
Vol.:(0123456789)

Real-Time Systems
https://doi.org/10.1007/s11241-024-09431-7

Efficiently bounding deadline miss probabilities of Markov
chain real‑time tasks

Anna Friebe1  · Filip Marković1,2 · Alessandro V. Papadopoulos1 ·
Thomas Nolte1

Accepted: 16 September 2024
© The Author(s) 2024

Abstract
In real-time systems analysis, probabilistic models, particularly Markov chains, have
proven effective for tasks with dependent executions. This paper improves upon an
approach utilizing Gaussian emission distributions within a Markov task execution
model that analyzes bounds on deadline miss probabilities for tasks in a reservation-
based server. Our method distinctly addresses the issue of runtime complexity, prev-
alent in existing methods, by employing a state merging technique. This not only
maintains computational efficiency but also retains the accuracy of the deadline-
miss probability estimations to a significant degree. The efficacy of this approach is
demonstrated through the timing behavior analysis of a Kalman filter controlling a
Furuta pendulum, comparing the derived deadline miss probability bounds against
various benchmarks, including real-time Linux server metrics. Our results confirm
that the proposed method effectively upper-bounds the actual deadline miss prob-
abilities, showcasing a significant improvement in computational efficiency without
significantly sacrificing accuracy.

Keywords  Real-time systems · Hidden Markov model · Probabilistic schedulability
analysis · Deadline miss probability

 *	 Anna Friebe
	 anna.friebe@mdu.se

	 Filip Marković
	 fmarkovic@mpi-sws.org

	 Alessandro V. Papadopoulos
	 alessandro.papadopoulos@mdu.se

	 Thomas Nolte
	 thomas.nolte@mdu.se

1	 Mälardalen University, IDT, Box 883, 721 23 Västerås, Sweden
2	 Max Planck Institute for Software Systems (MPI-SWS), Paul‑Ehrlich‑Strasse, Building G 26,

67663 Kaiserslautern, Germany

http://orcid.org/0000-0002-7431-5529
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-024-09431-7&domain=pdf

	 Real-Time Systems

1  Introduction

Soft real-time systems permit limited deadline misses, impacting the Quality of
Service (QoS) (Clark et al. 1992) or Quality of Control (QoC) (Martí et al. 2002)
to a tolerable degree. The tolerance is often modeled as a constraint on the num-
ber of deadline misses to maintain an acceptable level of QoS or QoC (Buttazzo
et al. 2005). Findings from a recent survey by Åkesson et al. (2022) indicate a
predominant presence of soft real-time systems in the industry, underscoring the
significance of their analytical study.

Hidden Markov Models (HMMs) have been effectively utilized to model
execution times in systems with dependencies that exhibit regular variations.
An introduction to the HMM concept can be found in Rabiner (1989). Studies
like (Abeni et al. 2017; Frías et al. 2017) have employed Markov models with dis-
crete emission distributions, particularly in estimating the probability of missing
deadlines under a Constant Bandwidth Server (CBS). Additionally, continuous-
emission distributions have been explored by Friebe et al. (2020, 2021, 2023).

While HMMs with continuous emission distributions have been applied in
execution time estimation (Friebe et al. 2020, 2021), the extension to workload
distribution inference and deadline-miss probabilities has been a recent develop-
ment (Friebe et al. 2023). As in previous work (Abeni et al. 2017; Frías et al.
2017), this analysis is done with a reservation-based scheduling approach, that
allows for analysis of each server separately, due to the timing isolation property.
This newer exploration has shown potential but highlighted challenges in compu-
tational efficiency when dealing with complex systems.

Building upon these recent findings, our paper specifically targets the computa-
tional efficiency issue identified by Friebe et al. (2023). We propose an enhanced
method for bounding the deadline-miss probability of real-time tasks using
HMMs with continuous emission distributions. A key contribution of this work
is developing a state-merging technique that enhances computational efficiency in
terms of time and space complexity, where traditional methods are computation-
ally intensive or even infeasible (Sect. 6).

The evaluation, presented in Sect. 7, employs a task managing a Furuta pendu-
lum (Vreman et al. 2021). It compares the derived bounds with real-time deadline
miss ratios under Linux’s CBS implementation, SCHED_DEADLINE (Lelli et al.
2016), alongside estimates from a discrete-emission Markov Model (Frías et al.
2017, 2018), and simulation-based estimates.

The paper’s organization is as follows: Related work is reviewed in Sect. 2.
Section 3 defines the notation and system model. The execution time model and
methodology for deriving and analyzing the deadline miss probability bounds are
presented in Sect. 4. The iterative update process for the bounds is detailed in
Sect. 5. State reduction techniques and their impact on time complexity are dis-
cussed in Sect. 6. Section 7 showcases evaluations and results, and Sect. 8 con-
cludes the paper with a discussion on future work.

Real-Time Systems	

2 � Related work

The surveys by Davis and Cucu-Grosjean (2019a, 2019b) offer a detailed over-
view of the field of probabilistic schedulability and timing analysis in real-time
systems. Two of the many challenges highlighted in their surveys are the proba-
bilistic analysis of dependent tasks and the safe estimation of deadline-miss prob-
abilities (DMP) for such tasks.

The issue of dependence in execution-time distributions and its impact on the
potential unsound estimation of DMP when independence is assumed was ini-
tially identified by Tia et al. (1995). The importance of assuming independence
among jobs of the same task for deriving sound response time distribution was
first recognized by Díaz et al. (2002), while in the concluding remarks of their
paper, they restated the fact that many systems do not adhere to the independence
assumption. For this reason, a fundamental concept of stochastic pessimism for
proper upper-bounding of the execution-time distributions was explored by Diaz
et al. (2004). Over the years, several research directions have evolved to address
the above-mentioned issues.

One of the most used approaches was the one based on the probabilistic Worst-
Case Execution Time (pWCET), which is supposed to upper-bound the ground-
truth execution-time distribution of a job such that it can be safely used with
convolution and independence-assuming analytical approaches in spite of possi-
ble dependence with other jobs. In this line of research, Cucu-Grosjean (2013)
established the relation between the ground-truth execution-time distributions
and pWCET, while Davis et al. (2017) clarified the difference between the confi-
dence-based pWCET and the upper-bounding one. The surveys (Davis and Cucu-
Grosjean 2019a, b) also provide extensive investigation on the definition and use
of pWCETs. More recently, Bozhko et al. (2023) formalized a rigorous, axiomatic
definition of pWCET, using the Coq proof assistant.

Many probabilistic schedulability analyses have been proposed over the years
using pWCET and similar independence-assuming distributions for fixed-priority
fully-preemptive scheduling. von der Brüggen et al. (2018) used the Hoeffding
and Bernstein inequalities for the estimation of DMP, while Chen et al. (2019)
used Chernoff bound. Marković et al. (2021) contributed an optimal resampling
strategy and an efficient circular-convolution algorithm. Bozhko et al. (2021)
introduced a method based on Monte-Carlo sampling. In contrast, von der
Brüggen et al. (2021) suggested a method to approximate the DMP under Earliest
Deadline First (EDF) scheduling, accommodating dependencies across a limited
number of consecutive jobs. More recent work by Chen et al. (2022) corrected
an error in the critical-instant assumption commonly found in various independ-
ence-based methods. Zagalo et al. (2022) have developed queuing theory-based
approximations for the response-time distributions, while Markovic et al. (2022)
utilized the Berry–Esseen theorem to approximate response-time distributions. In
the context of other scheduler assumptions, Marković et al. (2018) provided prob-
abilistic analysis for limited-preemptive scheduling, which is a generalization
over fully and non-preemptive scheduling. Most recently, Günzel et al. (2023)

	 Real-Time Systems

proposed a probabilistic reaction time analysis for cause-effect chains based on
sporadic tasks.

The issue of dependence has also been addressed within the framework of
Extreme Value Theory (EVT), particularly in its application to measurement-based
statistical analysis for both execution times (Cucu-Grosjean et al. 2012; Lima et al.
2016; Lima and Bate 2017) and response times (Lu et al. 2010a, b, 2012).

Despite the widespread adoption of EVT in both academic research and practical
applications, it is not without certain limitations (de Barros Vasconcelos and Lima
2022). EVT relies on the premise that statistical limit laws are applicable to the sam-
ple set at hand (Coles 2001). EVT analysis necessitates certain conditions like the
assumption of stationarity (Leadbetter et al. 1978) or extremal independence in the
distribution under consideration (Santinelli et al. 2014).

Regarding the works that do not consider independence-assuming distributions,
Bernat et al. (2005) introduced the concept of copulas in timing analysis. Copulas
model dependencies between random variables, a copula transforms marginal dis-
tributions of random variables into a joint probability distribution. Ivers and Ernst
(2009) developed an approach for fixed-priority preemptive scheduling systems, uti-
lizing completely known ground-truth probability distribution for each task. Their
method, incorporating copulas and Frechet bounds, facilitated the derivation of
probabilistic response-time bounds. Recently, Marković et al. (2023) introduced a
correlation-tolerant analysis for DMP estimation, leveraging upper bounds on both
the expected values and standard deviations of job execution-time distributions.
Their analysis improves upon Cantelli’s inequality to derive sound probabilistic
response times in the presence of possibly correlated distributions.

More in line with this work, in the context of server-based schedulers, Mills
and Anderson (2011) derived bounds for response time and tardiness for soft real-
time tasks with stochastic execution times, focusing on execution time dependence
within distinct time windows. In a related development (Liu et al. 2014) proposed
the concept of independence thresholds, positing that execution times above a cer-
tain threshold can be treated as independent. One major advantage of server-based
scheduling is that it provides timing isolation, allowing for analysis of each server
separately.

The Constant-Bandwith Server (CBS), was originally introduced by Abeni and
Buttazzo (1998) and later used for deriving probabilistic deadlines to ensure Qual-
ity of Service (QoS) guarantees (Abeni and Buttazzo 1999). In later works, it has
also been analyzed with probabilistic execution times(Abeni and Buttazzo 2001;
Palopoli et al. 2016) and probabilistic interarrival times (Abeni et al. 2012; Manica
et al. 2012).

In one of the seminal papers for probabilistic analysis of real-time systems, Díaz
et al. (2002) conducted a response time analysis for periodic tasks characterized by
independent random execution times, demonstrating that the backlog in this context
can be modeled as a Markov chain.

Recent studies, diverging from the worst-case DMP that has been prevalent in
the previously cited works, have embraced the long-run frequency interpretation of
DMP. In this vein, Abeni et al. (2017) and Frías et al. (2017) utilized Markov chain
models with discrete emission distributions under CBS. Their work concentrated on

Real-Time Systems	

analyzing the steady-state response time distribution and included comparisons with
results obtained under Linux’s SCHED_DEADLINE. They noted that the analysis
duration is influenced by factors such as the range of execution times, the number
of states, and the scaling factor used for resampling (Frías 2018), which can signifi-
cantly affect the analysis time and space complexity.

Furthermore, the estimation of the execution times modeled as continuous Gauss-
ian distributions within Markov chains have been explored by Friebe et al. (2020,
2021), while the analysis in terms of deadline miss probabilities was conducted
recently (Friebe et al. 2023). Friebe et al. (2023) addressed the DMP estimation,
applying Hidden Markov Models (HMMs) with Gaussian emission distributions for
schedulability analysis. This approach, akin to the work of Frías et al. (2017) and
Abeni et al. (2017), explicitly incorporates dependencies within the HMM frame-
work, with the CBS providing task isolation, thereby focusing the workload analysis
on the specific task rather than the entire system. Although the analysis by Friebe
et al. (2023) offered improvements due to utilizing the continuous-based HMM
model of execution times, they showed that the analysis still may suffer from time
and space complexity.

In Sect. 6 of this paper, we introduce state-merging techniques designed to
enhance the time and space efficiency of the methods presented by Friebe et al.
(2023). These techniques are developed to maintain high accuracy in DMP estima-
tions. In Table 1 the HMM approaches with continuous and discrete emission distri-
butions are compared, and the contributions of this paper are outlined.

3 � System model and notation

Table 2 contains the notation used in the paper. Superscript * indicates true values,
↑ , and ↓ indicate upper and lower bounds.

We use the concept of upper bounding random variables according to Defini-
tion 1. This is also referred to as the usual stochastic order (Shaked 2007) or first-
order statistical dominance (Diaz et al. 2004). This paper uses the term upper bound
as in Davis and Cucu-Grosjean (2019b).

Definition 1  (cf. Diaz et al. 2004; Davis and Cucu-Grosjean 2019b; Shaked 2007)
Let X and Y be two random variables. We say that X is greater than or equal to Y
(i.e., X upper bounds Y ) if the Cumulative Distribution Function (CDF) of X is
never above that of Y . We denote this relation by X ≥ Y.

We define a partial Gaussian distribution in Definition 2, that is used to upper
bound workload distributions. Consider a Gaussian N(�, �2) with probability den-
sity function f (x|�, �2) . Let Φ(x) be the cumulative density function of the standard
normal distribution.

Definition 2  A partial Gaussian distribution Ntail(�, �2, �) , originated from a
Gaussian distribution N(�, �2) , is defined by the probability density function:

	 Real-Time Systems

Ta
bl

e 
1  

C
on

tri
bu

tio
n

ov
er

vi
ew

D
is

cr
et

e
em

is
si

on
C

on
tin

uo
us

 e
m

is
si

on

O
ve

rv
ie

w
 o

f t
he

 th
eo

re
tic

al
 c

on
tr

ib
ut

io
ns

Ti
m

in
g

an
al

ys
is

 (T
A

)
 F

ría
s e

t a
l.

(2
01

7)
, A

be
ni

 e
t a

l.
(2

01
7)

)
 F

rie
be

 e
t a

l.
(2

02
0)

D
M

P
an

al
ys

is
 F

ría
s e

t a
l.

(2
01

7)
, A

be
ni

 e
t a

l.
(2

01
7)

 F
rie

be
 e

t a
l.

(2
02

3)
 a

s d
es

cr
ib

ed
 in

 th
is

 p
ap

er
C

om
pa

ri
so

n
of

 th
e

m
od

el
s a

nd
 th

ei
r a

na
ly

si
s p

ro
pe

rt
ie

s
St

at
e

N
o.

 id
en

tifi
ca

tio
n

–
 F

rie
be

 e
t a

l.
(2

02
0)

A
da

pt
iv

e
TA

–
 F

rie
be

 e
t a

l.
(2

02
1)

Ti
m

e
an

d
sp

ac
e

co
m

pl
ex

ity
 (D

M
P

an
al

ys
is

)
 F

ría
s e

t a
l.

(2
01

7)
, A

be
ni

 e
t a

l.
(2

01
7)

 F
rie

be
 e

t a
l.

(2
02

3)
 a

s d
es

cr
ib

ed
 in

 th
is

 p
ap

er
D

ep
en

de
nt

 o
n:

In
de

pe
nd

en
t o

f:
–

Re
sa

m
pl

in
g

sc
al

e
–

Re
sa

m
pl

in
g

sc
al

e
–

Ex
ec

ut
io

n
tim

e
ra

ng
e

–
Ex

ec
ut

io
n

tim
e

ra
ng

e
Re

qu
ire

s f
ul

l s
te

ad
y-

st
at

e
di

str
ib

ut
io

n
(F

ría
s e

t a
l.

20
17

)
Ite

ra
tiv

e
pr

oc
ed

ur
e

w
ith

 a
n

ad
ju

st
ab

le
 c

om
pl

ex
ity

St
at

e
nu

m
be

r r
ed

uc
tio

n
pr

oc
ed

ur
e

(S
ec

t.
6)

Real-Time Systems	

The probability of values lower than � is set to zero in the partial Gaussian dis-
tribution. The probability density of the remaining values are normalized, so that
the distribution integrates to one.

We use convolutions, as defined in Definition 3, in the derivation of workload
distributions.

(1)f tail(x|𝜇, 𝜎2, 𝛼) =

{
0, x ≤ 𝛼

1

Φ
(

𝜇−𝛼

𝜎

) ⋅ f (x|𝜇, 𝜎2) x > 𝛼 .

Table 2   Overview of notation used in this paper

Symbol Description

Basic notation
T Task period
Ji Job at task period i
ai Arrival time of Ji
di Absolute deadline of Ji
D Relative deadline
P Server period
Q Server budget
n Number of server periods in a task period
k Number of server periods in a relative deadline
S Number of Markov states
M State transition matrix
N Number of task periods in workload accumulation
Values of random variables
ci Execution time of Ji
fi Finishing time of Ji
vi Workload at task period i
h Accumulation sequence of state visits in Markov chain since workload

depletion
h̃ Accumulation vector of the number of visits in each Markov state since

workload depletion
Probability distributions and probabilities
C Execution time distribution
Vh,Vh̃ Workload distribution associated with an accumulation sequence or vector
mi,j Transition probability from state i to state j
�(s) Stationary probability of being in s
pin(s, h̃) Probability of entering s with h̃
pco(s, h̃) Probability that h̃ in s carries workload to the next task period
pwd(s) Probability of workload depletion in s
pdm Deadline miss probability
�(s)N Probability of being in state s with h longer than N

	 Real-Time Systems

Definition 3  The convolution of f and g, denoted with the ∗ operator is:

3.1 � Task model

Let the real-time task � consist of a sequence of jobs Ji , i ∈ ℕ . Each job Ji has the
arrival time ai , execution time ci and finishing time fi . The task is periodic and jitter-
free, i.e., ai+1 = ai + T  , a0 is the arrival time of the first job. Jobs can be preempted,
fi ≥ ai + ci . The execution time is modeled as a random variable. The random vari-
able R models the response time, the duration from activation time to finish time of
a job.

A job Ji has the deadline di determined by a relative deadline D such that
di = ai + D . Jobs are executed until completion, even if deadlines are missed. The
relative deadline may be longer than the task period. The probability that a randomly
selected job finishes after the deadline, pdm = ℙ(R > D) is the main concern of this
paper.

3.2 � Scheduling algorithm

The task is served as the sole task of a reservation-based server, and guaranteed
to receive Q units of processing time within each server period. The bandwidth
B = Q∕P is the fraction of the processing time dedicated to the task. T = n ⋅ P ,
that is the task period is an integer multiple of the server period. The relative dead-
line is also an integer multiple of the server period, D = k ⋅ P . In the evaluation a
CBS is used, a CBS with a properly selected server period fulfills the necessary
requirements.

The task model and reservation-based server are illustrated in Fig. 1. Here, we
have n = 3 , T = 3 ⋅ P . In the illustration the relative deadline is longer than the

[
f ∗ g

]
(z) = ∫

∞

−∞

f (z − x) ⋅ g(x) dx.

Fig. 1   An illustration of the task model and the reservation-based server

Real-Time Systems	

period. With a deadline longer than the period, a longer job may steal computation
time from the next job of the task. If the next job is short, they may both meet their
deadlines.

4 � Execution time model and analysis

4.1 � Markov chain execution times

The execution times of the task we consider are described by a Markov model
defined by a set of S states � , a S × S state transition matrix M and a set ℂ of S
execution time distributions or emission distributions related to the respective state,
S ∈ ℕ . We have � = {1, 2,… , S} . In M the element ma,b represents the probability of
the task being in state b at task period i + 1 , given that it is in state a at task period i.
ℂ = {C1,C2,… ,CS} where each Cs is modeled as Gaussian distributions with mean
�s , and variance �2

s
 , i.e., Cs ∼ N(�s, �

2
s
) . The Markov Chain is irreducible, that is

a chain where from any state you can reach any other state in a sequence of steps.
For an irreducible finite-state Markov Chain, stationary probabilities of the different
states (Harchol-Balter 2024) exist and are unique. The stationary probabilities repre-
sent the long-run proportion of jobs with execution times described by the different
Gaussian distributions.

Example 1  When introducing the ideas and analysis, we will use an example execu-
tion time Markov Model and reservation-based server. The parameters are chosen
mainly for illustration, and to arrive at simple numerical answers in some of the
applications of the example. The Markov Model is defined by:

In this example all transition probabilities are strictly positive, so the Markov Chain
is clearly irreducible and we can calculate the stationary probabilities. These are
0.875 for state 1 and 0.125 for state 2. In our example, the CBS is defined as n = 2
and Q = 1 . The deadline is defined by k = 4.

The representation of Gaussian emission distributions requires only a few distri-
bution parameters, for example, the emission distribution associated with state 1 in
Example 1 is fully specified by the mean 1 and the variance 0.25. With discrete dis-
tributions probabilities for each execution time value need to be stored, with respect
to a chosen scaling factor. For Example 1 we might choose to represent execution
times with a resolution of 0.01. For state 1 we could list execution times from 0.01
to 4.01, where each of these is associated with a probability. The probability associ-
ated with 2.01 would be the probability of execution times et, 2 < et ≤ 2.01 . Gauss-
ian emission Markov models are shown to be applicable, in Friebe et al. (2020) for
a video decompression use case, and in Friebe et al. (2021) in a dynamic setting

S = 2, M =

(
0.9 0.1

0.7 0.3

)
, C = {N(1, 0.25),N(2, 1)}.

	 Real-Time Systems

with model adaptation. The Gaussian distribution may appear simplistic. How-
ever, general distribution shapes can be approximated by a combination of Gauss-
ians. The assumption of independent execution times within each state implies that
more states may be necessary in the model to capture dependencies in the transition
matrix. A close to discrete model can be envisioned with states where the emis-
sion-distribution variance is near zero. The fact that a representation with Gaussian
emission distributions may require more states is a disadvantage of this approach.
With discrete representation, pessimism is introduced with the scaling factor and if
downsampling is needed. With continuous representation, pessimism is introduced
at other points, for example in our case when upper bounding the workload distribu-
tions. Further, there are other options for continuous representations, for example
Zagalo et al. (2022) use inverse Gaussian mixture distributions for response times.
In our approach we rely on the simplicity of convolution of Gaussian distributions.

4.2 � Problem formulation

We bound the expected deadline miss probability of a randomly selected job of a
task. Task execution times are defined as in Sect. 4.1, and the task is served by a
reservation-based server as described in Sect. 3.2.

In the survey on schedulability analysis by Davis and Cucu-Grosjean (2019a)
three interpretations of the probability of a deadline miss are listed:

1.	 “As a probability with a long-run frequency interpretation equating to the
expected number of missed deadlines divided by the total number of deadlines
in a long (tending to infinite) time interval.

2.	 As the probability that a randomly selected job will miss its deadline, which is
broadly equivalent to the long-run frequency interpretation.

3.	 As a bound on the probability that any specific job will miss its deadline.”

 Chen et al. (2024) refer to the same concept as the deadline miss rate, and formulate
the question: “What is the ratio of jobs missing their deadlines in the long run?” We
agree with Davis and Cucu-Grosjean that interpretations 1 and 2 are broadly equiva-
lent. Extending interpretation 2 to include the average component that is in focus in
interpretation 1, we focus on the expected deadline miss probability of a randomly
selected job. The intention is to remove any ambiguity with interpretation 3 or the
Worst Case Deadline Failure Probability, an upper bound on the probability that any
single job of a task misses its deadline (Davis and Cucu-Grosjean 2019a). We find
the term deadline miss probability more natural compared to deadline miss rate in
our context with states with different execution time distributions.

4.3 � Overview of the proposed approach

We will obtain an upper bound on the expected deadline miss probability of a ran-
domly selected job of the task in a reservation-based server.

Real-Time Systems	

The proposed method is based on a workload accumulation scheme. The main
idea is outlined below, followed by the details in the remaining subsections. The
starting point of the approach is that the deadline miss probability of a job depends
on the execution time of the job, and on the amount of remaining work from previ-
ous jobs that have not been completed yet. We categorize jobs into different classes
with different deadline miss probabilities. By calculating or bounding the deadline
miss probabilities of jobs belonging to each class, and the probability of randomly
selecting a job from each class, we bound the expected deadline miss probability of
a randomly selected job.

In each task period, task � is guaranteed nQ units of processing time. The pending
workload at the i-th task period is denoted as vi and defined as in Abeni and But-
tazzo (1999):

where the first term accounts for the previous workload, that is 0 for the first period,
and for task periods where all work from previous jobs has been completed before
the new job arrival. In these periods, jobs arrive at idle points with 0 carry-in work-
load and vi = ci , in particular v1 = c1.

Observation 1  The pending workload at a job arrival is affected by the execution
time requirements of jobs arriving since the last idle point.

In our proposed method, the job classes are related to the state sequence since the
last idle point. In Example 1, let the jobs arriving at an idle point when the task is
in the first state of the Markov Model belong to one specific class. When selecting a
job at random, there is a probability of about 0.78 that the job belongs to this class.
The deadline miss probability for this class of jobs only depends on the execution
time distribution for the first state and the server properties. It is the survival func-
tion or 1-CDF of N(1, 0.25) at 4, about 9.8 ⋅ 10−10.
Observation 2  The deadline miss probability for a class of jobs is at most 1.

In the proposed method, we will derive more precise bounds for several classes.
For the remaining, we will use Observation 2 to upper bound the deadline miss
probability. We construct an approximate bound of the expected deadline miss prob-
ability of a randomly selected job from Example 1 to illustrate the idea:

To model a state sequence from the latest idle point, we introduce the concept
of workload accumulation sequences. Illustrations of workload accumulation
sequences for some classes in Example 1 are displayed in Fig. 2.

The class where, at a job arrival, the task is in state 1, and there is no carry-in
workload, is displayed as the black node at task period 1. The workload accumula-
tion sequence is h = (1) . The gray node and arrow represent the class of jobs where

(3)
vi = max(0, vi−1 − nQ)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
carry-in workload

+ci.

(4)DMP ⪅ 0.78 ⋅ 0.98 ⋅ 10−10 + 0.22 ⋅ 1

	 Real-Time Systems

jobs arrive in state 1 and in the second task period after an idle point, with the first
period in state 2. The accumulation sequence h = (2, 1) . The black node and dashed
arrows represent the class of jobs arriving at the fifth task period after the latest idle
point, with h = (2, 2, 1, 2, 2) . The accumulation sequence is modeled as a random
variable H that can take the values of any possible workload accumulation path. In
Fig. 2, with the gray path we illustrate one possible value h = (2, 1) , taken by H.
Definition 5  Each arrival of a job Ji results in an accumulation sequence h(Ji) . Let b
denote the task state at the arrival of Ji . If there is an idle point directly prior to the
arrival, the resulting h(Ji) = (b) . If there is carry-over workload from the previous
job, let h(Ji−1) = (… , a) denote the accumulation sequence resulting from the prior
job arrival. Then h(Ji) = (… , a, b).

In this way, each job that arrives is related to one specific h that describes the
accumulated workload since the last idle point, and the task’s state at the arrival of
this job is always in the last component of the corresponding h.

The evolution of H is described by an infinite-state Discrete-Time Markov Chain,
and each workload accumulation sequence represents one job class and one state
in this chain. State transitions occur at job arrivals. The possible transitions from a
state h = (… , a) are:

1.	 A transition from h to (… , a, b) has strictly positive probability if ma,b > 0.
2.	 A transition from h to (b)(b) has strictly positive probability if ma,b > 0.
3.	 No other transitions from h are possible.

The probability of randomly selecting a job resulting in a certain accumulation
sequence is the stationary probability of the state in the Markov Chain. This sta-
tionary probability exists for an infinite-state Discrete-Time Markov if the chain
is ergodic (Harchol-Balter 2024)—that is when the chain is irreducible, aperi-
odic and recurrent. The accumulation sequence Markov Chain is irreducible if
the execution time Markov Chain is irreducible. If all states can be reached from
all states in the execution time Markov Chain, the same is true for the accumula-
tion sequence Markov Chain. The accumulation sequence Markov Chain is also
aperiodic, which means that the greatest common divisor of the set of integers n,
such that you can get from one state to the same state in n steps, is 1 for all states.
In an infinite-state Markov Chain, either all states are recurrent, and the chain is
recurrent, or all states are transient. A state is recurrent if when we start in that
state, the probability is 1 that we ever return to the same state. The workload in
the server can be seen as a queue, and a queue is in steady-state if the average
arrival rate is lower than the average service rate (Medhi 2003). This is equivalent

Fig. 2   Illustration of workload
accumulation sequences of the
example

Real-Time Systems	

to the average utilization of the task being lower than the server’s bandwidth.
Under this condition the accumulation sequence Markov Chain is recurrent.
Returning to Example 1, the average computation requirement over a task period
is 0.875 ⋅ 1 + 0.125 ⋅ 2 = 1.125 , resulting in an average utilization of 1.125

2⋅P
=

0.5625

P
 .

Since the server’s bandwidth is 1
P
 , the task’s computational requirement is met

over time, and the accumulation sequence Markov Chain is ergodic.

Definition 6  The probability pin(h) of randomly selecting a job resulting in the accu-
mulation sequence h is the stationary probability of this state in the accumulation
sequence Markov Chain.

Definition 7  The conditional probability that a job resulting in h misses its deadline
is defined as pdm(h) = ℙ(R > D|H = h).

Definition 8  The Deadline Miss Probability DMP(j) for the j-th job since the last
depletion point is defined as

where the set H(j) represents accumulation sequences resulting from job arrivals at
the j-th task period from the last idle point.

Returning to Example 1, there are two accumulation sequences in
H(1), arriving at an idle point. We already discussed h = (1) . The sec-
ond is h = (2) , and the probability of randomly selecting a job resulting in
h = (2) is about pin((2)) ≈ 0.099 . The deadline miss probability pdm((2)) is
the survival function of N(2, 1) at 4, about pdm((2)) ≈ 0.023 . In our example,
DMP(1) ≈ (7.6 ⋅ 10−10 + 0.099 ⋅ 0.023)∕(0.78 + 0.099) ≈ 2.6 ⋅ 10−3.

Definition 9  The Deadline Miss Probability DMP is the expected deadline miss
probability of a randomly selected job from the task. Given a task with execution
times described by the model in Sect. 4.1, and served by a reservation-based server
with a bandwidth exceeding the average task utilization, DMP is obtained as

Since pin(h) are the stationary probabilities of the accumulation sequence Markov
Chain (Definition 6), the sum of pin(h) over all h equals 1.

Problem  The sum of Eq. (6) has a countably infinite number of terms. This paper
investigates finding a bound for DMP with a finite number of terms.

(5)DMP(j) =
1∑

∀h∈H(j) pin(h)

�
∀h∈H(j)

pin(h) ⋅ pdm(h)

(6)DMP =

∞∑
i=1

DMP(i)
∑

∀h∈H(i)

pin(h).

	 Real-Time Systems

Observation 3  Consider a job that arrives with a carry-in workload, i.e., it does not
arrive directly after an idle point. Then this job arrives j + 1 task periods after the
last idle point, and it succeeds a job arriving j task periods after the last idle point.
The probability of randomly selecting a job with workload accumulation from j + 1
periods is never higher than the probability of randomly selecting a job arriving with
workload accumulation from j periods.

The main idea is to find tighter bounds DMP(i) for the first terms in Eq. (6), since
due to Observation 3 the weighting sums over pin are highest for the first terms. For
larger i, when the sums over pin are small, we let DMP(i) = 1.

Returning to Example 1, using the information from the first task period, we have:

The bound is still very pessimistic. However, going from one accumulation sequence
h = (1) in Eq. (4) to two h = (1) and h = (2) reduces the bound from 0.22 to 0.12.

4.3.1 � Outline of the remainder of this section

An upper bound on DMP is obtained by deriving upper bounds on pin and pdm . The
probability pin(h) of randomly selecting a job with the accumulation sequence h
depends on the execution time distributions along h , the transition probabilities, and
the probability of workload depletion in each state. The conditional deadline miss
probability pdm(h) for jobs where the arrival results in h depend on the execution
time distributions in h . We divide the workload accumulation process in two steps.
We first compute upper bounds on pin and pdm up until N task periods from the lat-
est idle point. As N grows, the sum of the products of pin(h) and pdm(h) approaches
the true deadline miss probability. Second, the sum of pin values in the remaining
accumulation sequences of length N + 1 to infinity, is upper bounded. We refer to
this sum as � . We assume that the pdm is 1 for jobs that result in these accumulation
sequences, and this gives a safe upper bound on DMP in Eq. (40).

The steps for deriving a safe bound on DMP are outlined in the following
sections:

Section 4.4: Upper bounding pdm and pin for the terms in Eq. (6) requires upper
bounding the pending workload distributions associated with each accumulation
sequence. In this section we describe how to derive the parameters of an upper
bounding partial Gaussian distribution as given in Eqs. (19)–(21). The bounds on pin
also rely on a lower bound on the pending workload distributions. The parameters
for a lower bounding Gaussian distribution are derived as Eqs. (19) and (20).

Section 4.5: For jobs arriving at an idle point, pin depends on the probability of
workload depletion pwd for each state, the stationary state probabilities and the tran-
sition probabilities ma,b . Upper and lower bounds are provided in Eqs. (24) and (23).

(7)

DMP =

∞∑
i=1

DMP(i)
∑

∀h∈H(i)

≈ 2.3 ⋅ 10−4 +

∞∑
i=2

DMP(i)
∑

∀h∈H(i)

pin(h)

≤ 2.3 ⋅ 10−4 +

∞∑
i=2

∑
∀h∈H(i)

pin(h) ≈ 0.12

Real-Time Systems	

Jobs arriving with carry-in workload have pin depending on transition probabilities,
and the probability of jobs with shorter accumulation sequences resulting in carry-
over workload. We find that all pin bounds are linear combinations of pwd for the dif-
ferent states, and given in in Eqs. (28) and (27).

Section 4.6: Bounds on pwd are derived, relying on stationary probabilities and
the sum of pin in accumulation periods after N , denoted as �.

Section 4.7: A bound on � is derived and given in Eq. (37). This bound is utilized
for computing the lower bounds on pin , pco , and finally pwd.

Section 4.8: An upper bound on pdm is presented, using the bounds on workload
distributions, pin and � . The pdm for a state is upper bounded in Eq. (39). Each job’s
deadline miss probability is accounted for with the accumulation sequence resulting
from the job’s arrival. This is the case even with long relative deadlines, when actual
deadlines are not missed until after the arrivals of subsequent jobs.

The iterative workload accumulation process connects all these different parts,
and is presented in Sect. 5 with an example. An illustration of the process with refer-
ences to relevant sections is provided in Fig. 3. The workload distribution bounds
from Sect. 4.4 are used in all remaining sections and are not specifically referenced
in the figure.

4.4 � Bounding the conditional pending workload distribution associated
with a workload accumulation sequence

Upper and lower bounds of pending workload distributions conditioned on the
job arrival resulting in a given accumulation sequence since the last idle point
are derived. To derive upper bounds on pdm we require the upper bounds on the
workload distributions. To derive upper and lower bounds on pin , pco , � and pwd
we require upper and lower bounds on the workload distributions. With an exam-
ple from Fig. 2, we consider the pending workload distribution for jobs arriving
in state 1, in the second task period from the last idle point, given that the first job
after the idle point arrived in state 2, that is the path marked as gray, h = (2, 1).
Definition 10  The conditional pending workload distribution Vh for jobs resulting in
a given accumulation sequence h has the probability density function ℙ(v|H = h).

Fig. 3   The workload accumulation process

	 Real-Time Systems

We will derive bounds for this conditional pending workload distribution that
are independent of the order of the state visits in the accumulation sequence, and
only dependent on the number of visits in each state. For this purpose we define
the random variable H̃ that takes S-dimensional vector values, where each ele-
ment denotes the number of visits in the corresponding state since the last idle
point. As an example, the dashed line in Fig. 2 showing h = (2, 2, 1, 2, 2) and
another accumulation sequence h = (2, 2, 2, 1, 2) illustrated in Fig. 4 contribute to
the same accumulation vector. Both sequences result from jobs arriving 5 task
periods after the latest idle point, and they have the same number of visits in each
state, h̃ = [1, 4] . Let h̃[s] denote taking the s-th element of h̃ , and h̃+s is the accu-
mulation vector with elements: h̃+s[i] = h̃[i], i ≠ s, h̃+s[s] = h̃[s] + 1 . This simpli-
fies the notation of the workload distribution of jobs arriving in state s with carry-
in workload from h̃.

In a system with S states, the number of accumulation vectors of length N is (
N + S − 1

N

)
=

(N+S−1)!

N!(S−1)!
 . If we take ordering into account, there are SN accumula-

tion sequences of length N . The number of accumulation vectors increases with the
length N as O(NS−1) for a fixed number of states S.

We derive an upper bounding pending workload distribution V↑

h̃
≥ Vh , recalling

Definition 1.
We show that a partial Gaussian distribution (see Definition 2) is an upper bound

to the conditional pending workload distribution. An illustration based on Exam-
ple 1 is shown in Fig. 5. The dashed curve illustrates the exact convolution result
of the workload of the gray accumulation sequence from Fig. 2. The carry-in work-
load is the partial Gaussian distribution of Ntail(2 − n ⋅ Q, 1, 0) , that is the normal-
ized part of the computation time distribution in the second state that remains after
the budget of n ⋅ Q = 2 has been exhausted. The carry-in distribution is convolved
with the computation time distribution of the first state, N(1, 0.25) , resulting in the
dashed curve. When we replace it with the partial Gaussian distribution shown in
Fig. 5 as the black curve and line, the probabilities of lower workloads (the light
gray area) are moved to higher workloads (the dark gray area), providing an upper
bound.

Theorem 1  Ntail
(
𝜇(h̃), 𝜎2(h̃), 𝛼(h̃, s)

)
 upper bounds the conditional pending work-

load distribution Vh̃ associated with each state s and accumulation vector h̃.

Fig. 4   Illustration of a workload
accumulation sequence that
contributes to the same work-
load accumulation vector as the
dashed sequence in Fig. 2

Real-Time Systems	

The proof is by induction. We state Lemma 2 for the base case and further
Lemma 3 combined with Lemma 4 for the inductive step.
Lemma 2  The partial Gaussian distribution Ntail

(
𝜇s, 𝜎

2
s
, 0
) ≥ Vh̃ in state s at a job

arrival immediately after a point of workload depletion, with Vh̃ being the condi-
tional pending workload distribution.

Proof  At the first job arrival after a point of workload depletion, the conditional
pending workload distribution Vh is the execution time distribution of the entered
state s . Ntail

(
�s, �

2
s
, 0
)
 excludes the negative workload values from N

(
�s, �

2
s

)
 . Nor-

malization increases the probability of positive values. The probability density is
moved from lower workload values to higher, providing an upper bound. 	� ◻

In the following, we consider the case with non-zero carry-over workload when
a job arrives in state s transitioning from state sp . In sp the accumulation vector is h̃ ,
and Ntail(𝜇(h̃), 𝜎2(h̃), 𝛼(h̃, sp)) upper bounds the workload distribution. We show that
the partial Gaussian distribution Ntail(𝜇(h̃+s), 𝜎

2(h̃+s), 𝛼(h̃+s, s)) is an upper bound
on the conditional pending workload distribution. In Eqs. (8) and (9) below we
define 𝜇(h̃+s) and 𝜎2(h̃+s) . To simplify the starting value 𝛼(h̃+s, s) of the upper bound
on the pending workload distribution defined in Eq. (12), we define Eqs. (10) and
(11). sf−1(q,�, �2) in Eq. (12) denotes the inverse survival function at quantile q of
a Gaussian distribution with mean � , and variance �2 . The work value at which the
survival function takes the value q. Equation (11) defines K(h̃, sp) , the normalization
factor needed for the conditional probability calculation. A convolution Definition 3
of the execution time distribution Cs and an upper bound of the carry-over workload
gives a bound on the pending workload distribution. The part extending past the
task period of the upper bounding workload distribution in sp with h̃ constitutes an
upper bound of the carry-over workload. K(h̃, sp)−1 is the integral of this part used
for normalization.

(8)𝜇(h̃+s) = 𝜇s +

S∑
i=1

h̃[i] ⋅ (𝜇i − n ⋅ Q)

Fig. 5   Illustration of a convolution result with an upper bounding partial Gaussian distribution

	 Real-Time Systems

Lemma 3  When a job arrives in state s with non-zero carry-over workload from
state sp with accumulation vector h̃ , and the previous task period upper bound on
the workload distribution V↑ as Ntail(𝜇(h̃), 𝜎2(h̃), 𝛼(h̃, sp)) , the conditional pending
workload distribution is upper bounded by Ntail(𝜇(h̃+s), 𝜎

2(h̃+s), 𝛼(h̃+s, s)).

Proof  The normalized workload tail beyond the task period time is the
strictly positive carry-over workload distribution. We formally express this as
Ntail

(
𝜇(h̃) − n ⋅ Q 𝜎2(h̃) max(0, 𝛼(h̃, sp) − n ⋅ Q)

)
.

N(�s, �
2
s
) describes the execution time distribution in state s . By convolving Defi-

nition 3 the probability density functions of the execution time and the upper bound
on the positive carry-over workload, we derive an upper bound on the conditional
workload distribution V↑

h̃+s
 in state s with accumulation vector h̃+s . This holds

because execution times are independent random variables, and the dependence of
the Markov model is restricted to the transition probabilities.

We introduce �R(z) , �2

R
 , �ΣΔ and �2

Σ
 below to simplify the notation in the convolu-

tion expansion:

(9)𝜎2(h̃+s) = 𝜎2
s
+

S∑
i=1

h̃[i] ⋅ 𝜎2
i

(10)𝛼Δ(h̃, sp) = max(0, 𝛼(h̃, sp) − n ⋅ Q)

(11)K(h̃, sp) =

[
Φ

(
𝜇(h̃) − n ⋅ Q − 𝛼Δ(h̃, sp)

𝜎(h̃)

)]−1

(12)𝛼(h̃+s, s) =

{
0 h̃ = 0

sf−1
(

1

K(h̃,sp)
,𝜇(h̃+s), 𝜎

2(h̃+s)
)

h̃ ≠ 0
.

(13)𝜇R(z) =
(z − 𝜇s) ⋅ 𝜎

2(h̃) + (𝜇(h̃) − n ⋅ Q) ⋅ 𝜎2
s

𝜎2
s
+ 𝜎2(h̃)

(14)𝜎2
R
=

𝜎2
s
⋅ 𝜎2(h̃)

𝜎2
s
+ 𝜎2(h̃)

(15)𝜇ΣΔ = 𝜇s + 𝜇(h̃) − n ⋅ Q

Real-Time Systems	

We expand the convolution for V↑

h̃+s
:

where we isolate the part of the expression independent of x in the last step. The
integral in the last row of Eq. (17) is the survival function or 1-CDF at �Δ of
N(�R(z), �

2

R
) . The survival function is monotonically increasing with respect to z

and goes to 0 as z goes to −∞ , and to 1 as z goes to ∞ . This implies that there
is a point 𝛼(h̃+s, s) where the area under the curve of the exact convolution of the
pending workload distribution up to 𝛼(h̃+s, s) equals the area between the curves
of the exact pending workload distribution and the partial Gaussian distribution,
Ntail(𝜇ΣΔ, 𝜎

2

Σ
, 𝛼(h̃+s, s)) from 𝛼(h̃+s, s) . This is illustrated in Fig. 5. Normalizing the

partial Gaussian distribution with K(h̃, sp) as in Eq. (18) means that we derive the
lowest possible 𝛼(h̃+s, s) that upper bounds the full convolution. As the integral in
the last row of Eq. (17) goes to 1 as z goes to infinity, the tail of the upper bound
approaches the tail of the full convolution asymptotically.

The convolution result integrates to one, and so does the partial Gaussian distribu-
tion from Definition 2. The two regions described and illustrated in Fig. 5 have the
same area. Replacing the exact convolution with the partial Gaussian is equivalent to
moving probability weight from lower pending workload values to higher, leading to
an overestimate. We have:

This concludes our proof. 	� ◻

The values of � and K depend on the order in the accumulation sequence, as
Eq. (10) depends on the previous state. Returning to Example 1, consider a job

(16)𝜎2
Σ
= 𝜎2

s
+ 𝜎2(h̃).

(17)

∫
∞

−∞

f
(
z − x|𝜇s, 𝜎

2
s

)
⋅ f tail

(
x|𝜇(h̃) − n ⋅ Q, 𝜎2(h̃), 𝛼Δ

)
dx

= K(h̃, sp)∫
∞

𝛼Δ

f (z − x|𝜇s, 𝜎
2
s
) ⋅ f (x|𝜇(h̃) − nQ, 𝜎2(h̃))dx

= K(h̃, sp) ⋅ f
(
z|𝜇ΣΔ, 𝜎

2
Σ

)
⋅ ∫

∞

𝛼Δ

f
(
x|𝜇R(z), 𝜎

2
R

)
dx,

(18)K(h̃, sp) ⋅ ∫
∞

𝛼(h̃+s,s)

f
(
x|𝜇ΣΔ, 𝜎

2
Σ

)
dx = 1.

(19)𝜇(h̃+s) = 𝜇ΣΔ

(20)𝜎2(h̃+s) = 𝜎2
Σ

(21)𝛼(h̃+s, s) = sf−1

(
1

K(h̃, sp)
,𝜇ΣΔ, 𝜎

2
Σ

)
.

	 Real-Time Systems

arriving in the third task period after an idle point. Two accumulation sequences
determine the carry-in workload of visiting both state 1 and state 2 since the idle
point; those are h = (2, 1) and h(1, 2) . The first is the gray sequence in Fig. 2, and the
upper bounding workload distribution is shown in Fig. 5. The tail extending past the
period’s budget is the carry-in to the next period, illustrated as the dashed curve in
Fig. 6. Since 𝛼 = 1 < n ⋅ Q = 2 , �Δ = 0 for the sequence (2, 1). For the order (1, 2)
however, the resulting 𝛼 ≈ 3.236 > n ⋅ Q = 2 . The upper bounding carry-in work
will have �Δ ≈ 1.236 and is the solid curve illustrated in Fig. 6.

We state this formally in Lemma 4. We show that shifting the starting point � to a
higher value while keeping the mean and variance unchanged gives an upper bound-
ing distribution. This is illustrated in Fig. 7.
Lemma 4  The partial Gaussian distribution Ntail(�, �2, �1) ≥ Ntail(�, �2, �2) if
�1 ≥ �2.

Proof  The CDF is 0, x < 𝛼2 for both Ntail(�, �2, �1) and Ntail(�, �2, �2) . The CDF of
Ntail(𝜇, 𝜎2, 𝛼2) > 0 for �2 ≤ x ≤ �1 , but the CDF of Ntail(�, �2, �1) = 0 in this range.
For x > 𝛼1 , we have from Definition 2 that the PDF s of the two distributions only
differ in the scaling factor. This means that the CDF of Ntail(�, �2, �1) is the CDF of
Ntail(�, �2, �2) past �1 shifted to start at 0 and scaled to go to 1 at infinity. Therefore
the CDF of Ntail(�, �2, �1) is always below the CDF of Ntail(�, �2, �2) 	� ◻

We remove the dependency on the state order by taking the maximum
𝛼(h̃, sp), sp ∈ h̃ to determine 𝛼Δ(h̃) . This is illustrated by selecting the black curve
in Fig. 6 as carry-in from h̃ = [1, 1] , and formalized as:

We use this instead of Eq. (10) in Eqs. (11) and (12). Let us proceed to the proof of
Theorem 1, restated here for convenience:

Theorem 1  Ntail
(
𝜇(h̃), 𝜎2(h̃), 𝛼(h̃, s)

)
 upper bounds the conditional pending work-

load distribution Vh̃ associated with each state s and accumulation vector h̃.

(22)𝛼Δ(h̃) = max

(
0,max

∀sp
𝛼(h̃, sp) − n ⋅ Q

)
.

Fig. 6   Illustration of upper bounding partial Gaussian distributions for the carry-in workload of two
accumulation sequences with the same vector

Real-Time Systems	

Proof  We prove this by induction.

Base case: For the first job arrival after workload depletion, this follows by
Theorem 2.

Inductive hypothesis: If we have such a workload distribution upper bound for all
states and accumulation vectors in one task period, it also holds for a job that arrives
with a carry-in workload from a previous period.

Inductive step: This follows from Lemma 3 and by taking the maximum � in
Eq. (22) due to Lemma 4. 	� ◻

Analogously, a Gaussian distribution is a lower bound of the pending workload
distribution V↓

h̃
≤ Vh . This is illustrated in Fig. 8 for the accumulation sequence

example drawn in gray in Fig. 2. From Eq. (17), we see that K(h̃, sp) > 1 , imply-
ing a heavier tail on the convolution result compared to the Gaussian distribution.
The area under the Gaussian PDF curve with mean �ΣΔ and variance �2

Σ
 is one,

and so is the area under the result of the convolution. Replacing the workload dis-
tribution with the Gaussian implies moving probability weight from higher work-
load values to lower, thus providing a lower bound.

4.5 � Bounds on the joint probability of a job arriving in a state
with an accumulation vector

A job arriving in state s N task periods after the last workload depletion can result in
one or more accumulation vectors, h̃ , of length N . We refer to this set of accumulation
vectors as being in state s at task period N . Each accumulation vector in a state is asso-
ciated with the joint probability of randomly selecting a job that arrives in state s and
results in the accumulation vector h̃ . p↓

in
(s, h̃) denotes a lower bound on this joint prob-

ability and p↑
in
(s, h̃) an upper bound. Each accumulation vector in a state is also associ-

ated with a probability of the workload contributing to carry-over into the next period.
p↓
co
(s, h̃) denotes a lower bound on this probability and p↑

co
(s, h̃) an upper bound.

For jobs arriving at a point of workload depletion with no carry-in workload, each
state is associated with a single accumulation vector containing zeros except for the

Fig. 7   CDFs of two partial Gaussian distributions as in Lemma 4. In this figure � = 1 , �2 = 1 , �1 = 1 and
�2 = 0

	 Real-Time Systems

current state, which is set to 1. The probability of a job arriving in a certain state s at a
point of workload depletion depends on

•	 the stationary probabilities �(sp) of all states sp,
•	 the workload depletion probabilities pwd(sp) of all states sp,
•	 the state transition probabilities �sp,s from all states sp into s.

The stationary probabilities and the transition matrix are known from the execution
time model described in Sect. 4.1. In Sect. 4.6, we will describe how to derive the
workload depletion probabilities of all states. Let us assume that we have lower and
upper bounds on the workload depletion probabilities, p↓

wd
(s) and p↑

wd
(s) . Then, lower

and upper bounds on the probability of randomly selecting a job arriving in each state s
at a point of workload depletion are given as:

There is only one accumulation vector in each state for jobs arriving at an idle point,
and there is no dependency on h̃ . We introduce it in the expression to have the com-
mon notation pin(s, h̃) for all accumulation periods.

Relating this to Example 1, the lower bound on the probability of a
job arriving in state 2 after an idle point is p

↓

in
(2, [0, 1]) = �(1) ⋅ m1,2⋅

p
↓

wd
(1) + �(2) ⋅ m2,2 ⋅ p

↓

wd
(2) = 0.875 ⋅ 0.1 ⋅ p

↓

wd
(1) + 0.125 ⋅ 0.3 ⋅ p

↓

wd
(2) , a linear

combination of the lower bounds on workload depletion probability for the states.
The upper bound is the same linear combination of the upper bounds on workload
depletion.

We further consider jobs arriving with a carry-in workload. Step by step, we add
jobs that arrive one more task period after the last idle point, resulting in accumula-
tion vectors containing one more state. We copy each accumulation vector from the
states in the previous task period for these accumulation periods and increment the

(23)p
↓

in
(s, h̃) =

S∑
sp=1

𝜉(sp) ⋅ p
↓

wd
(sp) ⋅ msp,s

(24)p
↑

in
(s, h̃) =

S∑
sp=1

𝜉(sp) ⋅ p
↑

wd
(sp) ⋅ msp,s

.

Fig. 8   An illustration of a convolution result and the Gaussian distribution that forms a lower bound

Real-Time Systems	

current state element by 1. Such an accumulation vector copied from h̃ with a job
that arrives in state s is denoted h̃+s . When h̃ exists in different states in the previous
accumulation period, they all lead to h̃+s in s . The joint probability of randomly
selecting a job arriving in s and resulting in h̃+s depends on the probabilities
pco(sp, h̃) of a randomly selected job arriving with unfinished workload from h̃ in
each state sp , and transition probabilities msp,s

.
The probability that a job arrives with a carry-in workload from sp, h̃ is the prob-

ability of being in sp with this h̃ multiplied by the probability that the conditional
pending workload of sp, h̃ exceeds the available processor time in a task period.
Let random variables X ∼ V

↓

h̃
 and Y ∼ V

↑

h̃
 . Then we have lower p↓

co
(s, h̃) and upper

p↑
co
(s, h̃) bounds on the probability of a job arriving with the carry-in workload from

h̃ and where the previous task period state was s as: p↓
co
(s, h̃) and p↑

co
(s, h̃) , further

calculated as:

with V↓

h̃
 given as N(𝜇(h̃), 𝜎2(h̃)) , and V↑

h̃
 as Ntail(𝜇(h̃), 𝜎2(h̃), 𝛼(h̃)).

In Example 1 we find the lower bound of the prob-
ability of workload carry-over from state 2 and h̃ = [0, 1] as
p↓
co
(2, [0, 1]) = p

↓

in
(2, [0, 1]) ⋅ ℙ(N(2, 1) > 2) = 0.5 ⋅ p

↓

in
(2, [0, 1]) . The upper bound

is p↑
co
(2, [0, 1]) = p

↑

in
(2, [0, 1]) ⋅ ℙ(Ntail(2, 1, 0) > 2) ≈ 0.51 ⋅ p

↑

in
(2, [0, 1]).

The lower p↓
in
(s, h̃+s) and upper p↑

in
(s, h̃+s) bounds on the joint probability a job

arriving in s resulting in h̃+s are:

Returning to Example 1 and the gray accumulation sequence in
Fig. 2, we have the probability of a job arriving in state 1 with carry-
in from one task period in state 2. The lower bound on this probability is
p
↓

in
(1, [1, 1]) = p↓

co
(2, [0, 1]) ⋅ m2,1 = 0.7 ⋅ p↓

co
(2, [0, 1]) . In this case, the sum has

only one term since only h̃ = [0, 1] in the first period can lead to h̃ = [1, 1] and
s = 1 in the second period. The upper bound is derived in the same manner as
p
↑

in
(1, [1, 1]) = 0.7 ⋅ p↑

co
(2, [0, 1]) . The derivations from Eqs. (27), (25) and (23) can

be combined, giving p↓
in
(1, [1, 1]) ≈ 0.0306 ⋅ p

↓

wd
(1) + 0.0131 ⋅ p

↓

wd
(2) . Combining

Eqs. (28), (26) and (24) gives p↑
in
(2, [1, 1]) ≈ 0.0313 ⋅ p

↑

wd
(1) + 0.0134 ⋅ p

↑

wd
(2).

(25)p↓
co
(s, h̃) = p

↓

in
(s, h̃) ⋅ ℙ(X > n ⋅ Q)

(26)p↑
co
(s, h̃) = p

↑

in
(s, h̃) ⋅ ℙ(Y > n ⋅ Q)

(27)p
↓

in
(s, h̃+s) =

S∑
sp=1

p↓
co
(sp, h̃) ⋅ msp,s

(28)p
↑

in
(s, h̃+s) =

S∑
sp=1

p↑
co
(sp, h̃) ⋅ msp,s

.

	 Real-Time Systems

4.6 � Bounds on the probability of workload depletion

The probability of having no work remaining at the end of the task period pwd for
each state are used in Eqs. (23) and (24) to derive pin bounds for jobs arriving at idle
points. These state-wise workload depletion probabilities pwd are propagated to all
pin in the workload accumulation process via Eqs. (25)–(28).

We do not know the true value of the probability of workload depletion p∗
wd

 . This
section outlines how to derive bounds for pwd by observing bounds of state-wise
sums on pin.

Let h̃ ∈ (s, i) denote the set of accumulation vectors in state s at task period i from
the last idle point. We now define p↓Σ

in
(s,N, pwd) , the sum of the lower bounds on pin

associated with all accounted accumulation vectors in s up until task period N from
the last idle point. In other words, this is a lower bound on the joint probability of a
randomly selected job arriving in s and at most N from the last idle point.

Observation 4  Assume the exact p∗
wd

 is known and used as p↓
wd

 in Eq. (23). Then
p
↓Σ

in
(s,N, pwd) ≤ �(s),∀s,∀N.

We denote the error in p↓Σ
in

 resulting from using the Gaussian V↓ lower workload
distribution bounds instead of the true workload distributions as e(p↓Σ

in
).

We introduce �(s)N as the joint probability of a job arriving in s more than N task
periods after the last idle point.

Observation 4 is illustrated in Fig. 9, where the valid region of p↓Σ
in

 is displayed
assuming p∗

wd
 is input in Eq. (23).

We define an upper bound on the joint probability of a randomly selected job
arriving in s and at most N from the last idle point as p↑Σ

in
(s,N, pwd) in Eq. (31).

Observation 5  Assume the true probability of workload depletion p∗
wd

 is known.
Using this value in Eq. (24), we have p↑Σ

in
(s,N, pwd) ≥ �(s) − �(N).

Let e(p↑Σ
in
) denote the error introduced by replacing the true workload distribution

with the upper bounding partial Gaussian distribution. The valid region of p↑Σ
in

 given
from Observation 5 is displayed in Fig. 10.

Observations 4 and 5 imply that the true probability of workload depletion must
lead to p↓Σ

in
 in the region marked in Fig. 9 and p↑Σ

in
 in the region marked in Fig. 10.

(29)p
↓Σ

in
(s,N, pwd) =

N∑
i=1

∑
h̃∈(s,i)

p
↓

in
(s, h̃)

(30)𝛽(s)N =

∞∑
i=N+1

∑
h̃∈(s,i)

pin(s, h̃)

(31)p
↑Σ

in
(s,N, pwd) =

N∑
i=1

∑
h̃∈(s,i)

p
↑

in
(s, h̃)

Real-Time Systems	

The state-wise maxima of pwd leading to any point along the lines illustrated as the
upper and right lines in Fig. 9 upper bounds p∗

wd
.

Theorem 5  An upper bound p↑
wd

 on the probability of workload depletion is derived
by taking the state-wise maxima of pwd leading to p↓Σ

in
(s) ≤ �(s),∀s , and where there

is inequality in at most one s.

Proof  From Eqs. (23), (25) and (27) it follows that p↓
in
(s, h̃) is a linear combination

of pwd(s) . As is clear from Eq. (29), p↓Σ
in
(s) is also a linear combination of pwd(s) ,

and it holds for some positive Ai,s that:

Starting from the true workload depletion probability p∗
wd

 we increase an arbitrary
state dimension j of pwd(j) by an amount �s,j until p↓Σ

in
(s, pwd) reaches a hyperplane

defined by �:

At the first hyperplane we encounter min(�s,j)∀s , which gives p↓Σ
in
(i) ≤ �(i),∀i ≠ s.

The true p∗
wd

 results in p↓Σ
in
(s) ≤ �(s) . Therefore, all pwd resulting in the point with

equality for all s upper bounds p∗
wd

 in at least one state dimension due to the linear
combination. Assume that pwd resulting in this point does not upper bound p∗

wd
 for

state dimension i, pwd(i) < p∗
wd
(i) . In this case, an upper bound of p∗

wd
(i) results in a

point on one of the hyperplanes. The hyperplane separating the region resulting from
upper bounds in this dimension from the region resulting from underestimates in
this dimension crosses at least one of the hyperplanes described by p↓Σ

in
(s) ≤ �(s),∀s ,

with inequality in at most one s . Illustrating in Fig. 9 the result from the upper bound

(32)p
↓Σ

in
(s, pwd) =

S∑
i=1

Ai,s ⋅ pwd(i)

p
↓Σ

in
(s, pwd) = Aj,s(p

∗
wd
(j) + �s,j) +

S∑
i=1,i≠j

Ai,sp
∗
wd
(i) = �(s)

Fig. 9   An illustration of the possible valid region of p↓Σ
in

 for two states, if the true probabilities of work-
load depletion would be used as p↓

wd
 in Eq. (23)

	 Real-Time Systems

in this dimension as the black dot, two possible hyperplanes that separate the regions
are displayed with dotted lines. This concludes our proof. 	� ◻

Analogously, we derive a lower bound on the workload depletion probability pwd .
The state-wise minima of pwd resulting in p↑Σ

in
 on the lower and left lines illustrated

in Fig. 10 lower bound p∗
wd

.
The endpoints are adjusted if the pwd for a state is lower than 0 or higher than 1.

As p↓Σ
in
(s) and p↑Σ

in
(s) are linear combinations of pwd(s) we only need to consider the

endpoints.
Relating to Example 1, we have seen that the probability of a job arrival in

state 2 after an idle point at least p↓
in
(2, [0, 1]) = 0.0875 ⋅ p

↓

wd
(1) + 0.0375 ⋅ p

↓

wd
(2) .

The same derivation for a job arrival in state 1 after an idle point gives
p
↓

in
(1, [1, 0]) = 0.7875 ⋅ p

↓

wd
(1) + 0.0875 ⋅ p

↓

wd
(2) . From simulation we have

the probability of jobs arriving with h̃ longer than 1 as �(1)1 ≈ 0.093 for state 1
and �(2)1 ≈ 0.026 for state 2. We solve the linear equation systems below for
(i, j) = (0, 0), (1, 0) and (0, 1) to get candidates for p↑

wd
.

In this case, with only the jobs arriving at idle points, the equation system for
(i, j) = (0, 0) , the upper right corner in Fig. 9, gives the solution p↑

wd
(1) = p

↑

wd
(2) = 1

that is the highest possible bound. For the lower bound of pwd , we have the same
linear equation system in the special case when we only consider the accumulation
vectors after an idle point. This is because Eqs. (23) and (24) only differ in the work-
load depletion probability bounds. We now solve the system for (i, j) = (1, 1), (1, 0)
and (0, 1). For (i, j) = (1, 1) , the lower left corner in Fig. 10, we get the candi-
dates pwd(1) ≈ 0.94 and pwd(2) ≈ 0.44 . For (i, j) = (1, 0) we get pwd(1) ≈ 0.84
and pwd(2) ≈ 1.4 . This point is invalid since pwd(2) > 1 . We find the j, 0 < j < 1

(33)0.7875 ⋅ pwd(1) + 0.0875 ⋅ pwd(2) = 0.875 − i ⋅ 0.093

(34)0.0875 ⋅ pwd(1) + 0.0375 ⋅ pwd(2) = 0.125 − j ⋅ 0.026

Fig. 10   An illustration of the possible valid region of p↑Σ
in

 for two states, if the true probabilities of work-
load depletion would be used as p↑

wd
 in Eq. (24)

Real-Time Systems	

where (i, j) = (1, j) gives pwd(2) = 1 , and at this point we have pwd(1) ≈ 0.88 . For
(i, j) = (0, 1) we get pwd(1) ≈ 1.1 and pwd(2) ≈ 0.064 . This point is also invalid,
and we search along the line i, 0 < i < 1, j = 1 for the point where pwd(1) = 1 . We
have pwd(2) ≈ 0.31 . We can now assign the state-wise minima for the lower bound:
p
↓

wd
(1) ≈ 0.88 and p↓

wd
(2) ≈ 0.31.

4.7 � Bounds on the probability of longer workload accumulation

In Eq. (30), we defined �(s)N as the joint probability of a job arriving in s with at
least N elapsed since the last idle point. The values of �(s)N were used in obtaining
the bounds of workload depletion for the different states. In this section we outline
how to find bounds for �(s)N , given safe bounds �(s)N−1 . As all pin are non-nega-
tive, �(s)N decreases monotonically with N . For each period, �(s)N is at most �(s)N−1
minus the lower bound on the probability of a job arriving in s N task periods after
an idle point, i.e.

Further, �(s)N is at most the stationary probability �(s) minus the lower bound on the
probability of a job arriving within N task periods after an idle point, i.e.

Safe bounds �(s)N are obtained by taking the minimum of right-hand sides of Ine-
qualities (35), and (36).

We return to Example 1 and consider the probability of jobs arriving in state 1 with
accumulation vectors past 2 task periods, that is �(1)2 . We have �(1)1 ≈ 0.093 from
simulation, the lower bound on the probability of a job arriving in state 1 with accu-
mulation vector [1, 1] as p↓

in
(1, [1, 1]) ≈ 0.031 ⋅ p

↓

wd
(1) + 0.013 ⋅ p

↓

wd
(2) and with

accumulation vector [2, 0] p↓
in
(1, [2, 0]) ≈ 0.016 ⋅ p

↓

wd
(1) + 0.0018 ⋅ p

↓

wd
(2) . Entering

these values in Eq. (35) we get �(1)2 ⪅ 0.047 . Using Eq. (36) gives �(1)2 ⪅ 0.11 ,
so we use �(1)↑

2
≈ 0.047 in the search for bounds on pwd in the next accumulation

period.

4.8 � Upper bounding the deadline miss probability

Finally, we derive an upper bound on a randomly selected job’s expected deadline
miss probability as defined in Eq. (6). We derive an upper bound p↑

dm
(s, h̃) on the

deadline miss probability pdm(s, h̃) of a job arriving in state s with the job arrival

(35)𝛽(s)N ≤ 𝛽(s)N−1 −
∑

h̃∈(s,N)

p
↓

in
(s, h̃) = 𝛽(s)

↑a

N

(36)𝛽(s)N ≤ 𝜉(s) −

N∑
i=1

∑
h̃∈(s,i)

p
↓

in
(s, h̃) = 𝛽(s)

↑b

N

(37)�(s)
↑

N
= min(�(s)

↑a

N
, �(s)

↑b

N
)

	 Real-Time Systems

resulting in the accumulation vector h̃ . This bounds the deadline miss probability
of all jobs, resulting in accumulation sequences h corresponding to h̃ where the
sequence ends in s . The random variable Y ∼ V

↑

h̃
 upper bounds the pending work dis-

tribution of these jobs. p↑
dm
(s, h̃) is the probability that this work exceeds the avail-

able computation time for the job until the deadline k ⋅ Q , i.e.:

The distribution V↑

h̃
 is the upper bounding distribution Ntail(𝜇(h̃), 𝜎2(h̃), 𝛼(h̃, s)) , as

shown in Theorem 1.
The probability of randomly selecting a job arriving in state s with workload

accumulation captured by h̃ is the joint probability pin(s, h̃) . The upper bound of
this probability, p↑

in
(s, h̃) was derived in Sect. 4.5. We derive a bound of the expected

deadline miss probability conditioned on being in a state s by considering all job
arrivals in s within N task periods from the last idle point, that is with h̃ of length
up to N . The deadline miss probability of jobs arriving more than N task periods
from the last idle point is upper bounded by 1. The probability of randomly select-
ing a job arriving more than N task periods from the last idle point is upper bounded
by �(s)↑

N
 . The probability of randomly selecting a job arriving in s is the stationary

probability �(s) . We upper bound the expected deadline miss probability in s by:

In our example, we derive for state 1 the first term �(1)
↑

2

�(1)
≈

0.047

0.875
≈ 0.054 and the sec-

ond term
∑

h̃∈([1,0],[1,1],[2,0]) p
↑

in
(1,h)⋅p

↑

dm
(1,h)

𝜉(1)
≈

0.875⋅10−9+0.018⋅3.4⋅10−7+0.045⋅0.0073

0.875
≈ 3.7 ⋅ 10−4.

Theorem 6  The expected deadline miss probability DMP of a randomly selected job
is upper-bounded by p↑

dm
 , i.e., DMP ≤ p

↑

dm
, where

Proof  The deadline miss probability Eq. (38) is an upper bound on the deadline miss
probability of a job arriving in s and resulting in h̃ , because Ntail(𝜇(h̃), 𝜎2(h̃), 𝛼(h̃, s))
upper bound on the workload distribution as shown in per Theorem 1.

The expected deadline miss probability of a randomly selected job arriving in s
is upper bounded by p↑

dm
(s) as in Eq. (39). For jobs arriving in s within N since the

last idle point, Eq. (38) upper bounds pdm(s, h̃) , and pin(s, h̃) is an upper bound on
the probability of randomly selecting a job arriving in state s and resulting in h̃ . The
probability of randomly selecting a job arriving in s more than N from the last idle

(38)p
↑

dm
(s, h̃) = ℙ(Y > k ⋅ Q)

(39)p
↑

dm
(s) =

𝛽(s)
↑

N

𝜉(s)
+

∑N

i=1

∑
h̃∈(s,i) p

↑

in
(s, h̃)p

↑

dm
(s, h̃)

𝜉(s)
.

(40)p
↑

dm
=
∑
∀s

(
𝛽(s)

↑

N
+

N∑
i=1

∑
h̃∈(s,i)

p
↑

in
(s, h̃)p

↑

dm
(s, h̃)

)
.

Real-Time Systems	

point is upper bounded by �(s)↑
N

 , and 1 upper bounds pdm(s, h̃) for these jobs. We
divide by �(s) as per the definition of conditional probability.

We apply the law of total probability on Eq. (39) over all the states s to obtain
Eq. (40). 	� ◻

In our example we have �(1)
↑

2
≈ 0.047 and �(2)

↑

2
≈ 0.011 , resulting in

the first term of Eq. (40) as 0.058. In the second term we have for state 2 ∑
h̃∈([0,1],[1,1],[0,2]) p

↑

in
(2, h) ⋅ p

↑

dm
(2, h) ≈ 0.125 ⋅ 0.024 + 0.045 ⋅ 0.16 + 0.019 ⋅ 0.16   .

Summing with the terms of state one, the resulting sum is approximately 0.0066.
With only two accumulation periods accounted for, the largest part of the bound
stems from the first term, where the deadline miss probability is set to 1 for longer
accumulation vectors.

5 � Iterative workload accumulation

As illustrated in Fig. 3, the steps described in Sect. 4 are applied iteratively, succes-
sively including jobs arriving with a longer time from the last idle point in the analy-
sis. The process ends when one of the following conditions is met:

1.	 For each state both of the following hold:

(a)	 The upper bound on the probability of workload depletion has stopped
decreasing and started increasing.

(b)	 The lower bound on the probability of workload depletion has stopped
increasing and started decreasing.

2.	 The process has reached a maximum number of accumulated periods.

If the bounds on the workload depletion probability converge for each state, or
if the region within the bounds starts to grow, the first condition is met. Instead
of performing the convolution in each accumulation period, the upper and lower
bounds on the workload distribution are used, introducing an error. The white
space between the valid region and the lines to use in searching for bounds in
Figs. 9 and 10 illustrate these errors. When these errors increase, the distance
between the search region for our bounds and the region resulting from the
true workload depletion probabilities grows. For the upper bounds, illustrated
in Fig. 9, the distance between the search region and the valid region may still
decrease if the increase due to this error is compensated by a decrease in � . In the
case of the lower bounds, illustrated in Fig. 10, a larger error leads to a smaller
value for the lower bound. The lower bounds are used in the calculations of �↑
in the next accumulation period, Eq. (37). Smaller lower bounds lead to a larger
�↑ . This further increasing the distance between the valid region and the bound
search region, as �↑ is used to determine the search region. This may cause p↓

wd

and �↑ to diverge.

	 Real-Time Systems

It may be the case that the workload depletion probability bounds diverge from
the beginning. This may be caused by insufficient computational resources allocated
to the task or too large errors introduced in the bound calculations. It may also be
the case that the workload depletion probability bounds converge slowly or converge
for one or more states while they diverge for others. In these cases, the process stops
when the second condition is fulfilled.

We apply the iterative process to the following example:

Example 2 

The stationary probability for state 1 is 0.875, and for state 2 it is 0.125. The transi-
tion matrix and stationary probabilities are identical to Example 1. In the CBS of
this example, there are n = 4 server periods in one task period, and the task is guar-
anteed Q = 8 time units of computation time in each server period. The deadline is
defined by k = 8 server periods.

State 1 in Example 2 could imply normal operation, and state 2 an exceptional
mode. While in normal operation the task remains there with probability 0.9,
but when the task is in the exceptional mode, there is a probability of 0.3 that it
remains there. The initial values of probability of a randomly selected job arriving
with carry-in workload from at least one task period, �1 are obtained from simula-
tion. Execution times are generated from the Markov Model and fed into a CBS
simulator with the specified server reservation and period ratio. This results in
�1 = (0.1278, 0.0442) for states 1 and 2, respectively. Figure 11 illustrated the evo-
lution of �N during the workload accumulation process compared to probabilities
of jobs arriving in states 1 and 2 at least N from the last idle point resulting from
simulation.

The bound regions for the probabilities of workload depletion of the two states
along the accumulation process are shown in Fig. 12. Estimates of the probabilities
of workload depletion obtained from simulation are also displayed. The workload
accumulation continues until the maximum number of task periods, set to 20 for this
example.

The bounds on the deadline miss probabilities for the two states along the accu-
mulation process are shown in Fig. 13. The second terms of Eq. (39), the parts of
the bounds resulting from the weighted sum of the accumulation vectors we have
accounted for, are shown as dotted. In this example, the second terms approach the
pdm from simulation. The major part of the introduced pessimism originates in � , the
first terms of Eq. (39). Estimates of the deadline miss probabilities obtained from
simulation are also displayed in Fig. 13.

5.1 � Time complexity of the iterative process

In Sect. 4.4, we have seen that the number of accumulation vectors with length N
in a S-state model grows as O(NS−1) . In the iterative procedure, all accumulation

S = 2, M =

(
0.9 0.1

0.7 0.3

)
, C = {N(20, 9),N(40, 16)}.

Real-Time Systems	

vectors up until length N have been considered at iteration step N , so the time
complexity of the entire iterative process is O(NS) . In the current implementa-
tion, all vectors up until length N are considered in the iteration step N , giving a
time complexity of O(NS+1) . By storing intermediate results from previous itera-
tions, this can be reduced to O(NS) . The number of states is application depend-
ent. In the robotic vision task of Frías et al. (2017), 4 discrete-emission states
are identified, and in the control task in our evaluation 6 discrete-emission or 8

Fig. 11   Bounds on � for the two states as solid lines, along with probability estimates of longer accumu-
lation histories obtained from simulation as dashed lines. (Log scale)

Fig. 12   The region between the upper and lower bounds on the per-state probability of workload deple-
tion in the example, along with the estimates obtained from simulation as a dashed line

Fig. 13   The bounds on the deadline miss probabilities during the workload accumulation process of the
example, along with results from simulation. (Log scale.)

	 Real-Time Systems

Gaussian-emission states are found. In the video decompression task evaluated in
Friebe et al. (2020) almost 50 Gaussian-emission states are identified.

6 � Reducing the number of states by merging

As the time complexity of the iterative process up until the accumulation period
N with a S-state model is O(NS) , it is clear that if the number of states can be
reduced, this would have a great effect on the bound computation time. This sec-
tion outlines how to reduce the number of states by merging while ensuring a safe
bound on the deadline miss probability.

6.1 � Modified Markov chain execution times

In this section we define a modified execution time model, where an upper bound
on the execution time distribution is defined by ⟨𝕊,M,ℂ⟩ . As in the model defined
in Sect. 4.1, � = {1, 2,… , S} is the set of S states, S ∈ ℕ , and M is the S × S
state transition matrix. ℂ = {C1,C2,… ,CS} is the set of upper bounding execu-
tion time distributions, or emission distributions, related to the respective state.
These are modeled as partial Gaussian distributions with mean �s and variance
�2
s
 of the Gaussian distribution, and �s as the starting point of the distribution, i.e.

Cs ∼ Ntail(�s, �
2
s
, �s) . Setting �s = −∞,∀s , gives the model as defined in Sect. 4.1.

6.2 � Merging distributions

Definition 11  We define a merged partial Gaussian distribution
Ntail

m
(�1,�2, �

2

1
, �2

2
, �1, �2) , of two partial Gaussian distributions Ntail(�1, �

2

1
, �1) and

Ntail(�2, �
2

2
, �2) , as:

In the following, we show that the merged partial Gaussian distribution is greater
than each of the distributions used in the construction, as outlined in Theorem 7. We
show this step-by-step, upper bounding each of the two partial Gaussian distribu-
tions until both reach the merged distribution. We provide a lemma and illustration
for each step below.

Theorem 7  The merged partial Gaussian distribution defined by
Ntail

m
(�1,�2, �

2

1
, �2

2
, �1, �1) is an upper bound of each of the two distributions

Ntail(�1, �
2

1
, �1) and Ntail(�2, �

2

2
, �2).

Ntail
m
(�1,�2, �

2
1
, �2

2
, �1, �2) = Ntail(max(�1,�2), max(�2

1
, �2

2
), max(�1,�2)

+max(0, �1 − �1, �2 − �2))

Real-Time Systems	

In Lemma 8, we show that shifting the mean of a partial Gaussian distribution to
a higher value while keeping the distance between the mean and the starting point �
unchanged gives an upper bounding distribution. This is illustrated in Fig. 14.

Lemma 8  The partial Gaussian distribution Ntail(�1, �
2,�1 + �Δ) ≥ N tail

(�2, �
2,�2 + �Δ) if �1 ≥ �2.

Proof  From Definition 2, we know that the scaling factor of the partial Gauss-
ian distribution depends only on �Δ and �2 that are equal for the two distribu-
tions. From this we conclude that the CDF of Ntail(�1, �

2,�1 + �Δ) is the CDF
of Ntail(�2, �

2,�2 + �Δ) translated �1 − �2 to the right. Therefore the CDF of
Ntail(�1, �

2,�1 + �Δ) is always below that of Ntail(�2, �
2,�2 + �Δ) . 	� ◻

In Lemma 9, we show that increasing the variance to a higher value while keep-
ing the mean and starting point unchanged gives an upper bounding distribution if
the starting point � is at the mean or higher. This is illustrated in Fig. 15.
Lemma 9  The partial Gaussian distribution Ntail(�, �2

1
, �) ≥ Ntail(�, �2

2
, �) if

�2

1
≥ �2

2
 and � ≥ �.

Proof  Let �2

1
= k ⋅ �2

2
, k ≥ 1 . Since the partial Gaussian functions are normalized to

integrate to 1, the PDF of Ntail(�, �2

2
, �) at x ≥ � can be written as C2 ⋅ e

− (x−�)2

2�2

2

 , with

C2 as the normalization factor. Analogously we have the PDF of Ntail(�, �2

1
, �) as

C1 ⋅ e
− (x−�)2

2k2⋅�2

2

 , with C1 as the normalization factor. Let us evaluate the rate of decline
in the PDF s between x and x + Δx , Δx > 0 . Since � ≥ � the PDF is declining. Divid-
ing the PDF at x with the PDF at x + Δx results in exponential functions with the
coefficients (Δx⋅(Δx+2(x−�))

2�2

2

 and (Δx⋅(Δx+2(x−�))
2k2⋅�2

2

 respectively. The PDF associated with

�2

1
= k ⋅ �2

2
 has a lower rate of decrease than �2

2
 . This implies that the CDF associ-

ated with �2

2
 has a more rapid growth from 0 and remains above the CDF associated

with �2

1
 . 	� ◻

With these lemmas in place, we can prove Theorem 7, restated here for
convenience.

Fig. 14   CDFs of two partial Gaussian distributions as in Lemma 8. In this figure �1 = 2 , �2 = 1 , �2 = 1
and �Δ = −1

	 Real-Time Systems

Theorem 7  The merged partial Gaussian distribution defined by
Ntail

m
(�1,�2, �

2

1
, �2

2
, �1, �1) is an upper bound of each of the two distributions

Ntail(�1, �
2

1
, �1) and Ntail(�2, �

2

2
, �2).

Proof  In the first step, we apply Lemma 8 and upper bound the execution times of
the two distributions as:

and:

In a second step we apply Lemma 4 and derive upper bounds on the distributions as:

and:

In a third step, we apply Lemma 9 to upper bound:

and:

This concludes our proof. 	� ◻

Ntail(�1, �
2
1
, �1) ≤ Ntail(max(�1,�2), �

2
1
,max(�1,�2) + �1 − �1)

Ntail(�2, �
2
2
, �2) ≤ Ntail(max(�1,�2), �

2
2
,max(�1,�2) + �2 − �2)

Ntail(max(�1,�2), �
2
1
,max(�1,�2) + �1 − �1)

≤ Ntail(max(�1,�2), �
2
1
,max(�1,�2) + max(0, �1 − �1, �2 − �2))

Ntail(max(�1,�2), �
2
2
,max(�1,�2) + �2 − �2)

≤ Ntail(max(�1,�2), �
2
2
,max(�1,�2) + max(0, �1 − �1, �2 − �2)

Ntail(max(�1,�2), �
2
1
,max(�1,�2) + max(0, �1 − �1, �2 − �2))

≤ Ntail(max(�1,�2),max(�
2
1
, �2

2
),max(�1,�2) + max(0, �1 − �1, �2 − �2))

Ntail(max(�1,�2), �
2
2
,max(�1,�2) + max(0, �1 − �1, �2 − �2))

≤ Ntail(max(�1,�2),max(�
2
1
, �2

2
),max(�1,�2) + max(0, �1 − �1, �2 − �2))

Fig. 15   CDFs of two partial Gaussian distributions as in Lemma 9. In this figure � = 1 , �2

1
= 4 , �2

2
= 1

and � = 1

Real-Time Systems	

6.3 � Merging states in the Markov model

Here, we describe how to merge two states in the modified execution time model.
Without loss of generality, we describe how to merge the last two states, S − 1 and S ,
to reduce the number of states from S to S − 1 . States can be reordered to merge any
two states, and the process can be repeated to merge any number of states.

Recall that the M element ma,b represents the conditional probability of being in
state b at task period i + 1 , given that at task period i, the state is a. Let ma,b rep-
resent an element in the transition matrix prior to merging and mm

a,b
 an element in

the transition matrix after merging. In the new (S − 1) × (S − 1) , the element val-
ues are calculated according to Eq. (41). All mm

a,b
, a < S − 1, b < S − 1 remain the

same as ma,b because these are the transition probabilities of states unaffected by the
merge. For mm

a,S−1
, a < S − 1 , that is the probability of moving from an unchanged

state into the merged state, the transition probabilities into the merged states are
summed. mm

S−1,b
, b < S − 1 is the probability of moving from the merged state into

an unchanged state. The transition probabilities from the merged state are weighted
means of the transition probabilities for the original states, weighted with the sta-
tionary probabilities. Finally, mm

S−1,S−1
 is the probability of staying in the merged

state. For each of the merged states, we sum the probability of staying in the state
or moving to the other of the merged states. A weighted mean is calculated for these
sums with the stationary probabilities of the states.

In the merged Markov model, we have emission distributions
Cs ∼ Ntail(𝜇s, 𝜎

2
s
, 𝛼s), s < S − 1 . For state S − 1 the emission distribution is the

merged partial Gaussian distribution CS−1 ∼ Ntail
m
(�S−1,�S, �

2

S−1
, �2

S
, �S−1, �S).

In the merged Markov Model, transition probabilities remain unchanged, and
emission distributions are unchanged or upper-bounded. The merged model is more
pessimistic, and a DMP bound derived with the proposed method is safe. Probabili-
ties of workload depletion are lower compared to the model prior to the merge. For
jobs associated with a certain accumulation vector, the derived probability of dead-
line miss and the proportion of those jobs contributing carry-over into the next task
period are the same or higher. The probability of job arrivals resulting in longer
accumulation vectors, � is higher for the merged model compared to the original for
the same number of accumulation periods N.

(41)mm
a,b

=

⎧
⎪⎪⎨⎪⎪⎩

ma,b a < S − 1, b < S − 1

ma,S−1 + ma,S a < S − 1, b = S − 1
𝜉(S−1)⋅mS−1,b+𝜉(S)⋅mS,b

𝜉(S−1)+𝜉(S)
a = S − 1, b < S − 1

𝜉(S−1)⋅(mS−1,S−1+mS−1,S)+𝜉(S)⋅(mS,S−1+mS,S)

𝜉(S−1)+𝜉(S)
a = S − 1, b = S − 1

	 Real-Time Systems

7 � Evaluation

7.1 � Goal of the evaluation

The goal of the evaluation is to compare the obtained bounds with empirical dead-
line miss rates to verify that the method is applicable for a realistic use case, to see
how the bound evolves with the workload accumulation iterations, and to see how
different server parameters and deadlines affect the pessimism. We compare to state
of the art deadline miss probability estimates (Frías et al. 2018). We also compare
with simulation of the fitted Gaussian-emission Markov model, to evaluate the valid-
ity of this model for the use case, and to see the pessimism for a particular execution
time state. Further, we show an estimate of the deadline miss probability assuming
independence to see the effect of dependence in the use case.

7.2 � Use case and test setup

We evaluated the proposed deadline miss probability bound with a control task for a
Furuta pendulum, a rotary inverted pendulum (Vreman et al. 2021). The control task
implements a square root Kalman filter (Ljung 1999) estimating angles and angular
velocities near the pendulum upright position and a PD controller for stabilizing the pen-
dulum upright at angle 0 of the arm. A separate task simulates the pendulum dynam-
ics and provides an asynchronous TCP server. The control task connects to the server
to retrieve arm and pendulum angles and send the control signal. The control task runs
periodically with a frequency of 500 Hz. Tests were performed on a Raspberry Pi 3B+
with a PREEMPT_RT-patched version of Raspberry Pi OS. The control task was pinned
to a core set up as an exclusive cpuset and scheduled with the Linux CBS imple-
mentation SCHED_DEADLINE. The simulator task was pinned to another core using
cpuset. It runs periodically with the same frequency and was FIFO scheduled with
the highest priority. The TCP server of the simulator runs in a separate thread. All cores
were run with scaling governor performance. USB Ethernet and WiFi were disabled
during the tests.

The ftrace framework was used to record sched events and collect nanosec-
ond-precision timestamps. The control task was scheduled with SCHED_DEAD-
LINE setup with high bandwidth and a long server period, resulting in each job
finishing within the server period. The time from the sched_switch event where
the task is switched in to the event where it is switched out was taken as the execu-
tion time of a job. In some rare occasions there are several sched_wakeup events
recorded close to each other in the same period. There are 50,011 sched_wakeup
events in the log from 50,000 periods. One of these is due to an extra wake up when
finishing the task after all periods, but 10 are due to preemptions by kernel space
tasks. In these cases, the execution time is taken as the sum of the time frames from
switch in to switch out.

Real-Time Systems	

Fig. 16   The recorded execution time trace of the control task

Fig. 17   The density distribution of the execution times starting at job 2000

Fig. 18   The autocorrelation of the execution times sequence starting at job 2000

	 Real-Time Systems

7.3 � Test setup

Recorded execution times from the control task running 50,000 periods are shown
in Fig. 16. There was a run-in period with a higher proportion of execution times at
0.5 ms at the beginning of the trace. The execution times of the first 2000 jobs were
discarded before fitting the HMM to the trace. The reason for this is that we want to
perform the evaluation under the given assumptions. One assumption is stationarity,
and therefore we exclude this part that appears to be a transient period. In Fig. 17,
we display the density distribution of the execution time trace starting at job 2000.
The autocorrelation of the trace from job 2000 is shown in Fig. 18.

The evaluation was performed with three different configurations of server budget
and period ratios:

1.	 Q = 0.06 ms, n = 5 , k1 = 8 , k2 = 10,
2.	 Q = 0.07 ms, n = 4 , k1 = 6 , k2 = 8 , and
3.	 Q = 0.08 ms, n = 4 , k1 = 6 , k2 = 8.

Two relative deadlines were evaluated for each of these configurations.
The control task was scheduled with SCHED_DEADLINE configured with the

different server budgets and period ratios. The task was configured with the rela-
tive deadline and logged the number of deadline misses in each 500-job-interval.
During these tests, sched events are also recorded with the ftrace framework,
to avoid that any introduced overhead by the tracing causes higher bounds and esti-
mates compared to the empirical results. These recorded traces are not used further.

This small but realistic use case illustrates the method’s applicability. https://​
github.​com/​annaf​riebe/​ContMM_​RT_​Bound​DMP.1

7.4 � Markov model

The method outlined in Friebe et al. (2020) was started with 10 initial states and
identified an HMM with 8 states. The transition matrix is shown in Eq. (42), and
from this we conclude that the Markov Chain is irreducible. The resulting state
means, standard deviations, and stationary probabilities are displayed in Table 3. The
average computational requirement over a task period is about 0.164 ms, obtained

Table 3   Means, standard deviation, and stationary probabilities of the fitted HMM states

State number 1 2 3 4 5 6 7 8

Mean (ms) 0.178 0.178 0.323 0.158 0.159 0.169 0.181 0.153
Standard deviation (ms) 0.002 0.012 0.091 0.003 0.002 0.007 0.003 0.002
Stationary probability 0.128 0.045 0.007 0.086 0.509 0.014 0.078 0.133

1  Omitted for anonymous review.

https://github.com/annafriebe/ContMM_RT_BoundDMP
https://github.com/annafriebe/ContMM_RT_BoundDMP

Real-Time Systems	

from multiplying stationary probabilities with means and summing the products.
The servers providing the lowest computational resource guarantee 0.28 ms compu-
tation time per task period, so all accumulation sequence Markov Chains are ergodic
and we will have idle points in the server. The highest mean and standard deviation
are observed in state 3. This state has a low stationary probability, only 0.7%, but the
transition probability m3,3 of staying in state 3 from one round to the next is as high
as 63%. This dependence increases the DMP in state 3 and overall.

7.5 � Evaluated Methods

Six different methods were compared:

•	 Linux-CBS: Empirical deadline-miss ratio. The control task was scheduled with
Linux SCHED_DEADLINE configured with each setting of server budget Q ,
task to server period ratio n and evaluated with the different relative deadline to
server period ratios k . The task period was 2 ms for all configurations, resulting
in different bandwidths. 10 runs of the 50,000-job task were performed for each
configuration. The empirical deadline miss ratio was calculated from deadline
misses after the 2000-job run-in period.

•	 Sim-Cont: A deadline-miss probability derived by generating execution times
from the fitted HMM and feeding them into a CBS simulator with the different
server reservations, period ratios, and deadline configurations. A sequence of 106
samples was generated from the continuous-emission Markov model described
by Table 3 and Eq. (42).

•	 Ind: A deadline-miss probability derived by assuming independent execution
times, i.e., generating execution times by randomly sampling from the recorded
trace and feeding them into a CBS simulator with the different server reserva-
tions, period ratios and deadline configurations. A sequence of 106 samples was
generated.

•	 PROSIT: A deadline-miss probability derived with PROSITool (Frías et al.
2018). A 6-state discrete-emission HMM is fitted to the execution time trace,
using a 10 μ s scaling factor for resampling. This HMM is evaluated with PROS-
IT’s solver for steady-state deadline-miss probabilities with the different CBS
configurations.

•	 Bound-8: A deadline-miss probability bound derived from the fitted 8-state con-
tinuous-emission Markov model and the methods in Sect. 4. The HMM is char-

(42)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

.739 .051 .002 .003 .162 .001 .041 .001

.056 .350 .012 .000 .523 .008 .051 .000

.000 .310 .633 .003 .000 .044 .010 .000

.006 .000 .002 .408 .004 .054 .000 .526

.000 .038 .002 .003 .834 .001 .121 .000

.000 .000 .004 .681 .063 .225 .000 .028

.377 .011 .001 .000 .500 .000 .107 .003

.009 .001 .002 .296 .000 .038 .001 .654

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

	 Real-Time Systems

acterized by Table 3 and Eq. (42). The maximum number of accumulation peri-
ods was set to 10. The �(s)1 for the first accumulation period were retrieved from
the HMM simulation.

•	 Bound-2: A deadline-miss probability bound calculated according to Sect. 4 with
a 2-state continuous-emission Markov model. The 2-state model was obtained
from merging all states except State 3 from the 8-state model used for Bound-
8 as described in Sect. 6. The initial � values for the first accumulation period
were retrieved from simulation with the merged 2-state model, and the maximum
number of accumulation periods was set to 10.

Fig. 19   Evolution over 10 accumulation periods of the Bound-8 and Bound-2 according to Eq. (39) for
the worst state, and according to Eq. (40) for the task overall, compared to the other methods listed in
Sect. 7.5

Real-Time Systems	

Bound-8 and Bound-2 are calculated as pdm for each state according to Eq. (39),
and the overall bound according to Eq. (40). The bounds for the state with the
highest pdm of Bound-8 and Bound-2 are compared to the deadline miss ratio of
this state from Sim-Cont, as the empirical DMR Linux-CBS and PROSIT do not
provide per-state estimates.

7.6 � Results and discussion

The bounds on the deadline miss probability pdm derived along the workload accu-
mulation for the 8-state model and the 2-state model are shown in Fig. 19, together
with the average DMRs of the executions under SCHED_DEADLINE, deadline miss
probability estimates from HMM simulation, assuming independence, and derived
with PROSITool.

Deadline miss probabilities derived with HMM simulation and PROSITool are
higher than empirical DMRs, except for the CBS configuration 0.08/4/8. In this
case, we observe pdm of 0.021% derived with Sim-Cont and 0.020% with PROSIT,
compared to 0.058% for the empirical Linux-CBS. This may be caused by a low
probability state that is not captured in the fitting of the Markov Models. It may also
be due to chance. This configuration has the lowest number of deadline misses, and
a larger number of runs with Linux-CBS may have been needed for a reliable DMR
estimate.

We observe that HMM simulation Sim-Cont estimates are consistently close to
the PROSIT results, which indicates that the continuous emission distribution HMM
is a valid approximation in the evaluated use case.

The resulting Bound-8 bounds for the overall deadline miss probabilities are
1.76–10 times higher compared to HMM simulation Sim-Cont. The bounds for the
state with the highest deadline miss probability are 1.3–4.1 times higher. Higher uti-
lization and shorter relative deadlines give tighter bounds.

For the overall bounds of the merged model, Bound-2, they are 2.08–12.5 times
higher than HMM simulation results Sim-Cont. Bounds for the state with the highest
pdm are 1.3–5.2 times higher compared to the simulation results.

The number of states and the scaling factor need to be provided when fitting an
HMM in PROSIT, and the number of states and the scaling factor need to be provided.
For this evaluation, several combinations of these parameters were tested. For 6 states
and scaling factor 10 μ s, 4 out of 6 states passed the PROSIT independence tests;
this was the largest proportion found in the limited exploration. Some pessimism is

Table 4   Time of the bound
calculations with the 2-state
and 8-state models for the 6
configurations over 5 and 10
accumulation periods

Bound calculation time Mean (s) Standard deviation (s)

Bound-2, 5 Accum. periods 0.0153 4.88 ⋅ 10−4

Bound-2, 10 Accum. periods 0.0552 4.10 ⋅ 10−3

Bound-8, 5 Accum. periods 1.00 0.0129
Bound-8, 10 Accum. periods 60.66 4.35

	 Real-Time Systems

introduced with PROSITool’s resampling. Tighter or optimistic results were obtained
with some of the fitted PROSIT models explored. The calculation time for PROSIT is
greatly affected by the range of execution time values in the input trace and the scaling
factor. For example, taking the 6-state model and decreasing the scaling factor from 10
to 1 μ s causes the computation time to increase from less than 0.5 s to about 20 min
on our platform, a factor of 3000. The continuous approach has no resampling con-
cept, and the calculation time is independent of the range of execution time values. A
direct comparison between the proposed bound and PROSIT has not been performed.
The proposed bound is implemented in Python and PROSIT in C++. PROSITool’s
computation time also varies a lot with the choice of scaling factor, and therefore, we
assess that a direct comparison would not add much value to the evaluation.

In the different configurations, the time for the Bound-2 and Bound-8 calculations
are logged for 5 and 10 accumulation periods, respectively. The means and stand-
ard deviations are shown in Table 4. The Python implementation of the Bound-8
calculation for the 8-state model runs the first 5 accumulation periods in about one
second and 10 accumulation periods in around one minute. With the 2-state bound
Bound-2, the time required for an optimized implementation grows with the number
of accumulation periods as O(N2) instead of O(N8) for 8 states. The non-optimized
Python implementation of the bound calculation for the merged model runs in about
55 ms for 10 accumulation periods.

In the evaluated use case, the tightest bound is already reached at 3–4 accumula-
tion periods. Already at accumulation over 5 periods, the 2-state model is about 65
times faster than the 8-state model. At 10 accumulation periods, the 2-state model
is more than 1000 times faster. Combining a low number of states with the use of
accumulation vectors instead of accumulation sequences with ordering information
provides a strong computational advantage.

Simulations and bounds of the state with the highest pdm show results 50–100
times higher than the overall pdm . While this should not be conflated with the Worst-
Case Deadline Failure Probability, we believe that the concept of workload distribu-
tion per state is useful. In future work, we aim to develop the accumulation sequence
approach relating to the probability of consecutive deadline misses.

In the evaluated use case, one state is identified with a much higher mean and
variance than the others. It may be the case that this use case is especially well
suited for state reduction into two states. Keeping the state with the highest mean
and merging the others may add pessimism in cases where states are more similar to
the state with the highest mean.

8 � Conclusions and future work

We have proposed a workload accumulation scheme starting from idle points to
upper bound the deadline miss probability of a task. The task’s computation times
are described by a Markov Model with Gaussian emission distributions, and it is
running on a reservation-based server.

A Markov model with Gaussian emission distributions allows for higher fit-
ting process automation than discrete emission distributions, where the number

Real-Time Systems	

of states and a scaling factor must be provided. Contrary to the discrete case, the
time required to obtain the bound is independent of the range of execution times
in the analyzed sequence, and no scaling factor is needed.

Further, we proposed a method for state merging. The bound computation time is
reduced by reducing the number of states by merging. The time complexity for obtain-
ing a bound for a model with S states considering N accumulation periods after an idle
point is O(NS) . A bound is obtained early in the process and is updated successively.

The evaluation use case is a control task of a Furuta pendulum. The task is
run with the Linux kernel implementation of CBS. The ratio of the number of
missed deadlines to the total number of jobs is compared to the obtained bounds
on the deadline miss probability. Bounds are derived from the fitted 8-state model
and from a merged 2-state model obtained from the 8-state model. Furthermore,
deadline miss probabilities for comparison are derived with a discrete emission-
HMM (Frías et al. 2018, 2017; Abeni et al. 2017), by simulation with the fitted
HMM, and simulation assuming independence.

All bounds in the evaluation are higher than the simulation results. The overall
bounds for the 8-state model are 1.76–10 times higher, and in the state with the
highest deadline miss probability, the bounds are 1.3–4.1 times higher. The overall
bounds obtained with the merged 2-state model are 2.08–12.5 times higher, and the
bounds for the state with the highest deadline miss probability are 1.3–5.2 higher.
All bounds are also safe compared to experimental deadline miss ratios. In the eval-
uation, the bound over 10 accumulation periods takes about 0.06 s to calculate for
the 2-state model, but a minute for the 8-state model, an improvement of a factor
1000. Combining the workload accumulation method with state number reduction
by merging gives a strong computational benefit.

 In future work, it would be interesting to develop the workload accumulation
approach to evaluate the probability of consecutive deadline misses, or extend the
approach to support DAG-based tasks. The bounds could potentially be evaluated
for use in an adaptive setting to monitor changes in the deadline miss probability to
adapt the Quality-of-Service (QoS) level.

Funding  Open access funding provided by Mälardalen University. This study was supported by Veten-
skapsrådet (Grants No 2016-03660 and 2020-05094) and by Stiftelsen för Kunskaps- och Kompetensut-
veckling (Grants No 20190034 and 20240011).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 Real-Time Systems

References

Abeni L, Buttazzo G (1998) Integrating multimedia applications in hard real-time systems. In: IEEE
Real-Time Syst. Symp. (RTSS), pp 4–13. https://​doi.​org/​10.​1109/​REAL.​1998.​739726

Abeni L, Buttazzo G (1999) QoS guarantee using probabilistic deadlines. In: Euromicro Conf. Real-Time
Syst. (ECRTS), pp 242–249. https://​doi.​org/​10.​1109/​EMRTS.​1999.​777471

Abeni L, Buttazzo G (2001) Stochastic analysis of a reservation based system. In: Int. Workshop on Par.
and Distr. Real-Time Syst., vol 1

Abeni L, Manica N, Palopoli L (2012) Efficient and robust probabilistic guarantees for real-time tasks. J
Syst Soft 85(5):1147–1156. https://​doi.​org/​10.​1016/j.​jss.​2011.​12.​042

Abeni L, Fontanelli D, Palopoli L, Frías BV (2017) A Markovian model for the computation time of
real-time applications. In: IEEE Instrum. & Meas. Tech. Conf. (I2MTC), pp 1–6. https://​doi.​org/​10.​
1109/​I2MTC.​2017.​79698​78

Åkesson B, Nasri M, Nelissen G, Altmeyer S, Davis RI (2022) A comprehensive survey of indus-
try practice in real-time systems. Real-Time Syst 58(3):358–398. https://​doi.​org/​10.​1007/​
s11241-​021-​09376-1

Bernat G, Burns A, Newby M (2005) Probabilistic timing analysis: an approach using copulas. J Embed
Comput 1(2):179–194

Bozhko S, Brüggen G, Brandenburg B (2021) Monte Carlo response-time analysis. In: IEEE Real-Time
Syst. Symp. (RTSS), pp 342–355. https://​doi.​org/​10.​1109/​RTSS5​2674.​2021.​00039

Bozhko S, Marković F, Brüggen G, Brandenburg BB (2023) What really is pWCET? A rigorous axi-
omatic proposal. In: IEEE Real-time systems symposium (RTSS). https://​doi.​org/​10.​1109/​RTSS5​
9052.​2023.​00012

Buttazzo GC, Lipari G, Abeni L, Caccamo M (2005) Soft real-time systems: predictability vs efficiency.
Springer, Berlin. https://​doi.​org/​10.​1007/0-​387-​28147-9

Chen K-H, Ueter N, Brüggen G, Chen J-J (2019) Efficient computation of deadline-miss probability and
potential pitfalls. In: Design, automation & test in Europe conference & exhibition (DATE’19),
March 25–29, Florence, Italy. IEEE, pp 896–901. https://​doi.​org/​10.​23919/​DATE.​2019.​87149​08

Chen K-H, Günzel MBrüggen G, Chen J-J (2022) Critical instant for probabilistic timing guarantees:
refuted and revisited. In: 2022 IEEE real-time systems symposium (RTSS). IEEE, pp 145–157.
https://​doi.​org/​10.​1109/​RTSS5​5097.​2022.​00022

Chen J-J, Günzel M, Bella P, Brüggen G, Chen K-H (2024) Dawn of the dead (line misses): impact of job
dismiss on the deadline miss rate. arXiv preprint arXiv:​2401.​15503

Clark DD, Shenker S, Zhang L (1992) Supporting real-time applications in an integrated services packet
network: architecture and mechanism. SIGCOMM Comput Commun Rev 22(4):14–26. https://​doi.​
org/​10.​1145/​144191.​144199

Coles S (2001) An introduction to statistical modeling of extreme values, vol 208. Springer, London.
https://​doi.​org/​10.​1007/​978-1-​4471-​3675-0

Cucu-Grosjean L (2013) Independence-a misunderstood property of and for probabilistic real-time sys-
tems. In: Real-time systems: the past, the present and the future, pp 29–37

Cucu-Grosjean L, Santinelli L, Houston M, Lo C, Vardanega T, Kosmidis L, Abella J, Mezzetti E,
Quiñones E, Cazorla FJ (2012) Measurement-based probabilistic timing analysis for multi-path
programs. In: Euromicro Conf. on real-time systems (ECRTS), pp 91–101. https://​doi.​org/​10.​1109/​
ECRTS.​2012.​31

Davis RI, Cucu-Grosjean L (2019) A survey of probabilistic schedulability analysis techniques
for real-time systems. In: LITES Leibniz Trans Embed Syst 1–53. https://​doi.​org/​10.​4230/​
LITES-​V006-​I001-​A004

Davis RI, Cucu-Grosjean L (2019b) A survey of probabilistic timing analysis techniques for real-time sys-
tems. Leibniz Trans Embed Syst 6(1):03–10360. https://​doi.​org/​10.​4230/​LITES-​V006-​I001-​A003

Davis RI, Burns A, Griffin D (2017) On the meaning of pWCET distributions and their use in schedula-
bility analysis. In: In Proceedings real-time scheduling open problems seminar at (ECRTS’17)

de Barros Vasconcelos J, Lima G (2022) Possible risks with EVT-based timing analysis: an experimental
study on a multi-core platform. In: 2022 XII Brazilian symposium on computing systems engineer-
ing (SBESC). IEEE, pp 1–8. https://​doi.​org/​10.​1109/​SBESC​56799.​2022.​99648​53

Díaz JL, García DF, Kim K, Lee C-G, Bello LL, López JM, Min SL, Mirabella O (2002) Stochastic anal-
ysis of periodic real-time systems. In: IEEE Real-Time Syst. Symp. (RTSS), pp 289–300. https://​
doi.​org/​10.​1109/​REAL.​2002.​11815​83

https://doi.org/10.1109/REAL.1998.739726
https://doi.org/10.1109/EMRTS.1999.777471
https://doi.org/10.1016/j.jss.2011.12.042
https://doi.org/10.1109/I2MTC.2017.7969878
https://doi.org/10.1109/I2MTC.2017.7969878
https://doi.org/10.1007/s11241-021-09376-1
https://doi.org/10.1007/s11241-021-09376-1
https://doi.org/10.1109/RTSS52674.2021.00039
https://doi.org/10.1109/RTSS59052.2023.00012
https://doi.org/10.1109/RTSS59052.2023.00012
https://doi.org/10.1007/0-387-28147-9
https://doi.org/10.23919/DATE.2019.8714908
https://doi.org/10.1109/RTSS55097.2022.00022
http://arxiv.org/abs/2401.15503
https://doi.org/10.1145/144191.144199
https://doi.org/10.1145/144191.144199
https://doi.org/10.1007/978-1-4471-3675-0
https://doi.org/10.1109/ECRTS.2012.31
https://doi.org/10.1109/ECRTS.2012.31
https://doi.org/10.4230/LITES-V006-I001-A004
https://doi.org/10.4230/LITES-V006-I001-A004
https://doi.org/10.4230/LITES-V006-I001-A003
https://doi.org/10.1109/SBESC56799.2022.9964853
https://doi.org/10.1109/REAL.2002.1181583
https://doi.org/10.1109/REAL.2002.1181583

Real-Time Systems	

Diaz JL, Lopez JM, Garcia M, Campos AM, Kim K, Bello LL (2004) Pessimism in the stochastic analy-
sis of real-time systems: concept and applications. In: IEEE Int. Real-Time Syst. Symp. (RTSS), pp
197–207. https://​doi.​org/​10.​1109/​REAL.​2004.​41

Frías BV (2018) Bringing probabilistic real-time guarantees to the real world. PhD thesis, University of Trento
Frías BV, Palopoli L, Abeni L, Fontanelli D (2017) Probabilistic real-time guarantees: there is life beyond

the IID assumption. In: IEEE real-time and embedded Tech. and Appl. Symp. (RTAS), pp 175–186.
https://​doi.​org/​10.​1109/​RTAS.​2017.​18

Frías BV, Palopoli L, Abeni L, Fontanelli D (2018) The PROSIT tool: toward the optimal design of proba-
bilistic soft real-time systems. Softw Pract Exp 48(11):1940–1967. https://​doi.​org/​10.​1002/​spe.​2604

Friebe A, Papadopoulos AV, Nolte T (2020) Identification and validation of Markov models with con-
tinuous emission distributions for execution times. In: IEEE Int. Conf. on Emb. and real-time Comp.
Syst. and Appl. (RTCSA), pp 1–10. https://​doi.​org/​10.​1109/​RTCSA​50079.​2020.​92035​94

Friebe A, Marković F, Papadopoulos AV, Nolte T (2021) Adaptive runtime estimate of task execution
times using Bayesian modeling. In: IEEE Int. Conf. Emb. and real-time Comp. Syst. and Appl.
(RTCSA), pp 1–10. https://​doi.​org/​10.​1109/​RTCSA​52859.​2021.​00008

Friebe A, Markovic F, Papadopoulos AV, Nolte T (2023) Continuous-emission Markov models for real-
time applications: bounding deadline miss probabilities. In: 2023 IEEE 29th Real-time and embed-
ded technology and applications symposium (RTAS), pp 14–26. https://​doi.​org/​10.​1109/​RTAS5​
8335.​2023.​00009

Günzel M, Ueter N, Chen K-H, Brüggen G, Chen J-J (2023) Probabilistic reaction time analysis. ACM
Trans Embed Comput Syst 22(5s):1–22. https://​doi.​org/​10.​1145/​36093​90

Harchol-Balter M (2024) Introduction to probability for computing, 1st edn. Cambridge University Press,
Cambridge

Ivers M, Ernst R (2009) Probabilistic network loads with dependencies and the effect on queue sojourn
times. In: Int. Conf. Heterogeneous Netw. for Qual., Reliab., Sec. and Robust. (QShine), pp 280–
296. https://​doi.​org/​10.​1007/​978-3-​642-​10625-5_​18

Leadbetter MR, Lindgren G, Rootzén H (1978) Conditions for the convergence in distribution of max-
ima of stationary normal processes. Stoch Proc Appl 8(2):131–139. https://​doi.​org/​10.​1016/​0304-​
4149(78)​90002-9

Lelli J, Scordino C, Abeni L, Faggioli D (2016) Deadline scheduling in the Linux kernel. Softw Pract
Exp 46(6):821–839. https://​doi.​org/​10.​1002/​spe.​2335

Lima G, Bate I (2017) Valid application of EVT in timing analysis by randomising execution time measure-
ments. In: 23rd IEEE real-time and embedded technology and applications symposium (RTAS’17),
April 18–21, Pittsburg, PA, USA. IEEE, pp 187–198. https://​doi.​org/​10.​1109/​RTAS.​2017.​17

Lima G, Dias D, Barros E (2016) Extreme value theory for estimating task execution time bounds: a care-
ful look. In: 2016 28th Euromicro conference on real-time systems (ECRTS). IEEE, pp 200–211.
https://​doi.​org/​10.​1109/​ECRTS.​2016.​20

Liu R, Mills AF, Anderson JH (2014) Independence thresholds: balancing tractability and practicality in
soft real-time stochastic analysis. In: IEEE Real-Time Syst. Symp. (RTSS), pp 314–323. https://​doi.​
org/​10.​1109/​RTSS.​2014.​38

Ljung L (1999) System identification: theory for the user, 2nd edn. Prentice-Hall information and system
sciences series. Prentice Hall, Upper Saddle River. https://​doi.​org/​10.​1109/​MRA.​2012.​21928​17

Lu Y, Nolte T, Kraft J, Norström C (2010a) A statistical approach to response-time analysis of com-
plex embedded real-time systems. In: IEEE Int. Conf. Emb. and Real-Time Comp. Syst. and Appl.
(RTCSA), pp 153–160. https://​doi.​org/​10.​1109/​RTCSA.​2010.​13

Lu Y, Nolte T, Kraft J, Norström C (2010b) Statistical-based response-time analysis of systems with exe-
cution dependencies between tasks. In: IEEE Int. Conf. Eng. of Compl. Comp. Syst. (ICECCS), pp
169–179. https://​doi.​org/​10.​1109/​ICECCS.​2010.​55

Lu Y, Nolte T, Bate I, Cucu-Grosjean L (2012) A statistical response-time analysis of real-time embedded
systems. In: IEEE real-time Syst. Symp. (RTSS), pp 351–362. https://​doi.​org/​10.​1109/​RTSS.​2012.​85

Manica N, Palopoli L, Abeni L (2012) Numerically efficient probabilistic guarantees for resource reserva-
tions. In: IEEE Int. Conf. Emerg. Tech. & Factory Autom. (ETFA), pp 1–8. https://​doi.​org/​10.​1109/​
ETFA.​2012.​64895​66

Marković F, Carlson J, Dobrin R, Lisper B, Thekkilakattil A (2018) Probabilistic response time analysis for
fixed preemption point selection. In: 13th IEEE International symposium on industrial embedded sys-
tems (SIES’18), June 6–8, Graz, Austria. IEEE, pp 1–10. https://​doi.​org/​10.​1109/​SIES.​2018.​84420​99

https://doi.org/10.1109/REAL.2004.41
https://doi.org/10.1109/RTAS.2017.18
https://doi.org/10.1002/spe.2604
https://doi.org/10.1109/RTCSA50079.2020.9203594
https://doi.org/10.1109/RTCSA52859.2021.00008
https://doi.org/10.1109/RTAS58335.2023.00009
https://doi.org/10.1109/RTAS58335.2023.00009
https://doi.org/10.1145/3609390
https://doi.org/10.1007/978-3-642-10625-5_18
https://doi.org/10.1016/0304-4149(78)90002-9
https://doi.org/10.1016/0304-4149(78)90002-9
https://doi.org/10.1002/spe.2335
https://doi.org/10.1109/RTAS.2017.17
https://doi.org/10.1109/ECRTS.2016.20
https://doi.org/10.1109/RTSS.2014.38
https://doi.org/10.1109/RTSS.2014.38
https://doi.org/10.1109/MRA.2012.2192817
https://doi.org/10.1109/RTCSA.2010.13
https://doi.org/10.1109/ICECCS.2010.55
https://doi.org/10.1109/RTSS.2012.85
https://doi.org/10.1109/ETFA.2012.6489566
https://doi.org/10.1109/ETFA.2012.6489566
https://doi.org/10.1109/SIES.2018.8442099

	 Real-Time Systems

Marković F, Papadopoulos AV, Nolte T (2021) On the convolution efficiency for probabilistic analysis
of real-time systems. In: 33rd Euromicro conference on real-time systems (ECRTS 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik. https://​doi.​org/​10.​4230/​LIPIcs.​ECRTS.​2021.​16

Marković F, Roux P, Bozhko S, Papadopoulos AV, Brandenburg BB (2023) CTA: A correlation-tolerant
analysis of the deadline-failure probability of dependent tasks. In: Proceedings of the 44th IEEE
real-time systems symposium (RTSS). https://​doi.​org/​10.​1109/​RTSS5​9052.​2023.​00035

Markovic F, Nolte T, Papadopoulos AV (2022) Analytical approximations in probabilistic analysis of
real-time systems. In: 2022 IEEE Real-time systems symposium (RTSS), pp 158–171. https://​doi.​
org/​10.​1109/​RTSS5​5097.​2022.​00023

Martí P, Fuertes JM, Fohler G, Ramamritham K (2002) Improving quality-of-control using flexible tim-
ing constraints: metric and scheduling. In: IEEE Real-Time Syst. Symp. (RTSS), pp 91–100. https://​
doi.​org/​10.​1109/​REAL.​2002.​11815​65

Medhi JJ (2003) Stochastic models in queueing theory, 2nd edn. Mathematics in science and engineering.
Academic Press, Amsterdam

Mills AF, Anderson JH (2011) A multiprocessor server-based scheduler for soft real-time tasks with sto-
chastic execution demand. In: IEEE Int. Conf. Emb. and real-time Comp. Syst. and Appl. (RTCSA),
pp 207–217. https://​doi.​org/​10.​1109/​RTCSA.​2011.​30

Palopoli L, Fontanelli D, Abeni L, Frías BV (2016) An analytical solution for probabilistic guarantees of
reservation based soft real-time systems. IEEE Trans Parallel Distrib Syst 27(3):640–653. https://​
doi.​org/​10.​1109/​TPDS.​2015.​24167​32

Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition.
Proc IEEE 77(2):257–286

Santinelli L, Morio J, Dufour G, Jacquemart D (2014) On the sustainability of the extreme value theory
for WCET estimation. In: Int. W. on Worst-Case Exec. Time Anal. https://​doi.​org/​10.​4230/​OASIcs.​
WCET.​2014.​21

Shaked M (2007) Stochastic orders. Springer series in statistics. Springer, New York. https://​doi.​org/​10.​
1007/​978-0-​387-​34675-5_1

Tia T-S, Deng Z, Shankar M, Storch M, Sun J, Wu L-C, Liu JW-S (1995) Probabilistic performance guar-
antee for real-time tasks with varying computation times. In: Proceedings real-time technology and
applications symposium, pp 164–173. https://​doi.​org/​10.​1109/​RTTAS.​1995.​516213

von der Brüggen G, Piatkowski N, Chen K-H, Chen J-J, Morik K (2018) Efficiently approximating the
probability of deadline misses in real-time systems. In: 30th Euromicro conference on real-time sys-
tems (ECRTS’18), July 3–6, Barcelona, Spain. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
https://​doi.​org/​10.​4230/​LIPIcs.​ECRTS.​2018.6

von der Brüggen G, Piatkowski N, Chen K-H, Chen J-J, Morik K, Brandenburg BB (2021) Efficiently
approximating the worst-case deadline failure probability under EDF. In: IEEE Real-Time Syst.
Symp. (RTSS), pp 214–226. https://​doi.​org/​10.​1109/​RTSS5​2674.​2021.​00029

Vreman N, Cervin A, Maggio M (2021) Stability and performance analysis of control systems subject to
bursts of deadline misses. In: 33rd Euromicro Conf. Real-time systems (ECRTS 2021). https://​doi.​
org/​10.​4230/​LIPIcs.​ECRTS.​2021.​15

Zagalo K, Abdeddaim Y, Bar-Hen A, Cucu-Grosjean L (2022) Response time stochastic analysis for
fixed-priority stable real-time systems. IEEE Trans Comput 72(1):3–14. https://​doi.​org/​10.​1109/​TC.​
2022.​32114​21

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.4230/LIPIcs.ECRTS.2021.16
https://doi.org/10.1109/RTSS59052.2023.00035
https://doi.org/10.1109/RTSS55097.2022.00023
https://doi.org/10.1109/RTSS55097.2022.00023
https://doi.org/10.1109/REAL.2002.1181565
https://doi.org/10.1109/REAL.2002.1181565
https://doi.org/10.1109/RTCSA.2011.30
https://doi.org/10.1109/TPDS.2015.2416732
https://doi.org/10.1109/TPDS.2015.2416732
https://doi.org/10.4230/OASIcs.WCET.2014.21
https://doi.org/10.4230/OASIcs.WCET.2014.21
https://doi.org/10.1007/978-0-387-34675-5_1
https://doi.org/10.1007/978-0-387-34675-5_1
https://doi.org/10.1109/RTTAS.1995.516213
https://doi.org/10.4230/LIPIcs.ECRTS.2018.6
https://doi.org/10.1109/RTSS52674.2021.00029
https://doi.org/10.4230/LIPIcs.ECRTS.2021.15
https://doi.org/10.4230/LIPIcs.ECRTS.2021.15
https://doi.org/10.1109/TC.2022.3211421
https://doi.org/10.1109/TC.2022.3211421

Real-Time Systems	

Anna Friebe  is a PhD student at Mälardalen University, Västerås,
Sweden since 2019. The PhD project relates to probabilistic tools for
analysis and scheduling of real-time systems. She received her MSc
in Applied Physics and Electrical Engineering from Linköping Uni-
versity, Sweden in 1998. Anna has a background as a software engi-
neer in the fields of medical image processing, treatment planning
systems, and 3D graphics/ haptics simulation, and as a project man-
ager for an autonomous sailboat project at Åland University of
Applied Sciences, Mariehamn, Finland 2015-2019.

Filip Markovic  received his B.Sc. degree in Software Engineering
from Mediterranean University, Podgorica, Montenegro, in 2014,
and his M.Sc. degree in Computer Science from Mälardalen Univer-
sity, Västerås, Sweden, in 2015. He earned his Ph.D. in Computer
Science from Mälardalen University in 2020, while from 2020 to
2022, he was a Postdoctoral Researcher in the Division of Networked
and Embedded Systems at the same university. From 2022 to 2024,
he is a Postdoctoral Researcher at the Max Planck Institute for Soft-
ware Systems in Kaiserslautern, Germany.

Alessandro V. Papadopoulos  is a Full Professor of Electrical and
Computer Engineering at Mälardalen University, Västerås, Sweden,
and a QUALIFICA Fellow at the University of Málaga, Spain. Since
2024, he has been the scientific leader of Applied AI at Mälardalen
University. He received his B.Sc. and M.Sc. (summa cum laude)
degrees in Computer Engineering from the Politecnico di Milano,
Milan, Italy, and his Ph.D. (Hons.) degree in Information Technol-
ogy from the Politecnico di Milano, in 2013. He was a Postdoctoral
researcher at the Department of Automatic Control, Lund, Sweden
(2014-2016) and Politecnico di Milano, Milan, Italy (2016). Since
the end of 2016, he has been with Mälardalen University. He was the
Program Chair for the Mediterranean Control Conference (MED)
2022, the Euromicro Conference on Real-Time Systems (ECRTS)
2023, and the ACM/SPEC International Conference on Performance
Engineering (ICPE) 2025. He is an associate editor for the
ACM Transactions on Autonomous and Adaptive Systems, Control
Engineering Practice, and Leibniz Transactions on Embedded Sys-

tems. Since 2024, he is also part of the IEEE Technical Community on Real-Time Systems (TCRTS)
Executive Committee. His research interests include robotics, control theory, real-time systems, and auto-
nomic computing.

	 Real-Time Systems

Thomas Nolte  is a Full Professor of Computer Science at Mälardalen
University (MDU), Västerås, Sweden, since 2012. Thomas was
awarded a Ph.D. degree in Computer Engineering from MDU in
2006. He has been a Visiting Researcher at University of California,
Irvine (UCI), Los Angeles, USA, in 2002, and a Visiting
Researcher at University of Catania, Italy, in 2005. He has been
a Postdoctoral Researcher at the University of Catania in 2006, and
at MDU in 2006-2007. Thomas is Head of Research in Electrical and
Computer Engineering (ECE) at MDU since 2022, Director of the
industrial PhD school Automation Region Research Acad-
emy (ARRAY) since 2017, and Director of the Mälardalen Univer-
sity Automation Research Center (MARC) since 2024. In industry,
Thomas is a Scientific Advisor at ABB since 2012 (2012-2016 @
ABB Corporate Research, and since 2017 @ ABB Robot-
ics). Thomas has co-authored more than 350 scientific papers related
to real-time systems, embedded systems and industrial automation.

	Efficiently bounding deadline miss probabilities of Markov chain real-time tasks
	Abstract
	1 Introduction
	2 Related work
	3 System model and notation
	3.1 Task model
	3.2 Scheduling algorithm

	4 Execution time model and analysis
	4.1 Markov chain execution times
	4.2 Problem formulation
	4.3 Overview of the proposed approach
	4.3.1 Outline of the remainder of this section

	4.4 Bounding the conditional pending workload distribution associated with a workload accumulation sequence
	4.5 Bounds on the joint probability of a job arriving in a state with an accumulation vector
	4.6 Bounds on the probability of workload depletion
	4.7 Bounds on the probability of longer workload accumulation
	4.8 Upper bounding the deadline miss probability

	5 Iterative workload accumulation
	5.1 Time complexity of the iterative process

	6 Reducing the number of states by merging
	6.1 Modified Markov chain execution times
	6.2 Merging distributions
	6.3 Merging states in the Markov model

	7 Evaluation
	7.1 Goal of the evaluation
	7.2 Use case and test setup
	7.3 Test setup
	7.4 Markov model
	7.5 Evaluated Methods
	7.6 Results and discussion

	8 Conclusions and future work
	References

