
Gaps in Software Testing Education: A Survey of
Academic Courses in Sweden

Ayodele A. Barrett
Mälardalen University

Västerås, Sweden
ayodele.barrett@mdu.se

Eduard P. Enoiu
Mälardalen University

Västerås, Sweden
eduard.paul.enoiu@mdu.se

Wasif Afzal
Mälardalen University

Västerås, Sweden
wasif.afzal@mdu.se

Abstract—A cross-sectional, questionnaire-based survey of
software testing courses offered at Swedish universities was
undertaken in the final quarter of 2023. With a return rate
of 44%, the survey delved into the contents of these software
testing courses to gain an understanding of how the courses
differ in terms of depth and breadth of content. Information was
also sought about administrative and course planning activities
related to the courses. Some key findings are that there is in-depth
coverage of unit testing in all the courses, with none of the courses
offering in-depth testing of other test levels such as acceptance
testing. Also notable is the difference in test types. As an example,
functional testing is taught in-depth in all the courses, while
accessibility testing is not taught at all in half of the courses.
It is suggested that a greater range of software testing topics is
needed in future education if more stakeholders, such as business
analysts and software developers, not just software testers, are
to have a quality-centred approach to software development.

Index Terms—survey, academic software testing education,
curricula, software testing, higher education, software quality,
Sweden

I. INTRODUCTION

Software testing is carried out to demonstrate that software
is fit for purpose and to detect defects within the software.
Ensuring the quality of software should not be seen only as
the responsibility of software testers. Other stakeholders in
the development process, such as developers and business
analysts, will also benefit from learning how to conduct
software testing.

In research that focuses specifically on software testing
education, a general consensus that has spanned the decades is
that too few software testing courses have been, and continue
to be, offered at universities [3, 27, 33]. There is also accep-
tance that existing computing (Computer Science, Information
Systems, Information Technology and related) curricula have
already demanding schedules, with some curricula immutable
for a number of years. The often-limited availability within
curricula leaves little room for the introduction of additional
courses. In particular, computing degrees are disciplines with
ever-expanding topics. Thus, the development of additional
courses, specifically to address the dearth of software testing
courses, is understandably unrealistic in the short term [11].

Software testing is taught either in dedicated courses or em-
bedded in other classes, such as general software engineering
or programming courses. With the latter, it has been suggested
that due to an often-packed syllabus and a lack of time,
course content related to software testing is not given enough
emphasis [11]. This situation is not unlike that in industry
where software testing activities are similarly curtailed when
there are time constraints [24]. Hence, it would appear that
in the industry as it is in academia, testing is a topic that
tends to be pushed to the side [16, 19]. It is therefore of great
importance to ensure that available software testing courses,
although few, are thorough and varied enough to inculcate
students with a quality-oriented mindset, which could lead to
more reliable code [17].

With data collected from software testing lecturers in
Swedish universities by way of an online questionnaire, the
following research questions (RQs) will be answered:

RQ1. How are software testing courses in Sweden typically
structured?

RQ2. Which aspects form the basis of the course contents?
RQ3. Which software testing topics are most commonly taught

in terms of breadth and depth?
By addressing these research questions it is hoped that the

data and analysis from this survey could be used in updating
or developing software testing courses. This is particularly
important in the rapidly changing field of computing.

The paper is structured as follows: In Section II, related
studies are detailed. Section III is a description of the thought
process that went into conducting the survey. Section IV
contains the findings of the survey results. Discussion of the
results is given in Section V. Limitations of the study are
presented in Section VI, and the conclusions of the paper are
in Section VII.

II. RELATED STUDIES

Recent work addresses the state of software testing educa-
tion in various regions of the world. The first by Barrett et al.
[3] sought to identify dedicated software testing courses taught
in Swedish universities that offer Computer Science or related
degrees. A key finding was that 56% of universities offered at
least one dedicated software testing course. Additionally, the
authors found that software testing accounted for between 5%
and 8% of a typical Computer Science syllabus.



Similarly, Ardic and Zaidman [2] focused on identifying
universities that offer dedicated software testing courses. Their
study, however, was based on a global ranking list of the
top 100 Computer Science programs. As a result, the study
spanned 21 countries across four continents. The authors
found that 49% of the Computer Science curricula reviewed
contained a course dedicated to software testing. The authors
also noted a regional variance with European universities,
at 61%, more likely to offer a dedicated course and Asian
universities, at 25%, less likely to offer a dedicated software
testing course.

Also sourced from a university ranking site, albeit one that
differs from the preceding study, is the work by Tramontana
et al. [29], which focuses on software testing courses offered
at Belgian, Italian, Portuguese and Spanish universities. An
initial list of 171 universities was whittled down to 49 for
analysis. The authors found that 22 of the 49 universities
considered (approximately 45%) offered dedicated software
testing courses, of which the majority of the courses are being
taught at the Masters level.

From a student’s perspective, Cerón et al. [4] surveyed a
sample of Computer Science students registered at different
Ecuadorian Universities. Students were queried about their
knowledge of software testing, how much of the knowledge
was imparted by their lecturers, and how motivated they were
to test while developing school projects. The authors inferred
that while theoretical aspects of software testing were firmly
rooted in Ecuadorian universities, the practical aspects were
far less firmly entrenched.

Melo et al. [21] administered a survey to professors across
the globe who were involved with teaching courses which ad-
dressed software testing. With responses from four continents,
some findings include the fact that unit testing was the most
frequently taught test level. In addition, the authors found
that the most commonly taught test design techniques were
equivalence partitioning and boundary value analysis.

Working from the premise that it is infeasible to have a
perfect, all-round tester for the testing of large-scale software
systems, Mårtensson and Sandahl [20] sought to propose a
model consisting of different testing profiles that could be
tailored for different types of test activities. The model was
created after interviews and focus group discussions with test
practitioners from companies dealing with large systems. To
buttress the findings from the interviews with practitioners,
the authors interviewed lecturers from six Swedish universities
about their Masters-level software testing courses.

Save for the research by Melo et al. [21] and Mårtensson
and Sandahl [20], the related studies discussed did not take
into consideration the opinions of software testing lecturers.
Cerón et al. [4] based their study on student perspectives while
the studies by Barrett et al. [3], Ardic and Zaidman [2] and
Tramontana et al. [29] garnered much of the information used
in their studies from the websites of relevant universities.
Melo et al. [21] did not focus solely on dedicated software
testing courses but also included in their survey responses from
lecturers whose course names included, for example, database

management and network engineering. Finally, Mårtensson
and Sandahl [20] focused their interviews of university profes-
sors on Master-level courses. Thus, this study seeks to explore
a lecturer’s perspective of the contents of dedicated software
testing courses without considering which level of study the
course offers.

III. METHODOLOGY

The survey was a one-off, cross-sectional survey conducted
from October to December 2023. The survey was designed
based on guidelines for conducting software engineering sur-
veys provided by Kitchenham and Pfleeger [12] and Linåker
et al. [18].

A. Respondent Group

A list of software testing courses was identified from the
website run by the University and Higher Education Council
(UHR) of Sweden1. There were an initial 26 courses identified
offered by 16 universities. Each entry has a hyperlink to
the university offering the course. Every course website had
contact details for the lecturer responsible for the course or
email addresses for course administrators. For the latter, an
email was sent initially to request the responsible lecturer’s
contact details.

Further examination of the list of courses revealed that the
two courses were the same, offered in two different universities
but taught by the same lecturer. Another two courses were
found to be the same, provided at the same university, taught
by the same lecturer but at different academic levels - one
at the undergraduate level and the other at the Masters level.
Additionally, two other courses had been discontinued. There
were, in the end, a total of 22 distinct software testing courses.
Four more courses were omitted from consideration as the
authors are involved, in varying degrees, with the courses.
Eighteen invitation emails were sent out thus forming a con-
sensus, as invitations were sent to the entire target population.

B. Pilot Study

Pilot studies can help to ensure that the questions asked are
clear, comprehensive and aligned with the objectives. With
online surveys, syntax issues such as branching options can
also be evaluated. While conducting pilot studies does not
automatically guarantee successful surveys, doing so could in-
crease the likelihood of a successfully completed survey [30].

With that in mind, four academic staff members at a
Swedish university were invited to take part in a pilot study
for this survey. The experience levels ranged from a PhD
student to two postdoc researchers and one lecturer. Having
been involved in the teaching of software testing at different
stages of their careers, these academics were representative
of the sample population. Areas of concern raised during the
pilot study were reviewed and addressed by the authors before
the questionnaire being sent to the target population.

1https://www.uhr.se/en/start/



C. Description of the Questionnaire
A lengthy survey instrument has been determined to be one

reason for respondent fatigue [23]. Accordingly, the question-
naire was limited in the number of questions, ensuring only
pertinent questions were asked. The questionnaire was made
up of five parts. The first section consisted of only one question
relating to consent. A negative response would have directed
the respondent to the end of the questionnaire, signifying
that no participation consent was given. An answer in the
affirmative would have directed the respondent to Section 2
of the questionnaire. The questions are repeated in Table I,
albeit paraphrased for brevity.

The survey was intentionally kept simple in its design. In
addition to the first question on consent, there were just two
other conditional questions which became relevant only if a
specific value from a preceding question was selected. For
example, in Section III, the question seeking the names of the
test tools used would only have been shown to the respondent
if the previous question had been answered in the affirmative.
Thus, the questionnaire was fairly easy to complete. Except
for an outlier respondent who took just under three hours to
complete the survey, the average completion time of the survey
was about 10 minutes. This was similar to the average times
in the pilot study.

TABLE I
SURVEY QUESTIONS

Section Question Input Type
I Consent to survey? Single selection
II Responsible academic department: Single selection

Applicable teacher role(s) used: Multiple selection
Instructional materials used: Multiple selection
Textbooks used: Free text
Student assessment types: Multiple selection
Course delivery mode: Single selection

III Knowledge base of course contents: Single selection
Basis of test case: Single selection
Use of test tools in class? Single selection
Test tool(s) used: Free text
Test domain(s) taught: Multiple selection

IV Test design techniques covered: Scale
Additional test techniques taught: Free text
Test levels coverage: Scale
SDLC coverage: Scale
Test types coverage: Scale
Other test-related topics covered: Multiple selection
Test automation coverage: Multiple selection

V Potential new areas of testing: Free text

D. Response Rate
Response rates of survey-based studies have been used to

judge their quality and reliability [10]. What constitutes an
acceptable response rate, however, is yet to be universally
agreed upon [28]. It has been suggested that there is no direct
correlation between the validity of surveys and response rates
and that surveys with relatively low rates can be able to achieve
reasonable results. Nevertheless, while surveys with relatively
low rates can achieve acceptable results, every effort should
be made to increase the response rate [9, 31].

From the 18 invitations sent, the survey was initially com-
pleted seven times. Although the questionnaires were anony-
mous, three respondents emailed to confirm the completion of
the questionnaire. Given the initial response rate of 39%, and
in an attempt to increase the response rate, a second round of
15 emails was sent as a reminder for those who may not yet
have completed the survey. The reminder increased the number
of responses marginally by one. As such, with a total of eight
responses received, the overall response rate was 44%.

IV. RESULTS

Descriptive statistics are used to describe and organise the
characteristics of data garnered on software testing courses
in Sweden. The following subsections will contain summaries
and descriptions of a select number of questions from three
sections in the survey:

1) Course details and structure
2) About the software testing course
3) Course content

A. Course Details and Structure

The questions in this section of the questionnaire were asked
specifically to elicit information that will help in answering
our RQ1. There are a total of six questions in this section (see
Table I). Some of the questions are discussed in the following
sub-sections.

1) Course Custodian: The terms “Computer Science”,
“Software Engineering” and “Information Technology” are
sometimes used interchangeably. The corresponding depart-
ments, however, are different with specific areas of focus albeit
with areas of overlap [6].

Figure 1 depicts which department is primarily responsible
for offering the software testing courses. Half of the courses
evaluated are offered in the Department of Software Engineer-
ing. Three of the courses were offered in Computer Science
departments, and only one was offered in the Department of
Information Technology.

4

3

1

So�ware Engineering Computer Science Informa�on Technology

Fig. 1. Departments responsible for software testing courses



2) Teacher Roles: In academic institutions, tasks, duties
and responsibilities associated with courses differ from role to
role. For example, decision-making activities (e.g. determining
course content or the choice of recommended textbooks)
are more often associated with lecturers. Typically, teaching
assistants’ roles may span from undertaking non-instructional
tasks to delivering instructions that are complementary and
supplemental to those of the lecturer and, often, work more
closely with students than lecturers [26, 32].

Figure 2 outlines the teacher roles for teaching software
testing. All of the courses have lecturers assigned to the
courses, with only one course utilising a teaching assistant.
With regard to the use of industry guest lecturers, three of
the courses invite external expertise. There is no evidence of
guest lecturers from other parts of the university or from other
universities.

8

3

1

0

Lecturer Industry guest
lecturer

Teaching assistant Academic guest
lecturer

Fig. 2. Teacher roles involved in teaching testing courses

3) Instructional Materials and Course Books: Additional
information was sought in the survey about instructional ma-
terials used, how students registered for the course are assessed
and how the testing course is delivered. The responses show
that the courses are well-grounded theoretically, with seven of
the eight courses utilising textbooks and six of eight courses
recommending academic research articles. Five textbooks were
used in the courses, with the book by Ammann and Offutt
[1] being the most commonly recommended book in three
instances. One of the courses, however, neither used textbooks
nor articles using only videos and lecture slides to convey
information.

4) Course Delivery Modes and Student Assessment Types:
Concerning course attendance, four courses require students
to attend lectures for face-to-face interactions, three of the
courses are offered as hybrid courses, and one course is offered
entirely online. Student assessments, which help lecturers
gauge how well students understand course contents, encom-
pass the entire range of options offered in the survey, albeit in
varying numbers. The least-used forms of assessments are lab
sessions and individual projects, at two a-piece. Conversely,
the most used form of assessment is assignments, which are
used in seven of eight courses.

The first set of questions in the survey were asked to gather
information needed to assist in answering the first research
question regarding the structure of software testing courses
in Swedish universities. In summary, half of the courses
are located in the Software Engineering department, but a
good number are in the Computer Science department. Few
industrial guest lecturers or research assistants are utilised in
teaching courses, one-half of the courses require students to
attend physical classes and, the most-commonly assessment
type is assignments.

B. About the Software Testing Course

In this section of the questionnaire, questions were asked
to gain an understanding of the key characteristics of the
courses. These questions were asked to aid in answering the
second research question. Responses to questions related to
what forms the basis of the course contents, what derived test
cases are based on, which test tool types are utilised and which
test domains are focused upon in the courses are provided in
the following sub-sections.

1) Underlying Knowledge Base: In the development of
two of the courses, the contents were primarily derived from
textbooks. One of the courses is formed, for the most part,
from the syllabus of a software testing certification body, while
yet another is based on an external body of knowledge (such as
the Software Engineering Body of Knowledge, or SWEBOK).
For two responses provided via the “Other” option, one
response highlights the course content’s evolution based on
the instructor’s experience and industry feedback. Two of the
responses, however, indicate that the courses do not adhere
to any formal standards or external body of knowledge. The
responses are shown in Figure 3,

2 2 2

1 1

Textbook No standards Other External BoK Cer�fica�on

Fig. 3. Source of course content

2) Test Case Basis: A test basis, also known as the system
under test (SUT), refers to the software being tested. These
can differ in size from as little as a module, consisting only of
a few lines of code, to the entire application. During software
testing, test cases are run against the test basis to unearth any
defects [25].

As Figure 4 shows, two primarily use real-world projects
to drive the testing effort of the eight courses surveyed. One



other course uses a university project developed in a separate,
concurrent course to drive the testing effort. Five responses
provided additional responses via the “Other” option viz.: (i)
Lab exercises (ii) Some open-source, some toy examples (iii)
Unit tests for small-size software (iv) Test cases for real-world
web pages as well as a toy example (v) Designed labs in
python.

5

2

1

Other Real-world project University project

Fig. 4. Test case basis

3) Test Tools Used: All the courses use test tools, which
are documented in Table II and listed in decreasing order of
use. The number in parenthesis signifies how many courses
use the specific testing tool; for example, JUnit is utilised in
four of the eight courses. Tools without parenthesis signify
that the tool is used in only one course.

TABLE II
TEST TOOLS USED. THE NUMBER IN PARENTHESIS IS NUMBER OF

COURSES USING A TOOL.

Test area Test tools
Unit testing xUnit/JUnit (6); Evosuite; PyTest
Website testing Selenium (2)
Mutation testing PIT (2); muJava
API testing Postman
GUI testing Eyeautomate
UAT testing Scout
Property-based testing Hypothesis; jqwik
Static analysis SonarQube

4) Test Domain: Given the prevalence of mobile phones,
to our little surprise, only one of the courses taught testing for
mobile technologies. Conversely, and just as surprising, most
courses were based on desktop application testing. In one of
the responses (“other”), the respondent stated that the focus
of the course was unit testing; thus, no specific domain was
covered in the course.

The questions in this section were asked to gain the un-
derstanding needed to answer the second research question
of key “characteristics” typical of software testing courses
in Swedish universities. To summarise, with a vast majority
of the courses, standardised material is used to determine
what core areas are taught. Nevertheless, most of the courses
did not use real-world projects to underscore the teaching of

testing aspects. All the courses used test tools, demonstrating
a practical approach to teaching the course contents.

6

5

3

2

1

0

Desktop Web Embedded Other Mobile Gaming

Fig. 5. Test domains taught

C. Software Testing Course Content

In this section of the questionnaire, questions sought to
ascertain the depth and breadth of the content of the testing
courses. Specifically, answers were asked regarding test design
techniques, test levels, test types, development methodologies
and automation. In doing so, the third research question will
be answered.

1) Test Design Techniques: Myriad test design techniques
have been identified in the literature. These techniques are
utilised to provide structure to the testing exercise and, ideally,
help reduce the number of test cases while improving chances
of finding defects [1]. Figures 6 and 7 depict the most-taught
and least-taught test design techniques, respectively, from the
survey results.

0 0

1

0

22 2

1

5

4

6 6 6

3

2

Control flow
techniques

Muta�on tes�ng Data flow
techniques

EP BVA

Not taught Men�oned in passing Basic introduc�on Taught in-depth

Fig. 6. Most-frequently taught test design techniques

Two techniques shared the top spot as being the most-taught
techniques. These are control flow techniques and mutation
testing; six courses cover both techniques in-depth and two
courses provide a basic introduction to the techniques. Data
flow techniques are the third-most common technique taught,
with six courses covering the technique in detail. Still, one
course provides a basic introduction to the technique, and the



5

2

0 0

1

2

3 3 3

1

0

2

3

1

3

1 1

2

4

3

CTM DTT Sta�e transi�on
tes�ng

Combinatorial Model-based
tes�ng

Not taught Men�oned in passing Basic introduc�on Taught in-depth

Fig. 7. Least-frequently taught test design techniques

technique is mentioned in passing only in yet another course.
Equivalence partitioning (EP) and boundary value analysis
(BVA) round up the top-five test design techniques.

The least-taught test design technique is the classification
tree method (CTM), which is omitted from five of the courses,
and in a further two courses, the technique is mentioned
only in passing. The second least-taught technique is decision
table testing (DTT), in which no mention of the technique
is made in two courses, and the technique is mentioned in
passing in three courses. These results are dissimilar to the
findings by [21], who found in their study that boundary value
analysis and equivalence partitioning were the most frequently
taught test design techniques. For one of the courses, further
information was provided, indicating that exploratory testing
was an additional test design technique covered in the course.

2) Test Levels: Test levels relate to corresponding software
development activities and artefacts. Unit and integration
tests are derived from software code and subsystem design,
respectively. The former assesses code units, and the latter
assesses the interfaces between the units of code. System tests,
derived from architectural designs, are run against the system
once it has been assembled together as a whole. Acceptance
tests, formed from documented user requirements, are run
to determine if the completed software meets users’ needs.
Ammann and Offutt [1] argue that each level needs to be tested
as some faults can only be found at different levels.

As shown in Figure 8, unit testing is the most-taught test
level, indicating that the test level is covered in-depth in all the
courses. In-depth coverage of integration testing is half that of
unit testing. The number of courses in which this test level
is covered in-depth is further halved to just two courses at
the system level. The least-covered level is the acceptance test
level, with no course indicating that the topic was covered in-
depth. The vast majority of the courses, six out of the courses,
provide only a basic introduction to the topic.

0 0

1 1

0

3

1 1

0

1

4

6

8

4

2

0

Unit tes�ng Integra�on tes�ng System tes�ng Acceptance tes�ng

Not taught Men�oned in passing Basic introduc�on Taught in-depth

Fig. 8. Test levels taught

3) Software Development Methodology: The method by
which software is developed systematically, also known as
software development life-cycles (SDLCs), guides a series
of phases and activities for all members of the development
team [22]. These methodologies fall within two broad groups
viz. sequential methodologies (e.g. the waterfall, V- and W-
models) and iterative methodologies (e.g. Scrum, Kanban,
Lean, eXtreme Programming and DevOps). Regardless of
which category that an SDLC may belong, software testing
is a vital phase in all development life cycles.

Depicted in Figure 9 is the extent to which sequential
methodologies are covered in the testing courses. The two
sequential methodologies are covered in-depth in only three
of the courses. In three other courses, these methodologies
are not taught at all. Similarly, Figure 10 depicts to what
extent iterative methodologies are covered. The most taught
iterative methodology is Scrum, which covers the topic in-
depth or is used exclusively to demonstrate testing in three
courses. Conversely, the least-covered iterative methodology
is Kanban, with four courses not covering the topic.

1

2

0

2

4

2

3

2

V/W-model Waterfall

Not taught Men�oned in passing

Basic introduc�on Taught in-depth/Used exclusively

Fig. 9. Sequential methodologies

4) Test Types: Software should be tested to ensure that
required functionalities are met, that is, the software works
as intended. Additionally, attributes, or the behaviour that
constrains how well the software works as it ought to, should



2

1

3 3

4

0

1

3

2 2

3

4

0

3

1

3

2 2

0

1

Scrum DevOps Lean XP Kanban

Not taught Men�oned in passing Basic introduc�on Taught in-depth/Used exclusively

Fig. 10. Iterative methodologies

be tested. With the latter, tests should be carried out to as-
certain how well the software responds to normal to excessive
demands (performance, load and stress testing) and how easily
users can use the software, especially those with imitations
(usability and accessibility testing). Other attributes that should
be tested include how easy the software will be to maintain
once it is entirely in use (maintainability), how secure the
software will be from malicious intent (security) and how
well the software will work for extended periods without
failures and how quickly recovery would occur after a failure
(reliability).

Question 17 of the survey sought to determine how much
these test types are covered in the courses. The five most-
covered test types are shown in Figure 11. Functional testing
is covered in almost all the courses. Change-based testing,
load testing and usability testing are all covered in-depth in
two courses, with performance testing being taught in-depth
in only one course. Load and usability testing are not covered
in detail in three of the courses. With performance testing,
the topic is not taught in two courses. The five least-covered
topics are shown in Figure 12. Stress and security testing are
not taught in three courses, but both are taught in-depth in one
course each.

0 0

3 3

2

1

2

1

3

1

0

4

2

0

4

7

2 2 2

1

Func�onal Change-based Load Usability Performance

Not taught Men�oned in passing Basic introduc�on Taught in-depth

Fig. 11. Test types (Most taught)

5) Test Related Topics: Testing is far more involved than
only looking for defects. Additional related activities could as-

3 3

2

4

2

1

2

4

2

5

3

2

1 1

0

1 1 1 1 1

Stress Security Reliability Accessibility Maintainability

Not taught Men�oned in passing Basic introduc�on Taught in-depth

Fig. 12. Test types (Least taught)

sist in improving the overall quality of the software. Examples
include reporting the outcome of the testing process and static
testing techniques, such as reviews and inspections, that have
been described as highly effective techniques that contribute to
improved software quality. This is because the detection and
removal of defects could occur well before even the software
code is written [5, 27]. Nevertheless, half of the courses do not
include this quality assurance perspective in this survey. The
most-taught, test-related topic, however, is using test metrics.
Static testing using tools and test planning activities came in as
close seconds. Besides simulation, which is not covered in any
of the courses, risk-based testing (RBT) is the least-covered
topic.

7

6 6

5 5

4 4 4

3

0

Te
st

 m
etri

cs

St
a�

c, 
to

ols

Te
st

 p
la

nnin
g

Te
st

 re
por�

ng
TDD

St
a�

c, 
m

an
ual

Te
st

 st
an

dar
ds

Debugg
in

g
RBT

Sim
ula�

on

Fig. 13. Test-related Topics

D. Additional Insights

1) Test Domain vs Test Type: Different domains are covered
in the courses surveyed (Section IV-B4). In this section, a test
domain, specifically the web domain, is juxtaposed against
appropriate test types (Section IV-C4). Although web testing
is not the most common domain taught in the courses detailed
in this survey, it is the second-most common domain and,
by nature of its characteristics, does offer more opportunities
for demonstrating more test types than the testing of desktop
applications.



TABLE III
WEB DOMAIN TESTING AND SYLLABI COVERAGE OF TEST TYPES

Performance Load Stress Usability Accessibility
C3 Basic Basic Basic In passing In passing
C5 Not taught Not taught Not taught Not taught Not taught
C6 In-depth In-depth In-depth In-depth Basic
C7 Basic Basic Basic In passing In passing
C8 In passing Not taught Not taught In passing Not taught

Web testing is the testing of web applications in an attempt
to detect defects before the website being made available to
users. In addition to ensuring that the website would work
as required (functional testing), and due to the nature of the
domain, there are typically other test types that are done.
Being a user-facing application, examples include testing the
usability and accessibility of the website. Additionally, as
multiple users use websites simultaneously, performance, load
and stress testing ideally should occur.

There are five of the courses for which there are indications
that the web domain was covered in the respective syllabi
(see Figure 5, page 5). Coverage of applicable test types,
reproduced in Table III, run the gamut. For example, Course
C5 does not include teaching any of the test types typically
undertaken with testing of web applications. At the same time,
Course C6, save for accessibility testing, covered all the topics
in-depth.

It must also be pointed out that while usability testing
is taught in-depth in Course C3, accessibility testing, often
thought to occur hand-in-hand with usability testing, is not
given as much prominence. Accessibility testing should be
done to ensure that people with disabilities can use software,
with or without the aid of assistive technologies [13].

V. INSIGHTS

Responses to the survey were collected from lecturers teach-
ing software testing at eight Swedish universities. Most of the
courses are situated in the Software Engineering department.
While most of the courses are based on desktop applications
as systems under test, a relatively good mix of domains was
used to demonstrate different testing topics.

The survey results offer some possible insights. Specifically,
issues relating to teacher roles, sources of course content,
system under test (SUT), test domains, test levels and, lastly,
test techniques taught will be discussed briefly in the following
paragraphs.

a) Need of guest lectures from industry and academia:
The first to be discussed is the issue of the teacher roles
utilised in the teaching of the courses. Fewer than half of the
courses make use of guest lecturers. The use of guest lecturers,
particularly those outside of academia, may trigger a sense of
excitement in students. Guest lecturers are also thought to give
credence to a subject area or demonstrate possible industry
opportunities [14, 35]. As such, for a discipline that students
have described as “boring” [34, p. 1498], “bland, unexciting
and insignificant” [15, p. 1795] or, “monotonous, not exciting,
repetitive” [7, p. 1], practitioners, as guest lecturers, may,

for example, provide real-world examples where software
testing made significant contributions. Similarly, guest lectures
from researchers on timely testing topics such as testing
for security and testing for intelligent systems with built-in
artificial intelligence capabilities, will also help address the
breadth of testing topics within a limited time of a course
offering.

b) Integrate contents from books, standards, certifica-
tions and industry: Regarding the source of course content,
four courses rely on the use of textbooks, recognised standards
or certification bodies, suggesting a structured approach to
developing the course contents. Also important to note is the
inclusion of industry feedback in one of the courses, which
suggests a dynamic and responsive approach to teaching.
There are, however, two courses that do not adhere to any for-
mal standards or external body of knowledge. This could lead
to variability in the breadth and depth of the topics covered. In
addition to course books and inclusion of industrial feedback,
certification bodies like ISTQB (International Software Testing
Qualifications Board) and standards like ISO/IEC/IEEE 29119
have gathered valuable body of knowledge from experts that
promises to improve current testing course content.

c) Provide realistic SUT: During software testing, test
cases are run against the SUT to detect defects [25]. Two
courses use “toy examples” to demonstrate testing concepts,
and three other courses demonstrate software testing with
lab exercises. Including real-world projects from open-source
repositories [8] or companies, as done in two of the courses,
could provide valuable, practical testing experience. The more
realistic a test base is, the more likely students will be engaged
with the concepts taught. Realistic SUTs may also help
develop a greater appreciation of the utility of software testing
as a profession and possibly increase student preparedness for
working as a tester in industry [16].

d) Expand test domains: Given the prevalence of mobile
phones, only one of the courses taught testing for mobile
technologies. Conversely, and just as surprising, the majority
of the courses were based on desktop application testing. With
one of the responses (“other”), the respondent stated that the
focus of the course was unit testing, thus no specific domain
was covered in the course. Switching among test domains,
for example, in different assignments, should be given serious
thought to diversify students’ learning outcomes.

e) Provide education in test levels and their role in
SDLC: In all the courses, unit-level testing is taught in-
depth. In sharp contrast, the number of courses that teach



acceptance level in detail drops to zero. Different members
of the development team are likely to undertake testing at
different test levels, depending upon the different stages of
SDLC. Also, the defects that can be found will differ according
to the test level. It will be prudent to provide adequate
skills so that each level can be handled with skilled software
engineering team members.

f) Expand education of test design techniques: Related
to the previous discussion on integrating course contents
from diverse sources, the survey results show that there is
room to expand the coverage of test design techniques in
existing courses. It is suggested that a coverage of test design
techniques based on an analysis of the content of relevant
books, standards, certification bodies, and industrial practices.

VI. THREATS TO VALIDITY

One potential threat to internal validity, often associated
with using questionnaires, is a misinterpretation of questions
by respondents. Linguistically, this threat was greatly min-
imised as respondents were concentrated around the same
geographical region and language. Nonetheless, conducting
a pilot study before the questionnaire was sent out reduced
the possibility of this risk. Additionally, construct validity
may be threatened by the broad specificity of the survey
questions, which could overlook specific topics in course
content. External validity is another concern, as the findings
are based on a limited sample of courses from Swedish
universities, which may differ from global software testing
education. In addition, sampling bias poses a challenge, as the
study achieved a response rate of 44%. Efforts were made
to engage various university respondents to capture a broader
perspective on software testing education.

VII. CONCLUSIONS

This paper investigates the topic of academic software
testing courses in the context of their structural, underlying,
and core aspects. The results draw attention to the fact that
much of the course content is focused on programmer-aligned
testing. This is shown not only by the high level of in-depth
coverage of unit testing but also by the category of typical test
tools used. The survey results offer insight into issues relating
to teacher roles, sources of course content,system under test
(SUT), test domains, test levels, and test techniques taught.

Future work includes widening the research globally and
comparing results from other countries. Further consideration
should also be given to additional data such as student
demographics, the level of study and student numbers per
registration cycle. Additionally, the results from the survey
suggest other areas of research. As an example, Question 3
of the survey shows that there are relatively few courses that
make use of industry guest lecturers. It would be of interest
to empirically determine if their inclusion in the teaching of
software testing could change students’ perspective about the
subject.

ACKNOWLEDGMENT

The support of Mälardalen University (MDU), through the
Promote Lifelong Learning (FLL) grant and ModTest project,
is acknowledged. FLL is an MDU university-wide project
aimed at developing and strengthening opportunities for MDU
to offer education to those looking for further training, up-
skilling, and re-skilling. Eduard Enoiu is also supported by the
SmartDelta project (funded by Vinnova) and by the Software
Center project.

The authors thank the lecturers of the software testing
courses who took time out of their busy schedules to complete
the survey. There is great appreciation also for the reviewers of
the survey during the pilot study for their invaluable comments
and constructive critique.

REFERENCES

[1] P. Ammann and J. Offutt. Introduction to Software
Testing. Cambridge University Press, New York, 2013.

[2] B. Ardic and A. Zaidman. Hey teachers, teach those kids
some software testing. In 2023 IEEE/ACM 5th Interna-
tional Workshop on Software Engineering Education for
the Next Generation (SEENG), pages 9–16, 2023.

[3] A. A. Barrett, E. Paul Enoiu, and W. Afzal. On the
current state of academic software testing education in
Sweden. In 2023 IEEE International Conference on
Software Testing, Verification and Validation Workshops
(ICSTW), pages 397–404, 2023.

[4] B. Cerón, A. Chicaiza, J. Lamiño, and R. P. R. Ch.
Software testing in Ecuadorian university education: A
debt to the software industry. In Á. Rocha, H. Adeli,
G. Dzemyda, F. Moreira, and A. Poniszewska-Marańda,
editors, Good Practices and New Perspectives in Infor-
mation Systems and Technologies, pages 80–90, 2024.

[5] M. Ciolkowski, O. Laitenberger, S. Vegas, and S. Biffl.
Practical experiences in the design and conduct of sur-
veys in empirical Software Engineering. In R. Conradi
and A. I. Wang, editors, Empirical Methods and Studies
in Software Engineering: Experiences from ESERNET,
pages 104–128. 2003.

[6] S. E. Conry. Software Engineering, Computer Engineer-
ing, Computer Science: Sibling disciplines with diverse
cultures. In 2011 ASEE Annual Conference & Exposition,
pages 22–1308, 2011.

[7] A. Deak, T. Stålhane, and G. Sindre. Challenges and
strategies for motivating software testing personnel. In-
formation and software Technology, 73:1–15, 2016.

[8] L. Deng, J. Dehlinger, and S. Chakraborty. Teaching
software testing with free and open source software. In
2020 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), 2020.

[9] K. Fosnacht, S. Sarraf, E. Howe, and L. K. Peck. How
important are high response rates for college surveys?
The Review of Higher Education, 40(2):245–265, 2017.

[10] B. Holtom, Y. Baruch, H. Aguinis, and G. A. Ballinger.
Survey response rates: Trends and a validity assessment
framework. Human Relations, 75(8):1560–1584, 2022.



[11] F. Kazemian and T. Howles. A software testing course for
Computer Science majors. SIGCSE Bull., 37(4):50–53,
2005.

[12] B. A. Kitchenham and S. L. Pfleeger. Personal opin-
ion surveys. In Guide to advanced empirical software
engineering, pages 63–92. Springer, 2008.

[13] P. Kotzé, M. Eloff, A. Adesina-Ojo, and J. Eloff. Acces-
sible computer interaction for people with disabilities –
The case of quadriplegics. In ICEIS 2004-Proceedings
of the Sixth International Conference on Enterprise In-
formation Systems, 2004.

[14] B. R. Krogstie and J. Krogstie. Guest lectures in IT
education - Recommendations based on an empirical
study. 2018.

[15] D. E. Krutz and M. Lutz. Bug of the day: Reinforcing
the importance of testing. In 2013 IEEE Frontiers in
Education Conference (FIE), pages 1795–1799, 2013.

[16] D. E. Krutz, S. A. Malachowsky, and T. Reichlmayr.
Using a real world project in a software testing course.
In Proceedings of the 45th ACM technical symposium on
Computer science education, pages 49–54, 2014.

[17] O. A. L. Lemos, F. C. Ferrari, F. F. Silveira, and
A. Garcia. Experience report: Can software testing
education lead to more reliable code? In Proceedings
of the 2015 IEEE 26th International Symposium on
Software Reliability Engineering (ISSRE), ISSRE ’15,
page 359–369, 2015.

[18] J. Linåker, S. M. Sulaman, R. M. de Mello, and M. Höst.
Guidelines for conducting surveys in Software Engineer-
ing. Department of Computer Science, Lund University,
Sweden, 2015.

[19] W. Marrero and A. Settle. Testing first: Emphasizing
testing in early programming courses. In Annual Confer-
ence on Innovation and Technology in Computer Science
Education, 2005.

[20] T. Mårtensson and K. Sandahl. The testing hopscotch
model – Six complementary profiles replacing the perfect
all-round tester. In R. Kadgien, A. Jedlitschka, A. Janes,
V. Lenarduzzi, and X. Li, editors, Product-Focused Soft-
ware Process Improvement, pages 495–510, 2024.

[21] S. M. Melo, V. X. S. Moreira, L. N. Paschoal, and S. R. S.
Souza. Testing education: A survey on a global scale.
In Proceedings of the XXXIV Brazilian Symposium on
Software Engineering, SBES ’20, page 554–563, 2020.

[22] A. Mishra and D. Dubey. A comparative study of differ-
ent software development life cycle models in different
scenarios. International Journal of Advance research in

computer science and management studies, 1(5), 2013.
[23] S. P. Ng, T. Murnane, K. Reed, D. Grant, and T. Y.

Chen. A preliminary survey on software testing practices
in Australia. In 2004 Australian Software Engineering
Conference. Proceedings., pages 116–125. IEEE, 2004.

[24] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber.
Capability Maturity Model for software, version 1.1.
IEEE Software, 10(4):18–27, 1993.

[25] F. Raab. System under test. In S. Sakr and A. Zomaya,
editors, Encyclopedia of Big Data Technologies, pages
1–3. Springer International Publishing, Cham, 2018.

[26] U. Sharma and S. J. Salend. Teaching Assistants in
Inclusive Classrooms: A Systematic Analysis of the
International Research. Australian Journal of Teacher
Education, 41(8):118–134, 2016.

[27] T. Shepard, M. Lamb, and D. Kelly. More testing should
be taught. Communications of the ACM, 44(6):103–108,
2001. ISSN 0001-0782.

[28] S. A. Sivo, C. Saunders, Q. Chang, and J. J. Jiang. How
low should you go? Low response rates and the validity
of inference in IS questionnaire research. Journal of the
association for information systems, 7(6):351–414, 2006.

[29] P. Tramontana, B. Marı́n, A. C. R. Paiva, A. Mendes,
T. E. J. Vos, D. Amalfitano, F. Cammaerts, M. Snoeck,
and A. R. Fasolino. State of the practice in software
testing teaching in tour European countries. In 17th IEEE
International Conference on Software Testing, Verifica-
tion and Validation (ICST) 2024, 2024.

[30] E. Van Teijlingen and V. Hundley. The importance of
pilot studies. Social Research Update, 35:1–4, 2001.

[31] W. Wiersma. The validity of surveys: Online and offline.
Oxford Internet Institute, 18(3):321–340, 2013.

[32] M. Wilmore. What’s in a name? Reflections on working
as a ‘teaching assistant’ at University College London
and as an ‘associate lecturer’ at The Open University.
Anthropology Matters, 5(1):–, 2003.

[33] W. E. Wong. Improving the state of undergraduate soft-
ware testing education. In 2012 ASEE Annual Conference
& Exposition, San Antonio, Texas, June 2012. ASEE
Conferences.

[34] T. Zivkovic, D. Draskovic, and B. Nikolic. Learning
environments in software testing education: An overview.
Computer Applications in Engineering Education, 31(6):
1497–1521, 2023.

[35] P. Zou, W. Sun, S. G. Hallowell, Y. Luo, C. Lee, and
L. Ge. Use of guest speakers in nursing education: An in-
tegrative review of multidisciplinary literature. Advances
in medical education and practice, pages 175–189, 2019.


