival function at quantile q of 
a Gaussian distribution with mean � , and variance �2 . The work value at which the 
survival function takes the value q. Equation (11) defines K(h̃, sp) , the normalization 
factor needed for the conditional probability calculation. A convolution Definition 3 
of the execution time distribution Cs and an upper bound of the carry-over workload 
gives a bound on the pending workload distribution. The part extending past the 
task period of the upper bounding workload distribution in sp with h̃ constitutes an 
upper bound of the carry-over workload. K(h̃, sp)−1 is the integral of this part used 
for normalization.

(8)𝜇(h̃+s) = 𝜇s +

S∑
i=1

h̃[i] ⋅ (𝜇i − n ⋅ Q)

Fig. 5   Illustration of a convolution result with an upper bounding partial Gaussian distribution
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Lemma 3  When a job arrives in state s with non-zero carry-over workload from 
state sp with accumulation vector h̃ , and the previous task period upper bound on 
the workload distribution V↑ as Ntail(𝜇(h̃), 𝜎2(h̃), 𝛼(h̃, sp)) , the conditional pending 
workload distribution is upper bounded by Ntail(𝜇(h̃+s), 𝜎

2(h̃+s), 𝛼(h̃+s, s)).

Proof  The normalized workload tail beyond the task period time is the 
strictly positive carry-over workload distribution. We formally express this as 
Ntail

(
𝜇(h̃) − n ⋅ Q 𝜎2(h̃) max(0, 𝛼(h̃, sp) − n ⋅ Q)

)
.

N(�s, �
2
s
) describes the execution time distribution in state s . By convolving Defi-

nition 3 the probability density functions of the execution time and the upper bound 
on the positive carry-over workload, we derive an upper bound on the conditional 
workload distribution V↑

h̃+s
 in state s with accumulation vector h̃+s . This holds 

because execution times are independent random variables, and the dependence of 
the Markov model is restricted to the transition probabilities.

We introduce �R(z) , �2

R
 , �ΣΔ and �2

Σ
 below to simplify the notation in the convolu-

tion expansion:

(9)𝜎2(h̃+s) = 𝜎2
s
+

S∑
i=1

h̃[i] ⋅ 𝜎2
i

(10)𝛼Δ(h̃, sp) = max(0, 𝛼(h̃, sp) − n ⋅ Q)

(11)K(h̃, sp) =

[
Φ

(
𝜇(h̃) − n ⋅ Q − 𝛼Δ(h̃, sp)

𝜎(h̃)

)]−1

(12)𝛼(h̃+s, s) =

{
0 h̃ = 0

sf−1
(

1

K(h̃,sp)
,𝜇(h̃+s), 𝜎

2(h̃+s)
)

h̃ ≠ 0
.

(13)𝜇R(z) =
(z − 𝜇s) ⋅ 𝜎

2(h̃) + (𝜇(h̃) − n ⋅ Q) ⋅ 𝜎2
s

𝜎2
s
+ 𝜎2(h̃)

(14)𝜎2
R
=

𝜎2
s
⋅ 𝜎2(h̃)

𝜎2
s
+ 𝜎2(h̃)

(15)𝜇ΣΔ = 𝜇s + 𝜇(h̃) − n ⋅ Q
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We expand the convolution for V↑

h̃+s
:

where we isolate the part of the expression independent of x in the last step. The 
integral in the last row of Eq.  (17) is the survival function or 1-CDF at �Δ of 
N(�R(z), �

2

R
) . The survival function is monotonically increasing with respect to z 

and goes to 0 as z goes to −∞ , and to 1 as z goes to ∞ . This implies that there 
is a point 𝛼(h̃+s, s) where the area under the curve of the exact convolution of the 
pending workload distribution up to 𝛼(h̃+s, s) equals the area between the curves 
of the exact pending workload distribution and the partial Gaussian distribution, 
Ntail(𝜇ΣΔ, 𝜎

2

Σ
, 𝛼(h̃+s, s)) from 𝛼(h̃+s, s) . This is illustrated in Fig. 5. Normalizing the 

partial Gaussian distribution with K(h̃, sp) as in Eq. (18) means that we derive the 
lowest possible 𝛼(h̃+s, s) that upper bounds the full convolution. As the integral in 
the last row of Eq. (17) goes to 1 as z goes to infinity, the tail of the upper bound 
approaches the tail of the full convolution asymptotically.

The convolution result integrates to one, and so does the partial Gaussian distribu-
tion from Definition 2. The two regions described and illustrated in Fig. 5 have the 
same area. Replacing the exact convolution with the partial Gaussian is equivalent to 
moving probability weight from lower pending workload values to higher, leading to 
an overestimate. We have:

This concludes our proof. 	� ◻

The values of � and K depend on the order in the accumulation sequence, as 
Eq.  (10) depends on the previous state. Returning to Example  1, consider a job 

(16)𝜎2
Σ
= 𝜎2

s
+ 𝜎2(h̃).

(17)

∫
∞

−∞

f
(
z − x|𝜇s, 𝜎

2
s

)
⋅ f tail

(
x|𝜇(h̃) − n ⋅ Q, 𝜎2(h̃), 𝛼Δ

)
dx

= K(h̃, sp)∫
∞

𝛼Δ

f (z − x|𝜇s, 𝜎
2
s
) ⋅ f (x|𝜇(h̃) − nQ, 𝜎2(h̃))dx

= K(h̃, sp) ⋅ f
(
z|𝜇ΣΔ, 𝜎

2
Σ

)
⋅ ∫

∞

𝛼Δ

f
(
x|𝜇R(z), 𝜎

2
R

)
dx,

(18)K(h̃, sp) ⋅ ∫
∞

𝛼(h̃+s,s)

f
(
x|𝜇ΣΔ, 𝜎

2
Σ

)
dx = 1.

(19)𝜇(h̃+s) = 𝜇ΣΔ

(20)𝜎2(h̃+s) = 𝜎2
Σ

(21)𝛼(h̃+s, s) = sf−1

(
1

K(h̃, sp)
,𝜇ΣΔ, 𝜎

2
Σ

)
.
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arriving in the third task period after an idle point. Two accumulation sequences 
determine the carry-in workload of visiting both state 1 and state 2 since the idle 
point; those are h = (2, 1) and h(1, 2) . The first is the gray sequence in Fig. 2, and the 
upper bounding workload distribution is shown in Fig. 5. The tail extending past the 
period’s budget is the carry-in to the next period, illustrated as the dashed curve in 
Fig. 6. Since 𝛼 = 1 < n ⋅ Q = 2 , �Δ = 0 for the sequence (2, 1). For the order (1, 2) 
however, the resulting 𝛼 ≈ 3.236 > n ⋅ Q = 2 . The upper bounding carry-in work 
will have �Δ ≈ 1.236 and is the solid curve illustrated in Fig. 6.

We state this formally in Lemma 4. We show that shifting the starting point � to a 
higher value while keeping the mean and variance unchanged gives an upper bound-
ing distribution. This is illustrated in Fig. 7.
Lemma 4  The partial Gaussian distribution Ntail(�, �2, �1) ≥ Ntail(�, �2, �2) if 
�1 ≥ �2.

Proof  The CDF is 0, x < 𝛼2 for both Ntail(�, �2, �1) and Ntail(�, �2, �2) . The CDF of 
Ntail(𝜇, 𝜎2, 𝛼2) > 0 for �2 ≤ x ≤ �1 , but the CDF of Ntail(�, �2, �1) = 0 in this range. 
For x > 𝛼1 , we have from Definition 2 that the PDF s of the two distributions only 
differ in the scaling factor. This means that the CDF of Ntail(�, �2, �1) is the CDF of 
Ntail(�, �2, �2) past �1 shifted to start at 0 and scaled to go to 1 at infinity. Therefore 
the CDF of Ntail(�, �2, �1) is always below the CDF of Ntail(�, �2, �2) 	�  ◻

We remove the dependency on the state order by taking the maximum 
𝛼(h̃, sp), sp ∈ h̃ to determine 𝛼Δ(h̃) . This is illustrated by selecting the black curve 
in Fig. 6 as carry-in from h̃ = [1, 1] , and formalized as:

We use this instead of Eq. (10) in Eqs. (11) and (12). Let us proceed to the proof of 
Theorem 1, restated here for convenience:

Theorem  1  Ntail
(
𝜇(h̃), 𝜎2(h̃), 𝛼(h̃, s)

)
 upper bounds the conditional pending work-

load distribution Vh̃ associated with each state s and accumulation vector h̃.

(22)𝛼Δ(h̃) = max

(
0,max

∀sp
𝛼(h̃, sp) − n ⋅ Q

)
.

Fig. 6   Illustration of upper bounding partial Gaussian distributions for the carry-in workload of two 
accumulation sequences with the same vector
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Proof  We prove this by induction.

Base case: For the first job arrival after workload depletion, this follows by 
Theorem 2.

Inductive hypothesis: If we have such a workload distribution upper bound for all 
states and accumulation vectors in one task period, it also holds for a job that arrives 
with a carry-in workload from a previous period.

Inductive step: This follows from Lemma  3 and by taking the maximum � in 
Eq. (22) due to Lemma 4. 	� ◻

Analogously, a Gaussian distribution is a lower bound of the pending workload 
distribution V↓

h̃
≤ Vh . This is illustrated in Fig.  8 for the accumulation sequence 

example drawn in gray in Fig. 2. From Eq. (17), we see that K(h̃, sp) > 1 , imply-
ing a heavier tail on the convolution result compared to the Gaussian distribution. 
The area under the Gaussian PDF curve with mean �ΣΔ and variance �2

Σ
 is one, 

and so is the area under the result of the convolution. Replacing the workload dis-
tribution with the Gaussian implies moving probability weight from higher work-
load values to lower, thus providing a lower bound.

4.5 � Bounds on the joint probability of a job arriving in a state 
with an accumulation vector

A job arriving in state s N task periods after the last workload depletion can result in 
one or more accumulation vectors, h̃ , of length N . We refer to this set of accumulation 
vectors as being in state s at task period N . Each accumulation vector in a state is asso-
ciated with the joint probability of randomly selecting a job that arrives in state s and 
results in the accumulation vector h̃ . p↓

in
(s, h̃) denotes a lower bound on this joint prob-

ability and p↑
in
(s, h̃) an upper bound. Each accumulation vector in a state is also associ-

ated with a probability of the workload contributing to carry-over into the next period. 
p↓
co
(s, h̃) denotes a lower bound on this probability and p↑

co
(s, h̃) an upper bound.

For jobs arriving at a point of workload depletion with no carry-in workload, each 
state is associated with a single accumulation vector containing zeros except for the 

Fig. 7   CDFs of two partial Gaussian distributions as in Lemma 4. In this figure � = 1 , �2 = 1 , �1 = 1 and 
�2 = 0
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current state, which is set to 1. The probability of a job arriving in a certain state s at a 
point of workload depletion depends on

•	 the stationary probabilities �(sp) of all states sp,
•	 the workload depletion probabilities pwd(sp) of all states sp,
•	 the state transition probabilities �sp,s from all states sp into s.

The stationary probabilities and the transition matrix are known from the execution 
time model described in  Sect.  4.1. In Sect.  4.6, we will describe how to derive the 
workload depletion probabilities of all states. Let us assume that we have lower and 
upper bounds on the workload depletion probabilities, p↓

wd
(s) and p↑

wd
(s) . Then, lower 

and upper bounds on the probability of randomly selecting a job arriving in each state s 
at a point of workload depletion are given as:

There is only one accumulation vector in each state for jobs arriving at an idle point, 
and there is no dependency on h̃ . We introduce it in the expression to have the com-
mon notation pin(s, h̃) for all accumulation periods.

Relating this to Example  1, the lower bound on the probability of a 
job arriving in state 2 after an idle point is p

↓

in
(2, [0, 1]) = �(1) ⋅ m1,2⋅

p
↓

wd
(1) + �(2) ⋅ m2,2 ⋅ p

↓

wd
(2) = 0.875 ⋅ 0.1 ⋅ p

↓

wd
(1) + 0.125 ⋅ 0.3 ⋅ p

↓

wd
(2) , a linear 

combination of the lower bounds on workload depletion probability for the states. 
The upper bound is the same linear combination of the upper bounds on workload 
depletion.

We further consider jobs arriving with a carry-in workload. Step by step, we add 
jobs that arrive one more task period after the last idle point, resulting in accumula-
tion vectors containing one more state. We copy each accumulation vector from the 
states in the previous task period for these accumulation periods and increment the 

(23)p
↓

in
(s, h̃) =

S∑
sp=1

𝜉(sp) ⋅ p
↓

wd
(sp) ⋅ msp,s

(24)p
↑

in
(s, h̃) =

S∑
sp=1

𝜉(sp) ⋅ p
↑

wd
(sp) ⋅ msp,s

.

Fig. 8   An illustration of a convolution result and the Gaussian distribution that forms a lower bound
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current state element by 1. Such an accumulation vector copied from h̃ with a job 
that arrives in state s is denoted h̃+s . When h̃ exists in different states in the previous 
accumulation period, they all lead to h̃+s in s . The joint probability of randomly 
selecting a job arriving in s and resulting in h̃+s depends on the probabilities 
pco(sp, h̃) of a randomly selected job arriving with unfinished workload from h̃ in 
each state sp , and transition probabilities msp,s

.
The probability that a job arrives with a carry-in workload from sp, h̃ is the prob-

ability of being in sp with this h̃ multiplied by the probability that the conditional 
pending workload of sp, h̃ exceeds the available processor time in a task period. 
Let random variables X ∼ V

↓

h̃
 and Y ∼ V

↑

h̃
 . Then we have lower p↓

co
(s, h̃) and upper 

p↑
co
(s, h̃) bounds on the probability of a job arriving with the carry-in workload from 

h̃ and where the previous task period state was s as: p↓
co
(s, h̃) and p↑

co
(s, h̃) , further 

calculated as:

with V↓

h̃
 given as N(𝜇(h̃), 𝜎2(h̃)) , and V↑

h̃
 as Ntail(𝜇(h̃), 𝜎2(h̃), 𝛼(h̃)).

In Example  1 we find the lower bound of the prob-
ability of workload carry-over from state 2 and h̃ = [0, 1] as 
p↓
co
(2, [0, 1]) = p

↓

in
(2, [0, 1]) ⋅ ℙ(N(2, 1) > 2) = 0.5 ⋅ p

↓

in
(2, [0, 1]) . The upper bound 

is p↑
co
(2, [0, 1]) = p

↑

in
(2, [0, 1]) ⋅ ℙ(Ntail(2, 1, 0) > 2) ≈ 0.51 ⋅ p

↑

in
(2, [0, 1]).

The lower p↓
in
(s, h̃+s) and upper p↑

in
(s, h̃+s) bounds on the joint probability a job 

arriving in s resulting in h̃+s are:

Returning to Example  1 and the gray accumulation sequence in 
Fig.  2, we have the probability of a job arriving in state 1 with carry-
in from one task period in state 2. The lower bound on this probability is 
p
↓

in
(1, [1, 1]) = p↓

co
(2, [0, 1]) ⋅ m2,1 = 0.7 ⋅ p↓

co
(2, [0, 1]) . In this case, the sum has 

only one term since only h̃ = [0, 1] in the first period can lead to h̃ = [1, 1] and 
s = 1 in the second period. The upper bound is derived in the same manner as 
p
↑

in
(1, [1, 1]) = 0.7 ⋅ p↑

co
(2, [0, 1]) . The derivations from Eqs. (27), (25) and (23) can 

be combined, giving p↓
in
(1, [1, 1]) ≈ 0.0306 ⋅ p

↓

wd
(1) + 0.0131 ⋅ p

↓

wd
(2) . Combining 

Eqs. (28), (26) and (24) gives p↑
in
(2, [1, 1]) ≈ 0.0313 ⋅ p

↑

wd
(1) + 0.0134 ⋅ p

↑

wd
(2).

(25)p↓
co
(s, h̃) = p

↓

in
(s, h̃) ⋅ ℙ(X > n ⋅ Q)

(26)p↑
co
(s, h̃) = p

↑

in
(s, h̃) ⋅ ℙ(Y > n ⋅ Q)

(27)p
↓

in
(s, h̃+s) =

S∑
sp=1

p↓
co
(sp, h̃) ⋅ msp,s

(28)p
↑

in
(s, h̃+s) =

S∑
sp=1

p↑
co
(sp, h̃) ⋅ msp,s

.
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4.6 � Bounds on the probability of workload depletion

The probability of having no work remaining at the end of the task period pwd for 
each state are used in Eqs. (23) and (24) to derive pin bounds for jobs arriving at idle 
points. These state-wise workload depletion probabilities pwd are propagated to all 
pin in the workload accumulation process via Eqs. (25)–(28).

We do not know the true value of the probability of workload depletion p∗
wd

 . This 
section outlines how to derive bounds for pwd by observing bounds of state-wise 
sums on pin.

Let h̃ ∈ (s, i) denote the set of accumulation vectors in state s at task period i from 
the last idle point. We now define p↓Σ

in
(s,N, pwd) , the sum of the lower bounds on pin 

associated with all accounted accumulation vectors in s up until task period N from 
the last idle point. In other words, this is a lower bound on the joint probability of a 
randomly selected job arriving in s and at most N from the last idle point.

Observation 4  Assume the exact p∗
wd

 is known and used as p↓
wd

 in Eq.  (23). Then 
p
↓Σ

in
(s,N, pwd) ≤ �(s),∀s,∀N.

We denote the error in p↓Σ
in

 resulting from using the Gaussian V↓ lower workload 
distribution bounds instead of the true workload distributions as e(p↓Σ

in
).

We introduce �(s)N as the joint probability of a job arriving in s more than N task 
periods after the last idle point.

Observation  4 is illustrated in Fig.  9, where the valid region of p↓Σ
in

 is displayed 
assuming p∗

wd
 is input in Eq. (23).

We define an upper bound on the joint probability of a randomly selected job 
arriving in s and at most N from the last idle point as p↑Σ

in
(s,N, pwd) in Eq. (31).

Observation 5  Assume the true probability of workload depletion p∗
wd

 is known. 
Using this value in Eq. (24), we have p↑Σ

in
(s,N, pwd) ≥ �(s) − �(N).

Let e(p↑Σ
in
) denote the error introduced by replacing the true workload distribution 

with the upper bounding partial Gaussian distribution. The valid region of p↑Σ
in

 given 
from Observation 5 is displayed in Fig. 10.

Observations 4 and 5 imply that the true probability of workload depletion must 
lead to p↓Σ

in
 in the region marked in Fig. 9 and p↑Σ

in
 in the region marked in Fig. 10. 

(29)p
↓Σ

in
(s,N, pwd) =

N∑
i=1

∑
h̃∈(s,i)

p
↓

in
(s, h̃)

(30)𝛽(s)N =

∞∑
i=N+1

∑
h̃∈(s,i)

pin(s, h̃)

(31)p
↑Σ

in
(s,N, pwd) =

N∑
i=1

∑
h̃∈(s,i)

p
↑

in
(s, h̃)
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The state-wise maxima of pwd leading to any point along the lines illustrated as the 
upper and right lines in Fig. 9 upper bounds p∗

wd
.

Theorem 5  An upper bound p↑
wd

 on the probability of workload depletion is derived 
by taking the state-wise maxima of pwd leading to p↓Σ

in
(s) ≤ �(s),∀s , and where there 

is inequality in at most one s.

Proof  From Eqs. (23), (25) and (27) it follows that p↓
in
(s, h̃) is a linear combination 

of pwd(s) . As is clear from Eq.  (29), p↓Σ
in
(s) is also a linear combination of pwd(s) , 

and it holds for some positive Ai,s that:

Starting from the true workload depletion probability p∗
wd

 we increase an arbitrary 
state dimension j of pwd(j) by an amount �s,j until p↓Σ

in
(s, pwd) reaches a hyperplane 

defined by �:

At the first hyperplane we encounter min(�s,j)∀s , which gives p↓Σ
in
(i) ≤ �(i),∀i ≠ s.

The true p∗
wd

 results in p↓Σ
in
(s) ≤ �(s) . Therefore, all pwd resulting in the point with 

equality for all s upper bounds p∗
wd

 in at least one state dimension due to the linear 
combination. Assume that pwd resulting in this point does not upper bound p∗

wd
 for 

state dimension i, pwd(i) < p∗
wd
(i) . In this case, an upper bound of p∗

wd
(i) results in a 

point on one of the hyperplanes. The hyperplane separating the region resulting from 
upper bounds in this dimension from the region resulting from underestimates in 
this dimension crosses at least one of the hyperplanes described by p↓Σ

in
(s) ≤ �(s),∀s , 

with inequality in at most one s . Illustrating in Fig. 9 the result from the upper bound 

(32)p
↓Σ

in
(s, pwd) =

S∑
i=1

Ai,s ⋅ pwd(i)

p
↓Σ

in
(s, pwd) = Aj,s(p

∗
wd
(j) + �s,j) +

S∑
i=1,i≠j

Ai,sp
∗
wd
(i) = �(s)

Fig. 9   An illustration of the possible valid region of p↓Σ
in

 for two states, if the true probabilities of work-
load depletion would be used as p↓

wd
 in Eq. (23)
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in this dimension as the black dot, two possible hyperplanes that separate the regions 
are displayed with dotted lines. This concludes our proof. 	�  ◻

Analogously, we derive a lower bound on the workload depletion probability pwd . 
The state-wise minima of pwd resulting in p↑Σ

in
 on the lower and left lines illustrated 

in Fig. 10 lower bound p∗
wd

.
The endpoints are adjusted if the pwd for a state is lower than 0 or higher than 1. 

As p↓Σ
in
(s) and p↑Σ

in
(s) are linear combinations of pwd(s) we only need to consider the 

endpoints.
Relating to Example  1, we have seen that the probability of a job arrival in 

state  2 after an idle point at least p↓
in
(2, [0, 1]) = 0.0875 ⋅ p

↓

wd
(1) + 0.0375 ⋅ p

↓

wd
(2) . 

The same derivation for a job arrival in state 1 after an idle point gives 
p
↓

in
(1, [1, 0]) = 0.7875 ⋅ p

↓

wd
(1) + 0.0875 ⋅ p

↓

wd
(2) . From simulation we have 

the probability of jobs arriving with h̃ longer than 1 as �(1)1 ≈ 0.093 for state 1 
and �(2)1 ≈ 0.026 for state 2. We solve the linear equation systems below for 
(i, j) = (0, 0), (1, 0) and (0, 1) to get candidates for p↑

wd
.

In this case, with only the jobs arriving at idle points, the equation system for 
(i, j) = (0, 0) , the upper right corner in Fig. 9, gives the solution p↑

wd
(1) = p

↑

wd
(2) = 1 

that is the highest possible bound. For the lower bound of pwd , we have the same 
linear equation system in the special case when we only consider the accumulation 
vectors after an idle point. This is because Eqs. (23) and (24) only differ in the work-
load depletion probability bounds. We now solve the system for (i, j) = (1, 1), (1, 0) 
and (0,  1). For (i, j) = (1, 1) , the lower left corner in Fig.  10, we get the candi-
dates pwd(1) ≈ 0.94 and pwd(2) ≈ 0.44 . For (i, j) = (1, 0) we get pwd(1) ≈ 0.84 
and pwd(2) ≈ 1.4 . This point is invalid since pwd(2) > 1 . We find the j, 0 < j < 1 

(33)0.7875 ⋅ pwd(1) + 0.0875 ⋅ pwd(2) = 0.875 − i ⋅ 0.093

(34)0.0875 ⋅ pwd(1) + 0.0375 ⋅ pwd(2) = 0.125 − j ⋅ 0.026

Fig. 10   An illustration of the possible valid region of p↑Σ
in

 for two states, if the true probabilities of work-
load depletion would be used as p↑

wd
 in Eq. (24)
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where (i, j) = (1, j) gives pwd(2) = 1 , and at this point we have pwd(1) ≈ 0.88 . For 
(i, j) = (0, 1) we get pwd(1) ≈ 1.1 and pwd(2) ≈ 0.064 . This point is also invalid, 
and we search along the line i, 0 < i < 1, j = 1 for the point where pwd(1) = 1 . We 
have pwd(2) ≈ 0.31 . We can now assign the state-wise minima for the lower bound: 
p
↓

wd
(1) ≈ 0.88 and p↓

wd
(2) ≈ 0.31.

4.7 � Bounds on the probability of longer workload accumulation

In Eq. (30), we defined �(s)N as the joint probability of a job arriving in s with at 
least N elapsed since the last idle point. The values of �(s)N were used in obtaining 
the bounds of workload depletion for the different states. In this section we outline 
how to find bounds for �(s)N , given safe bounds �(s)N−1 . As all pin are non-nega-
tive, �(s)N decreases monotonically with N . For each period, �(s)N is at most �(s)N−1 
minus the lower bound on the probability of a job arriving in s N task periods after 
an idle point, i.e.

Further, �(s)N is at most the stationary probability �(s) minus the lower bound on the 
probability of a job arriving within N task periods after an idle point, i.e.

Safe bounds �(s)N are obtained by taking the minimum of right-hand sides of Ine-
qualities (35), and (36).

We return to Example 1 and consider the probability of jobs arriving in state 1 with 
accumulation vectors past 2 task periods, that is �(1)2 . We have �(1)1 ≈ 0.093 from 
simulation, the lower bound on the probability of a job arriving in state 1 with accu-
mulation vector [1,  1] as p↓

in
(1, [1, 1]) ≈ 0.031 ⋅ p

↓

wd
(1) + 0.013 ⋅ p

↓

wd
(2) and with 

accumulation vector [2, 0] p↓
in
(1, [2, 0]) ≈ 0.016 ⋅ p

↓

wd
(1) + 0.0018 ⋅ p

↓

wd
(2) . Entering 

these values in Eq.  (35) we get �(1)2 ⪅ 0.047 . Using Eq.  (36) gives �(1)2 ⪅ 0.11 , 
so we use �(1)↑

2
≈ 0.047 in the search for bounds on pwd in the next accumulation 

period.

4.8 � Upper bounding the deadline miss probability

Finally, we derive an upper bound on a randomly selected job’s expected deadline 
miss probability as defined in Eq.  (6). We derive an upper bound p↑

dm
(s, h̃) on the 

deadline miss probability pdm(s, h̃) of a job arriving in state s with the job arrival 

(35)𝛽(s)N ≤ 𝛽(s)N−1 −
∑

h̃∈(s,N)

p
↓

in
(s, h̃) = 𝛽(s)

↑a

N

(36)𝛽(s)N ≤ 𝜉(s) −

N∑
i=1

∑
h̃∈(s,i)

p
↓

in
(s, h̃) = 𝛽(s)

↑b

N

(37)�(s)
↑

N
= min(�(s)

↑a

N
, �(s)

↑b

N
)
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resulting in the accumulation vector h̃ . This bounds the deadline miss probability 
of all jobs, resulting in accumulation sequences h corresponding to h̃ where the 
sequence ends in s . The random variable Y ∼ V

↑

h̃
 upper bounds the pending work dis-

tribution of these jobs. p↑
dm
(s, h̃) is the probability that this work exceeds the avail-

able computation time for the job until the deadline k ⋅ Q , i.e.:

The distribution V↑

h̃
 is the upper bounding distribution Ntail(𝜇(h̃), 𝜎2(h̃), 𝛼(h̃, s)) , as 

shown in Theorem 1.
The probability of randomly selecting a job arriving in state s with workload 

accumulation captured by h̃ is the joint probability pin(s, h̃) . The upper bound of 
this probability, p↑

in
(s, h̃) was derived in Sect. 4.5. We derive a bound of the expected 

deadline miss probability conditioned on being in a state s by considering all job 
arrivals in s within N task periods from the last idle point, that is with h̃ of length 
up to N . The deadline miss probability of jobs arriving more than N task periods 
from the last idle point is upper bounded by 1. The probability of randomly select-
ing a job arriving more than N task periods from the last idle point is upper bounded 
by �(s)↑

N
 . The probability of randomly selecting a job arriving in s is the stationary 

probability �(s) . We upper bound the expected deadline miss probability in s by:

In our example, we derive for state 1 the first term �(1)
↑

2

�(1)
≈

0.047

0.875
≈ 0.054 and the sec-

ond term 
∑

h̃∈([1,0],[1,1],[2,0]) p
↑

in
(1,h)⋅p

↑

dm
(1,h)

𝜉(1)
≈

0.875⋅10−9+0.018⋅3.4⋅10−7+0.045⋅0.0073

0.875
≈ 3.7 ⋅ 10−4.

Theorem 6  The expected deadline miss probability DMP of a randomly selected job 
is upper-bounded by p↑

dm
 , i.e., DMP ≤ p

↑

dm
, where

Proof  The deadline miss probability Eq. (38) is an upper bound on the deadline miss 
probability of a job arriving in s and resulting in h̃ , because Ntail(𝜇(h̃), 𝜎2(h̃), 𝛼(h̃, s)) 
upper bound on the workload distribution as shown in per Theorem 1.

The expected deadline miss probability of a randomly selected job arriving in s 
is upper bounded by p↑

dm
(s) as in Eq. (39). For jobs arriving in s within N since the 

last idle point, Eq. (38) upper bounds pdm(s, h̃) , and pin(s, h̃) is an upper bound on 
the probability of randomly selecting a job arriving in state s and resulting in h̃ . The 
probability of randomly selecting a job arriving in s more than N from the last idle 

(38)p
↑

dm
(s, h̃) = ℙ(Y > k ⋅ Q)

(39)p
↑

dm
(s) =

𝛽(s)
↑

N

𝜉(s)
+

∑N

i=1

∑
h̃∈(s,i) p

↑

in
(s, h̃)p

↑

dm
(s, h̃)

𝜉(s)
.

(40)p
↑

dm
=
∑
∀s

(
𝛽(s)

↑

N
+

N∑
i=1

∑
h̃∈(s,i)

p
↑

in
(s, h̃)p

↑

dm
(s, h̃)

)
.
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point is upper bounded by �(s)↑
N

 , and 1 upper bounds pdm(s, h̃) for these jobs. We 
divide by �(s) as per the definition of conditional probability.

We apply the law of total probability on Eq.  (39) over all the states s to obtain 
Eq. (40). 	�  ◻

In our example we have �(1)
↑

2
≈ 0.047 and �(2)

↑

2
≈ 0.011 , resulting in 

the first term of Eq.  (40) as 0.058. In the second term we have for state 2 ∑
h̃∈([0,1],[1,1],[0,2]) p

↑

in
(2, h) ⋅ p

↑

dm
(2, h) ≈ 0.125 ⋅ 0.024 + 0.045 ⋅ 0.16 + 0.019 ⋅ 0.16   . 

Summing with the terms of state one, the resulting sum is approximately 0.0066. 
With only two accumulation periods accounted for, the largest part of the bound 
stems from the first term, where the deadline miss probability is set to 1 for longer 
accumulation vectors.

5 � Iterative workload accumulation

As illustrated in Fig. 3, the steps described in Sect. 4 are applied iteratively, succes-
sively including jobs arriving with a longer time from the last idle point in the analy-
sis. The process ends when one of the following conditions is met: 

1.	 For each state both of the following hold: 

(a)	 The upper bound on the probability of workload depletion has stopped 
decreasing and started increasing.

(b)	 The lower bound on the probability of workload depletion has stopped 
increasing and started decreasing.

2.	 The process has reached a maximum number of accumulated periods.

If the bounds on the workload depletion probability converge for each state, or 
if the region within the bounds starts to grow, the first condition is met. Instead 
of performing the convolution in each accumulation period, the upper and lower 
bounds on the workload distribution are used, introducing an error. The white 
space between the valid region and the lines to use in searching for bounds in 
Figs.  9 and 10 illustrate these errors. When these errors increase, the distance 
between the search region for our bounds and the region resulting from the 
true workload depletion probabilities grows. For the upper bounds, illustrated 
in Fig.  9, the distance between the search region and the valid region may still 
decrease if the increase due to this error is compensated by a decrease in � . In the 
case of the lower bounds, illustrated in Fig. 10, a larger error leads to a smaller 
value for the lower bound. The lower bounds are used in the calculations of �↑ 
in the next accumulation period, Eq. (37). Smaller lower bounds lead to a larger 
�↑ . This further increasing the distance between the valid region and the bound 
search region, as �↑ is used to determine the search region. This may cause p↓

wd
 

and �↑ to diverge.
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It may be the case that the workload depletion probability bounds diverge from 
the beginning. This may be caused by insufficient computational resources allocated 
to the task or too large errors introduced in the bound calculations. It may also be 
the case that the workload depletion probability bounds converge slowly or converge 
for one or more states while they diverge for others. In these cases, the process stops 
when the second condition is fulfilled.

We apply the iterative process to the following example:

Example 2 

The stationary probability for state 1 is 0.875, and for state 2 it is 0.125. The transi-
tion matrix and stationary probabilities are identical to Example 1. In the CBS of 
this example, there are n = 4 server periods in one task period, and the task is guar-
anteed Q = 8 time units of computation time in each server period. The deadline is 
defined by k = 8 server periods.

State 1 in Example 2 could imply normal operation, and state 2 an exceptional 
mode. While in normal operation the task remains there with probability 0.9, 
but when the task is in the exceptional mode, there is a probability of 0.3 that it 
remains there. The initial values of probability of a randomly selected job arriving 
with carry-in workload from at least one task period, �1 are obtained from simula-
tion. Execution times are generated from the Markov Model and fed into a CBS 
simulator with the specified server reservation and period ratio. This results in 
�1 = (0.1278, 0.0442) for states 1 and 2, respectively. Figure 11 illustrated the evo-
lution of �N during the workload accumulation process compared to probabilities 
of jobs arriving in states 1 and 2 at least N from the last idle point resulting from 
simulation.

The bound regions for the probabilities of workload depletion of the two states 
along the accumulation process are shown in Fig. 12. Estimates of the probabilities 
of workload depletion obtained from simulation are also displayed. The workload 
accumulation continues until the maximum number of task periods, set to 20 for this 
example.

The bounds on the deadline miss probabilities for the two states along the accu-
mulation process are shown in Fig. 13. The second terms of Eq. (39), the parts of 
the bounds resulting from the weighted sum of the accumulation vectors we have 
accounted for, are shown as dotted. In this example, the second terms approach the 
pdm from simulation. The major part of the introduced pessimism originates in � , the 
first terms of Eq.  (39). Estimates of the deadline miss probabilities obtained from 
simulation are also displayed in Fig. 13.

5.1 � Time complexity of the iterative process

In Sect. 4.4, we have seen that the number of accumulation vectors with length N 
in a S-state model grows as O(NS−1) . In the iterative procedure, all accumulation 

S = 2, M =

(
0.9 0.1

0.7 0.3

)
, C = {N(20, 9),N(40, 16)}.
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vectors up until length N have been considered at iteration step N , so the time 
complexity of the entire iterative process is O(NS) . In the current implementa-
tion, all vectors up until length N are considered in the iteration step N , giving a 
time complexity of O(NS+1) . By storing intermediate results from previous itera-
tions, this can be reduced to O(NS) . The number of states is application depend-
ent. In the robotic vision task of Frías et  al. (2017), 4 discrete-emission states 
are identified, and in the control task in our evaluation 6 discrete-emission or 8 

Fig. 11   Bounds on � for the two states as solid lines, along with probability estimates of longer accumu-
lation histories obtained from simulation as dashed lines. (Log scale)

Fig. 12   The region between the upper and lower bounds on the per-state probability of workload deple-
tion in the example, along with the estimates obtained from simulation as a dashed line

Fig. 13   The bounds on the deadline miss probabilities during the workload accumulation process of the 
example, along with results from simulation. (Log scale.)
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Gaussian-emission states are found. In the video decompression task evaluated in 
Friebe et al. (2020) almost 50 Gaussian-emission states are identified.

6 � Reducing the number of states by merging

As the time complexity of the iterative process up until the accumulation period 
N with a S-state model is O(NS) , it is clear that if the number of states can be 
reduced, this would have a great effect on the bound computation time. This sec-
tion outlines how to reduce the number of states by merging while ensuring a safe 
bound on the deadline miss probability.

6.1 � Modified Markov chain execution times

In this section we define a modified execution time model, where an upper bound 
on the execution time distribution is defined by ⟨𝕊,M,ℂ⟩ . As in the model defined 
in Sect.  4.1, � = {1, 2,… , S} is the set of S states, S ∈ ℕ , and M is the S × S 
state transition matrix. ℂ = {C1,C2,… ,CS} is the set of upper bounding execu-
tion time distributions, or emission distributions, related to the respective state. 
These are modeled as partial Gaussian distributions with mean �s and variance 
�2
s
 of the Gaussian distribution, and �s as the starting point of the distribution, i.e. 

Cs ∼ Ntail(�s, �
2
s
, �s) . Setting �s = −∞,∀s , gives the model as defined in Sect. 4.1.

6.2 � Merging distributions

Definition 11  We define a merged partial Gaussian distribution 
Ntail

m
(�1,�2, �

2

1
, �2

2
, �1, �2) , of two partial Gaussian distributions Ntail(�1, �

2

1
, �1) and 

Ntail(�2, �
2

2
, �2) , as:

In the following, we show that the merged partial Gaussian distribution is greater 
than each of the distributions used in the construction, as outlined in Theorem 7. We 
show this step-by-step, upper bounding each of the two partial Gaussian distribu-
tions until both reach the merged distribution. We provide a lemma and illustration 
for each step below.

Theorem  7  The merged partial Gaussian distribution defined by 
Ntail

m
(�1,�2, �

2

1
, �2

2
, �1, �1) is an upper bound of each of the two distributions 

Ntail(�1, �
2

1
, �1) and Ntail(�2, �

2

2
, �2).

Ntail
m
(�1,�2, �

2
1
, �2

2
, �1, �2) = Ntail(max(�1,�2), max(�2

1
, �2

2
), max(�1,�2)

+max(0, �1 − �1, �2 − �2))
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In Lemma 8, we show that shifting the mean of a partial Gaussian distribution to 
a higher value while keeping the distance between the mean and the starting point � 
unchanged gives an upper bounding distribution. This is illustrated in Fig. 14.

Lemma 8  The partial Gaussian distribution Ntail(�1, �
2,�1 + �Δ) ≥ N tail

(�2, �
2,�2 + �Δ) if �1 ≥ �2.

Proof  From Definition  2, we know that the scaling factor of the partial Gauss-
ian distribution depends only on �Δ and �2 that are equal for the two distribu-
tions. From this we conclude that the CDF of Ntail(�1, �

2,�1 + �Δ) is the CDF 
of Ntail(�2, �

2,�2 + �Δ) translated �1 − �2 to the right. Therefore the CDF of 
Ntail(�1, �

2,�1 + �Δ) is always below that of Ntail(�2, �
2,�2 + �Δ) . 	�  ◻

In Lemma 9, we show that increasing the variance to a higher value while keep-
ing the mean and starting point unchanged gives an upper bounding distribution if 
the starting point � is at the mean or higher. This is illustrated in Fig. 15.
Lemma 9  The partial Gaussian distribution Ntail(�, �2

1
, �) ≥ Ntail(�, �2

2
, �) if 

�2

1
≥ �2

2
 and � ≥ �.

Proof  Let �2

1
= k ⋅ �2

2
, k ≥ 1 . Since the partial Gaussian functions are normalized to 

integrate to 1, the PDF of Ntail(�, �2

2
, �) at x ≥ � can be written as C2 ⋅ e

− (x−�)2

2�2

2

 , with 

C2 as the normalization factor. Analogously we have the PDF of Ntail(�, �2

1
, �) as 

C1 ⋅ e
− (x−�)2

2k2⋅�2

2

 , with C1 as the normalization factor. Let us evaluate the rate of decline 
in the PDF s between x and x + Δx , Δx > 0 . Since � ≥ � the PDF is declining. Divid-
ing the PDF at x with the PDF at x + Δx results in exponential functions with the 
coefficients (Δx⋅(Δx+2(x−�))

2�2

2

 and (Δx⋅(Δx+2(x−�))
2k2⋅�2

2

 respectively. The PDF associated with 

�2

1
= k ⋅ �2

2
 has a lower rate of decrease than �2

2
 . This implies that the CDF associ-

ated with �2

2
 has a more rapid growth from 0 and remains above the CDF associated 

with �2

1
 . 	� ◻

With these lemmas in place, we can prove Theorem  7, restated here for 
convenience.

Fig. 14   CDFs of two partial Gaussian distributions as in Lemma 8. In this figure �1 = 2 , �2 = 1 , �2 = 1 
and �Δ = −1
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Theorem  7  The merged partial Gaussian distribution defined by 
Ntail

m
(�1,�2, �

2

1
, �2

2
, �1, �1) is an upper bound of each of the two distributions 

Ntail(�1, �
2

1
, �1) and Ntail(�2, �

2

2
, �2).

Proof  In the first step, we apply Lemma 8 and upper bound the execution times of 
the two distributions as:

and:

In a second step we apply Lemma 4 and derive upper bounds on the distributions as:

and:

In a third step, we apply Lemma 9 to upper bound:

and:

This concludes our proof. 	� ◻

Ntail(�1, �
2
1
, �1) ≤ Ntail(max(�1,�2), �

2
1
,max(�1,�2) + �1 − �1)

Ntail(�2, �
2
2
, �2) ≤ Ntail(max(�1,�2), �

2
2
,max(�1,�2) + �2 − �2)

Ntail(max(�1,�2), �
2
1
,max(�1,�2) + �1 − �1)

≤ Ntail(max(�1,�2), �
2
1
,max(�1,�2) + max(0, �1 − �1, �2 − �2))

Ntail(max(�1,�2), �
2
2
,max(�1,�2) + �2 − �2)

≤ Ntail(max(�1,�2), �
2
2
,max(�1,�2) + max(0, �1 − �1, �2 − �2)

Ntail(max(�1,�2), �
2
1
,max(�1,�2) + max(0, �1 − �1, �2 − �2))

≤ Ntail(max(�1,�2),max(�
2
1
, �2

2
),max(�1,�2) + max(0, �1 − �1, �2 − �2))

Ntail(max(�1,�2), �
2
2
,max(�1,�2) + max(0, �1 − �1, �2 − �2))

≤ Ntail(max(�1,�2),max(�
2
1
, �2

2
),max(�1,�2) + max(0, �1 − �1, �2 − �2))

Fig. 15   CDFs of two partial Gaussian distributions as in Lemma 9. In this figure � = 1 , �2

1
= 4 , �2

2
= 1 

and � = 1
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6.3 � Merging states in the Markov model

Here, we describe how to merge two states in the modified execution time model. 
Without loss of generality, we describe how to merge the last two states, S − 1 and S , 
to reduce the number of states from S to S − 1 . States can be reordered to merge any 
two states, and the process can be repeated to merge any number of states.

Recall that the M element ma,b represents the conditional probability of being in 
state b at task period i + 1 , given that at task period i, the state is a. Let ma,b rep-
resent an element in the transition matrix prior to merging and mm

a,b
 an element in 

the transition matrix after merging. In the new (S − 1) × (S − 1) , the element val-
ues are calculated according to Eq.  (41). All mm

a,b
, a < S − 1, b < S − 1 remain the 

same as ma,b because these are the transition probabilities of states unaffected by the 
merge. For mm

a,S−1
, a < S − 1 , that is the probability of moving from an unchanged 

state into the merged state, the transition probabilities into the merged states are 
summed. mm

S−1,b
, b < S − 1 is the probability of moving from the merged state into 

an unchanged state. The transition probabilities from the merged state are weighted 
means of the transition probabilities for the original states, weighted with the sta-
tionary probabilities. Finally, mm

S−1,S−1
 is the probability of staying in the merged 

state. For each of the merged states, we sum the probability of staying in the state 
or moving to the other of the merged states. A weighted mean is calculated for these 
sums with the stationary probabilities of the states.

In the merged Markov model, we have emission distributions 
Cs ∼ Ntail(𝜇s, 𝜎

2
s
, 𝛼s), s < S − 1 . For state S − 1 the emission distribution is the 

merged partial Gaussian distribution CS−1 ∼ Ntail
m
(�S−1,�S, �

2

S−1
, �2

S
, �S−1, �S).

In the merged Markov Model, transition probabilities remain unchanged, and 
emission distributions are unchanged or upper-bounded. The merged model is more 
pessimistic, and a DMP bound derived with the proposed method is safe. Probabili-
ties of workload depletion are lower compared to the model prior to the merge. For 
jobs associated with a certain accumulation vector, the derived probability of dead-
line miss and the proportion of those jobs contributing carry-over into the next task 
period are the same or higher. The probability of job arrivals resulting in longer 
accumulation vectors, � is higher for the merged model compared to the original for 
the same number of accumulation periods N.

(41)mm
a,b

=

⎧
⎪⎪⎨⎪⎪⎩

ma,b a < S − 1, b < S − 1

ma,S−1 + ma,S a < S − 1, b = S − 1
𝜉(S−1)⋅mS−1,b+𝜉(S)⋅mS,b

𝜉(S−1)+𝜉(S)
a = S − 1, b < S − 1

𝜉(S−1)⋅(mS−1,S−1+mS−1,S)+𝜉(S)⋅(mS,S−1+mS,S)

𝜉(S−1)+𝜉(S)
a = S − 1, b = S − 1
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7 � Evaluation

7.1 � Goal of the evaluation

The goal of the evaluation is to compare the obtained bounds with empirical dead-
line miss rates to verify that the method is applicable for a realistic use case, to see 
how the bound evolves with the workload accumulation iterations, and to see how 
different server parameters and deadlines affect the pessimism. We compare to state 
of the art deadline miss probability estimates (Frías et al. 2018). We also compare 
with simulation of the fitted Gaussian-emission Markov model, to evaluate the valid-
ity of this model for the use case, and to see the pessimism for a particular execution 
time state. Further, we show an estimate of the deadline miss probability assuming 
independence to see the effect of dependence in the use case.

7.2 � Use case and test setup

We evaluated the proposed deadline miss probability bound with a control task for a 
Furuta pendulum, a rotary inverted pendulum (Vreman et  al. 2021). The control task 
implements a square root Kalman filter  (Ljung 1999) estimating angles and angular 
velocities near the pendulum upright position and a PD controller for stabilizing the pen-
dulum upright at angle 0 of the arm. A separate task simulates the pendulum dynam-
ics and provides an asynchronous TCP server. The control task connects to the server 
to retrieve arm and pendulum angles and send the control signal. The control task runs 
periodically with a frequency of 500 Hz. Tests were performed on a Raspberry Pi 3B+ 
with a PREEMPT_RT-patched version of Raspberry Pi OS. The control task was pinned 
to a core set up as an exclusive cpuset and scheduled with the Linux CBS imple-
mentation SCHED_DEADLINE. The simulator task was pinned to another core using 
cpuset. It runs periodically with the same frequency and was FIFO scheduled with 
the highest priority. The TCP server of the simulator runs in a separate thread. All cores 
were run with scaling governor performance. USB Ethernet and WiFi were disabled 
during the tests. 

The ftrace framework was used to record sched events and collect nanosec-
ond-precision timestamps. The control task was scheduled with SCHED_DEAD-
LINE setup with high bandwidth and a long server period, resulting in each job 
finishing within the server period. The time from the sched_switch event where 
the task is switched in to the event where it is switched out was taken as the execu-
tion time of a job. In some rare occasions there are several sched_wakeup events 
recorded close to each other in the same period. There are 50,011 sched_wakeup 
events in the log from 50,000 periods. One of these is due to an extra wake up when 
finishing the task after all periods, but 10 are due to preemptions by kernel space 
tasks. In these cases, the execution time is taken as the sum of the time frames from 
switch in to switch out.
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Fig. 16   The recorded execution time trace of the control task

Fig. 17   The density distribution of the execution times starting at job 2000

Fig. 18   The autocorrelation of the execution times sequence starting at job 2000
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7.3 � Test setup

Recorded execution times from the control task running 50,000 periods are shown 
in Fig. 16. There was a run-in period with a higher proportion of execution times at 
0.5 ms at the beginning of the trace. The execution times of the first 2000 jobs were 
discarded before fitting the HMM to the trace. The reason for this is that we want to 
perform the evaluation under the given assumptions. One assumption is stationarity, 
and therefore we exclude this part that appears to be a transient period. In Fig. 17, 
we display the density distribution of the execution time trace starting at job 2000. 
The autocorrelation of the trace from job 2000 is shown in Fig. 18.

The evaluation was performed with three different configurations of server budget 
and period ratios: 

1.	 Q = 0.06 ms, n = 5 , k1 = 8 , k2 = 10,
2.	 Q = 0.07 ms, n = 4 , k1 = 6 , k2 = 8 , and
3.	 Q = 0.08 ms, n = 4 , k1 = 6 , k2 = 8.

Two relative deadlines were evaluated for each of these configurations.
The control task was scheduled with SCHED_DEADLINE configured with the 

different server budgets and period ratios. The task was configured with the rela-
tive deadline and logged the number of deadline misses in each 500-job-interval. 
During these tests, sched events are also recorded with the ftrace framework, 
to avoid that any introduced overhead by the tracing causes higher bounds and esti-
mates compared to the empirical results. These recorded traces are not used further.

This small but realistic use case illustrates the method’s applicability. https://​
github.​com/​annaf​riebe/​ContMM_​RT_​Bound​DMP.1

7.4 � Markov model

The method outlined in Friebe et  al. (2020) was started with 10 initial states and 
identified an HMM with 8 states. The transition matrix is shown in Eq.  (42), and 
from this we conclude that the Markov Chain is irreducible. The resulting state 
means, standard deviations, and stationary probabilities are displayed in Table 3. The 
average computational requirement over a task period is about 0.164 ms, obtained 

Table 3   Means, standard deviation, and stationary probabilities of the fitted HMM states

State number 1 2 3 4 5 6 7 8

Mean (ms) 0.178 0.178 0.323 0.158 0.159 0.169 0.181 0.153
Standard deviation (ms) 0.002 0.012 0.091 0.003 0.002 0.007 0.003 0.002
Stationary probability 0.128 0.045 0.007 0.086 0.509 0.014 0.078 0.133

1  Omitted for anonymous review.

https://github.com/annafriebe/ContMM_RT_BoundDMP
https://github.com/annafriebe/ContMM_RT_BoundDMP
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from multiplying stationary probabilities with means and summing the products. 
The servers providing the lowest computational resource guarantee 0.28 ms compu-
tation time per task period, so all accumulation sequence Markov Chains are ergodic 
and we will have idle points in the server. The highest mean and standard deviation 
are observed in state 3. This state has a low stationary probability, only 0.7%, but the 
transition probability m3,3 of staying in state 3 from one round to the next is as high 
as 63%. This dependence increases the DMP in state 3 and overall.

7.5 � Evaluated Methods

Six different methods were compared:

•	 Linux-CBS: Empirical deadline-miss ratio. The control task was scheduled with 
Linux SCHED_DEADLINE configured with each setting of server budget Q , 
task to server period ratio n and evaluated with the different relative deadline to 
server period ratios k . The task period was 2 ms for all configurations, resulting 
in different bandwidths. 10 runs of the 50,000-job task were performed for each 
configuration. The empirical deadline miss ratio was calculated from deadline 
misses after the 2000-job run-in period.

•	 Sim-Cont: A deadline-miss probability derived by generating execution times 
from the fitted HMM and feeding them into a CBS simulator with the different 
server reservations, period ratios, and deadline configurations. A sequence of 106 
samples was generated from the continuous-emission Markov model described 
by Table 3 and Eq. (42).

•	 Ind: A deadline-miss probability derived by assuming independent execution 
times, i.e., generating execution times by randomly sampling from the recorded 
trace and feeding them into a CBS simulator with the different server reserva-
tions, period ratios and deadline configurations. A sequence of 106 samples was 
generated.

•	 PROSIT: A deadline-miss probability derived with PROSITool  (Frías et  al. 
2018). A 6-state discrete-emission HMM is fitted to the execution time trace, 
using a 10 μ s scaling factor for resampling. This HMM is evaluated with PROS-
IT’s solver for steady-state deadline-miss probabilities with the different CBS 
configurations.

•	 Bound-8: A deadline-miss probability bound derived from the fitted 8-state con-
tinuous-emission Markov model and the methods in Sect. 4. The HMM is char-

(42)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

.739 .051 .002 .003 .162 .001 .041 .001

.056 .350 .012 .000 .523 .008 .051 .000

.000 .310 .633 .003 .000 .044 .010 .000

.006 .000 .002 .408 .004 .054 .000 .526

.000 .038 .002 .003 .834 .001 .121 .000

.000 .000 .004 .681 .063 .225 .000 .028

.377 .011 .001 .000 .500 .000 .107 .003

.009 .001 .002 .296 .000 .038 .001 .654

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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acterized by Table 3 and Eq. (42). The maximum number of accumulation peri-
ods was set to 10. The �(s)1 for the first accumulation period were retrieved from 
the HMM simulation.

•	 Bound-2: A deadline-miss probability bound calculated according to Sect. 4 with 
a 2-state continuous-emission Markov model. The 2-state model was obtained 
from merging all states except State 3 from the 8-state model used for Bound-
8 as described in Sect. 6. The initial � values for the first accumulation period 
were retrieved from simulation with the merged 2-state model, and the maximum 
number of accumulation periods was set to 10.

Fig. 19   Evolution over 10 accumulation periods of the Bound-8 and Bound-2 according to Eq. (39) for 
the worst state, and according to Eq. (40) for the task overall, compared to the other methods listed in 
Sect. 7.5
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Bound-8 and Bound-2 are calculated as pdm for each state according to Eq. (39), 
and the overall bound according to Eq.  (40). The bounds for the state with the 
highest pdm of Bound-8 and Bound-2 are compared to the deadline miss ratio of 
this state from Sim-Cont, as the empirical DMR Linux-CBS and PROSIT do not 
provide per-state estimates.

7.6 � Results and discussion

The bounds on the deadline miss probability pdm derived along the workload accu-
mulation for the 8-state model and the 2-state model are shown in Fig. 19, together 
with the average DMRs of the executions under SCHED_DEADLINE, deadline miss 
probability estimates from HMM simulation, assuming independence, and derived 
with PROSITool.

Deadline miss probabilities derived with HMM simulation and PROSITool are 
higher than empirical DMRs, except for the CBS configuration 0.08/4/8. In this 
case, we observe pdm of 0.021% derived with Sim-Cont and 0.020% with PROSIT, 
compared to 0.058% for the empirical Linux-CBS. This may be caused by a low 
probability state that is not captured in the fitting of the Markov Models. It may also 
be due to chance. This configuration has the lowest number of deadline misses, and 
a larger number of runs with Linux-CBS may have been needed for a reliable DMR 
estimate.

We observe that HMM simulation Sim-Cont estimates are consistently close to 
the PROSIT results, which indicates that the continuous emission distribution HMM 
is a valid approximation in the evaluated use case.

The resulting Bound-8 bounds for the overall deadline miss probabilities are 
1.76–10 times higher compared to HMM simulation Sim-Cont. The bounds for the 
state with the highest deadline miss probability are 1.3–4.1 times higher. Higher uti-
lization and shorter relative deadlines give tighter bounds.

For the overall bounds of the merged model, Bound-2, they are 2.08–12.5 times 
higher than HMM simulation results Sim-Cont. Bounds for the state with the highest 
pdm are 1.3–5.2 times higher compared to the simulation results.

The number of states and the scaling factor need to be provided when fitting an 
HMM in PROSIT, and the number of states and the scaling factor need to be provided. 
For this evaluation, several combinations of these parameters were tested. For 6 states 
and scaling factor 10 μ s, 4 out of 6 states passed the PROSIT independence tests; 
this was the largest proportion found in the limited exploration. Some pessimism is 

Table 4   Time of the bound 
calculations with the 2-state 
and 8-state models for the 6 
configurations over 5 and 10 
accumulation periods

Bound calculation time Mean (s) Standard deviation (s)

Bound-2, 5 Accum. periods 0.0153 4.88 ⋅ 10−4

Bound-2, 10 Accum. periods 0.0552 4.10 ⋅ 10−3

Bound-8, 5 Accum. periods 1.00 0.0129
Bound-8, 10 Accum. periods 60.66 4.35
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introduced with PROSITool’s resampling. Tighter or optimistic results were obtained 
with some of the fitted PROSIT models explored. The calculation time for PROSIT is 
greatly affected by the range of execution time values in the input trace and the scaling 
factor. For example, taking the 6-state model and decreasing the scaling factor from 10 
to 1 μ s causes the computation time to increase from less than 0.5 s to about 20 min 
on our platform, a factor of 3000. The continuous approach has no resampling con-
cept, and the calculation time is independent of the range of execution time values. A 
direct comparison between the proposed bound and PROSIT has not been performed. 
The proposed bound is implemented in Python and PROSIT in C++. PROSITool’s 
computation time also varies a lot with the choice of scaling factor, and therefore, we 
assess that a direct comparison would not add much value to the evaluation.

In the different configurations, the time for the Bound-2 and Bound-8 calculations 
are logged for 5 and 10 accumulation periods, respectively. The means and stand-
ard deviations are shown in Table  4. The Python implementation of the Bound-8 
calculation for the 8-state model runs the first 5 accumulation periods in about one 
second and 10 accumulation periods in around one minute. With the 2-state bound 
Bound-2, the time required for an optimized implementation grows with the number 
of accumulation periods as O(N2) instead of O(N8) for 8 states. The non-optimized 
Python implementation of the bound calculation for the merged model runs in about 
55 ms for 10 accumulation periods.

In the evaluated use case, the tightest bound is already reached at 3–4 accumula-
tion periods. Already at accumulation over 5 periods, the 2-state model is about 65 
times faster than the 8-state model. At 10 accumulation periods, the 2-state model 
is more than 1000 times faster. Combining a low number of states with the use of 
accumulation vectors instead of accumulation sequences with ordering information 
provides a strong computational advantage.

Simulations and bounds of the state with the highest pdm show results 50–100 
times higher than the overall pdm . While this should not be conflated with the Worst-
Case Deadline Failure Probability, we believe that the concept of workload distribu-
tion per state is useful. In future work, we aim to develop the accumulation sequence 
approach relating to the probability of consecutive deadline misses.

In the evaluated use case, one state is identified with a much higher mean and 
variance than the others. It may be the case that this use case is especially well 
suited for state reduction into two states. Keeping the state with the highest mean 
and merging the others may add pessimism in cases where states are more similar to 
the state with the highest mean.

8 � Conclusions and future work

We have proposed a workload accumulation scheme starting from idle points to 
upper bound the deadline miss probability of a task. The task’s computation times 
are described by a Markov Model with Gaussian emission distributions, and it is 
running on a reservation-based server.

A Markov model with Gaussian emission distributions allows for higher fit-
ting process automation than discrete emission distributions, where the number 
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of states and a scaling factor must be provided. Contrary to the discrete case, the 
time required to obtain the bound is independent of the range of execution times 
in the analyzed sequence, and no scaling factor is needed.

Further, we proposed a method for state merging. The bound computation time is 
reduced by reducing the number of states by merging. The time complexity for obtain-
ing a bound for a model with S states considering N accumulation periods after an idle 
point is O(NS) . A bound is obtained early in the process and is updated successively.

The evaluation use case is a control task of a Furuta pendulum. The task is 
run with the Linux kernel implementation of CBS. The ratio of the number of 
missed deadlines to the total number of jobs is compared to the obtained bounds 
on the deadline miss probability. Bounds are derived from the fitted 8-state model 
and from a merged 2-state model obtained from the 8-state model. Furthermore, 
deadline miss probabilities for comparison are derived with a discrete emission-
HMM (Frías et al. 2018, 2017; Abeni et al. 2017), by simulation with the fitted 
HMM, and simulation assuming independence.

All bounds in the evaluation are higher than the simulation results. The overall 
bounds for the 8-state model are 1.76–10 times higher, and in the state with the 
highest deadline miss probability, the bounds are 1.3–4.1 times higher. The overall 
bounds obtained with the merged 2-state model are 2.08–12.5 times higher, and the 
bounds for the state with the highest deadline miss probability are 1.3–5.2 higher. 
All bounds are also safe compared to experimental deadline miss ratios. In the eval-
uation, the bound over 10 accumulation periods takes about 0.06 s to calculate for 
the 2-state model, but a minute for the 8-state model, an improvement of a factor 
1000. Combining the workload accumulation method with state number reduction 
by merging gives a strong computational benefit.

 In future work, it would be interesting to develop the workload accumulation 
approach to evaluate the probability of consecutive deadline misses, or extend the 
approach to support DAG-based tasks. The bounds could potentially be evaluated 
for use in an adaptive setting to monitor changes in the deadline miss probability to 
adapt the Quality-of-Service (QoS) level.
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