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Abstract

The evolution of domain-specific modeling languages is crucial
for maintaining their relevance and effectiveness as systems and
requirements evolve. Typically, this process requires collaboration
between domain experts and developers, but it often faces mis-
understandings, misaligned goals, and communication barriers.
These challenges can lead to language evolution misaligned with
domain experts’ intentions, stemming from their limited partic-
ipation due to a lack of technical skills. Participatory modeling
practices can mitigate these issues by involving domain experts
throughout the entire language evolution process. We propose ad-
vancing to the self-mobilization level of participatory modeling,
enabling domain experts to independently drive language evolu-
tion. This advancement requires tools that eliminate the need for
technical metamodeling expertise. In this vision paper, we describe
METAMORPH, a tool aimed to support domain experts in achiev-
ing self-mobilization in the evolution of domain-specific modeling
languages. METAMORPH allows domain experts to specify changes
to the underlying metamodel through existing model instances,
providing instant feedback on the resulting evolved model. It also
supports the automatic evolution and co-evolution of metamodels
and models. METAMORPH aims to minimize the risk of inappropri-
ate language evolution, accelerate the overall process, and enhance
the adoption and acceptance of evolved languages.
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1 Introduction

Model-Driven Engineering (MDE) [21] has established itself as
a powerful paradigm for the development of complex systems,
leveraging Domain-Specific Modeling Languages (DSMLs) to en-
hance productivity, improve stakeholder communication, and en-
sure alignment with domain-specific requirements. DSMLs are de-
signed to encapsulate domain concepts and rules, thereby provid-
ing high-level abstractions that simplify modeling tasks [10]. As
systems evolve and new requirements emerge, DSMLs must un-
dergo evolution to remain relevant and effective. This evolutionary
process is essential for maintaining their utility and efficacy in rep-
resenting the current state of the domain [7]. DSMLs, or modeling
languages, can evolve in terms of abstract syntax, concrete syntax,
semantics, and tool support. We focus on the abstract syntax, which
defines the concepts and relationships within the language.

The evolution of DSMLs requires a deep understanding of both
domain-specific knowledge and the technical aspects of language
engineering [18]. In the absence of an individual skilled in both
areas, this process necessitates collaboration between domain ex-
perts, who possess extensive domain knowledge, and developers,
who have the technical expertise needed to implement changes.
However, as in any scenario where one group of people (i.e., devel-
opers) creates something that another group of people (i.e., domain
experts) relies on, significant challenges can arise [24]. Due to their
lack of technical skills in language engineering, domain experts’
participation is often limited to the initial decision-making and
analysis stages, and the final deployment phase, where they test
the language [8]. While collaboration between domain experts and
developers exists, communication barriers, misunderstandings, and
misalignments can lead to inappropriate language evolution that
does not align with the domain experts’ intentions. The exclusion
of domain experts from the design and implementation phases
exacerbates this issue, resulting in iterative cycles and potential
delays as both parties strive to reach a mutual understanding and
ensure proper outcome. These challenges can impede the efficient
and accurate evolution of DSMLs.

Participatory Modeling (PM) is defined as “a purposeful learning
process for action that engages the implicit and explicit knowledge of
stakeholders to create formalized and shared representations of real-
ity” [25]. While PM is typically employed to address complex social
and environmental problems [5, 6, 17], its application in the context
of modeling language evolution can ensure that languages remain
relevant and effective by incorporating the latest domain knowl-
edge through active participation of domain experts. Mapping the
involvement of domain experts in the construction and evolution
of modeling languages to Pretty’s participation typology [19], it
has, in the majority of cases, reached the levels of functional and
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interactive participation at best [8, 23]. In this context, domain
experts are actively engaged in discussions and decision-making;
however, unless they possess the necessary technical skills, their
involvement often stops short of the technical implementation of
changes, thereby limiting their impact on the final outcomes.

To fully realize the benefits of PM in language evolution, it is
essential to advance to the level of self-mobilization in Pretty’s
topology. In this context, self-mobilization refers to empowering
domain experts to drive the evolution of modeling languages with-
out relying on technical developers. At this level, domain experts
would not only provide feedback and participate in discussions
but also take an active role in the technical implementation and
continuous improvement of the language. Developers, on the other
hand, could focus on more pressing technical matters, or provide
support when needed. Achieving this level of autonomy for do-
main experts necessitates tools that eliminate the need for deep
technical expertise. While example-driven metamodel development
approaches aim to include domain experts in the design process by
inducing metamodels from examples they create [9, 15, 20], these
methods are more suitable for building the modeling language from
scratch. They are less efficient for evolution scenarios where real-
world models already exist, since creating example fragments for
refinement can be time-consuming, effort-intensive, and may not
accurately represent real-world scenarios. By experience, domain
experts prefer to express language evolution by demonstrating
desired changes directly in their existing models.

In this paper, we describe METAMORPH, a tool envisioned to
facilitate reaching self-mobilization levels for domain experts with
respect to language evolution. METAMORPH empowers domain ex-
perts to specify changes required for modeling language evolution
using practical model instances, rather than relying on examples,
and provides instant feedback on the resulting evolved model. Fur-
thermore, METAMORPH automates the generation of the evolved
language and the corresponding model co-evolution mechanisms,
thus streamlining the process and minimizing potential errors. By
providing domain experts with the capability to directly influence
both the conceptual and technical aspects of DSML’s evolution,
METAMORPH leads to more accurate representations of the domain,
shorter development times, faster prototyping, and a continuous
alignment of the DSML with evolving domain requirements.

The remainder of this paper is structured as follows. Section 2
describes METAMORPH’s requirements. Section 3 presents the META-
MorpH approach. Section 4 investigates the related work and Sec-
tion 5 concludes the paper and describes future directions.

2 MEeTAMORPH Requirements

The following initial set of requirements outlines the features that
METAMORPH must possess to fulfill its intended purpose.

RQ1. Support the specification of changes through model instances.
METAMORPH must allow domain experts to specify changes to the
underlying abstract syntax (i.e., metamodel) by modifying model
instances they use in practice. By directly altering familiar model
instances, domain experts can more easily and effectively convey
their desired evolution of the modeling language.
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RQs. Implement inconsistency management strategies.

METAMORPH must incorporate inconsistency management strate-
gies to handle conflicts from domain experts’ changes to model
instances that can create ambiguity in translating the changes to
the underlying metamodel. Effective inconsistency management
will prevent such conflicts, ensuring accurate metamodel evolution.

RQs. Support the generation of the evolved metamodel.
METAMORPH must translate changes made to the model instance
into corresponding changes in the initial metamodel and automati-
cally generate an evolved metamodel that incorporates the changes.
This automates tasks traditionally handled by developers, allowing
domain experts to directly influence and evolve the metamodel.

RQy. Support the generation of model co-evolution mechanisms.

METAMORPH must support the automatic generation of model co-
evolution mechanisms between the initial and evolved metamodel.
These mechanisms should enable seamless translation of model
instances to the evolved metamodel, ensuring conformity to the
updated structure. This capability is crucial for maintaining the
integrity and usability of models throughout the evolution process.

3 MEeTAMORPH Approach

METAMORPH comprises four components, each with distinct re-
sponsibilities: MetaLab, MetaFix, MetaBuild, and MetaSync. Figure 1
illustrates the overall workflow, and the subsequent sections offer
detailed descriptions of each component.

3.1 MetaLab

MetaLab is an environment designed to facilitate the specification
of changes to the underlying metamodel through model instances
used in practice, thereby addressing RQ1, and serves as the user
interface for METAMORPH. Domain experts, hereafter referred to as
users, given their role as the primary operators of this tool, begin
by importing the metamodel to be evolved (DSML;) along with
a conforming model instance (Mpsar,), which they shall use to
specify the necessary changes.

MetaLab features a dual side-by-side view interface, with both
views initially envisioned to display information in a tree-based ed-
itor. The base view displays the original model instance (Mpspr1),
which conforms to the imported metamodel (DSML;). The mock
view presents an exact copy of the original model but differs in two
key aspects: (i) it enables the specification of required changes, and
(ii) the mock model' (MDSML,) can deviate from conformance with
the imported metamodel (DSML,), offering the flexibility needed to
describe changes. This dual-view interface allows users to visualize
the evolution of the mock model in comparison to the original.

The mock view in MetaLab is tailored for domain experts with no
metamodeling expertise. Users will have access to various options
for modifying each model element, tailored to the type of change
being made. MetaLab supports a wide range of modifications, in-
cluding renaming concepts, changing types, adding or removing
child elements, merging or splitting elements, making elements
abstract, and creating, updating, or deleting relationships between

!Mock models refer to models used by domain experts to specify the changes to the
underlying metamodel.
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Figure 1: METAMORPH Workflow

elements. Depending on the nature of the change, additional pa-
rameters and settings will be presented to collect the necessary
information. Although these modifications are made at the model
level, they are guided by existing literature on metamodel evolu-
tion [2, 3, 26], as they are ultimately translated into metamodel
changes. The mock view in MetaLab is meticulously designed to
ensure that information is complete and accurate while being pre-
sented in a user-friendly manner tailored to the expertise of domain
experts. This design conceals the complexities of metamodeling,
focusing instead on the models themselves, which domain experts
understand well. By requesting and allowing users to provide in-
formation in straightforward, simplified ways, MetaLab centers
the entire process around the models, making it intuitive and ac-
cessible for domain experts. Furthermore, the mock view offers a
flexible editing environment that does not enforce conformance
checks, allowing users to freely modify elements, relationships,
and properties. This flexibility is crucial for enabling domain ex-
perts to intuitively specify necessary modifications without being
constrained by the imported metamodel.

Additionally, MetaLab includes a change log view that chrono-
logically lists all modifications made to the mock model. This view
enables users to track the evolution of their changes over time,
with each entry providing the option to revert the model to its state
immediately before that entry. This capability allows users to ex-
periment confidently, knowing they can always revert to a previous
version if necessary, and enhances the overall user experience by
providing clarity, control, and flexibility throughout the language
evolution process.

3.2 MetaFix

MetaFix is the component responsible for tracking and propagating
all changes made by users in the mock model. Once a user modifies
the model instance within MetaLab to reflect desired metamodel
evolutions, these changes are systematically captured and recorded
by MetaFix’s change tracker (step (2)). This tracker maintains a de-
tailed change log that documents the ongoing evolution of the meta-
model. The recorded changes are subsequently fed into MetaFix’s
change propagator (step (3)), which processes this information and
applies the modifications to every instance of the affected concept
within the mock model (step (4)). The latter process is essential for
accurately reflecting the changes specified in one instance to all the
affected instances in the model, ensuring transparency for the user
and minimizing the risk of inconsistencies. For example, consider
a customer relationship management (CRM) modeling language
where a user decides to rename the concept Customer to Client. If
this change is not propagated to all instances within the model,
the user might inadvertently rename Customer to Buyer in another
instance. Such conflicting changes create ambiguity and inconsis-
tencies in how these changes should be translated in the underlying
metamodel. MetaFix addresses this issue by ensuring that once a
concept is modified, the change is consistently applied across all
instances, thus preventing conflicts and directly addressing RQ>.
Given the potentially large size of the model instances used in
practice by domain experts, propagating changes after each mod-
ification could be computationally heavy. Therefore, in MetaFix,
we consider various propagation strategies: changes may be propa-
gated incrementally, deferred to a later point, initiated manually by
the domain expert, or limited to a subset of the model designated
as the active mock model, which can be defined by the user in
MetaLab. While other inconsistency management strategies could
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have been chosen - such as designating a specific instance as a
pivot and making changes to the underlying concept only through
that instance, or notifying the user if they attempt to change a
concept that has already been modified - the current approach
has been selected to provide transparency to the user. By showing
how changes affect the entire model instance, this method gives
users better insights into whether the changes achieve the desired
outcome, thus avoiding confusion and potential frustration.

3.3 MetaBuild

MetaBuild is the component responsible for the automatic genera-
tion of the evolved metamodel, thereby addressing RQ3. Once the
domain expert is satisfied with the modifications made to the mock
model, the generation of the evolved metamodel can be initiated
(step (5)). MetaBuild plays a critical role as it translates user-made
modifications at the model level (step (1), recorded in the change
tracker, into corresponding changes in the metamodel (DSML,),
thereby inferring a new evolved metamodel (DSML). This transla-
tion is achieved through a well-defined mapping mechanism within
MetaBuild, which ensures that changes at the model level are consis-
tently and accurately reflected at the metamodel level. This mapping
is essential to prevent ambiguity and ensure deterministic outcomes
in the evolution process. Consequently, the accurate and compre-
hensive collection of information in MetaLab is paramount, as it
directly impacts the clarity and effectiveness of the transformations
performed by MetaBuild.

If the generated metamodel is valid and the mock model (Mpsmr,)
conforms to it (step (7)), MetaBuild can proceed to step (8) where
it initiates the generation of the synchronization infrastructure
between the original and evolved metamodels, as detailed in Sec-
tion 3.4. Should any logged changes result in an invalid metamodel
(e.g., two concepts with the same name), MetaBuild produces an
error log that pinpoints the specific change and its associated is-
sue, enabling the domain expert to identify and rectify problematic
changes using MetaLab. This iterative process of correction is es-
sential for achieving a valid metamodel that accurately reflects the
desired evolutions.

3.4 MetaSync

MetaSync is the component responsible for the automatic genera-
tion of model co-evolution mechanisms, thereby addressing RQj4.
Once the evolved metamodel is successfully inferred, MetaBuild
proceeds to generate a mapping model that contains the corre-
spondences between the original (DSML1) and evolved (DSMLy)
metamodel (step (8)). The mapping model serves as an input to
higher-order transformations (HOTs) [22] (step (9)). HOTs are so-
phisticated model transformations that generate other transfor-
mations, leveraging the meta-information provided by the map-
ping model. Specifically, these HOTs analyze both the original and
evolved metamodels and process the mapping model to generate
the required model transformation (T,,;) in step . This infras-
tructure is grounded in our prior work [13], where we proposed
a dedicated mapping modeling language which provides a pre-
cise syntax and semantics for specifying correspondences between
metamodels, ensuring that the mappings are both expressive and
unambiguous. Additionally, the HOTs we developed translate this
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mapping information into an executable model transformation. The
co-evolution mechanisms provided by MetaSync will address all
three categories of metamodel changes: non-breaking, breaking
and resolvable, and breaking and unresolvable [3]. While a survey
of existing literature lists various approaches to managing breaking
and unresolvable changes [4], in METAMORPH, we explore an in-
novative approach of deriving resolution techniques directly from
user-defined changes in the mock model, aiming to achieve higher
levels of PM in the model co-evolution process as well.

After the domain expert has evolved the modeling language as
expected and is satisfied with the results, the model transformation

(Tewor) generated by MetaSync is used in step @ to transform
models conforming to the original metamodel (DSML;) to models
conforming to the evolved metamodel (DSML,). This ensures that
models co-evolve with the metamodel. If the evolved models do
not reflect the domain experts’ expectations, and this issue was
not identified in the mock model, the domain experts can return to

MetaLab in step @ to specify the necessary changes.

4 Related Work

Izquierdo and Cabot [8] introduce a collaborative platform for the
development of DSMLs. This platform utilizes Collaboro, a DSL
designed to capture change proposals, potential solutions, and feed-
back throughout the development phases. While this method aims
to enhance communication between technical developers and do-
main experts, the implementation of changes within the metamodel
still relies on technical developers. In contrast, our approach empow-
ers domain experts to specify changes directly on model instances,
which are then translated into modifications in the underlying meta-
model through automated mechanisms. This removes the depen-
dency on developers and facilitates faster prototyping. Furthermore,
Collaboro lacks mechanisms for model co-evolution in response
to changes in the metamodel. Lopez et al. [15] and Cuadrado et
al. [20] present a methodology for metamodel construction that
allows domain experts to specify example model fragments using
informal drawing tools such as Dia or yED. These fragments, anno-
tated with hints, clarify the intentions or requirements for specific
elements, from which a metamodel is automatically induced and
iteratively refined. This approach is also combined with Collaboro
by Izquierdo et al. [9]. Although the employed iterative process
facilitates the inclusion of new model fragments to evolve the meta-
model, it requires that domain experts construct model fragments
from scratch. This approach is well-suited for constructing a DSML
from the ground up but may be less efficient for evolving an existing
DSML with pre-existing model instances, as it requires duplicating
these instances or creating new examples using the specified tools.
In contrast, our approach allows domain experts to work directly
with existing model instances actively used within their domain,
eliminating the need to build new examples. This enables them to
make informed modifications based on immediate needs. By lever-
aging existing models, our method ensures that modifications are
both relevant and immediately applicable, thus facilitating a more
efficient evolution of the modeling language in response to practical
demands. The same applies to other related works [1, 16, 27] that
induce metamodels or develop complete graphical modeling envi-
ronments from graphical examples in free-form sketching tools,
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as these approaches are typically geared towards the creation of
DSMLs from scratch rather than their evolution.

5 Conclusions and Future Directions

In this vision paper, we described METAMORPH, a tool aimed at
empowering domain experts in driving metamodel evolution and
model co-evolution. This approach seeks to increase their participa-
tion in tasks traditionally reserved for developers with specialized
metamodeling expertise. By doing so, METAMORPH aims to mitigate
the risks associated with improper language evolution, improve
language adoption and acceptance, and facilitate rapid prototyping
and testing of evolved languages.

The development of METAMORPH presents several significant
challenges we plan to address. Foremost is ensuring that the Meta-
Lab environment aligns with the cognitive framework of domain
experts while capturing all essential information for metamodel
evolution/model co-evolution. Metamodel evolution requires the
translation of changes specified at the model level into changes
at the metamodel level to infer the evolved metamodel. Model
co-evolution requires robust evolution mechanisms and the extrac-
tion of resolution techniques to address breaking and unresolv-
able changes. Additionally, managing large and complex models is
crucial to ensure METAMORPH’s applicability in practical settings.
We are currently focused on deriving a set of changes that can
be made at the model level and on specifying how to implement
these changes in a manner that aligns with the domain experts’
knowledge, emphasizing usability and user experience. Addition-
ally, we are developing a conceptual mapping of these changes to
corresponding changes at the metamodel level.

The validation of METAMORPH will proceed through iterative
testing phases. Usability testing will involve domain experts inter-
acting with MetaLab to ensure the interface is intuitive and meets
their cognitive needs. The propagation mechanisms of MetaFix
and the translation mechanisms of MetaBuild to the evolved meta-
model and mapping model will be validated to ensure changes are
applied accurately and consistently. Performance tests on large
and complex models will optimize system efficiency and scalability.
Further validation will use industrial use cases. One use case in-
volves our previous work, where we manually evolved the UML-RT
metamodel [14] and developed co-evolution mechanisms [11, 12]
using models provided by our industrial partner to reflect desired
changes. Here, in METAMORPH we will construct the mock model
based on these models and automatically generate the evolved UML-
RT metamodel and co-evolution mechanisms. This will demonstrate
METAMORPH’s capability to streamline and automate the evolution
of complex modeling languages, ensuring accuracy and efficiency,
and enabling domain experts to achieve these outcomes without
extensive technical expertise.
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