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Abstract—A critical enabler of autonomous construction equip-
ment is object detection, a computer vision task integral to
navigation, task execution, and safety. However, challenging
conditions at construction sites, such as mud splashes, dirt,
and vibrations, can degrade object detection performance by
causing sensor occlusions and image blurriness. Traditional
adversarial training methods, which enhance model robustness by
using perturbed data, are limited in construction environments
due to the scarcity of diverse real-world adversarial data and
the dynamic nature of these sites. While generative models
can create synthetic adversarial examples, they often struggle
to generalize to the unpredictable scenarios encountered on
construction sites, as they rely on rigid assumptions about data
distributions. Additionally, privacy concerns and site-specific data
variability hinder data sharing across different construction sites.
To overcome these challenges, this paper explores Federated
Learning as a solution to enhance the robustness and adaptability
of object detection models while preserving data privacy. FL
enables continuous online learning without direct data exchange,
offering a scalable and privacy-preserving approach to training
models across diverse construction environments. Experimental
results demonstrate that our FL-based approach improves model
performance on the ConstScene dataset by up to ≈ 4.4%
compared to the centralized AI model for object detection.

Index Terms—Object Detection, Construction Site, Privacy,
Adversarial Training, Federated Learning

I. INTRODUCTION

The autonomous construction equipment market is expected
to expand with a compound annual growth rate of 7.80%
from USD 8.73 billion in 2023 to USD 15.92 billion by 2032
[1]. This growth is powered by the inherent advantages that
autonomous machinery provides to construction tasks, includ-
ing consistent performance, environmental sustainability, safe
maneuver, and cost saving. By leveraging computer vision, the
industry aims to address customer needs and improve safety
and productivity of autonomous operations.

Object detection is a widely used computer vision task
that plays a crucial role in navigation, task execution, and
safety for autonomous construction machines such as excava-
tors and wheel loaders [2]. However, [3], [4] environmental
conditions in construction sites, such as mud splash and
dirt, can occlude sensor lenses, making it difficult for the

object detection models to perceive accurately. In addition,
construction machines frequently operate on uneven terrains,
causing significant vibrations that can result in blurry camera
images [5]. Therefore, leveraging object detection models in
construction sites require additional considerations to provide
robust and reliable predictions.

Adversarial training methods [6], [7] are popular for de-
fending against adversarial examples and noisy inputs. These
approaches involve using intentionally perturbed data to train
the model to resist such manipulations. The perturbed image
data for adversarial training can be obtain either from (i)
real environment, or (ii) using generative models such as
generative adversarial networks (GANs) [8] and/or diffusion
models [9]. However, the real perturbed data collected from
a single construction site lacks diversity, as construction sites
often concentrate on specific tasks. In other words, certain
types of adversarial inputs, such as dirty lens, might be rarely
encountered in forestry sites compared to mines and quarries.
To tackle this challenge, one possible solution is to collect data
from different construction sites. Fig. 1 shows an example of
three different construction sites focusing on building, mining,
and forestry operations. Each site presents unique adverse
conditions that are ideal for collecting diverse perturbed data
for adversarial training. However, since different sites are
owned by different owners, data sharing between construction
locations is not feasible due to privacy concerns.

On the other hand, synthetic adversarial data generation
methods show promises in generating diverse data with lower
cost and no privacy limits. Nevertheless, generative models
rely on strong assumptions about data distribution [10], which
are often ineffective in practice. Construction environments
are dynamic and constantly changing—factors like shifting
gravel piles, evolving machinery layouts, and the introduction
of new equipment create significant outlier data that challenges
generative models. Finally, adversarial training methods might
overfit to adversarial examples [6]. To overcome these lim-
itations, it is crucial to leverage continuous online learning
paradigms that (i) adapt to the dynamic nature of construction
sites, and (ii) guarantee privacy of clients [11].
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Fig. 1: Illustration of three different construction sites with
different environmental conditions.

Federated Learning (FL) has recently gained attention as a
method for training models without requiring clients to share
data with a central entity during the training process [12], [13].
In FL, models are trained on distributed client data during each
communication round. As shown in Fig. 1, client updates are
aggregated iteratively to move toward the global optimum.
Note that cloud servers can manage training by initiating
and aggregating model updates from construction sites during
each communication round [14]. Importantly, these updates are
significantly smaller than the clients’ entire datasets, marking
a shift from traditional training methods that demand extensive
data exchange.

In this paper, we leverage the idea of FL to improve adapt-
ability and robustness of object detection models in dynamic
construction environments with guaranteeing client/customer
data privacy. FL has capacity to facilitate continuous online
training, while minimizing data exchange makes it particularly
well-suited for a wide-range of construction applications. Plus,
unlike synthetic data generation methods, FL is indepen-
dent of prior assumptions about the data distribution. Our
results demonstrate consistent effectiveness of utilizing FL
in construction environments by achieving up to ≈ 4.4%
higher accuracy over the centralized training paradigm on the
ConstScene dataset [3].

II. BACKGROUND AND RELATED WORK

A. Object Detection in Construction Industry

Vision-based sensors are prevalent in construction sites [15],
generating vast amounts of image and video data for various
purposes such as detecting objects (e.g. workers, material, and
equipment), progress tracking, productivity measurement, and
safety monitoring. While traditional computer vision methods
have been employed for this purpose [16], [17], their accuracy
has been limited by manual feature extraction processes and
insufficient training data. To overcome these challenges, an
improved Faster R-CNN approach [18] has been developed by
[19], significantly enhancing real-time detection accuracy. [20]

introduced a sophisticated three-stage framework for tracking
multiple individuals concurrently in construction sites. Their
approach initiates with a detection phase, leveraging both 2D
and 3D Mask-RCNN models to locate human figures and
determine their poses within images. The researchers then
conducted a comparative analysis of these two approaches
in terms of their detection and tracking capabilities. Follow-
ing the detection stage, the second phase of their system
concentrates on correlating the identified individuals across
sequential frames. Construction object detection models face
challenges in adverse conditions due to the limited training
data and lack of robustness. To address the challenges of
manually interpreting data, researchers [21] are exploring soft
computing methods utilizing convolutional models emerging
as a promising approach for fast construction object detection.
Authors in [22] developed UIA-YOLOv5 model as a technique
to enhance performance in adverse environments such as
low light, fog, and rain. In the construction sites, moving
obstacles often obstruct views, compromising the captured
images. The research proposed by [23] adapts a U-Net-based
deep learning [24] model to remove these occlusions and
restore the missing background, improving image analysis in
construction sites. [3] addressed the challenges of adverse
weather and environmental conditions in mining construc-
tion site. [3] utilized adversarial training for improving the
performance of object detection models. Although previous
studies have been successful, they have largely overlooked
adverse environmental issues such as image blurring caused
by vibrations and dirty lenses, commonly resulting from mud
splashes. Additionally, earlier research has not addressed the
challenge of accessing data from other construction sites while
maintaining user privacy.

B. Federated Learning (FL)

Federated learning is a distributed machine learning tech-
nique where the model is trained on a large dataset that is
distributed among multiple devices or clients rather than on
a centralized server [25]. FL methods play a critical role
in maintaining the privacy of sensitive data where training
data are distributed at the edge devices. The following section
explains various terminologies related to FL:

• Client: refers to a device or user participating in FL.
Clients maintain full control over their data, which they
use to train a model.

• Server: The server is a central entity that coordinates
the FL process. Although the server does not have direct
access to the client’s data, it aggregates model updates
with clients during training.

• Aggregation: Aggregation is the process by which the
server combines updates from multiple clients to form
a global model. This process is designed to preserve
privacy, ensuring that the global model is updated without
compromising the confidentiality of individual client data.

• Server Round: A server round refers to a single iteration
of the FL process. During each round, clients locally train



their models on their own data, send model updates to the
server, and receive the updated global model in return.

• Local Epoch: A local epoch is the number of times a
client trains its model on its local data before sending
the updated model to the server for aggregation.

There are generally three steps involved in FL training
(Fig. 1): (1) the central server shares an initial model. (2)
Participants train their local data with the initial model and
share the local model with the central server, and (3) the
central server aggregates the local models and shares the global
model with participants.

C. Applications and Emerging Use Cases of FL

FL has been successfully implemented in various public-
facing and industrial applications, including mobile keyboard
prediction [26], credit risk assessment [27], and vehicular
management systems [28]. In the context of construction
industry, FL plays a crucial role in enabling collaboration
among various entities to build smart and safe working sites
[29]–[31]. This collaboration facilitates the collective training
of shared AI models while preserving user privacy. To the
best of our knowledge, FL has not yet been applied to vision-
base tasks in construction sites for improving robustness of
predictions, making it a novel approach in this context.

III. METHOD

In this section, we present a detailed explanation of how
semantic segmentation is integrated into the FL algorithm. The
proposed method applies FedAvg for semantic segmentation
across distributed construction sites (Alg. 1). The global model
is initialized at the central server, which is typically a deep
neural network designed for segmentation tasks. In each
communication round, all the clients (e.g., construction sites)
perform local training. Each client uses its local image data
to update the model by minimizing a pixel-wise loss function,
such as cross-entropy, over multiple local epochs. The locally
updated model weights are then sent back to the central server,
where they are averaged to update the global model. This
iterative process continues for several communication rounds
until the global model converges.

In this setup, the key parameters include the number of
clients K, the number of communication rounds T , the number
of local epochs E, and the learning rate η. The client-side
training involves feeding image batches through the segmen-
tation model, computing the pixel-wise segmentation loss, and
updating the model using gradient descent. The advantage
of this federated approach lies in preserving data privacy
while enabling the global model to generalize across diverse
environments by leveraging data from multiple sites.

In this work, we require a system that is accurate while si-
multaneously boosting privacy and communication efficiency.
To justify the implementation of an FL system between
construction sites, we must compare the accuracy of our FL
system to that of local models. In addition, our architecture
provides a higher level of privacy by preventing the server
or other construction sites from accessing the data of other

nodes. Furthermore, our architecture reduces communication
overhead by just providing model updates, which are far less
than raw data. This reduction in data transfer saves bandwidth
while also speeding up the entire training process.

Algorithm 1 Federated Averaging for Semantic Segmentation

Server-Side:
Require: K: clients, T : communication rounds, E: local

epochs, η learning rate, w0: initial global model weights
for each round t = 1, . . . , T do

Randomly select a subset of clients St ⊆ {1, 2, . . . ,K}

for each client k ∈ St in parallel do
wt

k ← ClientUpdate(k,wt−1)
end for
Aggregate updates: wt ← 1

|St|
∑

k∈St
wt

k

end for
Return: Final global segmentation model weights wT

Client-Side:
Require: k: client index, w: global model weights

Receive model weights from server wk ← w
for each local epoch e = 1, 2, . . . , E do

for each batch of image data (x, y) from client k do
ypred ← ModelForward(wk, x) {Perform forward
pass for segmentation}
Compute loss: ℓ← CrossEntropyLoss(ypred, y)
wk ← wk − η∇ℓ {Update local weights using
gradient descent}

end for
end for
Return: Updated local model weights wk

IV. EXPERIMENTS

A. Experimental Setup

Dataset Preparation. For this study, we utilized the Con-
stScene dataset [3], which is designed to address the chal-
lenges of adverse weather and environmental conditions in
construction environments. This dataset includes annotated im-
ages captured under various weather conditions such as sunny,
rainy, foggy, and low-light scenarios, along with environmental
factors like dirt and mud on camera lenses. The ConstScene
dataset is available in two versions: the original with 3470
images and the augmented version with 6240 images. To
supplement the original dataset, synthetic images incorporated
to mimic actual conditions found on construction sites.

These artificially generated images were added to enhance
the dataset’s diversity and better represent real-world scenar-
ios. Two distinct categories of synthetic images are: those
with motion blur effects and those simulating a dirty lens
effect. For generating motion blur effect, the process involved
creating a blur kernel - a 2D array with zeros and a single
row of ones to create directional blur. The blur intensity is



controlled by the kernel size parameter, which is set to 11
in this study. For adding dirty lens effect, several synthetic
dirty lens effects were used to mimic the real conditions. The
amount of dirtiness is controlled by the intensity of the pixels
used in each filter. In this process, for each input image, one
random filter was selected and applied on the original image.
Fig. 2.(c) and (Fig. 2.(d) show dirty lens and blurry samples
of the dataset, respectively.

To construct a robust and diverse dataset for training and
evaluation, we developed three distinct data sources (DS),
which were structured as follows:

• DS1: Composed entirely of the 2,071 no-augmented
images captured in normal condition.

• DS2: A combination of 37 images captured in dusty
environment supplemented with 1,000 randomly selected
images from the synthetic motion blur dataset.

• DS3: A combination of 662 images captured dirty lens
camera supplemented with 1,000 randomly selected im-
ages from the synthetic dirty lens dataset.

• Test dataset: Composed of 348 no-augmented images
captured in normal conditions, 348 synthetic dirty lens
images, and 348 synthetic motion blurred images.

Then, we considered three nodes for the FL system to mimic
different autonomous construction environments. In the first
node, most of the data is selected from DS1 to emulate an
environment with ideal conditions. The second node contains
mostly data from DS2 to imitate an environment that is dusty
and has a lot of lows and highs which cause blurred images.
The data of the third node consists mostly of DS3 images to
mimic a muddy environment that leads to a dirty lens camera.
The data distribution of the three nodes is as follows:

• Node 1: 1985 images (90% DS1, 5% DS2, and 5% DS3)
• Node 2: 1087 images (90% DS2, 5% DS1, and 5% DS3)
• Node 3: 1093 images (90% DS3, 5% DS1, and 5% DS2)
Training Configuration. Our FL system has three nodes

and one server. The server initiates a U-Net model [24] with
ResNet18 encoder architecture [32] and sends a copy of it to
the three local sites. Then, the federated training is performed
with the settings specified in Table I. W employ the mean
intersection over union (mIoU) metric for evaluation. mIoU
is defined as: mIoU = 1

N

∑N
i=1

|Xi∩Yi|
|Xi∪Yi| , where N, X, and Y

represent the number of classes, the set of pixels predicted to
belong to class i, and the set of pixels in the ground truth that
belong to class I.

B. Results

We report the results in Table II.The comparison between
locally trained models and the FL model highlights the
advantages of using the FL approach in our specific use
case. Training each node on its individual local dataset and
testing on the same dataset used in the federated configuration
revealed that the FL model outperformed the locally trained
models significantly. The FL model provides the mIoU of
56.37%, suggesting its superior ability to generalize across
different and heterogeneous datasets. This finding highlights

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2: Illustration of sample inputs of the prepared dataset
alongside qualitative prediction results. (a) Original image. (b)
Semantic label for the original image (ground truth). (c) Dirty
image. (d) Blurred image. (e) Prediction result of the centrally
trained model on the dirty lens image. (f) Prediction result of
the centrally trained model on the blurry image. (g) Prediction
result of the FL model on the dirty lens image. (h) Prediction
result of the FL model on the blurry image.

TABLE I: Configurations setup of the training procedure.

Parameter Value
Epochs for local training 1

Epochs for global training 100
Optimizer Adam

Learning rate 3e-4
Batch size 32

Aggregation Algorithm Fed-Avg [12]
GPU Device Tesla M10

Global training time 3865 seconds

the effectiveness of FL in circumstances with non-identical
data distribution and its potential to improve model perfor-
mance in distributed environments. By utilizing FL, we not
only gained superior model performance, as indicated by the
higher mIoU score, but also improved the overall privacy of
the system, making it a solid option for scenarios demanding
severe data protection measures. The qualitative prediction
results of the centralized training and FL methods against dirty
lens and blurry image attacks are illustrated in Fig. 2.(e) to Fig.
2.(h). As can be seen, employing FL shows a notable accuracy
improvement over centralized training (up to 4.4%).



TABLE II: Test results of centralized and FL models on the
ConstScene [3] dataset.

Model mIoU
Node 1 53.77%
Node 2 52.08%
Node 3 51.94%

Federated learning (Ours) 56.37%

V. CONCLUSION

Developing robust and reliable object detection models is
difficult for individual construction sites without access to
diverse datasets that account for specific adverse conditions.
Federated learning addresses this limitation by allowing mul-
tiple construction sites to collaborate and pool their data to
train a global model, thereby enhancing accuracy across a
wider range of adverse environmental conditions. Importantly,
FL maintains data privacy, as there is no direct data sharing;
instead, a central model is created through the aggregation of
updates from individual sites. This approach also provides easy
scalability, flexible training schedules, and access to larger
training datasets through multi-site collaborations, which are
all crucial for the successful deployment of robust object
detection solutions.
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