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Rule-Based Predictive Control for Battery
Scheduling in Microgrids under Power Generation
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Abstract—This paper addresses the control of the state of
charge (SoC) of a Battery Energy Storage System (BESS) in
a microgrid, considering uncertainties in load and Renewable
Energy Sources (RES) generated power estimations. To achieve
this objective, we propose RubPC, a novel rule-based Model
Predictive Control (MPC). We partition the feasible operation
space of the microgrid into two subzones, referred to as the white
and yellow zones. The yellow zone represents the boundary space
between the feasible and unfeasible operation spaces. In RubPC,
we initially implement MPC on a predefined optimization window
to determine the optimal SoC of the BESS, aiming to keep the
microgrid within the white zone. Noting that mismatches between
estimated and actual load and generated power may lead to
constraint violations, we introduce a rule-based controller as
a supervisory control. This controller monitors the microgrid’s
state, and if the microgrid enters the yellow zone, it adjusts the
control to maintain the microgrid within the white zone. We
validate our proposed method by simulating it using data from
an electrified quarry site in Sweden.

Note to Practitioners—Optimizing the charge and discharge
schedule of BESSs in microgrids offers a promising avenue
for substantial economic and technical benefits. However, the
successful realization of these benefits hinges on accurately
estimating and aligning the values of load and RES-generated
power. In industries, the consequences of mismatches between
these estimates and actual values can translate into unexpected
costs that may outweigh the anticipated economic benefits of
BESS’s optimal charge and discharge schedule. This paper
underscores the critical importance of addressing this concern to
ensure the viability of BESS applications in various industries.
To tackle this challenge, we present RubPC, an innovative
Rule-Based MPC framework. Unlike conventional approaches,
RubPC is specifically designed to effectively handle discrepancies
between estimated and actual values, thereby preventing potential
constraint violations. Our aim is to offer practitioners a robust
solution that not only brings economic benefits but also ensures
their safe and reliable operation.

Index Terms—Battery Energy Storage System (BESS),
Demand-side Management (DSM), Model Predictive Control
(MPC), Optimization, Rule-based Control.
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Nomenclature
q Total number of time samples
csell Electrical energy selling tariff
psell Power sold to the grid
cbuy Electrical energy purchasing tariff
pbuy Power bought from the grid
ca Degradation cost of battery
X Feasible space of decision variable
Ω A set with cardinality of possible constraints set
ω A member of Ω
Q Capacity of BESS
ζ State of charge (SoC)
pb

+ Charging power of BESS
pb

− Discharging power of BESS
pb

−
l Locally consumed discharging power of BESS

pb
−
s Discharging power of BESS sold to the grid

η Round trip efficiency of BESS
pg Total generated power in industrial load
pgl Locally consumed generated power
pgs Power locally generated sold to the gird
pb

max Max. allowable charging power of BESS
pb

min Min. allowable discharging power of BESS
∆t Sampling time
ζmax Max. allowable SoC of BESS
ζmin Min. allowable SoC of BESS
m1 Slope of the power limit on discharge
m2 Slope of the power limit on charge
b1 Intercept of the power limit on discharge
b2 Intercept of the power limit on charge
pl Local power consumption of industrial load
pmax
l Max. allowable power exchange

α Safety margin of the SoC
β Safety margin of the power exchange limit
T Length of MPC optimization window
Tc Length of control horizon
(.)⊺ Matrix transpose
|.| Set cardinality
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THE increasing emphasis on transitioning towards sustain-
able and eco-friendly practices in industries has spurred

the adoption of Renewable Energy Sources (RESs) such as
wind farms and solar panels. However, the intermittent and
unpredictable nature of RESs necessitates the widespread im-
plementation of controllable energy storage systems. Battery
Energy Storage Systems (BESS) stand out as a vital solution
for achieving objectives like smoothing load flow [1], [2], peak
shaving [3], [4], or tracking a desired load [5]. However, on
the customer side, the most appealing objective is optimizing
return on investment by integrating these BESS units with
existing microgrids [6]–[8]. Consequently, a compelling prac-
tical question arises: How can the State of Charge (SoC) of
BESS be effectively controlled to minimize energy costs for
its owners?

In theory, addressing this question appears straightforward,
as it involves solving a constraint optimization problem that
relies on accurate estimations of RES generation and demand
across different time intervals, i.e.,

minimize −c⊺sellpsell + c⊺buypbuy − c⊺a(pb
−
l + pb

−
s )

subject to:
[
pb

+,pb
−
l ,pb

−
s ,pgl,pgs

]
∈ X ,

(1)
where the vectors cbuy, csell ∈ Rq

+ represent purchase and sell
tariffs at q sampled times within the optimization window, and
ca ∈ Rq

+ is the degradation cost of battery [9]. pb
+ ∈ Rq

+

represents charging power of BESS at q sampled times,
pb

−
l ∈ Rq

− represents the power locally consumed during a
discharge and pb

−
s ∈ Rq

− is the power sold to the grid during a
discharge, and finally, pgl ∈ Rq

− and pgs ∈ Rq
− represent local

consumption of the RES generated power and power which
is sold to the grid from RES generated power, respectively.
psell,pbuy ∈ Rq

+ correspond to the sold and bought power at
time samples, which are indeed function of decision variables,
i.e. psell = fs(pb

−
s ,pgs) and pbuy = fb(pb

+,pb
−
l ,pgl). Fi-

nally, The decision variable should remain within the feasible
space X , defined by the constraints. However, inaccuracies in
RES generation and load estimations can lead to results that
violate crucial constraints. The uncertainties in RES generation
and load would change the feasible space of the decision
variable in (1). Therefore, the actual problem to solve can
be written as

minimize −c⊺sellpsell + c⊺buypbuy − c⊺a(pb
−
l + pb

−
s )

subject to:
[
pb

+,pb
−
l ,pb

−
s ,pgl,pgs

]
∈ Xω

,

(2)
where ω ∈ Ω is an uncertain parameter, and Ω is a set with
cardinality equal to the number of the possible realizations of
the constraints’ set, which could also be infinite.

Given the impossibility of solving (2) for an infinite time
horizon, Model Predictive Control (MPC) approaches have
gained considerable attention in BESS control. The MPC
method entails solving the optimization problem (2) within
a predetermined time horizon. Subsequently, SoC is adjusted
based on the obtained solution for a specific number of future
time steps. Following these steps, estimations and initial values
are updated, and the optimization problem (1) is solved again.
This iterative process continuously optimizes control actions.

A. Literature review

In addressing uncertainties in (2) during MPC implemen-
tation, one may seek an optimizer that accommodates all
potential realizations of constraints [10]. This strategy, com-
monly known as Robust MPC (RMPC), often yields highly
conservative outcomes or even a null feasible space. To
mitigate the conservativeness of RMPC, Carli et al. introduce
a novel approach to tune the robustness property in multi-
carrier microgrids with bounded uncertainties [11]. Neverthe-
less, this comes with the potential trade-off of compromising
certain constraints in favor of reduced conservativeness. To
enhance the feasibility of RMPC, Lan et al. introduce a non-
anticipativity method that utilizes past available data to deter-
mine feasible control trajectories in [12]. However, it’s worth
noting that the resulting outcome may significantly differ from
the optimal solution of (2). A two-stage RMPC procedure
for multi-carrier microgrids is proposed in [13]. The first
stage involves day-ahead scheduling, while the second stage
employs a shrinking receding horizon approach to implement
corrective actions. To mitigate the conservatiness of RMPC in
multi-microgrids, Zhao et al. employ the distributed dynamic
tube MPC [14]. While RMPC approaches show promise, there
is a crucial concern regarding the recursive feasibility of the
optimization problem (2) at all time steps.

Another strategy to adopt MPC in (2) is Stochastic MPC
(SMPC). SMPC considers ω as a random variable with a
probability P and finds a solution that may violate, at most, a
fraction of constraints with a smaller probability of occurring
than a predefined threshold. For instance, Parisio et al. intro-
duce an SMPC strategy that involves a two-stage optimization
process: initially, decisions about microgrid operations are
made without considering the uncertainties; subsequently, once
the uncertain variables’ values are revealed, corrective actions
are implemented [15]. In [16], SMPC is developed for multi-
carrier multi-microgrid networks, and the generated scenar-
ios are reduced using the mixed-integer linear programming
method. In industrial applications, any risk associated with
BESS’s charging and discharging plan is unacceptable, as even
a short interruption in production can result in significant
losses outweighing the potential gains from optimizing the
BESS unit’s charge and discharge schedule. Consequently,
SMPC is not favored in industries. Interested readers are
referred to [17]–[19] for more details about the literature on
optimal control of BESSs.

In industrial settings, where simplicity and robustness are
paramount, rule-based control techniques for BESS [20], [21]
often hold greater appeal than RMPC and SMPC. Rule-
based approaches are favored for their ease of understanding,
implementation, and inherent robustness against uncertainties.
However, while rule-based controllers offer simplicity and
robustness, MPC controllers generally provide more economi-
cally optimal results. In this paper, we propose a control strat-
egy that aims to harness the advantages of both MPC and rule-
based control techniques by integrating the strengths of MPC’s
optimization capabilities with the simplicity and robustness
of rule-based control. In summary, the main advancements of
our proposed rule-based MPC (RubPC) scheduling algorithm
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Table I: Comparison with the State-of-the-art MPC-Based BESS Scheduling Approaches

Seyednouri
et al. [16]

Parisio
et al. [15]

Zhao
et al. [14]

Vasilj
et al. [13]

Carli
et al. [11] RubPC

Prior knowledge about
uncertainty space Required Required Required Required Required Not Required

Prior knowledge about
uncertainties distribution Required Required Not Required Not Required Not Required Not Required

Scenario generation Required Required Not Required Required Not Required Not Required

compared to RMPC and SMPC are:

• No prior knowledge requirement about uncertainties:
RMPC necessitates prior knowledge about the uncer-
tainties’ feasible space. This requirement becomes even
more restrictive in SMPC, as it requires knowledge of
the feasible space and the probability distribution of
uncertainties. In contrast, RubPC does not require prior
knowledge about uncertainties, making it more suitable
for practical implementations.

• Reduced optimization complexity: Compared to RMPC
and SMPC, RubPC offers lower computational complex-
ity by eliminating the scenario generation phase in SMPC
and reducing the number of constraints compared to
RMPC. Given that these problems need to be solved
repetitively, these methods often either demand expensive
processors for control applications or experience delays in
updating the optimal schedule of BESS, thereby reducing
anticipated performance. In contrast, RubPC integrates
a supervisory rule-based controller with a deterministic
MPC. Given that the complexity of the rule-based con-
troller, which involves conditional clauses, is relatively
modest compared to MPC, which typically entails solv-
ing high-dimensional optimization problems, the overall
complexity of RubPC does not significantly exceed that
of deterministic MPC.

Table I compares several existing RMPC and SMPC methods
designed for BESS scheduling in microgrids with uncertainties
in load, and RES generated power with RubPC.

To our knowledge, [22] is the only published work com-
bining rule-based control with MPC. In [22], the authors
develop a two-stage framework. First, forecast scenarios of
input conditions are generated. Then, to mitigate the com-
plexity of the optimization problem, the number of scenarios
is reduced. In the first stage, an SMPC is applied. Next,
in the second stage, the actual on/off states of BESSs and
thermostatically controlled loads are adjusted using a rule-
based control method based on the results achieved by the
SMPC. The main differences between the proposed algorithm
in this article and the one presented in [22] are as follows:

• Pre-knowledge about the uncertainties is required in [22]
since the optimal schedule is determined by using SMPC.

• The objective of integrating rule-based control with
SMPC in [22] is to determine the states of BESSs,
whereas, in the proposed method in this article, the
objective of the rule-based controller is to maintain the
microgrid states within a safe zone and ensure constraint

satisfaction.
To summarize the literature review, several interesting

approaches have been proposed to address the scheduling
problem of BESSs in microgrids with uncertainties in load
and RES-generated power. These approaches, mainly utilizing
RMPC or SMPC, have shown promising results. However,
they typically require degrees of prior knowledge about the un-
certainties. Achieving recursive feasibility in classical RMPC
methods and ensuring constraint satisfaction in SMPC remain
open challenges for practically adopting these methods in the
industry. This paper introduces a simple yet effective method
to address these challenges.

B. Statement of Contributions

We propose RubPC, a rule-based MPC framework for
scheduling the charge and discharge of BESSs in micro-
grids under power generation and load uncertainties. The
proposed approach overcomes the main limitations of existing
approaches by eliminating

1) the necessity for prior knowledge about load and RES
generated power uncertainty bounds, as well as their
probability distribution, in the BESS scheduling problem
in microgrids;

2) the need for scenario generation to accommodate uncer-
tainties in various situations.

We evaluated the proposed approach utilizing Monte Carlo
analysis to verify constraint satisfaction through simulations
conducted on a model constructed using data obtained from
an actual construction site.

C. Organization

The remainder of this paper is organized as follows. Fol-
lowing this introduction, Section II presents the problem
statements and introduces the associated constraints. Our pro-
posed rule-based MPC Algorithm is presented in Section III.
The simulation results are discussed in Section IV. Finally,
Section V concludes this article.

D. Notation

A comprehensive nomenclature table is provided to explain
the main notations used in this paper. Furthermore, we mean
a coordinate-wise comparison when a comparison operator
compares two vectors. In other words, let us denote the ith
coordinate of x as x(i), the notations a < b , a ≤ b and
a = b mean that |a| = |b| and a(i) < b(i) , a(i) ≤ b(i) and
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a(i) = b(i) for all i ∈ {1, . . . , |a|}, respectively. Finally, a◦b
represents Hadamard product, i.e. if |a| = |b| and c = a ◦ b,
then c(i) = a(i) · b(i) for all i ∈ {1, . . . , |a|}.

II. PROBLEM STATEMENT

The dynamics of BESS can be mathematically represented
by [23]:

Q
∂ζ

∂t
= ηpb

+ + pb
−
l + pb

−
s , (3)

where Q and ζ represent the capacity and SoC of BESS,
respectively. Consistently to the notation introduced before,
the charging power is denoted by pb

+. The power during a
discharge, pb

−, is divided into two parts denoted as pb
−
l and

pb
−
s . pb

−
l represents the power locally consumed during a

discharge, and pb
−
s is the power sold to the grid during a

discharge. Throughout this paper, we quantify the charging
power of BESSs by non-negative values, i.e., pb

+ ≥ 0. In
contrast, the discharging power is quantified by non-positive
values, i.e., pb

−
l ,pb

−
s ≤ 0. Finally, 0 < η < 1 represents the

round trip efficiency.

Additionally, we assume the presence of a RES co-located
with the BESS. The power generated by the RES can be further
categorized into two parts, as outlined below:

pg = pgl + pgs, (4)

where pg stands for the total power generated by RES, pgl
and pgs represent local consumption of the generated power
(includes power consumption to charge the BESS) and power
which is sold to the grid, respectively. We quantify pg , pgl
and pgs with non-positive values in this article.

This paper proposes a novel rule-based MPC to establish
a control strategy for the BESS. This approach is designed
to handle uncertainties in load and RES power generation
estimations effectively. Assume that T represents the length
of the receding horizon time window. We denote the sam-
pling time by ∆t; thus, the total number of samples in
the time window is equal to q = T

∆t . At each time step,
our goal is to find a reference for the decision variables,
pb

+,pb
−
l ,pb

−
s ,pgl,pgs ∈ Rq . BESS is subject to constraints,

as discussed in the following subsection.

Remark 1. While this article assumes the use of lithium-
ion technology for BESS, which is currently the most com-
mon technology in power grids, it’s important to note that
RubPC can also be applied to microgrids employing various
other BESS technologies or even alternative energy storage
solutions such as pumped hydro storage [24], supercapacitors
[25], thermostatically control loads [26], and flywheel energy
storage [27]. Necessary adjustments to the constraints and
degradation costs may be required for implementation.

A. Constraints

Decision Variable Bounds

The decision variables pb
+,pb

−
l ,pb

−
s ,pgl and pgs are

subject to the next bounds

0 ≤ pb
+ ≤ pb

max,
pb

min ≤ pb
−
l ≤ 0,

pb
min ≤ pb

−
s ≤ 0,

pg ≤ pgl ≤ 0,
pg ≤ pgs ≤ 0,

(5)

where pg ∈ Rq
− stands for estimated RES power generation.

The maximum allowable charge and discharge power of each
BESS is defined by pb

max ∈ Rq
+ and pb

min ∈ Rq
−, respec-

tively. The following constraints are derived from the definition
of decision variables

pb
min ≤ pb

−
l + pb

−
s ,

pg = pgl + pgs.
(6)

Bound on the State of Charge (SoC)

The SoC of BESS must remain within the bounds stated by
its manufacturing company.

ζmin ≤ ζ ≤ ζmax, (7)

where ζmax ∈ R(q+1)
+ and ζmin ∈ R(q+1)

+ represent the
maximum and minimum allowable SoC, respectively. The
dimensions of ζmin, ζ and ζmax vectors in (7) have been
chosen q + 1 to be appropriate for (8), and the initial charge
value has been added to ζ as its first index. It is worth noting
that ζ is implicitly related to decision variables by

QDζ = ηpb
+ + pb

−
l + pb

−
s , (8)

where ζ ∈ R(q+1)
+ ; and D ∈ Rq×(q+1) is defined as

D =
1

∆t


−1 1 0 . . 0
0 −1 1 0 . 0

. .
.

0 0 −1 1


q×(q+1)

,

to approximate the derivative operator in (3).

Kinetic battery model

The relation between SoC and the power limits is usually
represented by the kinetic battery model [28]. The feasible
region for AC power described by the kinetic battery model
is depicted in Fig. 1, which is the intersection of charge,
discharge, and SoC bounds with a region delimited by two
lines,

m1ζ + b1 ≤ pb
+ + pb

−
l + pb

−
s ≤ m2ζ + b2, (9)

where m1 and b1 are the slope and intercept of the power limit
on discharge, respectively, and m2 and b2 are the slope and
intercept of the power limit on charge, respectively.
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Fig. 1: Feasible region for AC power described by the kinetic
battery model.

Constraints on power flow

In industrial loads, the power flow between customers and
the grid is limited due to the installed infrastructure or the
contract. This constraint is expressed as:

pb
+ + pb

−
l + pl + pgl ≤ pl

max, (10)

−pb
−
s − pgs ≤ pl

max. (11)

where pl ∈ Rq
+ represent the local power consumption,

excluding the power consumption of BESS, and pl
max ∈ Rq

+

is the upper bound of the industrial microgrid power exchange
with the utility grid.

Remark 2. Our proposed method applies to both grid-
connected and islanded microgrids. The microgrid operates
in islanded mode if the maximum power flow with the grid is
set to zero, i.e., pl

max = 0 in (10) and (11). ■

Local power balance constraint

We denoted with separate variables the power used to charge
the BESS, pb

+, the power consumed by the local load, pl, the
power output of the BESS during a discharge, pb

−
l , which

is consumed locally, the local power generation consumed
locally, pgl. Since the sum of the local power generation and
the output power of the BESS consumed locally cannot exceed
the actual local load consumption, it follows that:

pb
+ + pl + pb

−
l + pgl ≥ 0. (12)

B. Objective Function

pbuy and psell in our problem are

pbuy = pb
+ + pb

−
l + pl + pgl,

psell = −pb
−
s − pgs.

(13)

The lifetime of a battery depends on various factors, in-
cluding the type of battery, depth of discharge, charging and
discharging rates, temperature conditions, and overall battery

management [29]–[31]. As a result, accurately estimating a
battery’s lifetime is a complex task. However, a reasonable
estimate can be derived based on the number of charge cycles
a battery typically undergoes. Therefore, the degradation cost
could be represented by

ca =
Battery Price

Capacity × Lifetime charge cycles
. (14)

For the sake of smoothing the optimization formulas, we
assume that the degradation cost is constant, i.e., all coor-
dinates of ca ∈ Rq

+ are ca. However, the degradation cost in
(15) can be replaced with any other model or representation
without affecting the generality of our approach. Additionally,
we assume that battery replacement and maintenance costs are
incorporated into the degradation cost. Otherwise, they should
be added as penalties to the objective function in (15).

Noticing that we are interested in control strategies that do
not interfere with the production plan of the factory, we assume
that control of pl is not allowed. Therefore, c⊺sellpl becomes
a constant that can be removed from the objective function in
(2). Consequently, considering (13), (2) can be rewritten as:

minimize c⊺sell(pb
−
s +pgs) + c⊺buy(pb

+ +pb
−
l +pgl)

− c⊺a(pb
−
l + pb

−
s )

subject to:
[
pb

+,pb
−
l ,pb

−
s ,pgl,pgs

]
∈ Xω.

(15)
It is worth reminding that since pg and pl are subject to
uncertainties, the feasible space of decision variables is not
deterministic. Therefore, we used Xω in (15) to define the
feasible space of decision variables according to (5)-(12) and
to account for this uncertainty. In this paper, we assume the
following assumptions hold for the microgrid and tariffs.

Assumption 1. The discrepancies between actual and pre-
dicted load and RES generated power in the microgrid are
bounded. ■

Assumption 1 is necessary to satisfy (10) and (11), and it is
quite trivial because neither the actual load and RES-generated
power nor their estimated values could reasonably be infinite.

Furthermore, In the microgrid setting that we discuss in
this study, comprising load, RES, and BESS, where power
flow is restricted, any shortfall in energy required by the
load beyond what local generation can provide must either
be supplemented by the utility or drawn from the BESS.
Exceeding the maximum allowed power flow is unsustainable,
as continued reliance on the BESS will eventually lead to
complete discharge. Thus, in addition to Assumption 1, it is
necessary for the following assumption to hold true.

Assumption 2. There is a feasible dispatch plan within the
microgrid for any finite time intervals, Ti, that satisfies all
constraints. ■

It is important to emphasize that Assumption 1 and As-
sumption 2 establish only the necessary conditions for finding
a feasible plan. Therefore, it is sensible to incorporate greater
flexibility into the microgrid design. Greater flexibility in the
microgrid dispatch can be achieved by increasing the BESS
capacity and/or the maximum allowable power flow with the
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Red zone (Infeasible region)

Yellow zone (Feasible region)

White zone (Feasible region)

Fig. 2: Red, yellow, and white zones.

utility grid.
Furthermore, our approach assumes the following regarding

tariffs.

Assumption 3. This paper assumes that the utility considers
an overhead for its services, i.e., cbuy − csell > 0. ■

Remark 3. Assumption 3 ensures that the optimal solution
of (15) does not involve simultaneous selling and purchasing
of energy. Furthermore, in (8), η < 1 prevents simultaneous
BESS charging and discharging in the optimal plan. Therefore,
it is possible to neglect nonlinear constraints such as pbuy ◦
psell = 0 and pb

+ ◦ (pb
−
s + pb

−
l ) = 0 . ■

III. RULE-BASED PREDICTIVE CONTROL OF BESS
(RUBPC)

The main idea of our proposed method is based on dividing
the feasible region of decision variables into two sub-zones:
the “white” and “yellow” zones, and the entire infeasible
region is referred to as the “red” zone, i.e., for simplicity,
depicted in two dimensions in Fig. 2. The yellow zone serves
as the boundary space between the white and red zones
and determines the “feasible” operation of BESS, but close
to violating certain constraints. The width of the yellow
zone depends on specific load characteristics, fluctuations in
the RES-generated power, and the parameters of the BESS.
However, It should ensure sufficient control room to prevent
uncertainties from disrupting the system.

Drawing inspiration from supervisory control methods in
BESS, such as [32], we design a two-level controller system.
In the first level, we implement an MPC to maintain the
system’s operation within the white zone. Additionally, a rule-
based control is proposed for the second level. This rule-
based controller is designed to take corrective actions when
the system falls into the yellow zone due to estimation errors.
It is important to note that the rule-based control does not focus
on optimization but instead aims to select the most effective
control action to bring the micro-grid parameters back to the
white zone.

A. White Zone Boundary

We assume the following safety margins regarding the
allowable SoC bound and the power exchange limit with the
grid:

ζmin + α ≤ ζ ≤ ζmax − α, (16)

pb
+ + pb

−
l + pl + pgl ≤ pl

max − β, (17)
− pb

−
s − pgs ≤ pl

max − β, (18)

where α ∈ R(q+1)
+ and β ∈ Rq

+ represent safety margins
for the SoC and the power exchange limit with the grid,
respectively. Thus, (16), (17) and (18) must replace (7),(10)
and (11) to find a solution that lies in the white zone.

B. Supervisory Rules

The rule-based controller should track and keep the SoC and
power exchange values within the white zone. It is important
to note that, under ideal conditions without uncertainties, the
microgrid’s power exchange with the utility grid and the SoC
of the BESS remain within the white zone, requiring no in-
tervention. However, if forecast errors occur, these parameters
may deviate from the white zone. The microgrid has exited
the white zone if one or more of the following conditions are
met:

• ζ(tk) < (ζmin + α). This means that the BESS SoC is
approaching its lower bound, so the most sensible action
for the safe operation of a microgrid is to charge the
BESS to bring it back within the white zone.

• ζ(tk) > (ζmax−α). In contrast to the previous situation,
this case indicates that the BESS SoC is now close to its
upper bound. To maintain capacity for future maneuvers
and ensure the safe dispatch of the microgrid in the
presence of uncertainties, it is necessary to discharge the
BESS and bring the SoC back within the white zone.

• pbuy(tk) > pl
max(tk) − β. This situation indicates that

the power flow from the utility grid to the microgrid
has exceeded the safety bound. Therefore, the reasonable
decision is to use the energy stored in the BESS by
discharging it to ensure the safe and secure operation of
the microgrid.

• psell(tk) > pl
max(tk) − β. Similar to the previous

situation, there could be a case where the RES-generated
power in the microgrid exceeds local needs and should
be transferred to the utility grid. Suppose the transferred
power exceeds the safety margins. In that case, the
available capacity of the BESS should be used to absorb
a portion of this power to ensure the safe operation of
the microgrid.

Therefore, sensible charging and discharging actions should
be taken on the BESS unit to address scenarios when the
microgrid enters the yellow zone. To determine a feasible
charging power of the BESS, we should verify that

• The charging (discharging) power is lower (higher) than
the maximum allowable charging (discharging) power,
pb

max (pbmin), ensuring that that (5) is satisfied.
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• The charging (discharging) power satisfies the kinetic
battery model (9), meaning it should be lower (higher)
than m2ζ(tk) + b2 (m1ζ(tk) + b1).

• Neglecting the BESS, the term −pl(tk) − pg(tk) repre-
sents the power that needs to be transferred to the utility
grid at time step tk based on the RES generated power
and load. Considering that we quantify generated power
with non-positive values in this paper, −pl(tk)−pg(tk) >
0 implies that the generated power exceeds the local
power needs, and similarly, −pl(tk)− pg(tk) < 0 means
that local power consumption is greater than power gen-
eration. Recall that pl

max(tk) represents the maximum
power transfer capacity at time step tk, since it is already
occupied by −pl(tk) − pg(tk), the remaining capacity,
considering the safety margin introduced in (17) and
(18), is pl

max(tk)− pl(tk)− pg(tk)−β for charging and
pl

max − pl(tk)− pg(tk) + β for discharging.

The following conditional rules mathematically represent
the logic discussed regarding the necessary actions the BESS
should take when the microgrid enters the yellow zone.

If ζ(tk) < (ζmin + α) then:
pb

+(tk) = min{m2ζ(tk) + b2, pb
max(tk),

pl
max(tk)− pl(tk)− pg(tk)− β},

pb
−(tk) = 0.

(19a)
If ζ(tk) > (ζmax − α) then:pb

+(tk) = 0,

pb
−(tk) = max{m1ζ(tk) + b1, pb

min(tk),
− pl

max − pl(tk)− pg(tk) + β}.
(19b)

If pbuy(tk) > pl
max(tk)− β then:pb

+(tk) = 0,

pb
−(tk) = max{m1ζ(tk) + b1, pb

min(tk),
− pl

max − pl(tk)− pg(tk) + β}.
(19c)

If psell(tk) > pl
max(tk)− β then:

pb
+(tk) = min{m2ζ(tk) + b2, pb

max(tk),
pl

max(tk)− pl(tk)− pg(tk)− β},
pb

−(tk) = 0.

(19d)

In (19a), we address the situation where the SoC is so
close to its lower bound that it has entered the yellow zone,
so the sensible action is to charge the BESS. However, the
charging power must satisfy the kinetic model of BESS,
pb

+(tk) ≤ m2ζ(tk) + b2 and the charging upper bound,
pb

+(tk) ≤ pb
max(tk). On the other hand, the charging power

should not exceed the power transfer capacity. Considering
that plmax(tk) represents the maximum power transfer capac-
ity at time step tk, and it is already occupied by −pl(tk) −
pg(tk), the remaining capacity, considering the safety mar-
gin introduced in (18), is pl

max(tk) − pl(tk) − pg(tk) − β.
This results in p+b (tk) ≤ pl

max(tk) − pl(tk) − pg(tk) − β.
Consequently, the best charging power for BESS to exit the

yellow zone and return to the white zone is pb
+(tk) =

min{m2ζ(tk)+b2, pb
max(tk), pl

max(tk)−pl(tk)−pg(tk)−β}.
Similar reasoning applies to (19b), (19c), and (19d).

Let’s delve deeper into the rules introduced in (19a)-(19d).
For instance, if pbuy(tk) > pl

max(tk) − β, according to
(19c), BESS starts discharging at a sufficiently high power to
compensate for the excess power exchange. Notably, in this
rule, we have not included the safety boundary margins of
SoC, represented by α. Consequently, the BESS can discharge
to ζmin. In other words, we prioritize power exchange with
the grid. If both SoC and power exchange enter the yellow
zone, we will first implement appropriate charge and discharge
actions to keep the power exchange within the white zone,
even if this decision keeps the SoC in the yellow zone.
However, designers can easily modify the priority order of
constraints to align with the specific requirements in their
industrial context.

It is important to note that if the SoC falls into the yellow
zone, and there is no available capacity for compensation, both
charge and discharge powers will be set to zero according to
(19a) and (19b). However, given that the lack of available
capacity indicates a violation of one of the power exchange
boundaries, according to our proposed ordering, the charge
and discharge powers will be overwritten based on (19c) or
(19d).

Remark 4. Without uncertainties, MPC ensures that BESS op-
erates optimally within the predefined white zone without inter-
vention from the rule-based controller. However, in scenarios
where forecast errors occur, the rule-based controller adjusts
the MPC-generated schedule to maintain system stability by
keeping states within the white zone. This adjustment increases
with the increase in forecast errors, leading to greater reliance
on the rule-based schedule for safety assurance. Since the
rule-based controller prioritizes system safety, it may not
produce an optimally efficient schedule. Consequently, as
forecast errors escalate, the resulting schedule deviates further
from the optimal solution as the system prioritizes stability
and constraints by following the rule-based controller plans
instead of the MPC-generated ones.

C. Algorithm

Algorithm 1 represents our proposed Rule-Based Predictive
Control of BESS (RubPC). In Phase 1 of RubPC, pl and pg

are estimated for the upcoming q time samples. In Phase 2, we
solve the optimization problem introduced in Section II within
the T -width time horizon, based on the estimations of pl and
pg . Consequently, we determine the reference signals of pb

+

and pb
− for the next Tc time steps, where pb

− = pb
−
l +

pb
−
s . In Phase 3, at each time step, tk = 1, . . . , Tc, where

tk = 1 is the first time step in the control horizon, RubPC
evaluates whether the current charge or discharge reference of
BESS keeps the states within the white zone. This evaluation
considers the actual load and RES-generated power values,
which may differ from the estimated values when the MPC
was executed.



8

Algorithm 1 Rule-Based Predictive Control of BESS (RubPC)

Require: ∆t, T , Tc, pb
min, pb

max, pl
max, ζmin, ζmax, m1, b1, m2,

b2, β, α, Q, η.
Start
Phase 1: Estimation and Update

Estimate pl and pg for the upcoming q time samples.
Update cbuy and csell for the upcoming q time samples.

Phase 2: Optimization
Solve (15) and find the optimal pb

+ and pb
− (In white zone).

Phase 3: Control
for tk = 1, . . . , Tc do
Check (19a)-(19d), and if needed, update pb

+(tk) and pb
−(tk).

Apply pb
+(tk) and pb

−(tk) to the BESS.
end for

Go to Phase 1.
End

Table II: RubPC and BESS parameters in numerical simulation

Par. Value Par. Value Par. Value

∆t 60s Q 1500kWh ζmin 0.1
T 24h Pb

max 150kW ζmax 0.9

Tc 0.25h Pb
min 300kW m1 −3000

Pl
max 700kW η 0.96 m2 −1500
β 20kW b1 −ζminm1

α 0.05 b2 −ζmaxm2

IV. NUMERICAL SIMULATION

To evaluate the performance of RubPC, as depicted in Fig.
3, we consider a simulation testbed designed based on data of
power consumption and RES-generated power in an electrified
quarry site located near Gothenburg, Sweden, equipped with
solar panels and a BESS. The RubPC and BESS parameters
are presented in Table II. The quarry location yields gravel,
aggregate, and sand at a daily production rate of 6,000 tons.
The construction machinery used at this quarry includes wheel
loaders, excavators, and dump trucks.

A simulation framework was developed in [33] tailored
for modeling off-road transport operations in construction
worksites, focusing on using electric construction equipment.
In this framework, a dynamic model was developed to depict
the electric dump trucks’ longitudinal behavior accurately. The

Fig. 3: Simplified architecture of worksite microgrid.
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Fig. 4: Site layout. The transport paths are illustrated using
different colors.

model’s outputs are subsequently integrated into a fleet model,
enabling the performance evaluation of transport efficiency.
Within the fleet model, a discrete-event simulation technique is
employed to effectively represent the transport operations’ lo-
gistics. This technique facilitates capturing interactions among
the vehicles and resources, providing a comprehensive under-
standing of the operational dynamics.

A. Experimental Setup

An experiment was conducted using the autonomous
battery-electric dump trucks, referred to as “HXs” hereafter,
in the quarry’s transportation operation for a period exceeding
10 weeks. A specific geographical area was designated for this
experiment, where any interaction with manually operated ve-
hicles and humans was strictly prohibited within the dedicated
operational zone. In this experimental setup, 8 identical HXs
were available.

Fig. 4 shows the layout of the transport operation, including
service stations for loading, dumping, and charging. These
service stations operate on a first-come, first-served basis, each
with a maximum service capacity. The loading station (LS)
and dumping station (DS) have a service capacity limit of one
HX at a time. In contrast, the charging station (CS) offers two
parallel charging spots, and an HX will use the first available
charging spot upon arrival. Queue systems are implemented
before each service station. If another HX occupies a service
station, the waiting HXs line up in their respective queues.
In this experiment, HXs are charged up to their full capacity
before leaving the charging station, so the service time, or
charging time, depends on the SoC level of the vehicle upon
arrival.

The operation consists of the following processes:
1) Loading (the wheel loader loads material into the HXs)
2) Transport (the HXs transport material from the loading

station to the dumping station, and the transport path is
marked in red in Fig. 3)

3) Dumping (the HXs deposit material into the crusher at
the dumping station)
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Fig. 5: Actual and estimated load and generated power in our
simulation case study.

4) Transport (the HXs travel to the charging station, and
the path is marked in cyan in Fig. 4)

5) Charging (the battery of HXs is charged to a required
level)

6) Transport (the HXs return to the loading station, and the
path is given in green in Fig. 4)

In our case study, the primary sources of energy consump-
tion are the CSs, where HXs charge their batteries and grid-
connected machinery, such as rock crushers. Estimating the
load of this electrified quarry site is challenging because even
a small variation in the working schedule and the load of the
machinery can significantly shift the overall load. Additionally,
the power generated by solar panels could differ from the
estimated values. The actual and estimated generated power
and load in a sample day are depicted in Fig. 5.

The purchasing electricity price in a sample day, cbuy , is
depicted in Fig. 6. We assume csell = 0.9 ·cbuy . Furthermore,
we consider the lifetime cycles of the BESS to be 2000 [34]
and the cost of the BESS is 1000 SEK (Swedish Krona) per
kW, thus from (14), ca = 0.5SEK.

B. Simulations

To validate RubPC’s effectiveness, we corroborate it from
two perspectives. First, we consider only a sample day and
compare the results achieved by RubPC with conventional
MPC, a rule-based strategy that does not use prediction for
control, and the case without BESS installation. Next, we
verify RubPC’s capability to satisfy the microgrid constraints
by performing Monte Carlo simulations.
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Fig. 6: The purchasing electricity price, cbuy , in a sample day.
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Fig. 7: Comparison of the daily electrical energy cost in our
case study without BESS and with BESS controlled using
RubPC, MPC, and Rule-based control. Note that the BESS
degradation cost is included in RubPC and MPC Rule-based
control costs.

1) Simulation in a Sample Day: Fig. 7 compares the daily
electrical energy prices under different scenarios: the imple-
mentation of RubPC, conventional MPC, no BESS installation,
and a rule-based strategy designed to maintain SoC = 0.5. In
this strategy, the BESS is charged and discharged as needed
to satisfy (10) and (11). It is essential to note that the BESS
degradation cost is included in the overall costs when the
BESS is discharged.

As observed, implementing RubPC leads to a slight increase
in daily costs compared to MPC. This is attributed to the
microgrid occasionally entering the yellow zone due to load
and RES-generated power estimations inaccuracies. During
such instances, we transition from optimal control to rule-
based control, prioritizing the return of states to the white zone
rather than achieving optimality. Consequently, we should
not anticipate better cost-wise outcomes than MPC since we
compromise optimality for reliable control actions, ensuring
that microgrid and BESS constraints are not violated.

In Fig. 8, it becomes apparent that conventional MPC faces
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challenges in ensuring constraint satisfaction. The power flow,
expected to remain below 700, surpasses this limit, reaching up
to 812. This constraint violation poses a significant risk to the
secure operation of infrastructures and may lead to substantial
penalty costs that the factory could incur for exceeding the
maximum power demand allowance. In contrast, RubPC and
Rule-based control strategies effectively satisfy power flow
constraints.

The collective insights from Figs. 7 and 8 underscore that
RubPC adeptly integrates the optimal characteristics of MPC
to yield cost-effective controls. Simultaneously, it incorpo-
rates the robust features inherent in Rule-based controls. This
dual capability positions RubPC as a compelling approach,
proficiently balancing cost considerations with robustness in
constraint satisfaction.

2) Monte Carlo Verification of Constraints Satisfaction: To
assess RubPC in meeting constraints amidst varying stochastic
discrepancies in actual-predicted load and RES power gen-
eration, we conducted 1000 Monte Carlo simulations. These
simulations incorporate average forecast errors of 7% for RES
generation power [35] and 100% for load, considering that
the average load could replace the estimation in challenging
estimation cases. The top plots in Fig. 9 illustrate the dis-
tribution of maximum and minimum power flow to the grid,
while the bottom plots display the distribution of maximum
and minimum SoC of the BESS. As depicted in Fig. 9,
the implementation of RubPC successfully fulfills constraints
amid diverse discrepancy variations in actual-predicted load
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Fig. 9: Probability distribution functions for the minimum
and maximum grid power flow (top) and the minimum and
maximum SoC of BESS unit (bottom) in 1000 Monte Carlo
simulations.

and RES power generation.

V. CONCLUSION

The RubPC introduced in this paper is a straightforward yet
effective algorithm for controlling the SoC in industrial BESS
units, especially when load and local power generation cannot
be precisely estimated. Initially, we partition the feasible space
of decision variables into two sub-zones: the “white” and
“yellow” zones, with the yellow zone serving as the boundary
space between the white and infeasible zones. The key concept
involves incorporating a safety buffer, the yellow zone, when
applying MPC to control the BESS. This buffer ensures
sufficient control room for rule-based control to address dis-
crepancies between actual and estimated values, which could
jeopardize the satisfaction of microgrid and BESS constraints.
To implement this, we use MPC to keep the states within the
white zone, while the rule-based control acts as a supervisory
controller. If the states enter the yellow zone, the rule-based
control adjusts the control action to bring the states back to the
white zone. Our numerical simulation on an electrified quarry
site, characterized by significant load fluctuations and inaccu-
rate load and local power generation estimates, demonstrates
that RubPC adeptly manages uncertainties in estimations and
fulfills microgrid and BESS constraints. In future studies, it
would be valuable to explore the application of RubPC in
complex microgrids with multiple BESSs. The goal is to
synchronize these systems collaboratively and minimize costs
while meeting constraints in the context of inaccurate load and
RES generation forecasts.
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