
Evaluation of Delay Queues for a
Ravenscar Hardware Kernel

Gustaf Naeser
Dept. of Computer Science and Engineering

Mälardalen University
Sweden

gustaf.naeser@mdh.se

Johan Furunäs
Dept. of Computer Science and Engineering

Mälardalen University
Sweden

johan.furunas@mdh.se

Abstract

In this paper we present and evaluate four delay queues
designed for application tailored Ravenscar hardware real-
time kernels. The properties of the different queues and op-
timisations of them are discussed and both formal models
and actual hardware implementation of the queues are pre-
sented. A transformation from timed automata to VHDL is
described during the translation of the timed automata of
the formal model into the corresponding VHDL state ma-
chines. Our study of the queues shows that even though
parallelism costs much in terms of chip area, there are sys-
tem configurations where it is the most space conservative.
We also show that the queues meet the timing requirements
of Ravenscar and that they can be fitted onto an FPGA.

1 Introduction

Establishing the temporal behaviour of a real-time sys-
tem remains a complicated challenge since it depends not
only on the application but also on the performance of real-
time kernel (RTK). The RTK performance depends on the
scheduling the kernel describes, the algorithms used, and
the hardware used to implement the RTK. Knowledge of the
kernel’s performance is required for more accurate calcula-
tions of the full system’s (application’s and RTK’s) tempo-
ral behaviour. A tasking profile defines the behaviour the
system, and hence the kernel, should exhibit.

The Ravenscar profile [3] defines a deterministic profile
for Ada tasking to be used in high-integrity real-time sys-
tems [4]. The profile restricts the use of programming con-
structs that complicates the temporal behaviour of a system.
Still, the need for analysis of the kernel times and identifi-
cation of them in a Ravenscar kernel remains, as presented
in [17,18]. Analysis of a RTK implemented in software in-
volves calculating the timing not only of the kernel but also

of the hardware the kernel is running on. We have chosen to
study an RTK implemented in hardware partly to avoid the
double analysis required by a software RTK and partly since
we want to create a platform where we easier can move parts
of the system between hardware and software. An impor-
tant property of the system parts placed in hardware will
be their area requirements as small area usage allows more
software or processing components to be placed in hard-
ware. Placing kernel functionality in hardware can improve
the execution speed of the kernel [9]. Some problems that
exist in software kernels can be avoided in hardware ker-
nels. For example, as clock functionality can be integrated
in the kernel rather than used as an external component,
the clock inaccuracy problem can be eliminated. The times
used for kernel operation in a hardware kernel can by analy-
sis of the synthesised hardware be decided on kernel clock
cycle level, i.e. with extremely high precision. Execution
time analysis often focus only on the task level sequential
code where most time is spent. Kernel times, accounting for
a fraction of the time spent in a system, is often neglected
and this analysis is enough for most real-time applications.
However, timing analysis without consideration of the ker-
nel is not sufficient for safety critical systems where a higher
level of detail is required to secure correct operation.

Formal verification is used to ensure that the behaviour
of a model of a system conforms to its specification. Us-
ing formal methods for verifying parts of kernel functional-
ity during its design can help eliminating design flaws and
give better knowledge of system operation [2,5,16]. A for-
mal model of a Ravenscar kernel (Lundqvist and Asplund’s
Model of Ravenscar, LAMR) was been presented in [7] and
an implementation of it was presented in [15]. The kernel
model we use in this paper is a refined version of LAMR
with a clearer component design and extended functional-
ity, e.g., support for multiple processors.

The Open Ravenscar Run Time Kernel(ORK) [13, 14]
also implements the Ravenscar profile. Dynamic valida-

1



tion by software faults injection of ORK is described in [8]
where verification of an implemented kernel is attempted.
This approach does not suit the kernel described in this pa-
per since the kernel we describe is specialised for the fi-
nal system’s actual characteristics. For example, the delay
queue can be specialised for the actual task setup when the
number of delaying tasks is known or easily can be decided
using code inspection. This kind of optimisations will help
not only to reduce the size both of the final hardware imple-
mentation but also the size of the states saved during verifi-
cation and allow for larger systems to be verified.

The design of the queues was first made in UPPAAL [6],
in timed automata, where queue operation could be veri-
fied with other kernel components and a models of high-
integrity applications. The queues, and the rest of the ker-
nel, are part of a project aiming for analysis of the temporal
properties of safety critical systems that are implementedin
both hardware and software. Though there are some tools
for hardware analysation [11,12], the ability to analyse the
temporal behaviour of the full system, where not the whole
system resides in hardware, made us design the queues in
the UPPAAL tool. The transformation of the timed automata
to VHDL and implementation metrics of the FPGA imple-
mentations are discussed later in the paper.

2 A Ravenscar Delay Queue

The real-time kernel in a real-time system manages the
system resources, like processor allocation and the accessto
shared objects. The different tasks of the kernel can be im-
plemented in separate components, like the ready queue, the
delay queue, the protected objects handler and the interrupt
handler. This separation makes it easier to modify the de-
sign and implementation of each individual part of the ker-
nel to meet a system’s specific demands and requirements.
The desired properties of the components are the same as
those for a software kernel’s components, i.e. high speed
and small size. The timing properties of the different kernel
components is also important since they will impact on the
level of possible parallelism, a slower component can be-
come a bottleneck if interacting components operate faster.

The interface of the delay queue is shown in Table 1. The
basic operation of the delay queue is as follows:

1. When a task is delayed a preliminary quick check to
decide if the task will be suspended is done. If the
delay-time is right now or in the past, the task should
not be suspended and this is signalled with an unblock.
On receiving an unblock the ready-queue will move
the task to the last position among tasks that have the
same priority.

2. If the delay-time is in the future the task should be
suspended and a suspend is signalled. Suspension

makes the ready-queue remove the task from the run-
ning tasks and preempt it from the processor where it
is running.

3. When the release time of a task is reached, the ready-
queue is signalled to make that task runnable again.

Table 1. Delay queue interface description.
The input interface contains the signals that
the delay queue will react to and the output
interface contains those signals used to up-
date task states in the ready-queue.

(a) Input signals consumed by the delay queue.

delay(Tid,
time)

Delay taskT with identity id,
Tid, until time is reached.

tick Signaled when the system clock
increase.

(b) Output signals produced by the delay queue.

suspend(Tid) RemoveTid from ready-queue.

unblock(Tid) PutTid last within its priority.

runnable(Tid) Signal thatTid ready to run.

The resources the delay queue uses to store information
about the delayed tasks and the way in which it monitors the
releases are varied in the different queues models describe
below. The variation explores different runtime characteris-
tics of the described interface.

3 Models

The UPPAAL tool contains an editor, simulation tool
and verification tool for timed automata. The timed au-
tomata consists of labelled transition systems with time and
can contain clocks, boolean variables, integer variables and
synchronous channels. Shared variables and synchronous
channels can be used to communicate data and control be-
tween automata. The value of variables are initiated to noth-
ing, zero, false, etc. Each automata consists of an initial lo-
cation, indicated by an inner circle, a fixed number of loca-
tions and transitions between the locations. In the explana-
tion of the queues below the notation n1 −→ n2 represents a
transition from location n1 to location n2. Transitions con-
tain guards, synchronisation and assignments. An automata
can take a transition from a state if the guard on the tran-
sition is satisfied, any synchronisation on the transition is
possible. When a transition is taken the assignment part of
the transition is executed. During a synchronous step, where

2



two automata communicate over a channel, the assignments
of the sending task are made before those of the receiv-
ing task. A transition can at most synchronise one chan-
nel. An exclamation mark after the channel name is used
to indicate that the channel is used for sending and a ques-
tion mark is used to indicate reception. A late addition to
UPPAAL was the introduction of broadcast channels where
one sender synchronise with multiple receivers. Locations
can be marked as committed or urgent,©c respective©u , to
force specific temporal behaviour. Committed locations are
used to create atomic chains of transitions. and an automata
in a committed location must leave the location before any
other transition (that is not committed) may be taken in the
system. Committed locations can be used to synchronise
over multiple channels in a chain of transitions. Urgent lo-
cation indicate that outgoing transitions from the location
have precedence over time transitions. Time transitions can
be taken whenever there are no automata in committed or
urgent locations that can take transitions. (Timed transi-
tions are not used in the models presented here.) Failure is
reported during verification or simulation if an automaton
cannot leave a committed location.

The verification part of UPPAAL is used to explore user
defined properties in all possible executions of a given sys-
tem. If a property cannot be verified (proven correct) a
counter proof can be explored in the simulator part of the
tool. Keeping the size of the kernel components down al-
lows larger systems to be verified. There are parameters
that can be changed to optimise the implementation size
of the delay queue,a) the size of the stored delay times,
b) how the delays are stored, andc) the amount of paral-
lelism used. The behaviour of the queue, i.e. if and when
the queue will cause unwanted stalling of the RTK depends
on if work is done when delaying or when releasing, and
again the amount of parallelism used. Some of the parame-
ters depend on each other and some combinations make no
sense, e.g. sorted arrays with the work at release time. The
models we present below explore different combinations of
the parameters.

The delay times, can be stored and used asabsolute times
or asdelta times. An absolute time,T , is the actual release
time of the task and, as discussed in [19], requires a mini-
mum of 41 bits to represent the 50 years at 1 ms resolution
required by the Ada Reference Manual [1]. However, the
number of bits required can be reduced in a system of pe-
riodic tasks where the cycle times of all delaying tasks are
known. A delta time,∆T , represents the number of ticks
remaining until the release of a task and can be used with
countdown timers to delay tasks. A safe estimation of the
number of bits needed for the delta times is the number of
bits needed to represent the cycle time of the task with the
longest period.

The array (or queue) where information about the de-

layed tasks is stored can be managed in two ways, either as
a sorted queue ordered by the closeness of the tasks’ release
or as an array indexed by the task identities. The two forms
of storage prompts the work of the queue to either be more
when delaying, the queue, or when releasing, the indexed
array. A delay queue using a sorted list will have to re-sort
the queue of delayed tasks when a task is delayed whereas
an indexed queue will have to find the next task to release
whenever a task is released. The sorted queue can at the
time a task is delayed be made to respect the order in which
the tasks are released and implement, e.g., FIFO or a prior-
ity release policy. An indexed array cannot keep this kind of
information and will hence release the tasks in some kind of
identifier indexed order. However, a priority based release
can be achieved by ordering the task identities in priority
order. Note that the first position of the arrays is not needed
since the task id zero is reserved for null processes (which
will not delay).

The amount of parallelism that can be imposed on the
kernel will reduce the time kernel components can be
blocked by each other but introduce the possibility of com-
munication delays. However, parallelism must be used
carefully since it increases the amount of chip area the hard-
ware implementation will use.

To ensure the correct operation of the different delay
queues, their behaviour were formally verified. The ver-
ification used models of the other kernel components and
sample application systems. After having passed the formal
verification the designs were transformed into VHDL and
finally synthesised for a FPGA. The initial model,Q1 be-
low, was designed for verification with no thought of hard-
ware synthesis. It was used for experimental verification
of application properties, it was suspected to use too much
hardware resource to be useful in real systems. The proper-
ties governing the queues resource usage were distilled and
explored in reasonable combinations as shown in this paper.

3.1 Delay queue Q1

The first delay queue design, shown in Fig. 1, uses an
indexed array of absolute release times. The computation
needed to delay a task is minimal, n0 −→ n1 −→n0, the
queue writes the release time in the position correspond-
ing to the task in the array DQd. The queue records the
index of the task with the closest release time, in the vari-
able next. If there are several releases at the same time the
one with the lowest identity is stored. When the release
time of next is reached, n0 −→ n2, the task scheduled to be
released then is made ready to run and the array is searched
for the next task to release. In n3 the first delayed task is
found and set to be the next task, and then further search-
ing is continued in n4. If several tasks are scheduled to be
released at the same clock tick the queue will release all

3



of them, n4 −→n2 −→ n3. Tasks released at the same tick
are released in index order to enforce a deterministic behav-
iour of the releases. As will be discussed in Section 6, this
forced order makes it possible to easily achieve better per-
formance. Ticks from the clock will initiate no action if no
task is scheduled to be released, n0 −→ n0.

n0

n3n4

n2

n1!delayed or Rd < DQd[next] or
(Rd == DQd[next] and Rt < next),
Rd > time

next:=Rt,
DQd[Rt]:=Rd,
delayed++

suspend!

delayed, Rd >= DQd[next], Rd > time

DQd[Rt]:=Rd,
delayed++

suspend!

delayed,
time >= DQd[next]-1

Rt:=next, DQd[next]:=0,
next:=0,
delayed--

tick?

!delayed
next:=0

delayed, !DQd[i]
i++

delayed, DQd[i]
next:=i, i++

time < DQd[next], i <= cnt_t,
!DQd[i] or DQd[i] >= DQd[next]
i++

time < DQd[next], i <= cnt_t,
DQd[i], DQd[i] < DQd[next]
next:=i, i++

i > cnt_t,
DQd[next] != time
i:=1

runnable!

!delayed or
time < DQd[next]-1
tick?

time >= DQd[next]
Rt:=next, DQd[next]:=0,
next:=0,
delayed--, i:=1

Rd <= time
unblock!

delay_until?

Figure 1. UPPAAL model of Q1.

The worst release case for a single task occurs in the case
where all task are scheduled to be released at the same time
and the task with the highest index would be released after
the release of all other tasks. This property is the same for
all queues.

The expected area requirements for the queue is propor-
tional to the size of the number of delaying tasks and some
additional variables used to remember the number of cur-
rently delayed tasks and next.

3.2 Delay queue Q2

The second delay queue, shown in Fig. 2, manages de-
layed tasks by using a time counter for every delayed task.
Each position in the array DQd holds a counter for the as-
sociated task. The counter for a task is set to the delta time,
∆T , when the task delays, n0 −→ n1 −→ n0, and all stored
delta times are decremented by one at every system clock
tick, in the transitions leading to and from location n2. Task
associated with a∆T decremented to zero during the tick
handling are released using transition n2 −→ n3. When all
positions in the array have been processed the automata re-
turns to its initial location and waits for the next tick.

The expected area requirements is lower than that ofQ1

since delta times are used rather than absolute times. No
attempts to improve the queues performance by tracking the
lowest and highest indexes of the delayed tasks has been
attempted since the mechanisms for tracking them are likely
to be a waste of valuable chip area.

n0 n2 n3n1

delay_until?

tick?
i:=1

DQd[i]==1

DQd[i]:=0,
Rt:=i

runnable!

DQd[i]>1,
i<cnt_t
DQd[i]:=DQd[i]-1,
i++

DQd[i]!=1,
i==cnt_t
DQd[i]:=DQd[i]-1

i==cnt_t

i<cnt_t
i++suspend!

Rd-time > 0

DQd[Rt]:=Rd-time
DQd[i]==0,
i<cnt_t
i++

Rd-time <= 0
unblock!

Figure 2. UPPAAL model of Q2.

3.3 Delay queue Q3

The third queue, see Fig. 3, is a parallelised version of
Q2 where each delaying task gets a countdown timer of it
own. Parallelism is used to minimise the time used by the
kernel to delay and release the tasks. The delay queue func-
tionality is achieved by the work of all the counters running
in parallel. The location to the left of the initial locationn0

is used if a task tries to delay to a time not in the future,
and the locations to the right of n0 are used if the task is de-
layed. When a task is delayed, the∆T for the delay is calcu-
lated and stored in a time counter, activating the automaton.
The individual values of active counters are decremented on
every clock tick, n3 −→ n3. When the release time for a task
is reached, the counter releases the task and returns to the
initial location.

n0n1 n3

n4

n2
delay_until?
Rd <= time

time < Rd
delay_until?
t:=Rt, d:=Rd-time

unblock!

tick?
d--

d > 1

d == 1
tick?

runnable!
Rt:=t

suspend!

Figure 3. UPPAAL model of Q3.

Location n4 is urgent (and not committed) since there
can be several delay queues contending to release their de-
layed tasks at the same time. In the model presented here
there is no way to enforce a specific release order of tasks
released at the same tick. The UPPAAL tool will explore
all possible executions of the releases. If the tasks are of
the same priority this will introduce a temporal behaviour
which can be calculated, though undesired. Ways to han-
dle the releases are discussed in the final discussions of this
paper.

The area used by each individual queue is minimal but
area will be needed to accommodate one automata for each
task that delays. As will be shown in the section on imple-
mentation Section 4, the area cost for the parallelism is very
high.

4



3.4 Delay queue Q4

The fourth delay queue, see Fig. 4, uses two memory ar-
rays. The DQt array contains the task queue and the DQd
array is used to store delta times. The delta times repre-
sent the time to release tasks once a task is the next task to
be released. Every time a task is delayed the queue takes
n0 −→ n1. If the task is the only task that is delayed the
transition back to the initial state is taken. If there are de-
layed tasks the new task should be queued in DQt accord-
ing to its delta time. DQt is a circular queue whose head is
pointed at by next and the position where the delayed task
should be inserted is found using n2 −→ n2. When the in-
sertion position has been found all tasks to the right of it are
shifted right, n3 −→n3. When the delta time of a next is
reached, n0 −→ n4, all tasks delayed to the same time will
be released using n4 −→ n4.

n0

n4

n1 n2 n3

d > DQd[DQt[i]] or
(d == DQd[DQt[i]] and t > DQt[i]),
i != (next+delayed)%cnt_t
d-=DQd[DQt[i]], i:=(i+1)%cnt_t

delayed,
Rd > time
i:=next,
d:=Rd-time,
t:=Rt

delayed,
DQd[DQt[next]] == 1
tick?

runnable!

delayed == 1 or
DQd[DQt[(next+1)%cnt_t]]

Rt:=DQt[next],
DQt[next]:=0, DQd[Rt]:=0,
next:=(next+1)%cnt_t,
delayed--

DQd[DQt[next]]>1
tick?
DQd[DQt[next]]--

Rd <= time
unblock!

delay_until?

!delayed, Rd > time
suspend!
DQt[0]:=Rt, DQd[Rt]:=Rd-time,
delayed:=1, next:=0

d < DQd[DQt[i]] or
(d == DQd[DQt[i]] and t < DQt[i])
DQd[DQt[i]]-=d,
DQd[t]:=d

i != (next+delayed)%cnt_t
n:=DQt[i],
DQt[i]:=t,
t:=n, i:=(i+1)%cnt_t

i == (next+delayed)%cnt_t

DQt[i]:=t, DQd[t]:=d,
n:=0, t:=0, delayed++

suspend!

delayed > 1,
!DQd[DQt[(next+1)%cnt_t]]
runnable!
Rt:=DQt[next],
DQt[next]:=0, DQd[Rt]:=0,
next:=(next+1)%cnt_t,
delayed--

i == (next+delayed)%cnt_t
suspend!
DQt[i]:=t, DQd[t]:=d,
n:=0, t:=0, delayed++

!delayed
tick?

Figure 4. UPPAAL model of Q4.

A possible area optimisation for this queue is if the great-
est number of tasks that can be delayed at a single time is
known. If the maximum number of simultaneously delayed
tasks is known the DQt array can be reduced to at most ac-
commodate this number of tasks. A possible speed optimi-
sation is to check if the array should grow at the beginning
rather than at the end. If there aren tasks delayed, shift-
ing the task identities to the left is preferable if the task to
be inserted is among then/2 tasks with the closest release
times.

4 Implementation

The UPPAAL models of the four delay queues were man-
ually translated to VHDL state machines with extra glue
logic, e.g. for communication, and then synthesised to the
target device. The Xilinx ISE Foundation 6.2.03i tool [20]
was used for synthesis and the target device was a Vir-
tex2Pro2vp7ff672-7 FPGA [21]. The FPGA has an
on-chip PowerPC [10] processor on which the actual tasks
are run.

The basic translation of the UPPAAL automata to VHDL
finite state machines (FSM) is straight forward but con-
structs like UPPAAL’s channels, urgent locations and com-
mitted locations are not present in VHDL and these con-
structs have to be handled with care. A transition from
an urgent location should be taken before the next system
clock tick and this can be accomplished if the implementa-
tion makes sure that the state machines finish urgent parts
within a system clock tick. The way we have ensured this
is by having the clock speed of the kernel run so fast that
all work in a finite state machine (FSM) can be completed
within time. As described in Section 3, committed loca-
tions are used for atomic transactions, e.g. in the UPPAAL

model ofQ1, Fig. 1, the transitions n0 −→ n2 −→ n3 form
an atomic chain where the automata first receives over a
channel and then sends over a channel. This behaviour can
be optimised in the implementation by using separate Rt for
input respectively output, cf. Rt and rdyRt in Table 2. We
have chosen to translate the communication and synchro-
nisation channels of UPPAAL into a call-and-acknowledge
protocol, shown in Fig. 5. With our translation the tran-
sition n0 −→ n1 corresponds to a delay call and n1 −→ n2

corresponds to an acknowledge, i.e., the call has been han-
dled. In this case the call is handled in n1; additional lo-
cations needed before the acknowledgement should replace
n1. Transition n2 −→ n0 is used to complete the commu-
nication/synchronisation sequence. An alternative transla-
tion is the more complex channel implementation described
in [15].

n0 n1 n2delay delay_end:=1

!delay
delay_end:=0

delay

Figure 5. State graph for communication.

Delay queue designsQ1, Q2 andQ4 use arrays to store
information like task identities and delay values. For the
target technology we use, arrays can be implemented with
registers and/or with block ram memory. A register imple-
mentation is larger since it requires a register to be coded in
the FPGA while a memory implementation can use memory
blocks the FPGA already have. The performance penalty
for using a block ram, where an access takes one clock cy-
cle, instead of registers, where an access takes zero clock
cycles, in Virtex2Pro is not significant in our case. An ex-
ample of how we handle block ram accesses is showed in
Fig. 6. Transition n0 −→n1 is the DQt[next] access and
transition n1 −→ n2 is the DQd[DQt[next]] access. The last
transition n2 −→ n3 is the DQt[next]:=0 access. In other
words, we try to set the address in advance to not lose an
extra clock cycle and when that is not possible we insert an
extra state.

5



n0 n1 n2 n3

address_DQt:=next,
write_n_DQt:=1

address_DQd:=data_DQt,
write_n_DQd:=1

data_DQt:=0,
write_n_DQt:=0

Figure 6. State graph for assigning the value 0
to DQd[DQt[next]],DQt[next].

A reset state, shown in Fig. 7, looping through arrays and
initialising variables has been introduced to initialise mem-
ory arrays. This state implements UPPAAL’s initialisation
of its variables but is not shown in the state graphs of the
different queue implementations, e.g., Fig. 8.

n0n1

!reset_n
address_DQd:=0,
data_DQd:=0,
write_n_DQd:=0

address_DQd==MAX_NO_TASK
write_n_DQd:=1

address_DQd<MAX_NO_TASK
address_DQd++

Figure 7. State graph for reseting the DQd ar-
ray.

The hardware signals/busses described in Table 2 are a
translation of the component design interface shown in Ta-
ble 1. The reset and clock signals that resets respectively
clocks the FSMs are not included since they generally ex-
ists in any FSM implementation and do not contribute to the
understanding.

4.1 Delay queue Q1

The implementation ofQ1 consists of the FSM shown
in Fig. 8. The state machine basically has the same states
as the UPPAAL model, cf. Section 3.1, and block memory is
used to implement the DQd array. The transition n0 −→ n1

is replaced with in0 −→ in1 −→ in5 to implement the call
and acknowledge protocol. The extended parallelism of the
implementation allows Rtrdy to be set to runnable when the
Rt value is received, allows n4 −→ n2 to be translated into
in4 −→ in3. AddressDQd replaces the temporary i variable
used for looping in the UPPAAL model. Since addressDQd
is cnt t bit wide, transition n4 −→ n0 has been changed to
handle the fact that addressDQd can’t be greater than cntt.

4.2 Delay queue Q2

The implementation ofQ2 is similar to that ofQ1. The
state machine has basically the same states that theQ2

model has, cf. Section 3.2, and like the FSM forQ1 it uses
block memory to implement the DQd array. The implemen-
tation also uses the same variable and location eliminations
as described forQ1. The cycle need to access the ram block

Table 2. Hardware signals/busses.
(a) Signals

tick Clock signal generated at system level
frequency that decides the delay accu-
racy available to the application.

delay Signal triggering the state machines to
insert a task (Rt) with delay time (Rd).

delayend Signal to synchronise with a bus-
interface that a delay call has finished.

runnable/
suspend/
unblock

Signals used to request the ready queue
(scheduler) to make a task runnable, to
inform that the task was suspended, or to
signal the the task was unblocked, i.e.,
that the task should be placed last within
its priority in the ready queue.

rdy end Signal from the delay queue to inform
that a runnable/ suspend/ unblock re-
quest has finished.

(b) Busses

time The current system time. The system
time starts from zero and is increased at
every clocktick.

Rt Task identity of the task that perform a
delay call.

rdy Rt Task identity of the task that will be
runnable/suspend/ unblock.

Rd Absolute delay-time the task should be
delayed until. Queues that use delta time
will subtract the system time from this
time to get∆T .

storing DQd is implemented by introducing an extra loca-
tion in the FSM.

4.3 Delay queue Q3

The countdown timers of the third queue design is imple-
mented using the finite state machines shown in Fig. 9. One
of the state machines,FSMn with locations in0–in3, is an
interface for distribution of delayed tasks to their dedicated
state machine. The dedicated state machines are described
by machineFSMm with location im0. FSMn calculates
∆T and performs the∆T checks to decide if a delaying task
should unblock or suspend.FSMn also informs the ready
queue when a task’s delay time has expired and the task
becomes runnable. TheFSMp, i.e. ip

0
, serialise the run

signals from theFSMms forFSMn. EachFSMm imple-
ments a register counter, which is decremented at each clock

6



in0

in3in4

in2

in1

in5

!delayed or Rd < next_time,
Rd > time,delay
next:=Rt,
next_time:=Rd,
address_DQd:=Rt,
data_DQd:=Rd,
write_n_DQd:=0,
delayed++, rdy_Rt:=Rt,
suspend:=1

delayed, Rd >= next_time, 
Rd > time,delay
address_DQd:=Rt
data_DQd:=Rd,
write_n_DQd:=0,
delayed++, rdy_Rt:=Rt,
suspend:=1

delayed,
time >= next_time-1,
tick
rdy_Rt:=next, 
runnable:=1,
data_DQd:=0,
write_n_n:=0,
next:=0,
next_time:=0,
delayed--

!rdy_end,
!runnable,
address_DQd==cnt_t or
!delayed

rdy_end
runnable:=0,
write_n_DQ:=1

!rdy_end,
!runnable,
delayed,
address_DQd<cnt_t

address_DQd<cnt_t,
data_DQd==0 or
data_DQd>=next_time
address_DQd++

address_DQd<cnt_t,
data_DQd>0,
time<data_DQd,
data_DQd<next_time
next:=address_DQd,
next_time:=data_DQd,
address_DQd++

address_DQd == cnt_t,
data_DQd==0 or
data_DQd>=next_time
address_DQd:=next

address_DQd:=0,
write_n_DQd:=1

data_DQd>0,
time >= data_DQd
rdy_Rt:=address_DQd,
data_DQd:=0,
write_n_DQd:=0
delayed--

delay,
Rd <= time
unblock:=1,
rdy_Rt:=Rt

rdy_end
suspend:=0,
unblock:=0,
write_nDQd:=1

!rdy_end,
!suspend,
!unblock
delay_end:=1

!delay
delay_end:=0,
address_DQd:=next

address_DQd == cnt_t,
data_DQd>0,
time<data_DQd,
data_DQd<next_time
next:=address_DQd,
next_time:=data_DQd

Figure 8. State diagram for delay queue Q1.

tick until it become zero. The machine signals that the task
should be released when the counter value to be decreased
is one. The model of the counters, cf. Section 3.3, basically
corresponds toFSMn, FSMm andFSMp. The reason for

in0in1

dly[Rt]:=0
in3

to_rdy_end:=0

in2

delay,
Rd <= time
Rt_rdy:=Rt,
d:=0,
dly[Rt]:=1,
unblock:=1

to_rdy
rdy_Rt:=to_rdy_Rt
runnable:=1,
dly[to_rdy_Rt]:=1,
d:=0,
to_rdy_end:=1

rdy_end
unblock:=0

!rdy_end,
!unblock
delay_end:=1

delay,
Rd > time
Rt_rdy:=Rt,
d:=Rd-time,
dly[Rt]:=1
suspend:=1

!delay
delay_end:=0

rdy_end
runnable:=0,
dly[to_rdy_Rt]:=0

!rdy_end,
!runnable

(a) FSMn

im0

dly[t]
counter:=d,
run[t]:=0

tick,
counter>1
counter--

tick,
counter==1
counter--,
run[t]:=1

(b) FSMm

ip0

!to_rdy,
run[i]==1
to_rdy;=1,
to_rdy_Rt:=i

!to_rdy,
run[i]==0
i++

to_rdy,
to_rdy_end
to_rdy:=0

(c) FSMp

Figure 9. State diagrams for delay queue Q3.

partitioning the model is to save hardware area and to enable
a priority ordered task activation which is further discussed
in Section 6. If priority ordered activation is used it can be
managed byFSMp. The area required by the design is re-
duced by using one interface state machineFSMn, instead
of multiple similar interfaces for eachFSMm.

The choice of using a register rather than the smaller
memory blocks is that the access speed mentioned above,
one clock cycle, applies to the access of a RAM block which
no other FSM uses. Using a block to hold information about
a single task is resource waste and having several queues use

and access the same block will be another implementation
of Q2.

4.4 Delay queue Q4

The FSM created while implementingQ4 closely resem-
bles the automaton in Fig. 4. Both the time-counter and
task-queue array, DQd and DQt, are implemented in block
memory.

The same variable and location eliminations described
for Q1 andQ2 are used and extra locations are added to
handle the extra clock cycles needed when accessing the
DQd and DQt memories.

5 Results

To investigate the properties of the implementations we
synthesised systems with different numbers of delaying
tasks and timer widths. The bit times are selected to repre-
sent systems with high rate cyclic executives (16 bit time),
medium rate (32 bit time), and then the 50 years required
by the Ada standard (41 bit time).

5.1 Area

The results we present in this section are based on syn-
thesis with the clock timing constraint set to 10 ns, i.e., cre-
ating a kernel running with a kernel clock frequency of 100
MHz, and without any area constraints. Besides that, the
synthesis tool default settings has been used. The gate count
is roughly equivalent to the chip area used by the implemen-
tations. The gate counts used by the synthesised systems are
presented in Fig. 10.

It is not unexpected that it is resource effective to use
memory rather than registers when the number of tasks in-
creases. The small gate count growth between 4–16 tasks
configurations for designsQ1, Q2 andQ4 is due to that the
synthesis tool use 16x1 memory primitives for the arrays.
The size growth of the queues is, as expected, close to lin-
ear. QueuesQ1, Q2 andQ4 use RAM blocks to store data.
The number of RAM blocks used to implement the single
array is the same forQ1 andQ2 while Q4 use a little bit
more to implement its two arrays. SinceQ3 does not use
RAM blocks to code its registers, the cost for the stored
variables is taken by the gate count.

TheQ3 design, which uses registers instead of memory
for the time counters does not show this behaviour. The area
usage of the different queues is such thatQ2 is smallest,
followed byQ1 and then byQ4. However,Q3 uses the least
area for systems with 4 delaying tasks but using registers
is not resource effective for large task sets andQ3 quickly
outgrows the other implementations.

7



0

10000

20000

30000

40000

64321684

Gate
Count

Tasks
(a) 16 bit time

64321684

Tasks
(b) 32 bit time

64321684

Tasks

Q1

Q2

Q3

Q4

(c) 41 bit time

Figure 10. Gate usage of the implementations. The x-axis sho ws the number of tasks the queues
handle and the y-axis shows the gate count.

The memory utilisation of the designs is very small com-
pared to that available on the target system. For example,
the 4200 gates used by a 16 task 16 bit timeQ2 implemen-
tation is not much compared to the 811008 gates that the
target Virtex2Pro device supports. A 4 tasks 16 bit time
synthesised system for any of the queues uses 1%–3% of
the FPGA’s resources in slices, 4 input LUTs and slice flip
flops. QueuesQ1, Q2 andQ4 uses 6%–10% of the slices
and LUTs and 1%–2% of the slice flip flops when synthe-
sised for a 64 tasks system with 41 bit time but the register
queue,Q3, uses about 80% of the available slices and LUTs
and close to 30% of the slice flip flops for this configuration.
Fitting the queues, besides the register queue, on the target
FPGA can easily be accomplished with the better part of
the resources left for the rest of the kernel and other system
components.

5.2 Speed

The execution properties of the delay queue implementa-
tions depend on the behaviour of the rest of the kernel. The
communication times between kernel components will in-
fluence the execution time of the delay queue. Other kernel
components can force the delay queue to wait, e.g. when a
batch of tasks is released the ready queue will accept them
in serial at the rate it can process them. The application will
also impact on the execution time of the delay queue since
it will instantiate the queue with, e.g., the number of tasks
that delay.

Let STDly
be the set of tasks that delay in an application

and let|STDly
| be the cardinality of that set. LetCrun be the

number of clock cycles the ready queue uses to make a task
runnable and letCsus be the number of clock cycles it uses
to suspend a task.

The worst case execution forQ1 andQ4 to delay a task
occurs when the delay request arrives during the release of

a batch of tasks and the time is described in Equation 1.

((|STDly
| − 1) ∗ (3 + Crun) + 1) + (4 + Csus) (1)

The first part of the expression,((|STDly
|−1)∗(3+Crun)+

1), describes the number of kernel clock cycles used to time
out all tasks in the delay queue, i.e. the task with the lowest
priority will have to wait for all other tasks to be handled by
the ready queue, and the second part,(4 + Csus), describes
the number of cycles used to manage the insertion of the
call into the queue.

The worst delay forQ2, shown in Equation 2, is similar
to the one ofQ1 andQ4.

((|STDly
| − 1) ∗ (2 + Crun) + 1) + (4 + Csus) (2)

The worst case forQ3 is different since delays are made
to private time counters and in parallel. Equation 3, takes
the shared interface machine into consideration.

(3 + Crun) + (4 + Csus) (3)

Note thatQ3 prioritises delay calls before each clock tick
and that is possible because it uses one FSM for each task’s
delay counter. It is not possible to prioritise delay calls with
the other delay queues since this would risk a system clock
tick to be missed.

The frequency the kernel clock, KerClk, needs to ensure
that the queue’s work, together with any time added by in-
teraction with other kernel components, can be completed
within a system clock tick. If this can not be guaranteed the
kernel risks missing system ticks. Besides this, the kernel
clock frequency must support the Ravenscar profile delay
accuracy of 1 ms of the system ticks. Table 3 shows the
maximum clock frequency the queues can be synthesised
for a 16 task configuration. To check that the queues satisfy
the 1 ms requirement we made a coarse overestimation of
the worst number of kernel cycles used to delay a task in
a kernel with 16 tasks would have the kernel working, and

8



found this to be 350 kernel cycles. All these cycles must
be completed within a system clock tick for the operation
of the kernel to be guaranteed correct. In Table 3 we see
that slowest queue,Q1, can be synthesised to a maximum
of 132 MHz. This speed would allow the system to be syn-
thesised with a system clock frequency of 0,38 MHz which
clearly supports the 1 KHz that Ravenscar requires.

Table 3. Maximal clock frequency (in MHz) that
the different queues can be synthesised for,
when 16 tasks are supported.

Time Width Q1 Q2 Q3 Q4

16 145 173 283 155
32 142 156 242 144
41 132 150 225 138

The calculation presented here makes no optimisations
of the system clock tick management. An optimisation,
which can allow the kernel to run at a slower speed, is
the use of a buffer for the system clock ticks. A manage-
ment with a buffer that can store ticks would allow the de-
lay queue to spread its worst case work over the number
of ticks the buffer can hold. This is based on the simple
reasoning that a worst case cannot be followed by another
equally bad case since the first case will lead the system to a
system state where the equally bad state is impossible. For
example, if the worst case is that all tasks are delayed and
released at the same time they will not be delayed during
the next tick making it impossible to repeating the release.
A system with a buffer could make it easier to synthesise
the system and produce an efficient hardware kernel.

6 Discussion

The delay queue (and the whole kernel) is designed to
be synthesised for a specific target application system. This
specialisation enables some interesting resources optimisa-
tions. In Section 3 an optimisation of the number of bits
used to represent delta times was presented. The optimi-
sation used knowledge about the cycle time of cyclic ex-
ecutive tasks. The length of the memory array needed to
remember release times can be optimised if tasks that delay
are given task identities in sequence.

The normal procedure when releasing tasks is to lock
(stop) the dispatching before releasing tasks, e.g. as done
in [13]. The need for the locking is only necessary in a
system where a task of lower priority,Tl, can be released
from the delay queue ahead of a task of higher priority,Th,
when a batch of tasks are released at the same time. If the

dispatcher is not locked a situation can occur whereTl is
loaded on a processor only to be preempted whenTh is re-
leased. The situation is avoided if tasks are released in prior-
ity order, with the release of the highest prioritised task first.
It is safe to dispatch and start loadingTh since no task in the
same release batch can forceTh to be preempted. A FIFO
order within each priority makes the release behaviour even
more deterministic if several tasks can have the same prior-
ity. In a system where all tasks have their unique priorities
the index order can be used as priority order. QueuesQ1

andQ2 enforce priority ordered release if the task indexes
are ordered in priority order. To achieve FIFO release these
queues would have to be extended with memories to carry
the priorities of the tasks and the arrival order of the tasks.
The dispatch order ofQ3 can be defined if the communi-
cation between the counters and the ready queue is defined
to follow a specific protocol, i.e. one which prioritises the
signals from the counters according to the priorities of the
tasks. FIFO order is however outside the immediate reach
of Q3 since it would place to many requirements on com-
munication or synchronisation to be usable. TheQ4 queue
releases according to index order and FIFO order. Like the
first two queue,Q4 will have to be extended with more
memory to implement FIFO if several tasks can have the
same priority.

The Ravenscar profile only allows absolute delays where
the release time is given explicitly, i.e. there are no relative
delays where a task delays for a given time. The main rea-
son for not supporting relative delays is that it makes system
analysis easier with only a delay-until mechanism. Also, the
kind of systems the profile focuses on, cyclic executives, use
delay until. The queues we present can easily be extended to
handle relative delays by adding an extra interface function
that doesn’t calculate the delta-times. The formal automata
should then be extended in the same way.

The delay queues presented are not limited to use in a
hardware RTK but can be used as standalone components to
help a processor manage delayed tasks. A memory mapped
bus interface to the delay queue allows them to exist in a
hardware/software co-design. The interface should contain
the system time and implement the clock-tick generation.
The task status, runnable/suspend/unblock, should be in-
cluded in a readable register and it should also be wired
to an interrupt pin at the processor. Additionally, a readable
task identity register should be included.

One weakness with the current hardware implementa-
tions is that they have been manually translated using the
formal models as blueprint. The implemented queues have
not been verified to ensure that they describe exactly the
same behaviour as those described in the formal models.
We are currently looking at how verification of the imple-
mentations can be made using available hardware tools and
using the formal models for input.

9



7 Conclusions

In this paper we present formal models and hardware
implementations of four delay queues suited for multiple
processor systems. The queues express different properties
regarding hardware requirements, possible parallelism, and
execution times. Different task release policies and how
they can be supported by the queues is discussed.

The translation from the original designs, made in timed
automata to VHDL, is described and metrics of the hard-
ware implementations are presented.

Surprisingly, the queue using most parallelism,Q3,
shows not only the best response time properties but also the
least chip area usage for systems where four or fewer tasks
use the delay queue. In systems with more than five delay-
ing tasks that queue quickly outgrows the other queues in
area. OtherwiseQ2 uses the least amount of chip area. All
queues can meet the Ravenscar timing demand of a granu-
larity of 1 ms.

Though not attempted in this paper, an interesting study
would be that of a framework where the properties verified
in the initial design, made in a high level verification tool,
could be transformed into properties of the hardware tool
used for synthesis to hardware. Enabling verification of the
high level properties could be a step in validating software
to hardware translation.

References

[1] ”The Consolidated Ada Reference Manual”, Springer–
Verlag, LNCS 2219, 2001.

[2] S. Bradley, W. Henderson, D. Kendall, and A. Robson,
”A Formally Based Real-Time Kernel”,Fundamen-
tal Approaches to Software EngineeringLNCS 1382,
Springer–Verlag, 1998.

[3] A. Burns, B. Dobbing, and G. Romanski, ”The Raven-
scar Tasking Profile for High Integrity Real-Time Pro-
grams”,Reliable Software Technologies — Ada-Europe
1998, LNCS 1411, Springer–Verlag, 1998.

[4] A. Burns, B. Dobbing, and T. Vardanega, ”Guide for the
use of the Ada Ravenscar Profile in hight integrity sys-
tems”,University of York Technical Report YCS-2003-
348, 2003.

[5] W. Hussak, ”Temporal analysis of a microkernel”,Soft-
ware Engineering Journal, Software Engineering Jour-
nal, vol. 10, issue 1, IEEE, 1995.

[6] K. Larsen, P. Pettersson, and W. Yi, ”Uppaal in a Nut-
shell”, Int. Journal on Software Tools for Technology
Transfer, Springer–Verlag, 1997.

[7] K. Lundqvist, and L. Asplund, ”A Ravenscar-
Compliant run-time kernel for safety critical systems”,
Real-Time Systems, 24(1), 2003.

[8] R. Maria, et.al., ”Verifying, Validating and Mon-
itoring the Open Ravenscar Real Time Kernel”,
12thInternational Ada Real-Time Workshop, Ada Let-
ters, vol. XXIII, no. 4, 2003.

[9] A. Morton, and W. Loucks, ”A Hardware/Software
Kernel for System on Chip Designs”,ACM Symposium
on Applied Computing, 2004.

[10] IBM Microelectronics and Motorola Inc., ”The
PowerPC Microprocessor Family: The Program-
ming Environments”, IBM Microelectronics Document
MPRPPCFPE-01, Motorola Document MPCFPE/AD
(9/94).

[11] M. Laramie, ”Automating Analog Verification in a
Mixed-Mode Simulation”,SNUG Boston 2004, 2004.

[12] SafeLogic (property based verification), Com-
bining dynamic and static property check-
ing, http://www.safelogic.se/news/
downloads/Dynamic and static.pdf

[13] J. de la Puente, et.al., ”Open Ravenscar Real-Time
Kernel – Operations Manual”, 2001.

[14] J. de la Puente, et.al., ”The design and implementation
of the open Ravenscar kernel”,10thinternational work-
shop on Real-time Ada workshop, Ada Letters, vol.
XXI, no. 1, pp. 85–90, 2001

[15] A. Silbovitz, K. Lundqvist, ”A hardware implementa-
tion of a Ravenscar-compliant run-time kernel”,Digital
Avionics Systems Conference, IEEE, 2003.

[16] P. Tullman, et.al, ”Formal Methods: A Practical Tool
for OS Implementors”,The Sixth Workshop on Hot Top-
ics in Operating Systems, IEEE, 1997.

[17] T. Vardanega, J. Zamorano, and J-A. de la Puente, ”On
the Dynamic Semantics and the Timing Behaviour of
Ravenscar Kernels”, Real-Time Systems, vol. 29, 2005.

[18] J. Zamorano, and J. de la Puente, ”Precise Response
Time Analysis for Ravenscar Kernels, Ada Letters,
vol. XXII, no. 4,, 2002.

[19] J. Zamorano, J. Ruiz, and J-A. de la Puente, ”Im-
plementing Ada.RealTime.Clock and Absolute Delays
in Real-Time Kernels”,6th Ade-Europe International
Conference Leuven on Reliable Software Technologies,
2001.

[20] Xilinx Inc., ”Xilinx ISE 6 Software Manuals and
Help”, 2004.

[21] Xilinx Inc., ”Virtex-II Pro and Virtex-II Pro X Plat-
form FPGAs: Complete Data Sheet”, 2004.

10


