
Automated Test Generation
Taxonomy and Tool Applications

Eduard Enoiu1[0000−0003−2416−4205], Nasir Mehmood
Minhas1[0000−0001−8177−4355], Michael Felderer2,3[0000−0003−3818−4442], and Wasif

Afzal1[0000−0003−0611−2655]

1 School of Innovation, Design, and Engineering,
Mälardalen University, Västerås, Sweden

2 Institute of Software Technology, German Aerospace Center (DLR),
Oberpfaffenhofen, Germany

3 Department of Mathematics and Computer Science,
University of Cologne, Cologne, Germany

eduard.paul.enoiu@mdu.se, nasir.mehmood.minhas@mdu.se,
michael.felderer@dlr.de, and wasif.afzal@mdu.se

Abstract. Automated test generation is an area that has seen a lot of
research and development, resulting in many test automation methods
and tools for test design. However, practitioners often face challenges in
adopting these tools. This is not only due to the immaturity of some
tools but also because of varying perspectives, confusing terminology, and,
most importantly, the lack of a clear framework to guide the selection of
the most suitable approach for their needs. We propose a taxonomy that
characterizes the methods for automated test generation. The taxonomy
was constructed using a process that involved analyzing secondary studies
on automated test generation and existing taxonomies in the scientific
literature. Direct observations and iterative refinements were included,
followed by validation through conceptual evaluation and practitioner
feedback. The resulting dimensions characterize automated test gener-
ation and its use in software testing. The taxonomy is organized into
several dimensions: software artifact (i.e., type, notation, interfaces), test
generation (i.e., objectives, methods, and monitoring), test execution,
and test oracle. We demonstrate the taxonomy’s use by applying it to sev-
eral automated test-generation tools. This paper provides the necessary
concepts and a generic process for categorizing and assessing automated
test generation approaches.

Keywords: Test automation· automated test generation· taxonomy

1 Introduction

Software testing is a crucial phase of the software development life cycle; it
ensures that the system under test meets the specified requirements and, under
different circumstances, behaves as expected. Software testing is a repetitive,
complex, and time-consuming activity, especially for large-scale systems with

2 Enoiu et al.

complex requirements [16, 17]. Automated Test Case Generation (ATG) is a
solution to address the complexity and time constraints of manual testing [5].

Despite the abundance of research on different testing techniques and tools,
the results are difficult to adopt by practitioners [1]. In recent decades, software
professionals or researchers have faced problems developing effective, applicable,
and practically relevant test generation techniques and tools [6]. With so many
approaches in automated test generation, there is a risk of not assessing and
adopting these properly in practice, making it harder for practitioners to choose
and use these tools. It is difficult for practitioners to adopt these techniques and
tools, such as using different terminologies. Among many, one significant reason
is the absence of a conceptual model to help practitioners choose a method or
tool that fits their context [1].

Many software testing standards, such as ISO/IEC/IEEE 29119 [14], OMG
UML Testing Profile [7], and TTCN-3 [27], aim to provide guidelines for the
use of test techniques and test automation. However, these standards often
lack the depth required to address the wide variety of techniques employed by
automated test generation methods. For instance, ISO/IEC/IEEE 29119 has
been critiqued for its generality and inability to accommodate automated testing
practices’ complexity and evolving nature fully [2]. This generality makes it
challenging to address the specific needs of various testing approaches, including
automated test generation. Similarly, the OMG UML Testing Profile and TTCN-3
have limitations in adapting to the particular needs of diverse test automation
techniques [26]. Furthermore, despite the efforts to standardize software testing
practices in automated test generation [1, 10, 26, 29], no comprehensive overview
includes the many perspectives and techniques of automated test generation.
While these taxonomies aim to categorize and organize the different techniques,
methods, and approaches, they often focus on specific areas without providing
a unified view of automated test generation. This gap highlights the need for
a broader framework to integrate automated testing techniques’ diverse and
complex landscape.

This paper provides this overview as a taxonomy, how it can be used to
categorize rather different automated test generation tools, and how to use it to
identify the right tools.

The paper is organized as follows: Section 2 summarizes related work, Section
3 describes steps for creating the ATG taxonomy, and Section 4 introduces
the generic test generation process. Section 5 details the ATG taxonomy, its
application to tools in Section 6, and evaluation results in Section 7. Discussion
and limitations in Section 8, and conclusions in Section 9.

2 Related Work

Various authors have proposed software testing taxonomies across different testing
categories, such as regression testing [1, 9], automated software testing [5], risk-
based testing [10, 13], and model-based testing [16, 22, 26, 29]. Table 1 shows a
comparative summary of these taxonomies that aim to categorize and organize

Automated Test Generation 3

Table 1. Comparison of Testing Taxonomies Focused on Test Creation and Selection

Author(s) Testing Category Focus/Criteria Key Contributions
Bin et al. [1] Regression Testing Industry Relevance Proposed a taxonomy for regres-

sion testing.
Minhas et al. [16] Model-Based Testing Model, Test Type,

Capabilities
Categorized test case generation
techniques, providing an inven-
tory and documentation of capa-
bilities and limitations.

Felderer et al. (2016)
[11]

Security Testing Security Properties,
Coverage Criteria

Developed a taxonomy to show
insights into model-based security
testing.

Felderer et al. (2014)
[10]

Risk-Based Testing Risk Assessment Developed a taxonomy to under-
stand, assess, and compare risk-
based testing, applied in various
phases of testing.

Saeed et al. [22] Search-Based Tech-
niques

Experimental Appli-
cations

Developed a taxonomy to catego-
rize experimental applications of
search-based techniques.

Zander et al. [29] Model-Based Testing Test Generation, Ex-
ecution, Evaluation

Expanded on earlier taxonomies,
adding a category for test gener-
ation tailored to embedded sys-
tems.

Ramli et al. [21] Combinatorial Test-
ing

Algorithmic Ap-
proaches

Reviewed algorithms and tools
for combinatorial testing con-
tributing to a structured under-
standing of the field.

various techniques, methods, and approaches in software testing to understand
better and apply them in practice. Table 1 summarizes key taxonomies across
different categories, highlighting their focus areas and contributions.

For example, Bin et al. [1] conducted reference searches and consulted industry
experts to propose regression testing (RT) taxonomies that encompass aspects
of industry relevance regarding regression testing techniques. They mapped 26
industry-relevant regression testing techniques to the proposed RT taxonomies. By
categorizing techniques based on industry relevance, the authors aim to provide
a structured framework to help practitioners select appropriate regression testing
techniques for their specific contexts. Minhas et al. [16] categorized model-based
test case generation techniques based on the underlying model used, test type,
capabilities, and industry relevance. The authors aimed to provide practitioners
with an inventory of results and documentation of the capabilities and limitations
of these approaches.

Felderer et al. [11] proposed a taxonomy for model-based security testing
methods, which includes filter and evidence criteria. The authors analyzed 119
publications on model-based security testing based on these criteria, offering
insights into the current landscape. The analysis covers aspects such as secu-
rity properties, coverage criteria, and the practicality and cost-effectiveness of
such testing. In another work, Felderer et al. (2014) introduced a taxonomy of
risk-based testing, which provides a framework for understanding, categorizing,
assessing, and comparing risk-based testing approaches. The authors aligned the
taxonomy with considering risks in all phases of the testing process and it has
been applied to selected work on risk-based testing.

4 Enoiu et al.

Saeed et al. [22] performed a systematic literature review that included 72
experimental studies on search-based techniques (SBTs) for model-based testing
(MBT). Based on the results of the review, the authors developed a taxonomy to
categorize the current experimental applications of SBTs. Saeed et al. concluded
that this taxonomy would help researchers explore existing research efforts and
identify limitations requiring further investigation.

Zander et al. [29] expanded on the model-based testing taxonomy introduced in
Zander et al. [28], which itself built upon the taxonomy presented in Pretschner et
al. [19]. In addition to the original categories of classes model, test generation, test
execution, and test evaluation outlined in Zander et al. [28], the authors included
a new category for the test generation class called “result of the generation´´.

Ramli et al. [21] presented a review of algorithms and tools on combinatorial
testing proposed from 2010 to 2017. All these studies are intended to contribute
to the structured understanding of the software testing landscape. Collectively,
these works enrich the taxonomy landscape in software testing.

Although these taxonomies classify and organize various techniques, methods,
and approaches in automated test generation, they focus on particular aspects,
lacking a comprehensive, unified perspective on automated test generation. Table
1 shows a comparative summary of these taxonomies, demonstrating their diverse
points and the existing gap in providing one view of the work done to categorize
automated test generation and selection. This emphasizes the need for a more
extensive taxonomy to integrate the varied landscape of automated test generation
techniques.

3 Taxonomy Development Process

The automated test generation taxonomy development followed a structured and
iterative approach, as shown in Figure 1, inspired by the methods used in [1, 15].
The process involves multiple stages, each contributing to refining the taxonomy
and ensuring its applicability to real-world automated test generation tools.

Using Secondary Studies and Personal Experience. The taxonomy development
process is based on the guidelines proposed by Ralph [20], using secondary
studies and personal experiences as strategies for taxonomy generation (Step
1 in Figure 1). Since we were not limited to techniques generating test data
fully automated, we focused on the only secondary study [5] on automated test
generation techniques regardless of their input software artifacts. This study still
remains a good reference in automated test generation because the techniques it
categorizes are still fundamental to current practices. Their orchestrated survey
of methodologies provides a broad study on automated test generation that
continues to be relevant. Based on this study, we chose to scope our focus to
the following test generation categories: structural testing, model-based testing,
combinatorial testing, random testing, and search-based testing. We reflected on
our own experience in automated test generation and used existing taxonomies
for model-based testing [11, 26]. While there are common characteristics among

Automated Test Generation 5

Secondary studies and
personal experience used

as strategy

Identification of common
dimensions of a test
generation process

Identification of sub-
dimensions of a test
generation process

Refactoring

Validating identified
dimensions and sub-

dimensions with
practitioners

Creating test generation
taxonomy

Taking inspiration from
existing taxonomies by

incorporating direct
observations

Conceptual evaluation by
instantiating the taxonomy

on representative test
generation tools

Iterating

Industry Evaluation by
senior testing practitioners

1

2 3 4

5678

Fig. 1. Steps to create the automated test generation taxonomy

all these existing studies, we argue that these are insufficient to cover generic
aspects of automated test generation regardless of their input software artifact
and inner workings. We employed direct observation and reviewed these existing
taxonomies and our chosen secondary study [5] to collect data and take notes on
how a generic test generation process would look like (shown in Section 4).

Identification of Common Dimensions of Test Generation. We analyzed this
process and built the taxonomy in step 2 (in Figure 1). We evolved the taxonomy
by reviewing existing studies (mentioned in Section 5), identifying each dimension
common to all test generation techniques.

Identification of Sub-Dimensions of Test Generation. After identifying the com-
mon dimensions, we moved on to identifying the sub-dimensions within each
category (Step 3 in Figure 1). For example, within a top dimension, sub-dimensions
were defined. This level of detail ensured the taxonomy could cover a wide range
of test generation techniques and provide specific categories for each.

Validating Dimensions with Practitioners. To ensure the identified dimensions
and sub-dimensions were relevant to real-world automated test generation tools,
they were validated by practitioners in the field of software testing during a
workshop with four engineers (Step 4 in Figure 1). This validation process involved
obtaining qualitative feedback from these engineers who have experience with
automated test generation. The identified dimensions and sub-dimensions were
refactored based on practitioner feedback to address any gaps or inconsistencies.
This allowed for fine-tuning the taxonomy.

Creating the Test Generation Taxonomy. After the validation and refactoring
stages, the taxonomy for test generation was finalized for evaluation (Step 6 in
Figure 1). The result is a categorization that captures the essential characteristics
of test generation approaches, offering a unified view of the landscape, which
can be applied to tools and methods across the field. This step involved drawing

6 Enoiu et al.

inspiration from pre-existing taxonomies in software testing and automated test
generation (Step 5 in Figure 1).

Conceptual Evaluation on Representative Tools. In step 7 in Figure 1, we per-
formed an initial conceptual evaluation by instantiating the taxonomy on repre-
sentative test generation tools covering all of the methodology categories outlined
by Anand et al. [5].

Industry Evaluation by Senior Testing Practitioners. The final step in the process
(step 8 in Figure 1) was an industry evaluation conducted by eight testing
practitioners. This evaluation aimed to assess the practicality of the taxonomy
when choosing a test generation tool. The feedback from this evaluation was used
to further iterate on the taxonomy, ensuring it met the needs of both researchers
and practitioners.

4 A Generic Test Generation Process

Software
Artifact

Test Monitor

System-under-Test
(SUT)

Test Execution
Environment

Test
Objective/
Method

Test Oracle

(1) (2)

(3) (4)

Test
Generation

(5)

Test
Suite

Test
Results

(6)

Fig. 2. A Test Generation Process.

The process of automated test generation aims
to find suitable test cases using a description of
the test objectives that guide towards a desir-
able property. These test cases could contain
parameters to start the software, a sequence
of steps and inputs and the timing when these
steps should be supplied. In some cases, test
cases might need to contain other information
for a complete execution and evaluation of the
system under test. In Figure 2, a typical set-
ting for automated test generation is identified
based on the testing process outlined by Utting
et al. [26] and extended using the methodology
categories for automated test generation [5].
A generic process of automated test genera-
tion proceeds as follows: (Step 1) A software
artifact is used or created to guide the test
generation. It is either a specification of what
the System-under-Test (SUT) should do or the
actual code of the SUT in different forms (e.g.,
source, executable code). (Step 2) A test ob-
jective and method formally encodes the test
criteria and describes how the test generator should choose the resulting tests.
This can relate to the structure of the software artifact (e.g., code or model
coverage), random test goals, or fault-based objectives. (Step 3+4) A test suite is
generated by running the software over many possible executions using a specific
method. Each method needs to monitor if the test objectives are met, which can
be achieved during test generation or just for test execution and evaluation of the

Automated Test Generation 7

test results. This can be invasive (e.g., at code level) or non-invasive by focusing
on the available external interfaces. (Step 5) Once Steps 1 to 4 are completed, a
test suite is executed by running the software online or offline. (Step 6) The test
evaluation compares the actual outputs of the SUT with the expected outputs
provided by the oracle so that the test results are generated.

5 The Automated Test Generation Taxonomy

Automated test generation approaches can be quite different, but all of them
have common underlying dimensions that can be quite helpful when adopting
automated test generation in a certain software development project. Given the
generic test generation process shown in Figure 2, we identified several dimensions
corresponding to these steps (i.e., Software Artifact (Step 1), Test Generation
(Steps 2, 3 and 4), Test Execution and Evaluation (Step 5 and 6)). Even though
there can be other steps in software testing used in practice, we argue that
the identified steps are most commonly conducted when using automated test
generation.

This taxonomy of automated test generation approaches has five categories
shown in Figure 3. This gives an overview of the taxonomy where the tree leaves
indicate options that are not incompatible (for example, some approaches may
use more than one generation objectives). The initial taxonomy, which outlined
dimensions such as software artifact, test generation methods, test execution, and
evaluation, was validated by four experienced professionals in software quality
assurance and test automation with careers ranging from 3 to over 20 years in
roles such as software tester, test architect, QA coordinator, and consultant. Each
practitioner provided insights into the use of automated test generation tools and
the applicability of the taxonomy when choosing a tool. One significant addition
was the dimension Test Oracle. Practitioners emphasized the need to clearly
differentiate between the types of test objectives and test oracles. The taxonomy
was updated to provide more granularity, separating oracles from test objectives.

5.1 Software Artifact

Creating the software artifact is reflected by the three dimensions within the
software artifact category: type, notation, and interface. These are used in
the software artifact type categorization of Pfeiffer [18] and the model-based
testing taxonomy [26]. The first dimension refers to the type of software artifact
used as input to the test generation process. Software is multidimensional and
consists of a variety of artifacts related to data (i.e., test results4, graphical
user interface, database), code (source or executable) and documentation (i.e.,
requirement, design and test specifications) [18]. The second dimension refers to
the notation style used to describe the software artifact. Many different notations
have been used for representing the expected or the actual behavior of software

4 Test results refer to the data as execution logs and evaluation outcomes.

8 Enoiu et al.

Software
Artifact

Type

Notations

Textual Languages

Graphical Languages

Hybrid Languages

Interfaces
Test Inputs / Test Inputs & Test Outputs

Test Monitor

Test
Generation

Test
Execution

Test Oracle

Specified Oracle

Derived Oracle

Implicit Oracle
Human Oracle

Online Test Execution

Offline Test Execution

Test Objective

Test Method

Structural Coverage

Combinatorial Coverage

Requirement Coverage
Random

Fault-Based/Mutation Coverage

Random/Adaptive Random

Meta-Heuristic Search

Model Checking

Fuzzing
Symbolic Execution

Invasive

Non-Invasive

Online/Offline

Theorem Proving

Requirement Specifications

Design Specifications

Source Code

Executable Code

Test Specifications

Database
Graphical User Interface

Test Results

Data

Code

Documentation

Fig. 3. Overview of the Test Generation Taxonomy.

artifacts. To differentiate between language styles [25], we group them into textual,
graphical and hybrid languages. The last dimension relates to the input-output
interfaces [26], which answers the following question: does the software artifact
specify only the test inputs (or the sequence of test inputs), or does it specify
the input-output behavior of the SUT? This is an “x/y” tree leaf alternative that
indicates incompatible alternatives. For example, combinatorial test generation
tools will be used to represent test inputs and do not specify the expected outputs.

5.2 Test Generation

This test generation category includes three dimensions defining test objectives for
generating and monitoring test cases. Since it partially aligns with test generation
dimensions in model-based testing taxonomies [12, 26], we use their categorization

Automated Test Generation 9

of test objective criteria and monitors, which include structural, combinatorial,
requirement, random, and fault-based/mutation coverage5. We classify test gen-
eration methods as graph search algorithms, meta-heuristic techniques, model
checking, symbolic execution, theorem proving, and fuzzing. The test monitor
dimension evaluates whether test objectives are met, referencing model-based
testing processes [26] and automated test generation needs [5]. It includes two
types: invasive and non-invasive. Invasive monitoring uses instrumentation at
code and interface levels, and non-invasive monitoring is suitable for cases like em-
bedded systems where invasive methods may alter behavior and obtain coverage
information via static analysis or external interfaces. For example, code coverage
data may be derived directly from source code without altering execution.

5.3 Test Execution

The test execution dimension defines how test case generation relates to their
execution, a concept also employed in the model-based testing taxonomy [26]. Test
execution can occur offline, where test cases are generated and executed later, or
online, where test cases are dynamically generated and executed during runtime.
Some tools, such as GraphWalker, support both modes, showing flexibility to
adapt to specific testing scenarios.

5.4 Test Oracle

The last category relates to how automated test generation tools determine
whether a given test case is acceptable. This should not be confused with the
abstract information in the requirement and design specification. An oracle
implements a specification and is used to judge the correctness of the generated
test data. We use the categorization of test oracles of Barr et al. [8] in which
the test generation tools can use specified oracles (formally specified models),
derived oracles (derived from the software artifacts or system executions, e.g.,
metamorphic testing), implicit oracles (by relying on general, implicit knowledge
to distinguish between a system’s correct and incorrect behavior), and human
oracles when a human being is checking the results of the generated test cases.
For example, metamorphic testing [24] derives oracles based on metamorphic
relations that must hold across different software executions.

6 Tool Classification via Test Generation Taxonomy

This section categorizes some typical automated test generation tools about the
automated test generation taxonomy presented before. We show the characteristics
of these tools and how the taxonomy can be used to differentiate between different
automated test generation approaches by covering all the categories of test
5 The objectives, based on a model-based testing taxonomy [26], align with automated

test generation tools, focusing on specific criteria unlike broader classifications [4].

10 Enoiu et al.

generation methodologies outlined in Anand et al. [5]. The results of applying the
taxonomy on four tools (i.e., ACTS, Sapienz, SLDV, GraphWalker, and Randoop)
are shown in Table 2.

Table 2. Results of applying the taxonomy on automated test generation tools.

Dimensions/Tools ACTS Sapienz SLDV Randoop GraphWalker

Software Artifact Type Test Specifica-
tion

Source/Exec.
Code

Design Specifi-
cation, Source
Code

Source Code Requirement Specifi-
cation, Test Specifi-
cation, Design Speci-
fication

Software Artifact Notation Graphical, Tex-
tual

Textual Graphical,
Textual

Textual Graphical

Software Artifact Interface Inputs Inputs & Out-
puts

Inputs Inputs Inputs & Outputs

Test Generation Objective Combinatorial Structural Structural,
Requirement

Random Structural, Require-
ment, Random

Test Generation Method Model Checking Meta-Heuristic
Search

Theorem
Proving,
Model Check-
ing

Random Graph-Based

Test Generation Monitor Non-Invasive Invasive/Non-
Invasive

Invasive Non-Invasive Non-Invasive

Test Execution Offline Offline/Online Offline Offline Offline/Online

Test Oracle Human Implicit Specified, De-
rived, Implicit,
Human

Implicit, Spec-
ified

Specified, Derived

6.1 ACTS

ACTS 6 is a tool designed to generate test input that ensures t-way coverage
of input parameters with support for constraints. ACTS works with test spec-
ifications, focusing on input parameter combinations. The tool operates with
input-only interfaces, meaning test inputs are generated without expected output
specifications. Driven by the goal of combinatorial coverage, ACTS systematically
explores input combinations through model-checking. It follows a noninvasive
approach for test monitoring; it does not require instrumentation or alteration
to the system under test. Tests are generated offline, requiring manual or semi-
automated execution, and based on the provided input combinations, ACTS
typically relies on a human oracle to validate test results.

6.2 Sapienz

Sapienz7 is a test generation tool using a search-based evolutionary algorithm,
guided by a fitness function. Sapienz supports both offline and online test ex-
6 https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
7 https://github.com/Rhapsod/sapienz

Automated Test Generation 11

ecution with an implicit test oracle. It can generate tests dynamically during
execution (online) or analyze tests post-execution (offline). Sapienz works with
source and binary code, specifically Android Package (APK) files. It builds its
internal model of the system through textual and graphical UI interactions, using
both input-output interfaces to handle user actions and system responses. For test
generation, Sapienz focuses on structural coverage, ensuring that the code paths
are explored. It employs a meta-heuristic search, with invasive and non-invasive
monitoring at the UI and method levels for coverage tracking.

6.3 SimuLink Design Verifier

Simulink Design Verifier (SLDV 8) is the de-facto standard for validating and
verifying Simulink-described systems. SLDV works with Simulink and C/C++
specifications, supporting graphical and textual notations via input-output in-
terfaces to ensure coverage objectives like statement coverage and requirements.
SLDV’s test generation leverages theorem-proving and model-checking with an
invasive monitoring approach that instruments models or code for coverage
tracking. SLDV supports both offline and online execution and runs tests in
environments such as X-in-the-Loop (XIL). It supports specified, derived, and
implicit oracles for validation through formal specifications, inferred properties,
or system behavior monitoring.

6.4 Randoop

Randoop9 is a feedback-directed random test generation tool. It inputs a set of
programs and generates random test cases and assertions. Randoop works with
source and binary code and targets Java and .NET environments. It generates
a sequence of method calls using textual notations at the method level. It also
uses input-output interfaces, where inputs are method invocations and outputs
are system states or exceptions. Using random and structural coverage, Randoop
generates method call sequences through feedback-directed random testing, using
prior successes for future cases. Its non-invasive monitoring requires no code
instrumentation. Randoop executes tests online, dynamically generating and
running tests with oracles that detect exceptions and allow user-specified contracts
to define expected behavior.

6.5 GraphWalker

GraphWalker10 is a model-based testing tool that reads models as directed
graphs (finite state machines) and generates test paths based on user-defined
generator rules (e.g., structural, requirement, or random objectives) and stop
conditions. GraphWalker models the system using requirement, test, and design
8 https://www.mathworks.com/products/simulink-design-verifier.html
9 https://randoop.github.io/

10 https://graphwalker.github.io/

12 Enoiu et al.

specifications, employing graphical and textual notations to depict states and
transitions. Operating with input-output interfaces, it traverses the model to
define paths representing action-state sequences. For test generation, GraphWalker
focuses on structural and requirement-based coverage. It can also produce random
paths based on the specified objective. It identifies paths through the system
model using graph traversal algorithms like A star. Its non-invasive approach
requires no system instrumentation. GraphWalker supports online and offline
test execution, allowing for real-time path generation or pre-execution analysis.
Test oracles in GraphWalker include specified oracles (for predefined behaviors)
and derived oracles, inferring correct behavior based on state transitions during
execution.

7 Evaluation of the Taxonomy

The participants in this static evaluation have extensive software industry experi-
ence, with backgrounds spanning 10 to over 20 years in roles including developer,
tester, and test manager, specializing in embedded systems, automated testing,
and sectors such as railway and telecommunications. Based on this exploratory
evaluation conducted by the eight testing practitioners, feedback revealed insights
into the practical application of the developed taxonomy for selecting automated
test generation tools. Several themes were identified through thematic analysis
of notes taken during the workshop, where the taxonomy was presented, applied,
and discussed. Practitioners agreed that the taxonomy offers a structured view
of various test generation tools (1), particularly highlighting relevant character-
istics like monitoring techniques, test generation objectives, artifact type, and
test oracles. These features were beneficial for understanding test generation
functionality and selecting tools suited to specific software testing contexts and
different project scopes. Practitioners noted that the taxonomy’s dimensions
were broad (2), especially for categorizing tools based on the software artifact
dimension. A recurring observation was that specific terms within the taxonomy,
such as invasive/non-invasive monitoring or implicit oracle, were challenging
due to subtle differences in industry versus academic contexts (3). Practitioners
recommended more precise definitions to bridge this gap, particularly for terms
with varying practical applications. The taxonomy was found well-suited for
classifying tools like Pynguin and EvoMaster (4). Practitioners emphasized the
importance of understanding specific test generation characteristics, such as
fault types detected, practical coverage levels, and resource requirements (5).
Expanding the taxonomy to include dimensions related to effectiveness and cost
could enhance its practical relevance.

8 Discussions and Limitations

A practitioner interested in identifying a certain tool for generating test cases in a
certain project can use this taxonomy to show and compare the characteristics of
these approaches to target various application domains and testing aspects. The

Automated Test Generation 13

results in Table 2 indicate that the provided taxonomy can be useful for choosing
between different automated test generation tools. We see a variety of ways in
which this taxonomy can be used. Depending on the individual characteristics of
a project, engineers can determine the automated test generation tool of interest.
Based on these selections, relevant attributes can be analyzed in terms of the
software artifact, test generation, test execution, and test oracle categories. More
work is needed to refine and evaluate this taxonomy by applying it to more tools
and industrial settings. The result of using this taxonomy can be enhanced by
coupling it with a measurement framework for test efficiency and effectiveness
analysis as mentioned also by the practitioners in the industrial evaluation.

Generative AI has recently been applied to test generation and augmentation
[3, 23]. These tools demonstrate how LLMs can enhance automated test gener-
ation by iterative refining and creating test cases to cover previously untested
software. In our taxonomy, Generative AI-based tools would fit well under the
Test Generation Method category, with a potential new subcategory for LLM-
based approaches that leverage iterative test generation capabilities. We have not
yet included this, as it is a rather recent development requiring more established
research before proper integration.

Based on secondary studies and personal experience, the taxonomy devel-
opment may introduce bias and limit comprehensiveness. Built on a secondary
study [5], it systematically classifies current software testing methods yet risks
omitting emerging techniques. Practitioner input was gathered in two phases
to address potential bias and ensure relevance. Additionally, the taxonomy was
mapped to five test generation tools to showcase relevance, though this may not
include all relevant tools. A further limitation is that practitioners evaluated
the taxonomy statically, which may affect assessing its practical applicability; a
larger, more varied group is needed for broader validation.

9 Conclusions and Reflections

The generic test generation process and the presented taxonomy help to clarify
the main characteristics of the automated test generation area and show the
possible alternatives and directions. This information can be used to classify test
generation tools and to help testers or users of these tools understand which
approaches fit their specific needs most closely. Automated test case generation
has matured, and large-scale deployments of this technology are underway in
many industries. Given the variety of approaches available, a taxonomy like this
could be valuable for researchers and practitioners. Applying it in research and
practice may lead to ongoing validation and refinement.

10 Acknowledgements

This work has received funding from the MATISSE project, an EU-funded initia-
tive under Horizon Europe GA no. 101056674, and support from the SmartDelta
project funded by Vinnova and the Software Center project.

14 Enoiu et al.

References

[1] bin Ali, N., Engström, E., Taromirad, M., Mousavi, M.R., Minhas, N.M.,
Helgesson, D., Kunze, S., Varshosaz, M.: On the search for industry-relevant
regression testing research. Empirical Software Engineering pp. 1–36 (2019)

[2] Ali, S., Yue, T.: Formalizing the iso/iec/ieee 29119 software testing stan-
dard. In: 2015 ACM/IEEE 18th International Conference on Model Driven
Engineering Languages and Systems (MODELS). pp. 396–405. IEEE (2015)

[3] Alshahwan, N., Chheda, J., Finogenova, A., Gokkaya, B., Harman, M., Harper,
I., Marginean, A., Sengupta, S., Wang, E.: Automated unit test improvement
using large language models at meta. In: Companion Proceedings of the 32nd
ACM International Conference on the Foundations of Software Engineering.
pp. 185–196 (2024)

[4] Ammann, P., Offutt, J.: Introduction to software testing. Cambridge Univer-
sity Press (2017)

[5] Anand, S., Burke, E.K., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P., Bertolino, A., et al.: An orchestrated
survey of methodologies for automated software test case generation. Journal
of Systems and Software 86(8), 1978–2001 (2013)

[6] Arcuri, A.: An experience report on applying software testing academic results
in industry: we need usable automated test generation. Empirical Software
Engineering 23(4), 1959–1981 (2018)

[7] Baker, P.: Model-Driven Testing: Using the UML Testing Profile. Springer-
Verlag, Berlin, Heidelberg (2009)

[8] Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle prob-
lem in software testing: A survey. IEEE transactions on software engineering
41(5), 507–525 (2014)

[9] Felderer, M., Fourneret, E.: A systematic classification of security regression
testing approaches. International Journal on Software Tools for Technology
Transfer 17, 305–319 (2015)

[10] Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. Inter-
national Journal on Software Tools for Technology Transfer 16, 559–568
(2014)

[11] Felderer, M., Zech, P., Breu, R., Büchler, M., Pretschner, A.: Model-based
security testing: a taxonomy and systematic classification. Software Testing,
Verification and Reliability 26(2), 119–148 (2016)

[12] Fraser, G., Rojas, J.M.: Software testing. In: Handbook of Software Engi-
neering, pp. 123–192. Springer (2019)

[13] Großmann, J., Felderer, M., Viehmann, J., Schieferdecker, I.: A taxonomy to
assess and tailor risk-based testing in recent testing standards. IEEE Software
37(1), 40–49 (2019)

[14] ISO/IEC/IEEE: Iso/iec/ieee international standard - software and systems
engineering –software testing –part 1:general concepts. ISO/IEC/IEEE 29119-
1:2022(E) pp. 1–60 (2022). https://doi.org/10.1109/IEEESTD.2022.9698145

Automated Test Generation 15

[15] Minhas, N.M., Börstler, J., Petersen, K.: Checklists to support decision-
making in regression testing. Journal of Systems and Software 202, 111697
(2023)

[16] Minhas, N.M., Masood, S., Petersen, K., Nadeem, A.: A systematic mapping
of test case generation techniques using uml interaction diagrams. Journal of
Software: Evolution and Process 32(6), e2235 (2020)

[17] Minhas, N.M., Petersen, K., Börstler, J., Wnuk, K.: Regression testing for
large-scale embedded software development – exploring the state of practice.
Information and Software Technology 120, 106254 (2020)

[18] Pfeiffer, R.H.: What constitutes software? an empirical, descriptive study
of artifacts. In: Proceedings of the 17th International Conference on Mining
Software Repositories. pp. 481–491 (2020)

[19] Pretschner, A., Utting, M., Legeard, B.: A taxonomy of model-based testing.
Department of Computer Science, University of Waikato, Tech. Rep (2006)

[20] Ralph, P.: Toward methodological guidelines for process theories and tax-
onomies in software engineering. IEEE Transactions on Software Engineering
45(7), 712–735 (2018)

[21] Ramli, N., Othman, R.R., Khalib, Z.I.A., Jusoh, M.: A review on recent t-way
combinatorial testing strategy. In: MATEC Web of Conferences. vol. 140, p.
01016. EDP Sciences (2017)

[22] Saeed, A., Ab Hamid, S.H., Mustafa, M.B.: The experimental applications of
search-based techniques for model-based testing: Taxonomy and systematic
literature review. Applied Soft Computing 49, 1094–1117 (2016)

[23] Schäfer, M., Nadi, S., Eghbali, A., Tip, F.: An empirical evaluation of using
large language models for automated unit test generation. IEEE Transactions
on Software Engineering (2023)

[24] Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on meta-
morphic testing. IEEE Transactions on software engineering 42(9), 805–824
(2016)

[25] Tse, T., Pong, L.: An examination of requirements specification languages.
The Computer Journal 34(2), 143–152 (1991)

[26] Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Software testing, verification and reliability 22(5), 297–312 (2012)

[27] Willcock, C., Deiß, T., Tobies, S., Keil, S., Engler, F., Schulz, S.: An intro-
duction to TTCN-3. John Wiley & Sons (2011)

[28] Zander, J., Schieferdecker, I.: Model-based testing of embedded systems
exemplified for the automotive domain. In: Behavioral modeling for embedded
systems and technologies: Applications for design and implementation, pp.
377–413. IGI Global (2010)

[29] Zander, J., Schieferdecker, I., Mosterman, P.J.: A taxonomy of model-based
testing for embedded systems from multiple industry domains. (2011)

