
Mälardalen University Press Licentiate Theses
No. 347

AUTOMATED PERFORMANCE PROFILING
OF SOFTWARE APPLICATIONS

Shamoona Imtiaz

2023

School of Innovation, Design and Engineering

Copyright © Shamoona Imtiaz, 2023
ISBN 978-91-7485-610-1
ISSN 1651-9256
Printed by E-Print AB, Stockholm, Sweden

Abstract

For industrial systems performance, it is desired to keep the IT infrastructure
competitive through the efficient use of computer resources. However, modern
software applications are complex and often utilize a broad spectrum of available
hardware resources. The way how applications utilize these resources may vary
from platform to platform due to the different architectural features, requirements
and performance levels guaranteed by the hardware as well as due to the type of
application under analysis. It becomes challenging to predict how the deployed
applications will perform on a particular platform, how to improve the hardware
resource utilization, and how to meet the Quality of Service (QoS) requirements.

Computers these days enable us to precisely trace down the performance of
applications using the Performance Monitoring Counters (PMCs) available in
the Performance Monitoring Unit (PMU) of the processors. PMCs can record
micro-architectural events, called PMU events, at the CPU cycle level. Tools
like perf API and PAPI provide performance information using manual and
selective function calls. Nevertheless, it is difficult for humans to make analyses,
visualize performance over time and draw conclusions from this wealth of data
without automatic and intelligent tools.

In this thesis, our first contribution is to propose a cross-platform automated
approach to investigate the overall performance profile of the applications.
Instead of relying on a static and pre-selected list of hardware and software
performance events we avoid the selection bias by capturing the entire range of
performance events specific to the platform on which applications are running.

The performance data being generated from shared resource environments
and hierarchical resource utilization demands makes it harder to represent the

iii

iv

behavior in one model. That being the case, it was deemed appropriate to
demonstrate the compact representation of behavior. So, our next contribution is
to present a simplified model to understand the behavior of performance events.
Therefore, we determine segments in performance data by locating the points in
their data distribution using the change point detection method. The proposed
solution reduces the complexity of data handling, allows the application of
further statistical analyses and provides better visualization.

Lastly, to reveal the out-of-sight information, we present a customized
approach to automatically identify the groups of similar performance events
based on the change in their behavior. There can be several ways to group the
performance data, we opt to form the groups based on change points in the
behavior of the performance events. The knowledge can then be used by the
decision-makers as per their interests such as for load balancing, deployments,
scheduling and anomalous behavior detection.

Sammanfattning

Inom system som kräver hög prestanda är önskan att hålla IT-infrastrukturen
konkurrenskraftig genom effektiv användning av datorresurser. Moderna mjuk-
varuapplikationer är komplexa och använder ofta ett brett spektrum av tillgäng-
liga hårdvaruresurser. En applikations resursutnyttjandebeteende kanske inte är
detsamma eftersom de olika hårdvara arkitekturerna, hårdvarustödet och mäng-
den information en maskin kan bearbeta samtidigt kan variera från en plattform
till annan. Det blir en utmaning att prediktera hur de utplacerade applikation-
erna kommer att prestera på en viss plattform, vad är det bättre utnyttjandet av
hårdvaruresurser och hur man uppfyller kvalitetskraven (QoS).

Moderna datorer nuförtiden möjliggör att vi kan spåra applikationernas
prestanda exakt med hjälp av Performance Monitoring Counters (PMC) som
finns tillgängliga i processorernas Performance Monitoring Unit (PMU). Verkty-
gen som perf API och PAPI tillhandahåller prestandainformation med hjälp av
manuella och selektiva funktionsanrop. Ändå är det svårt för det människan att
analysera, visualisera prestanda över tid och dra slutsatser från denna mängd
data utan tillgång till automatiska och intelligenta verktyg.

I den här avhandlingen är vårat första bidrag att föreslå ett lösning som
undersöker automatiskt applikationernas övergripande prestandaprofil. Istället
för att förlita oss på en statisk och förvald lista över hårdvaru- och mjukvarupre-
standahändelser undviker vi urvalsbias genom att fånga upp hela utbudet av
PMU-händelser som är specifika för plattformen där applikationer körs.

Prestandadata som genereras från delade resursmiljöer gör det svårare att
representera beteendet i en modell. Så vårt nästa bidrag är att presentera en
förenklad modell för att förstå beteendet hos prestandahändelser. Därför föreslår

v

vi

vi ett automatiserat tillvägagångssätt genom att segmentera prestandadata i
mindre dataserier och tillhandahålla en statistisk modell för varje segment i
stället för hela spektrumet. Den föreslagna lösningen ger fördelar som minskad
komplexitet för datahantering, tillämpning av ytterligare statistiska analyser och
bättre visualisering.

Slutligen, för att avslöja den osynliga informationen, presenterar vi ett
anpassat tillvägagångssätt för att automatiskt identifiera grupper av liknande
prestationshändelser baserat på förändringen i deras beteende. Det kan finnas
flera sätt att gruppera prestationsdata, vi väljer att bilda grupperna baserat på
förändringspunkter i beteendehändelserna. Kunskapen kan sedan användas av
beslutsfattarna enligt deras intressen till exempel lastbalansering, schemaläggn-
ing och upptäckt av avvikande beteende.

To my family

Acknowledgment

Confucius formulated that ‘We have two lives, and the second begins when we
realize we only have one’. Moving to Sweden and starting my Ph.D. was like
leaving the uncertainty behind by empowering myself with higher education. So
first of all, I would like to express my gratitude to my first teacher, my father,
who taught me how to face life. Thank you Abu G, your lessons never get old.

Thanks to MDU and all my supervisors for providing me with the best-
suited environment to achieve this goal. Thank you Moris Behnam for your
continuous support and for fostering my passion for cybersecurity with various
opportunities. You have the eye and openness to shape a talent. Thank you Jan
Carlson for your instant and valuable feedback, you have been like a catalyst
throughout my mentorship. Thank you Gabriele Capannini for inspiring this
journey with your mathematical skills and problem-solving ideas, you always
have a way forward. Thank you Marcus Jägemar for always appreciating small
steps to achieve bigger goals, your encouragement brought me the confidence to
seek bigger challenges.

I deeply appreciate Jakob Danielsson for your help in onboarding my Ph.D.
journey. I would also like to express my sincere gratitude to Robbert Jongeling
for being so kind, helpful and approachable in providing quick information than
the internal portal. I am also thankful to my colleagues and peers for the cheerful
times at Java for lunches and Fika.

Finally, I would like to extend my gratitude to my husband for holding me
through the ups and downs of life, to my brother for bringing all the positivity
in me, to all my siblings for always being supportive and to my parents for their
unconditional love and hard work they had done to make us strong and good

viii

ix

individuals. Most importantly, to my kids, Saleh and Abdullah, to restore my
energy on my way back home, You Are Life.

Shamoona Imtiaz
Västerås, October, 2023

List of Publications

Papers included in this thesis1

Paper A: Shamoona Imtiaz, Jakob Danielsson, Moris Behnam, Gabriele Capan-
nini, Jan Carlson, Marcus Jagemar. Automatic Platform-Independent Monitoring
and Ranking of Hardware Resource Utilization. In the 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA 2021).

Paper B: Shamoona Imtiaz, Moris Behnam, Gabriele Capannini, Jan Carlson,
Marcus Jägemar. Automatic Segmentation of Resource Utilization Data. In
1st IEEE Industrial Electronics Society Annual On-Line Conference (ONCON
2022).

Paper C: Shamoona Imtiaz, Gabriele Capannini, Jan Carlson, Moris Behnam,
Marcus Jagemar. Automatic Clustering of Performance Events. In 28th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA2023).

1The included papers have been reformatted to comply with the thesis layout.

xi

xii

Related publications, not included in this thesis

Paper X: Shamoona Imtiaz, Jakob Danielsson, Moris Behnam, Gabriele Ca-
pannini, Jan Carlson, Marcus Jägemar. Towards Automatic Application Fin-
gerprinting Using Performance Monitoring Counters. In the proceedings of
7th international Conference on the Engineering of Computer Based Systems
(ECBS 2021).

Contents

I Thesis 1

1 Introduction 3

2 Research Overview 7
2.1 Problem Overview . 7
2.2 Research Goals . 8

2.2.1 Research Method . 10
2.2.2 Research Approach 10

3 Background and Related Work 13
3.1 Performance . 13
3.2 Performance Monitoring Counters 14
3.3 Change Point Detection . 16
3.4 Sequence Similarity - Similar Is Not Same 18
3.5 Bounded Cost Function . 19
3.6 Related work . 21

4 Research Results 25
4.1 Thesis Contributions . 25

4.1.1 C1: An automated cross-platform mechanism to capture
the overall performance of the applications 26

4.1.2 C2: An automated mechanism to identify the most rele-
vant PMU events related to performance 27

xiii

xiv Contents

4.1.3 C3: An automated approach to present a compact rep-
resentation of complex performance events based on
statistical methods 27

4.1.4 C4: An automated approach to group up similar perfor-
mance events based on a measure of similarity 27

4.2 Included papers . 28
4.2.1 Paper A . 28
4.2.2 Paper B . 29
4.2.3 Paper C . 30

4.3 Publications not included in the thesis 31
4.3.1 Paper X . 31

5 Conclusion and Future Work 33
5.1 Future Work . 34

Bibliography 37

II Included Papers 43

6 Paper A:
Automatic Platform-Independent Monitoring and Ranking of Hard-
ware Resource Utilization 45
6.1 Introduction . 47
6.2 Background . 49

6.2.1 Performance Monitoring 49
6.2.2 Performance Monitoring Unit 50
6.2.3 Perf and PAPI . 51
6.2.4 Multiplexing . 53

6.3 Methodology . 53
6.3.1 Event fetch . 54
6.3.2 Application Characterization using Multiplexing . . . 55
6.3.3 Ranking Events . 56

6.4 Implementation . 57
6.5 Experiments . 58

Contents xv

6.6 Discussion . 62
6.7 Conclusion . 64
6.8 Relatedwork . 64
6.9 FutureWork . 65
Bibliography . 67

7 Paper B:
Automatic Segmentation of Resource Utilization Data 71
7.1 Introduction . 73
7.2 Background . 75

7.2.1 Performance Monitoring Counters 75
7.2.2 Change Points Detection 76
7.2.3 Statistical Methods 77

7.3 Proposed Solution . 77
7.3.1 Segment Detection 78
7.3.2 Segment-wise Statistical Model 79

7.4 Implementation and Experiments 81
7.5 Discussion . 83
7.6 Related Work . 85
7.7 Conclusion and Future Work 85
Bibliography . 87

8 Paper C:
Automatic Clustering of Performance Events 89
8.1 Introduction . 91
8.2 Background . 93

8.2.1 Performance Monitoring Counters 94
8.2.2 Change Point Detection 94
8.2.3 Sequence Similarity - Similar Is Not Same 95
8.2.4 Bounded Cost Function 96
8.2.5 Clustering Analysis 96

8.3 Proposed Solution . 97
8.3.1 Similarity Detection 97
8.3.2 Group Identification 102

8.4 Implementation and Experiments 103

xvi Contents

8.5 Discussion . 107
8.6 Related Work . 108
8.7 Conclusion and Future Work 109
Bibliography . 111

I

Thesis

1

Chapter 1

Introduction

To reduce human intervention and efforts, technology-driven solutions are on
the rise. This adherence to automation has led to rapid scaling of applications
consequently transforming the world into a smaller place (a global village [1])
which is a complex digital system. This increased complexity of software and
hardware architecture affects the efficiency of deployment, creates difficulties in
predicting the system’s behavior, makes it hard to optimize the systems against
better usage of hardware, increases the power consumption, impacts the qual-
ity of service, influences the user experience and increases the cybersecurity
risks. As a countermeasure to complexity, the community has proposed different
approaches such as modularity [2, 3], abstraction, reusability [3], multilevel
approach [4], standardization, and simplification [5]. These approaches are
good design principles but achieving the desired functionality and better insight
into hardware (multilevel cache, pipeline, internal busses, etc.) and software
utilization is still a challenge due to complex interactions, diverse technologies,
non-linear relationships, dynamicity, scale and size. To gather these insights
from the designer and administrative perspective, load analysis and resource
analysis are performed respectively by monitoring the performance of the sys-
tems [6].

System performance monitoring is categorized into processor utilization,
memory usage, disk activity and network usage [6]. That implies it is related
to the resource utilization demand of the software running over hardware. In

3

4 Chapter 1. Introduction

general, modern applications have complex resource utilization behavior such
as in multicore systems a simultaneous demand for a shared cache can directly
impact the system performance and can provide a variable user experience in
a shared resource environment. To achieve the optimization goals it becomes
interesting to know which hardware resources an application is utilizing the
most, what hardware specifications can serve the demands efficiently, and how
a resource demand may generate the request for the other resources. For such
reasons, assessment of the expected performance is part of the performance
monitoring routines. Detailed knowledge of hosted applications on a platform
can forecast potential problems in addition to improved productivity. However,
this information is not readily available without intelligent tools.

One way to precisely trace down the performance of applications is using
Performance Monitoring Counters (PMCs) [7, 6, 8]). PMCs are hard-wired
registers in Performance Monitoring Units (PMUs) of modern processors and
are both architecture and vendor specific. These PMCs are responsible for
monitoring micro-architectural PMU events at the CPU cycle level. The type
and number of PMU events is dependent on the underlying architecture and so
are the number of PMCs. Regardless of the architectural variations, the number
of available PMCs is always significantly lower than the number of PMU events.
These limitations restrict the engineers from monitoring more PMU events than
the number of available PMCs. To them, it is a challenge to monitor numerous
performance events without multiplexing many events on each PMC. Moreover,
typical practices are static solutions based on a pre-selected list of PMU events
with respect to engineers’ interests and knowledge. This brings up the challenge
of an increased likelihood of missing out-of-sight information. Nevertheless,
such inconsistencies in the assessments can be reduced with the help of an
automated cross-platform mechanism capable of determining the performance
profile of the applications based on data-driven solutions instead of relying on
general practices only. A cross-platform approach is what is not limited to a
particular hardware architecture, is not restricted to some vendor specifications
and does not require significant modification in the method when is applied
across different platforms. This ultimately allows to make better decisions if
engineers have the provision of such information.

In particular, our main goal was to analyze how the applications utilize

5

computer resources. Here the first deliberation was to avoid selection bias
(also called Survivorship bias, an error identified by Abraham Wald)’ [9] by
capturing the overall behavior native to the platform on which the application is
running. One of the challenges is that an application may not show the same
behavior if it has been tested on a different platform and is running on a different
one. Either way, measuring all returns a huge number of performance events.
So our obvious goal was to ’look beyond the data in front of us’ and funnel
down the data from ’all’ to the ’interesting ones’ in particular to the underlying
platform. While processing this broad spectrum of performance events one of
the main considerations was to rank the performance events with respect to
performance. The measure of performance is described differently in different
scenarios but it is always related to time such as the number of instructions
executed by the processor in a certain time or the number of packets sent or
received in a particular time-frame over the network [10] are two different
indicators of performance in two different scenarios. We consider the number
of instructions passed through the 5-stage Reduced Instruction Set Computer
(RISC) pipeline to serve as a key indicator of system performance (also explained
in Section 3.1). Identifying the most frequent events with respect to performance
would immediately determine the significant resource utilization behavior.

However, identifying significant performance events with respect to perfor-
mance does not state how the resource utilization was performed. From hundreds
of different performance events, any one can create thousands of data points per
second of execution. This makes it hard to draw conclusions due to the given
amount of data. Hence, the next challenge was to automatically analyze the
acquired measurements. The captured data is complex for the reason that there
is a logical hierarchy in the generation of different performance events coming
from a particular hardware. It occurred as a result of multiple experiments that
it is hard to find one single model that can describe the overall behavior of a
performance event. Hence our interest moved toward simplification which is
splitting the behavior into segments and providing the compact representation
of dynamic-length segments based on statistical methods. The goal was not to
quantify the magnitude of change but to have simple working sets based on the
change in their data distribution.

To extend the analysis, the next goal was to automatically identify if per-

6 Chapter 1. Introduction

formance events can be grouped together based on their behavior. We consider
PMU events can be related if they experience the changes in their behavior in
a similar time fashion. The grouping criteria was not ’exactly the same’ but
’somewhat similar’. Therefore by applying the change point detection method,
the number of changes for each performance event in comparison can come dif-
ferently. This mismatch in the number of changes restricts the use of traditional
clustering algorithms because they need an identical feature as a classification
rule. Besides, complex models are data-hungry for training themselves be-
fore making predictions and this deters the use of machine learning algorithms.
Therefore, the challenge was to design and develop fuzzy matching criteria that
can provide a symmetric feature of comparisons for finding the structure in the
unlabeled data.

In summary, the thesis presents a mechanism to mitigate the hardware
limitations through an automated approach that pinpoints the most relevant
events for the applications’ performance. The mechanism then enables us to
understand the behavior through the compact representation of segments of
performance events. Finally, an automated approach is presented to see if there
are any groups of similar performance events based on changes in their behavior.

Thesis outline The thesis consists of two parts. Part I starts with presenting
the overall research goals including the research approach and research method
in Chapter 2. For a better reading experience, a technical background and related
work are presented next in Chapter 3. Followed by the research methodology,
results are presented in Chapter 4 to explain the contributions made through the
published papers. Towards the end of Part I, a conclusion is presented along
with prospective future work in Chapter 5.

Finally, the included papers are presented in Part II of the thesis.

Chapter 2

Research Overview

In this chapter, a brief description of the problem overview and research goals
is provided. The chapter then continues to present the research method used to
achieve the goals.

2.1 Problem Overview

Traditionally, a comprehensive view of systems performance is required for
optimized and predictable usage of computer resources so we categorize the
problems addressed through this thesis into the following three areas:

1. Unstructured data and selection bias - Specialized skill and training
are prerequisites to a good analysis. So contextual understanding of
both the tool and the examined architecture is required to draw accurate
conclusions. Nevertheless, due to limited cross-platform compatibility,
the current approaches are subject to selection bias. A more transparent
data-driven solution is needed to automate the processes.

2. Difficulty of analysis and visualization - Data interpretation is hard due
to the high volume of data generated by the complex system architectures.
On one hand large volume of data is required for better analysis on the
other hand sampling overhead serves as one of the grounds of statisti-

7

8 Chapter 2. Research Overview

cal noise. All in all, analyzing complex data without visualization and
analysis tools is challenging.

3. Classification - For complex data, underlying patterns and relationships
are hard to reveal. Classification related to the change in behavior im-
plicates a corresponding cause-and-effect relationship between different
performance events such as resource dependence, concurrency, and re-
source contention. Simply applying traditional classification methods
may not report the deep insights, we may need to tailor them to suit our
specific requirements.

2.2 Research Goals

Performance events are important as they are tied to the resource utilization
behavior of the applications. We consider the uncertainty gets higher in a shared
resource environment if one does not know how the limited available resources
are being utilized among different applications. Moreover, to encounter the
challenges of the widely accepted practice of performing stand-alone tests based
on a static list of performance events, an automated solution is a way forward
to avoid human errors, expertise shortage, and manual effort. An evidence-
based insight and understanding of the run-time behavior of the applications is
indeed valuable. Therefore, we started with an overall goal of investigating the
performance profile of applications. To achieve the overall goal we have divided
it into three sub-goals.

Survivorship Bias - The Tale of the Forgotten Ones

Our first goal was to establish an automatic cross-platform mechanism that can
capture the overall resource utilization behavior of the applications with respect
to the performance metric. Rather than relying on selected performance events,
the goal was to involve all of them, including the ones that usually do not pass the
selection criteria due to engineers’ knowledge and interest during the analysis.
In short, the motivation was to include out-of-sight information while providing
solutions and making decisions. Selection bias results in misleading insights and
consequently leads to optimization misdirection, misguided resource allocation

2.2 Research Goals 9

and performance bottlenecks. An automated cross-platform approach is to
reduce development costs, enhance collaboration, provide flexibility to adaption,
reach a wider user audience and deliver consistent user experience.

RG1 – To establish an automated cross-platform mechanism to profile the
performance of the applications.

Because Simple is Beautiful ...

Our next goal was to understand how the application performance and related
system resource utilization evolve at runtime. The obstacle was finding a best-
fit model for such a complex resource utilization behavior. So we aimed to
countermeasure the complexity in the context of simplified data. Therefore,
the goal was established to divide the behavior into dynamic-length segments
such that the segments are being identified based on abrupt changes in data
distribution.

RG2 – To establish an automated cross-platform mechanism for compact
representation of performance events of applications.

What Makes it Related ...

We advanced the research by defining the next goal as identifying groups of
performance events performing similarly. The data distribution may vary within
each but if changes in their data distribution are occurring at similar points in
time then we consider them related. So our focus was to investigate if they are
related with respect to the time of change in their behavior.

RG3 – To automatically group up similar performance events of applications
related to the time of change in their data distribution.

10 Chapter 2. Research Overview

2.2.1 Research Method

In persuasion of an effective and practical research approach, empirical research
inspired by design science [11] was conducted. The advantage is evidence-
based insights to further explore the topic. We employed different kinds of
applications for our experiments ranging from computationally heavy appli-
cations to memory-bound applications [12]. We have also tested a malicious
application [13] that is known for the absurd exploitation of computer resources.
The motive behind their selection is likelihood and significant use in industrial
systems. Such applications can enormously impact the system performance due
to their eager resource utilization demands. Table 2.1 maps the goals achieved
in the corresponding papers.

Papers RG1 RG2 RG3
Paper A X
Paper B X X
Paper C X

Table 2.1. Mapping of research goals into papers

In this thesis, Paper A proposes an approach to obstacle the architectural
limitations of the underlying platform and aims to capture the overall cross-
platform performance profile. The findings of Paper A endorsed the complexity
of resource utilization behavior. So in the temptation of understanding the
captured behaviour Paper B targets to model the system performance using
statistical methods. In continuation to simplified behavior, the work continued
in Paper C to explore the relationship between different performance events to
see the signs of parallelism or influence on each other.

2.2.2 Research Approach

To conduct this research, an empirical approach inspired by design science is
used. The overall research process is shown in Figure 2.1. We describe the steps
as follows:

1. To achieve the overall goal, we formulated the problem to capture and

2.2 Research Goals 11

investigate the overall performance profile of applications.

2. Defined and outlined the mechanism to reach the research goals.

3. Designed and developed an artefact to provide the solution using statistical
methods.

4. Preliminary results were obtained for further analysis using the developed
artefact.

5. The preliminary results were evaluated to see whether the developed
artefact solves the problem defined in step 1. There were two possible
outcomes at this step:

(a) The evaluation may give the ground to iterate back to step 2 to
redefine the artefact.

(b) The reasoning during the evaluation process can also advocate how
the research can be expanded or if there is a need to go back to step 1
to reformulate the problem definition.

The evaluation of preliminary results together with industrial partners
determined when to stop this iterative process.

6. A proposed solution is presented as an overall contribution upon receiving
satisfactory results.

Figure 2.1. Research approach

Chapter 3

Background and Related Work

3.1 Performance

For improved performance of computers, the Reduced Instruction Set Computer
(RISC) pipeline is a fundamental architectural feature of modern microproces-
sors [14]. And Instruction is the elementary unit a modern processor processes
in one cycle, so the desire is to process more and more instructions in a given
time. An instruction is marked retired as soon as it completes the 5-stage RISC
pipeline. Concerning the current study, the more instructions retired in a certain
time indicates higher performance.

The RISC pipeline is 5-stage process that allows concurrent execution of
each stage, also shown in Figure 3.1. An instruction enters the first stage,
called Instruction Fetch (IF), in which the processor fetches the instruction from
memory using the program counter (PC). After the current instruction is fetched,
the process moves to the next stage called Instruction Decode (ID) where the
processor determines what operations are to be performed. Here for a concurrent
approach, the next instruction is fetched in the IF stage as soon as the current
instruction is moved to ID stage. In continuation to the ID stage, now instruction
is executed based on the determined operation in the ID stage and this stage is
called Execute (EX). During EX, if required, data is being written into or read
from memory. Finally, after the execution, results are written back to the register
at Write Back (WB) stage. The instruction is completed once it has passed the

13

14 Chapter 3. Background and Related Work

write-back stage and is then marked as retired.

Figure 3.1. RISC pipeline for single instruction

3.2 Performance Monitoring Counters

The current state of modern computers enables us to precisely trace down the
applications’ resource usage at run-time. Modern computers have special built-
in hardware in the Performance Monitoring Unit (PMU) in the form of direct
memory access (registers). These hard-wired Model-Specific Registers (MSRs)
can be configured to monitor the events occurring during a specific time interval
in a system. An event is an observable activity, state or signal whose occurrence
can be from different sources such as hardware, software, kernel etc [6]. The
registers are generally named Performance Monitoring Counters (PMCs) and
events are called PMU events or performance events [7, 6, 8].

PMCs are grouped into fixed-function counters and general-purpose coun-
ters, where fixed-function counters are hard coded and general-purpose counters
can be programmed to monitor any kind of PMU event. The performance events
are implemented by using processor-specific codes. These codes along with
other attributes of events are provided by the vendor in JSON files i.e. arch event
definition file. The number of available performance counters varies depending
on the hardware architecture. A typical Intel processor contains 3 fixed-function
and 4 general-purpose counters per PMU [7] and the IBM BlueGene supercom-
puter has 64 in total [15]. However, in a multi-core system, each core has its
own set of PMCs. PMCs are not only available for CPUs but sometimes also
for other components of the computer such as GPUs, network interface cards
(NICs), network switches etc [16]. By using these PMCs, micro-architectural

3.2 Performance Monitoring Counters 15

performance events can be monitored in the processor pipeline, such as the
branch predictor unit (BPU), internal memory events, off-core events, network
resource utilization, network problems, etc even for the different components in
parallel.

One advantage of using PMCs is the low overhead of data extraction [17]
for performance events like branch instructions retired, mispredicted branches,
cache hit/misses or floating point operations. There are tools for data extraction
such as perf API which is a performance analysis tool and the official Linux
profiler for both kernelspace and userspace. The perf API was originally de-
veloped for monitoring PMCs but evolved into a tool capable of tracing kernel
activities too [6]. It uses processor-specific raw hardware descriptors for the
performance events. These codes can then be translated into aliases (low-level
human-readable event names) by using an event mapping table [18, 19]. The
hardware vendor provides these hardware details in the form of JSON files (arch
event definition files), as shown in Figure 6.2. In Linux, these JSON files can
be located at tools/perf/pmu-events/arch/foo. The information is then used by
Performance Application Programming Interface (PAPI) which aims to provide
consistent and OS-independent access to PMCs.

PAPI was introduced as an abstraction layer to access the PMCs using
the perf API interface. Over time PAPI has evolved into a component-based
architecture, which can monitor data from multiple components like CPU,
thermal sensors, network, virtual machines etc [16, 20]. PAPI extracts perf
event codes and maps them into human-readable names based on the underlying
platform to save users from low-level architectural details. These performance
events are divided into two categories named presets and native. Presets are
events that are common and consistent across the majority of the platforms
(also called architectural [7]). However native events are specific to a given
platform on which they are running (also called non-architectural [7]). Due
to rapid advancements in technology and version changes, static solutions
require frequent checks and updates which can directly influence the system
performance. So using the ’native mask’ non-architectural performance events
can be extracted directly from the underlying hardware. The categorization of
performance events and organization of profiling tools are also illustrated in
Figure 3.2.

16 Chapter 3. Background and Related Work

Figure 3.2. Illustration of perf API and PAPI in Linux Architecture

In short, when an event occurs it generates data that can further be utilized
for statistical analysis as a metric or to generate an alert. These metrics are the
result of evaluation or monitoring processes and can be used by technicians
for system tuning and detection of faults. Events related to execution time,
application memory-footprint size, memory latency, and error status can also
present important insights.

3.3 Change Point Detection

Statistical methods are a conventional approach to analyze, interpret, and present
huge amounts of data into a brief notation. Some of the common measures are
standard deviation, mean and root mean square level to get valuable insights
into data. However, there are numerous advanced methods also depending on
the need and objective of analysis. Such as for determining segments in a data
series, there are several methods like change point detection, cluster analysis,
and time series segmentation.

Change point detection is one of the methods used for identifying distinct

3.3 Change Point Detection 17

points for partitioning a continuous data series. The method locates structural
and distributional changes based on statistical methods like mean, standard
deviation, and variance, also shown in Figure 3.3. The analysis can be parametric
or non-parametric. A parametric analysis estimates by explicitly providing the
location and/or the number of change points which is somewhat vulnerable to
deviation [21]. On the other hand, the non-parametric analysis does not require
a probability distribution assumption beforehand. These methods can be offline
or online. Online methods use a subset of data series whereas offline methods
use complete data series, from start to end, to make an analysis.

Figure 3.3. Change points detection for a measured performance event i.e.,
TLB_FLUSH

Some of the commonly used methods are likelihood ratio and Bayesian point

18 Chapter 3. Background and Related Work

of view for single change point and multiple change point detection respectively.
From a Bayesian point of view, it is possible to update the probability of the
hypothesis with more data and a penalized contrast function [22]. The process is
offline and the penalized contrast function starts with splitting the data series into
two. Empirical estimation of statistical property (such as standard deviation, root
mean square level, slope) is then calculated for each. Next, the sum of deviation
from all the points in each part is calculated to see how much residual error
still exists. The sum of aggregated deviations of each part gives a total residual
error. This process is repeated until the final residual error is minimum [23].
Therefore, the Bayesian point befits the aim of our study. The result of the
described process is also elaborated in Figure 3.3 for a measured performance
event e.g., TLB_FLUSH.

It is also good to note some of the popular applications of change point
detection are signal processing, genome, trend analysis, time series, intrusion
detection, spam filtering, website tracking, quality control, step detection, edge
detection, and anomaly detection.

3.4 Sequence Similarity - Similar Is Not Same

Sequence analysis or sequence similarity analysis is a popular method of iden-
tifying DNA similarity, a span of life trajectories & career and text similarity,
alignment distances, document similarity and classification [24]. Some known
methods are distance function (Chi-Squared, Euclidean), common attributes
(Hamming distance, Longest common subsequence), Edit distance, Cosine simi-
larity and Jaccard similarity. These methods are usually based on the measure
of distance, order, position, time, duration and/or the number of repetitions [24].
Edit distance can be an appropriate choice if the aim is to quantify inequality.
The method applies a weight for each edit function (insertion, deletion, substi-
tution) until a sequence becomes identical to the other one. Cosine similarity
is useful when similarity is not intended in terms of the size of the data. It can
also be used in situations when the data sets are of different lengths and the
orientation of the data is more important than the magnitude of the data [25].
Another method is Jaccard similarity which is a proximity measurement of
shared properties i.e., size of intersection over the size of union [26].

3.5 Bounded Cost Function 19

All of these methods are based on an exact match of elements. However, in
a classification problem, it is possible that some items are similar but not the
same. Things are the same if they are identical to each other. Things can still be
similar if they are not exactly the same. For example, if there are four sequences
as below:

S1 = {3, 5, 7, 1700},
S2 = {3, 5, 7, 1700},
S3 = {2, 5, 9, 1700},
S4 = {3, 5, 1700}

We can see that sequence S1 and sequence S2 are the same because all of
their elements are an exact match to each other. Yet S3 and S4 are similar to
S1 & S2 because S3 is slightly different for one element and S3 is missing one
value for an exact match.

3.5 Bounded Cost Function

In a matching principle, when the objects in comparison are not exactly the
same the similarity is quantified with probability. There are many ways to
compute the probability such as Binary step function, Linear functions, and
Non-linear functions. The binary step function applies a static cost if a certain
threshold is passed. The drawback is that it does not provide back-propagation.
Linear functions are mean, variance, and covariance and they also do not offer
back-propagation and the absence of one value can augment the cost of the
others.

In comparison, there is a variety of non-linear cost functions such as Sigmoid,
Hyperbolic tangent (Tanh), Rectified linear unit (ReLU), and Exponential linear
unit (ELU) [27]. These functions have the advantage of proposing a smooth and
bounded cost. For example, Sigmoid converts the number on a scale of 0 and 1
and gives the probability value as output, also shown in Figure 3.4. Its smooth
scale gives the rate of change based on the gradient descent. The s-shaped

20 Chapter 3. Background and Related Work

curve has one inflection point where the curve changes the shape from convex
to concave. This point can serve as a decision boundary for classification.

Figure 3.4. Graph of sigmoid function

The Sigmoid function is also important in artificial neural networks and
logistic regression. Logistic regression is used to predict binary classification
where Sigmoid plays the role of the activation function using its bounded scale.
The bounded scale is reasonable to estimate the likelihood of probability which is
why they are considered reliable to use with analysis algorithms for optimization
purposes also. Therefore, we opt to use the non-linear Sigmoid function to
calculate the cost to be applied while matching the sequences.

3.6 Related work 21

3.6 Related work

Here we present some of the related work in comparison to our research work
and state-of-the-art. Most of the work in comparison is the one whose motivation
comes mainly from the use of PMCs for various purposes. We also compare the
ones who propose customized grouping and classification approaches.

The researchers [10] employed PMCs for the characterization of system
performance and determined resource dependence of an application based on
architectural events which are common across many platforms. One of the
limitations of their study was to explicitly feed the performance events list
for the characterization of the application. Their eventual focus was last-level
caches only. Whereas our study focuses on all native events coming from the
underlying platform to provide an automatic cross-platform solution.

Not only the cache but to explore other resources also there are studies that
have used PMCs to estimate the power and bandwidth consumption [28, 17, 8]
and to check the performance of applications in terms of CPU load and enhance
quality of service by improving the performance [29]. Another study has used
performance counters for the safety and security of the systems by proposing
an attack mitigation model [30]. But as per our knowledge, these studies did
not monitor all performance events of the platform they are running on. An
interesting study performed by [15] on Blue Gene/PTM was on a supercomputer
to monitor the massive number of performance events (256 concurrent 64b
counters). Although the capability to monitor performance was increased it
is not very commonly available architecture across many Small and Medium
Enterprises (SMEs) so the solution is not generally applicable.

There are situations when splitting the data set into segments becomes
appropriate to provide a solution to the given problem. Several researchers have
introduced various methods of segment detection. The well-known algorithms
for change point detection are E-Agglomerative, Wild binary segmentation,
Bayesian analysis of change points and Iterative robust detection of change
points [31]. E-Agglomerative is a cluster-based approach to estimate change
points depending on the goodness of fit [32]. The method is used to detect
multiple change points within a data set. However, many of the methods require
pre-screening to exclude the irrelevant points for improved accuracy which is

22 Chapter 3. Background and Related Work

not the case with our proposed solution. We consider all the data points and
focus on abrupt change after a stable behavior.

Yao considered multiple change points with the Bayesian point of view [33].
The Bayesian point of view is a form of statistical reasoning based on calculated
probabilities to provide the best possible prediction. It is used when the inputs
and information are not sufficient to determine the output. Yao also presented
graph-based change point detection for high dimensional and non-euclidean
data [34]. He studied the single-point case to estimate a change even when there
is noise in data. The method can even estimate when the number of jumps is
unknown and they are within defined bounds.

Another study [35] used randomly sampled basic block frequencies (sparse)
without any dedicated hardware support and using PMCs. They propose Precise
Event Based Sampling (PEBS) to reduce the run time overhead as one of the
prime goals of their study. But it requires extensive normalization of data before
processing.

To identify similarities and differences between multiple data sets some of
the standard methods are least square and likelihood. However, it is not possible
to directly apply the concepts due to inconsistencies in data and complicated
requirements and conditions. There are other existing similarity approaches
such as DNA similarity, Cosine similarity, Edit distance, and Jaccard index but
they have preconditions like identical or different lengths, same data structure
or exact match [24, 25, 26]. The way they compare is more strict and can
be applied in absolute conditions. When it is not the case researchers like
Fletcher and Islam [36] have used the Jaccard index for comparing the patterns
coming from different techniques. Their proposed method converts each pattern
into a single element which is also the commonality between their and our
solution. However, the method to get a discrete value of similarity is different.
Their method translates each pattern into an element of its own set whereas we
compute the similarity based on element-wise weighted distance with respect
to the lengths of the sequences. This is an additional strength of our proposed
mechanism to handle the inconsistencies of data.

In situations involving limited data and diverse conditions for grouping,
an approach has been applied by Koch, Zemel and Salakhutdinov [37] for
one-shot image recognition where very limited or sometimes single example

3.6 Related work 23

is available to compare in supervised machine learning. They employed the
sigmoid function in siamese convolutional neural networks to find the similarity
between the final and hidden layer of the twin network. Their approach was to
scale the absolute distance between 0 and 1 with the help of training parameters.
Since their problem was binary classification so instead of utilizing real-value
output the values from 0.5 to 1 were regarded as dissimilar. Whereas we use the
resultant weighted cost as a probability of similarity. Moreover, their working
sets were of the same length so one-to-one comparisons were directly possible
which on the contrary was not a viable option for us. So we provide additional
functionality to find the closest possible match with our holistic and intelligent
approach.

Chapter 4

Research Results

4.1 Thesis Contributions

This section lists the contributions made through the goals achieved in this
research, also shown in Figure 4.1.

• C1: An automated cross-platform mechanism to capture the overall per-
formance of the applications.

• C2: An automated mechanism to identify the most relevant PMU events
related to performance that describes what computer resources have been
utilized most by the application under investigation.

• C3: An automated approach to present a compact representation of com-
plex performance events based on statistical methods

• C4: An automated approach to group up similar performance events based
on a measure of similarity

25

26 Chapter 4. Research Results

Figure 4.1. Mapping of research goals into corresponding contributions and papers

4.1.1 C1: An automated cross-platform mechanism to capture the
overall performance of the applications

One of the core contributions made through Paper A [38] and Paper B [39] is
the automated profiling of applications which has an enhanced ability to capture
the overall behavior of applications on the platform where the application is
running. The ability to capture the performance events native to the underlying
computer architectures makes it consistent across different platforms. Besides,
the automated solution is equally interesting for experts and non-experts in terms
of ease of use, efficiency, competence, dynamicity, consistency and decision-
making.

The consistent mechanism also ensures reduced human intervention and
manual effort by characterizing all available performance events for the entire ex-
ecution period of the application through re-run multiplexing. Whereas existing
temporal multiplexing approaches are prone to blind spots due to which critical
times may go unnoticed during event evaluation. Moreover, re-run multiplexing
enables to characterize the short duration applications which can be problematic
in the case of temporal multiplexing.

4.1 Thesis Contributions 27

4.1.2 C2: An automated mechanism to identify the most relevant
PMU events related to performance

The work in Paper A [39] continues to describe what computer resources have
been utilized most by the application under investigation. The way the applica-
tions utilize computer resources indicates the likelihood of resource boundness,
resource contention and security threats. Since different resources can be in-
volved during the execution of an application the proposed mechanism is capable
of reporting which hardware or software resources the application was utilizing
most. Using statistical methods the mechanism ranks all characterized events
with respect to performance to report the most relevant ones for the particular
application under investigation.

4.1.3 C3: An automated approach to present a compact repre-
sentation of complex performance events based on statistical
methods

The work in Paper B [39] contributes not only to capture but also to understand
the behavior of the applications. Interpretation of data generated as a result
of complex resource utilization behavior was challenging to translate into one
model. Various simplification and abstraction methods like polynomial and curve
fitting techniques provided unsatisfactory results. Realizing the complexity, a
sophisticated approach to simplify the working data set was determined i.e., to
decompose the data into segments. There are many approaches for segmentation,
current work emphasizes abrupt changes in data distribution as segmentation
points. These changes can be identified using statistical methods like change
point detection which enables to locate the significant moments in data shifts.
Instead of investigating each point in time, considering the critical moments
helps eliminate the impact of statistical noise caused by sampling errors.

4.1.4 C4: An automated approach to group up similar performance
events based on a measure of similarity

A further contribution was made through Paper C [40] to group up similar
performance events. There are different classification criteria to identify the

28 Chapter 4. Research Results

groups. However, due to quite a few limitations, applying a traditional clustering
algorithm was not a viable solution in our case. The main challenge was to group
up based on a ’not exactly same’ but a ’somewhat similar’ basis considering data
is coming from complex, sensitive and rational resource utilization demands.

Another challenge was to deal with uneven lengths of series in compari-
son. Therefore, we have proposed a novel approach by tweaking the Sigmoid
function and Jaccard index that considers the real value differences as cost
while computing the weights of similarity. The methods can efficiently augment
the existing clustering algorithms as a similarity function to compute the pairs
of performance events. These pairs are then represented in a tree-structure
i.e. dendrogram where the height of each linkage represents how different the
performance events are from each other.

4.2 Included papers

A mapping of contributions to the corresponding papers is illustrated in
Table 4.1.

Paper A Paper B Paper C
RG1 X X C1
RG1 X C2
RG2 X C3
RG3 X C4

Table 4.1. Mapping of contributions made through the papers for each research goal

4.2.1 Paper A

Title: Automatic Platform-Independent Monitoring and Ranking of Hardware
Resource Utilization
Authors: Shamoona Imtiaz, Jakob Danielsson, Moris Behnam, Gabriele Capan-
nini, Jan Carlson, Marcus Jagemar
Status: Published in proceedings of 26th IEEE International Conference on

4.2 Included papers 29

Emerging Technologies and Factory Automation (ETFA 2021)
Abstract: In this paper, we discuss a method for automatic monitoring of hard-
ware and software events using performance monitoring counters. Computer
applications are complex and utilize a broad spectra of the available hardware
resources, where multiple performance counters can be of significant interest
to understand. The number of performance counters that can be captured si-
multaneously is, however, small due to hardware limitations in most modern
computers. We suggest a platform independent solution to automatically retrieve
hardware events from an underlying architecture. Moreover, to mitigate the
hardware limitations we propose a mechanism that pinpoints the most relevant
performance counters for an application’s performance. In our proposal, we uti-
lize the Pearson’s correlation coefficient to rank the most relevant performance
counters and filter out those that are most relevant and ignore the rest.
My Contribution: Our industrial partner and co-author Marcus Jägemar has
initiated the need for the problem to be solved. Following that, I was the main
driver and author of this work. All authors have also contributed to the planning
of the paper through productive and joint discussions. I have extended and
implemented the characterization prototype provided by Jakob Danielsson. I
have also written the first draft of the paper and all authors have contributed to
improving the content with their valuable feedback.

4.2.2 Paper B

Title: Automatic Segmentation of Resource Utilization Data
Authors: Shamoona Imtiaz, Moris Behnam, Gabriele Capannini, Jan Carlson,
Marcus Jägemar
Status: Published in proceedings of 1st IEEE Industrial Electronics Society
Annual On-Line Conference (ONCON 2022)
Abstract: Industrial systems seek advancements to achieve required level of
quality of service and efficient performance management. It is essential though
to have better understanding of resource utilization behaviour of applications in
execution. Even the expert engineers desire to envision dependencies and impact
of one computer resource on the other. For such reasons it is advantageous to
have fine illustration of resource utilization behaviour with reduced complexity.
Simplified complexity is useful for the management of shared resources such

30 Chapter 4. Research Results

that an application with higher cache demand should not be scheduled together
with other cache hungry application at the same time and same core. However,
the performance monitoring data coming from hardware and software is huge
but grouping of this data based on similar behaviour can display distinguishable
execution phases. For benefits like these we opt to choose change point analysis
method. By using this method our study determines an optimal threshold which
can identify more or less same segments for other executions of same application
and same event. Furthermore the study demonstrates a synopsis of resource
utilization behaviour with local and compact statistical model.
My Contribution: I am the main driver and author of this work. All authors
have also contributed to planning the paper through productive discussion. I
have implemented the prototype and written the first draft of the paper and all
authors have contributed to improving the content with their valuable feedback.

4.2.3 Paper C

Title: Automatic Clustering of Performance Events
Authors: Shamoona Imtiaz, Gabriele Capannini, Jan Carlson, Moris Behnam,
Marcus Jagemar
Status: Published in proceedings of 28th Annual Conference of the IEEE
Industrial Electronics Society (ETFA)
Abstract: Modern hardware and software are becoming increasingly complex
due to advancements in digital and smart solutions. This is why industrial
systems seek efficient use of resources to confront the challenges caused by the
complex resource utilization demand. The demand and utilization of different
resources show the particular execution behavior of the applications. One way
to get this information is by monitoring performance events and understanding
the relationship among them. However, manual analysis of this huge data is
tedious and requires experts’ knowledge. This paper focuses on automatically
identifying the relationship between different performance events. Therefore,
we analyze the data coming from the performance events and identify the points
where their behavior changes. Two events are considered related if their values
are changing at approximately the same time. We have used the Sigmoid
function to compute a real-value similarity between two sets (representing two
events). The resultant value of similarity is induced as a similarity or distance

4.3 Publications not included in the thesis 31

metric in a traditional clustering algorithm. The proposed solution is applied to
6 different software applications that are widely used in industrial systems to
show how different setups including the selection of cost functions can affect
the results.
My Contribution: I was the main driver and author of this work. All co-authors
have also contributed to the planning of the paper through productive and joint
discussions. Together with Gabriele Capannini and Jan Carlson, we discussed
different approaches for the proposed method that I have been implementing to
evaluate their validity. Finally, the prototype provided by Gabriele Capannini
was selected and then implemented by me. I have also written the first draft of
the paper after which I and Gabriele Capannini have rewritten the methodology
to its final version. All authors have also contributed to improving the content
with their valuable feedback.

4.3 Publications not included in the thesis

4.3.1 Paper X

Title: Towards Automatic Application Fingerprinting Using Performance Moni-
toring Counters
Authors: Shamoona Imtiaz, Jakob Danielsson, Moris Behnam, Gabriele Capan-
nini, Jan Carlson, Marcus Jägemar
Status: Published in proceedings of 7th International Conference on the Engi-
neering of Computer Based Systems (ECBS 2021)
My Contribution: I am the main driver and author of this work. All authors
have also contributed to planning the poster paper through productive discussion.
I have written the first draft of the paper and all authors have contributed to
improving the content with their valuable feedback.

Chapter 5

Conclusion and Future Work

The main goal of this thesis is to understand the resource utilization behavior of
the applications when running on a particular platform. Various performance
events are available per platform, we aimed for an automated approach to provid-
ing better insights of application behavior. In system performance monitoring,
CPU and memory are among the main sources of information [6] however
the information can be collected from software, hardware and kernel as well.
We have identified the challenges coming from hardware limitations, vendor
specifications and lack of documentation while collecting and processing this
information. The proposed mechanism does not require significant modifications
to implement across different platforms since it unfolds the platform-specific list
of available performance events to start its operations. Moreover, the proposed
mechanism is resistant to selection bias which otherwise can be a reason to miss
signs, clues and details of determining undesired state. These challenges were
handled in the best possible way to establish a good foundation for comprehen-
sion and knowledge about application behavior. The proposed solution has also
made an advancement to approach the aim of reduced investigation time and
effort through an automated approach.

We have further explored and developed a solution to understand different
phases in the behavior of each performance event. It was hard to present the data
using one model so a simplified approach was determined i.e., segmentation.
This enabled us to only consider the points in time where a change in resource

33

34 Chapter 5. Conclusion and Future Work

utilization demand is expected after a stable behavior. All these times can be con-
sidered during resource management to handle the parallel resource utilization
demand from concurrent applications. This improves efficiency and saves from
continuous monitoring. The proposed method does not require normalization
which is a pre-condition for many methods. As a result of segmentation, the
simplified subsets allow focused analysis, simplified visualization and deeper
insights.

Finally, a contribution is made towards a relative picture of performance
events with respect to changes in their behavior. It is hard to see a relationship
between different performance events due to the vast variety of architectures and
available performance events per platform. If the data is small then it still can
be analyzed with extra effort but in case of the sheer volume of data, which is a
result of complex behavior also, is time-consuming, error-prone and challenging.
So a mechanism is proposed here that can compute the proximity of similarity
between performance events by applying weighted real-value costs to relate
different performance events. The automated mechanism reports groups of
similar performance events with a decent accuracy based on concurrent changes
in their behavior. The proposed solution can serve as a baseline feature to
determine the relation and dependency between different resources.

5.1 Future Work

Solving complex performance problems usually requires holistic approaches.
Finding an issue is not a problem, finding what matters the most at the time of
decision is a challenge. The aim is to create a fingerprint of applications using
its performance events. Having a fingerprint of an application can serve various
purposes such as identification, detection or even decision-making.

In the future, we will extend the investigation for the segment-wise under-
standing of performance events. We are also interested in exploring how the
segmentation can be performed with less number of measurements. The more
the data the better examples are for comparison and change detection. One
possible direction was to apply machine learning models but even the basic
machine learning models are data-hungry to learn from the previously seen data.
And when we are working on a very low level then it becomes a big overhead

5.1 Future Work 35

to run these computationally heavy models. So the aim is to look for more
sophisticated and lightweight statistical methods that can provide better insights
even when there are not many or any examples to be compared.

Another immediate extension can be relating the trends in the data before and
after the segmentation points to identify the impact between different resources.
This way one can focus on the magnitude of the change for budget management
which is another performance management problem that results in over-provision
of the resources. Moreover, a future step is to provide a user-friendly publicly
available tool to benefit from its capabilities. Making it open-source would allow
improvements over time with the help of the wider community.

This also needs to be further explored what insights can be drawn to identify
any relation at different resource levels. Currently, available documentations are
poorly maintained that even the manual analysis using the performance event
name is a problem. So a solution that can already relate the different data sets
of performance events to their names, codes and details can supplement the
documentation and analysis activities.

Finally, our aim is to present a model that can portray the best overall
resource utilization behavior of the application.

Bibliography

[1] Marshall McLuhan. The Gutenberg Galaxy: The Making of Typographic
Man. University of Toronto Press, 1962.

[2] Gabriel Balaban, Ivar Grytten, Knut Dagestad Rand, Lonneke Scheffer,
and Geir Kjetil Sandve. Ten simple rules for quick and dirty scientific
programming. PLoS Computational Biology, 17(3):223–231, 2021.

[3] Shirley Gregor, Leona Chandra Kruse, and Stefan Seidel. Research per-
spectives: the anatomy of a design principle. Association for Information
Systems, 2020.

[4] Loic Brevault, Mathieu Balesdent, and Ali Hebbal. Multi-objective mul-
tidisciplinary design optimization approach for partially reusable launch
vehicle design. Journal of Spacecraft and Rockets, 57(2):373–390, 2020.

[5] Vitaly Petrov, Thomas and, and Iwao Hosako. IEEE 802.15.3d: First
Standardization Efforts for Sub-Terahertz Band Communications toward
6G. IEEE Communications Magazine, 58(11):28–33, 2020.

[6] Brendan Gregg. Systems performance: enterprise and the cloud. Pearson,
2nd edition, 2020.

[7] Intel. Intel® 64 and ia-32 architectures software developer’s manual.
Technical report, Intel, 2022.

[8] García-Martín Eva, Crefeda Faviola Rodrigues, Graham Riley, and Håkan
Grahn. Estimation of energy consumption in machine learning. Journal of
Parallel and Distributed Computing, 134:75–88, 2019.

37

38 Bibliography

[9] Marc Mangel and Francisco J. Samaniego. Abraham wald’s work on
aircraft survivability. Journal of the American Statistical Association,
79(386):259–267, 1984.

[10] Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris Behnam,
and Mikael Sjödin. Resource dependency analysis in multi-core systems.
In 2020 IEEE 44th Annual Computers, Software, and Applications Confer-
ence (COMPSAC), pages 87–94. IEEE, 2020.

[11] Paul Johannesson and Erik Perjons. An introduction to design science,
volume 10. Springer Cham, 2014.

[12] Louis-Noël Pouchet. Polybench/c the polyhedral benchmark
suite. https://web.cse.ohio-state.edu/~pouchet.2/
software/polybench/#description, 2023.

[13] IAIK. Meltdown. https://github.com/IAIK/meltdown, 2023.

[14] Aneesh Raveendran, Vinayak Baramu Patil, David Selvakumar, and Vivian
Desalphine. A RISC-V instruction set processor-micro-architecture design
and analysis. International Conference on VLSI Systems, Architectures,
Technology and Applications (VLSI-SATA), pages 1–7, 2016.

[15] Valentina Salapura, Karthik Ganesan, Alan Gara, Sexton Gschwind, John
James C., and Robert E. Walkup. Next-generation performance counters:
Towards monitoring over thousand concurrent events. ISPASS 2008-IEEE
International Symposium on Performance Analysis of Systems and software,
139-146:189–204, 2008.

[16] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting
performance data with PAPI-C. In Tools for High Performance Computing
2009, pages 157–173. Springer, Berlin, Heidelberg, 2010.

[17] Stéphane Eranian. What can performance counters do for memory sub-
system analysis? In Proceedings of the 2008 ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness: Held in Conjunction
with the Thirteenth International Conference on Architectural Support for

https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/#description
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/#description
https://github.com/IAIK/meltdown

Bibliography 39

Programming Languages and Operating Systems (ASPLOS ’08), MSPC
’08, page 26–30, New York, NY, USA, 2008. Association for Computing
Machinery.

[18] Linux Foundation. pmu-events. https://github.com/torvalds/
linux/tree/master/tools/perf/pmu-events, 2023.

[19] Intel Corporation. perfmon. https://github.com/intel/
perfmon, 2023.

[20] Matthew Johnson, McCraw Heike, Shirley Moore, Phil Mucci, John Nel-
son, Dan Terpstra, Vince Weaver, and Tushar Mohan. PAPI-V: Perfor-
mance Monitoring for Virtual Machines. 41st International Conference on
Parallel Processing Workshops, pages 194–199, 2012.

[21] Changrang Zhou, Ronald van Nooijen, Alla Kolechkina, and Markus Hra-
chowitz. Comparative analysis of nonparametric change-point detectors
commonly used in hydrology. Hydrological sciences journal, 64(14):1690–
1710, 2019.

[22] Marc Lavielle. Using penalized contrasts for the change-point problem.
Signal processing, 85(8):1501–1510, 2005.

[23] MathWorks. findchangepts - Find abrupt changes in signal, 2023.

[24] Matthias Studer and Gilbert Ritschard. What matters in differences be-
tween life trajectories: a comparative review of sequence dissimilarity
measures. Journal of the Royal Statistical Society: Series A (Statistics in
Society), 179: 481-511,, 179(2):481–511, 2016.

[25] Syed S. Ali Zaidi, Muhammad Moazam Fraz, Muhammad Shahzad, and
Sharifullah Khan. A multiapproach generalized framework for automated
solution suggestion of support tickets. In International Journal of Intelli-
gent Systems, pages 3654–3681, 2022.

[26] Jiajie Peng, Jingyi Li, and Xuequn Shang. A learning-based method for
drug-target interaction prediction based on feature representation learning

https://github.com/torvalds/linux/tree/master/tools/perf/pmu-events
https://github.com/torvalds/linux/tree/master/tools/perf/pmu-events
https://github.com/intel/perfmon
https://github.com/intel/perfmon

40 Bibliography

and deep neural network. In BMC bioinformatics, volume 21, pages 1–13,
2020.

[27] Dabal Pedamonti. Comparison of non-linear activation functions for
deep neural networks on mnist classification task. In rXiv preprint
arXiv:1804.02763, 2018.

[28] Rafia Inam, Mikael Sjödin, and Marcus Jägemar. Bandwidth measurement
using performance counters for predictable multicore software. IEEE 17th
International Conference on Emerging Technologies & Factory Automation
(ETFA 2012), pages 1–4, 2012.

[29] Marcus Jägemar. Utilizing Hardware Monitoring to Improve the Quality
of Service and Performance of Industrial Systems. Doctoral dissertation,
Mälardalen University, 2018.

[30] Alberto Carelli, Alessandro Vallero, and Stefano Di Carlo. Performance
Monitor Counters: interplay between safety and security in complex Cyber-
Physical Systems. IEEE Transactions on Device and Materials Reliability
19, pages 73–83, 2019.

[31] Shilpy Sharma, David A. Swayne, and Charlie Obimbo. Trend analysis and
change point techniques: a survey. In Energy, Ecology and Environment,
volume 1, pages 123–130, 2016.

[32] Hossein Alilou, Carolyn Oldham, Don McFarlane, and Matthew R. Hipsey.
A structured framework to interpret hydro-climatic and water quality trends
in Mediterranean climate zones. Journal of Hydrology, 614, 2022.

[33] Yi-Ching Yao. Estimating the number of change-points via
schwarz’criterion. In Statistics & Probability Letters, volume 6, pages
181–189, 1988.

[34] Yi-Ching Yao and S. T. AU. Least-squares estimation of a step function.
The Indian Journal of Statistics, Series A, pages 370–381, 1989.

[35] Andreas Sembrant, David Eklov, and Erik Hagersten. Efficient software-
based online phase classification. In 2011 IEEE International Symposium
on Workload Characterization (IISWC), pages 104–115. IEEE, 2011.

[36] Sam Fletcher and Md Zahidul Islam. Comparing sets of patterns with the
jaccard index. Australasian Journal of Information Systems, 22, 2018.

[37] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural
networks for one-shot image recognition. ICML deep learning workshop,
2(1), 2015.

[38] Shamoona Imtiaz, Jakob Danielsson, Moris Behnam, Gabriele Capan-
nini, Jan Carlson, and Marcus Jägemar. Automatic platform-independent
monitoring and ranking of hardware resource utilization. In 26th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1–8. IEEE, 2021.

[39] Shamoona Imtiaz, Moris Behnam, Gabriele Capannini, Jan Carlson, and
Marcus Jägemar. Automatic segmentation of resource utilization data.
In 1st IEEE Industrial Electronics Society Annual On-Line Conference
(ONCON 2022, pages 1–6. IEEE, 2022.

[40] Shamoona Imtiaz, Gabriele Capannini, Jan Carlson, Moris Behnam, and
Marcus Jägemar. Automatic clustering of performance event. In 28th
Annual Conference of the IEEE Industrial Electronics Society (ETFA 2023,
pages 1–8. IEEE, 2023.

II

Included Papers

43

Chapter 6

Paper A:
Automatic
Platform-Independent
Monitoring and Ranking of
Hardware Resource Utilization

Shamoona Imtiaz, Jakob Danielsson, Moris Behnam, Gabriele Capannini, Jan
Carlson, Marcus Jägemar
In the 26th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA 2021).

45

Abstract

In this paper, we discuss a method for automatic monitoring of hardware and
software events using performance monitoring counters. Computer applications
are complex and utilize a broad spectra of the available hardware resources,
where multiple performance counters can be of significant interest to understand.
The number of performance counters that can be captured simultaneously is,
however, small due to hardware limitations in most modern computers. We sug-
gest a platform independent solution to automatically retrieve hardware events
from an underlying architecture. Moreover, to mitigate the hardware limitations
we propose a mechanism that pinpoints the most relevant performance counters
for an application’s performance. In our proposal, we utilize the Pearson’s
correlation coefficient to rank the most relevant performance counters and filter
out those that are most relevant and ignore the rest.

6.1 Introduction 47

6.1 Introduction

Due to modern trends towards real-time data acquisition, inter-connectivity,
data exchange and automation, Industry 4.0 has revolutionised the industrial
technology into cyber physical systems (CPS), Internet of things (IoT) and cloud
computing. While bringing improved functioning, enhanced communication
capabilities and shared services, this digital transformation has also put an
increased pressure on engineers and system administrators. For them to keep
such infrastructure functional, efficient, reliable and secure, it is more than ever
required to conduct systematic health checks of computer systems and apply
performance monitoring routines. A good knowledge of hardware resource
demand and utilization by the hosted applications would facilitate the engineers,
system administrators and auditors to ensure the Quality of Service (QoS) and
security of IT infrastructure from undesired use.

The hardware resources required by an executing application may differ
over the time. The demand could be for dedicated and/or shared resource(s)
which is on discrete disposal, time scheduled [1] or managed through isolation
techniques [2]. Observing resource utilization can reveal a distinctive behaviour
of the application and can be used to tune the quality assurance process. Fur-
thermore, in-depth analysis of performance monitoring data can ensure that
system is performing as it is expected and can capture the execution profile of
an application.

System performance Monitoring can be categorised into processor utiliza-
tion, disk activity, memory usage and network usage. Modern computers have
performance monitoring units (PMUs), responsible for monitoring the micro-
architectural events. There are on-chip hard-wired special sets of registers known
as performance monitoring counters (PMCs). The type and number of micro-
architectural events are absolutely dependent on the underlying architecture
and so is the number of PMCs. Regardless of the architectural variations from
platform to platform there are events which are consistently available between
many models, but this number is quite low and the terminology of event names
are not identical across platforms. In these cases, the operator is bound to rely
on information coming directly from vendor. Based on specific architectural
knowledge, the PMCs can be configured to record hardware event metrics, but

48 Paper A

the limited number of physical counters bound the number of events that can be
monitored simultaneously.

PMUs are not only available for CPUs, but also for other components of
the computer such as GPUs, network interface cards (NICs), network switches
etc [3]. By using these PMCs, micro-architectural events can be monitored in
the processor pipeline, such as the branch predictor unit (BPU), internal memory
events, off-core events, network resource utilization, network problem etc even
for the different components in parallel. The current state of modern computers
enables us to precisely trace an applications’ resource-usage at run-time. In this
paper, we attempt to tackle the two following problems:

Application execution. An application typically displays an exceptionally
complex execution trace and will utilize several resources simultaneously. Due
to the complex execution trace, it is difficult to assess what resources are most rel-
evant to the application’s performance. Some applications display a performance
that is closely tied to specific resources. We call occurrence resource-dependency
and can be critical to understand when designing a system.

Performance Monitoring Counters. The number of available PMCs is
limited in comparison to number of PMU events that can be observed at a time
so that it is difficult to assess which events are important to monitor for a given
application.

Other researchers have employed PMCs for various purposes such as moni-
toring hardware capacity, application performance, system health-check, and for
detection purposes. Many of these studies are limited to a static and pre-selected
set of hardware events. Jägemar et al. [4] proposed a service associated with
CPU scheduler for an improved QoS through performance monitoring counters’
measurements. Danielsson et al. [2] used performance monitoring counters to
identify resource dependence of application in a multi-core system.

In this paper, we continue the topic of automatic detection of an application’s
resource dependency, i.e., how much an application’s performance depends on a
specific resource. Our paper presents a new approach that monitors all available
PMU events (both software and hardware) and builds resource-dependency
profile for the applications. We presents a holistic approach to measure and rank
what PMU events are most closely tied to an application’s performance. Our
contributions are as follows:

6.2 Background 49

• A cross-platform method to monitor hardware resource usage by utilizing
the Performance Monitoring Unit (PMU) for large sets of performance
events.

• A measurement approach to distinguish what hardware- and software-
resources have the highest impact on an application’s performance for the
large-scale performance counter event sets.

We start by providing a technical background to easily understand the
technical scope and contribution made through this work in Section 8.2. Next,
Section 8.3 presents our approach to achieve the goal of the study as well as
giving a theoretical definition of our work. Our implementation details are
described in Section 8.4 and the experimental setup in Section 6.5. We discuss
our results in Section 8.5 and then present our conclusions in Section 8.7. Finally,
we relate our work to the state-of-the-art in Section 8.6 and the anticipated future
work concludes the paper in Section 6.9.

6.2 Background

In this section we describe the PMU and discuss the differences between counters
and events. We also discuss application performance in a typical computer and
how an application’s performance is related to certain PMU events.

6.2.1 Performance Monitoring

The concept of performance varies for different applications depending on their
primary objective. For example, in network applications, performance is usually
measured in number of packets sent per second whereas image processing
applications use the frames per second metric. These performance metrics
can in-turn depend on other hardware-related metrics such as utilization and
saturation for memory and CPU, Operation rate and operation latency for file
systems, disk utilization and response time for disks, throughput, connections,
error, TCP re-transmits and TCP out-of-order packets for networks [5].

Computers perform tasks on the basis of a sequence of instructions. In a
classic Reduced Instruction Set Computer (RISC) pipeline one Instruction is

50 Paper A

processed in one cycle, as shown in Figure 6.1. In here the instruction goes
through stages from Instruction Fetch to Write Back. Modern computers imple-

Figure 6.1. RISC Pipeline for a Single Instruction

ment this RISC pipeline for instruction-level parallelism to increase processor
throughput. The classic RISC pipeline splits the execution of an instruction
into five stages that are ideally able to work in parallel on different instructions.
An instruction begins with entering the first stage Instruction Fetch (IF). The
instruction will then move to the second stage Instruction Decode (ID) once
completing the IF stage, and another instruction will enter the IF stage. The
instruction is completed once it has passed the write-back stage and is then
marked as retired. It is, therefore, often preferable to have a high number of
instructions retired for a given application since it indicates that the application is
performing a lot of work. However, in case of application(s) executing busy-wait
loops, Instruction Retired as a performance metric is not appropriate [6]. For
example, in applications using sensors and actuators, actuators usually check the
state of sensors which perform a busy-wait loop: this results in a large number
of Instructions Retired even if the perceived performance still is low. Therefore,
It is important to define the metric for performance based on use case.

6.2.2 Performance Monitoring Unit

Modern computers have special built-in hardware in the form of registers for
performance monitoring. PMUs contain model specific registers (MSRs) those
can be configured to monitor events. These hard-wired registers are also called
performance monitoring counters (PMCs) [5] [7] [8]. Each core has its own set
of counters. These counters count the number of occurrences of a certain event

6.2 Background 51

during a specific time-interval.
PMC’s are grouped into fixed-function counters and flexible-function coun-

ters, where fixed-function counters are hard coded and flexible-function counters
can be programmed to monitor any type of event. The number of available per-
formance counters varies depending on the hardware architecture, for instance a
typical Intel processors contain 3 fixed-function and 4 flexible-function counters
per PMU [7]. The event is an observable activity, state or signal whose occur-
rence can be from different sources such as hardware, software, kernel etc [5].
One advantage of using PMCs is negligible overhead of data extraction [9]
for micro architectural events like branch instructions retired, mis-predicted
branches, cache hits/misses or floating point operations. Usually the PMCs are
implemented through processor specific codes. These codes along with other
attributes of the events are provided by vendor(s) in JSON files which is arch
event definition file.

When an event occurs it generates data that can further be utilized for sta-
tistical analysis as a metric or to generate an alert. These metrics are result
of evaluation or monitoring processes and can be used by technicians for sys-
tem tuning and detection of faults. Events such as execution-time, application
memory-footprint size, memory-latency, and error status can also present im-
portant insights. Events those are present over majority of platforms are called
architectural and events those are model-specific are called non-architectural
events.

6.2.3 Perf and PAPI

Perf is a performance analysis tool and the official Linux profiler for both
kernelspace and userspace. Perf was originally developed for the monitoring of
PMCs but evolved into a tool capable of tracing kernel activities too [5]. Perf
uses processor specific raw hardware descriptors for the PMC events. These
codes can be translated into aliases (human readable event names) by using an
event mapping table [10]. The hardware vendors provides these hardware-details
in the form of JSON files (arch event definition files), as shown in Figure 6.2. In
Linux, these JSON files can be located at tools/perf/pmu-events/arch/<arch>.
The information is then used by PAPI which aims to provide consistent and OS
independent access to PMCs.

52 Paper A

Performance Application Programming Interface (PAPI) was introduced as
an abstraction layer to access PMCs using the Perf interface. Over the time PAPI
has evolved into component-based architecture, which can monitor data from
multiple components like CPU, thermal sensors, Network etc [11] [12]. PAPI
extracts perf events and maps them into human readable names based on the
underlying platform to save users from low level architectural details.

These events are divided into two categories named presets and native. Pre-
sets are events which are common and consistent among majority of platforms
(also called architectural). However native events are specific to a given platform
on which they are running (also called non-architectural).

Due to rapid advancements in technology and version changes static solu-
tions require frequent checks and updates which can directly influence the QoS
in case of any delays and negligence. So the study is aimed to extract event list
directly from underlying hardware such that the results are not dependent to out
of date/static list of events at any point in time, as shown in Figure 6.2.

Figure 6.2. Illustration of Perf and PAPI in Linux Architecture

6.3 Methodology 53

6.2.4 Multiplexing

Modern computers contain a vast number n of performance counter events.
It is, however, not possible to simultaneously monitor n events due to high
architectural and operational cost.

Multiplexing is a technique that can be used to monitor all events even
if there are more events than counters. When number of events exceeds the
core-internal PMCs then the technique is to configure core-external PMCs, if
it is allowed. But if core-external PMCs cannot be utilized then time division
multiplexing with core-internal PMCs is performed until full event coverage is
done.

Perf automatically performs multiplexing by giving a fraction of time ta to
each event, in a round robin fashion [8]. This is done by switching frequency in
Perf [13], and metrics are calculated usually at the rate of 100 to 1000 hz using
formula:

CT =
CR × ta

te
(6.1)

where CR is counter value when an event got its turn to be monitored, te is
the total time to monitor all the events and ta is fraction of te when a particular
event availed its turn to run. Here, CT is an estimated value because it is not the
count of an event throughout the execution period of an application.

6.3 Methodology

We summarize our ranking approach into three steps, listed as follows:

1. Event fetch – In this step, we execute an automatic traversal of n (all)
available PMU events in the hardware architecture. Our fetch traversal
step fetches the available events directly from the underlying platform.

2. Application characterization using Multiplexing– Here, we characterize
an unknown application/process p using rerun multiplexing for n PMU
events. As a result of multiplexing time-ordered series mi of n PMU
events are sampled and Pearson’s correlation coefficient for each PMU
event’s time series is calculated as ri.

54 Paper A

3. Rank events – Finally, we sort the Pearson correlation values and highlight
the R most important PMU events for application p.

6.3.1 Event fetch

Our method is focused on native events which is a main distinction from other
studies in which proposed static solutions are dependant to a pre-compiled list
of known events. We initialize the PAPI engine to traverse through all the
available components (such as regular perf events and un-core perf events) on
the current hardware, as shown in the Algorithm 1. We use the native event
mask for event code generation which is the address of physical register where
event details are stored.

1 initialize_PAPI();
2 setNativeEventMask();
3 num_components = getNumComponents();
4 component = 0;
5 while component ≤ num_components do
6 cmpinfo = getComponentInfo();
7 ENUM_flag = 0;
8 * when ENUM_flag is set to 0 it iterates through all entries in

descriptor file till the end of file *\
9 while (event_info = getEventInfo()) == TRUE do

10 * Create Component wise event list *\
11 addEventsToCompEventList(event_info);
12 * Move to next event *\
13 end
14 * Move to next component *\
15 increment(component);
16 end
17 * Create detailed list of native events for characterization of application

*\
Algorithm 1: Get the PMU native event list

With Enumeration flag set to 0, we traverse through each object in event

6.3 Methodology 55

description file. Function getEventInfo() returns the information of next
event available. This event information is then stored into a list. The event list
is created per component so that we can distinguish that which event is config-
ured on which component. When there are no more events, getEventInfo()
function returns 0 and loop exits. If there are more components available which
are active then it moves to fetch events from that component. The process to
get events is repeated in the same way for the next component. So in this way
we iterate through the event list component by component and fetch n events
details from each component.

6.3.2 Application Characterization using Multiplexing

Monitoring n events enables us to visualize the complete resource utilization
profile of an application p. The obvious solution is multiplexing such as temporal
multiplexing described in Section 6.2.4.

Temporal multiplexing is prone to blind spots. These blind spots are points
in time when the event was not monitored and those times could be critical
for an event evaluation. So we propose to run the application and monitor first
subset sb of size no_PMCs events where sb ⊆ n and re-run the application
with next subset sb of size no_PMCs events and so on. In this way we can run
the application for Tr times where Tr is total runs:

Tr = d
n

no_PMCs
e (6.2)

So, in our method of rerun multiplexing for complete coverage of events, we
rerun the application quotient Quo times for no_PMCs events and then we run
the application one last time to monitor remainder Rem events, also shown in
Algorithm 2. Here Quo is n

no_PMCs and remainder Rem is n mod no_PMCs.
Figure 6.3 shows the rerun multiplexing for core-internal PMCs in multiples

of no_PMCs. If the total number of events n is not a multiple of no_PMCs
then the difference is only for last iteration where Rem events are monitored. In
each iteration, application is characterized by using the program designed by
Danielsson et al. [2]. Characterization is performed with a sampling frequency

56 Paper A

1 sb = no_PMCs;
2 Quo = n / no_PMCs;
3 Rem = n % no_PMCs;
4 while Quo ≥ 0 do
5 sb = get next no_PMCs from events(n);
6 characterizeApp(p, sb);
7 * Store metrics and calculate Pearsonś Correlation coefficient*\
8 Quo = Quo - 1;
9 end

10 if Rem 6= 0 then
11 sb = get next (Rem) from events(n);
12 characterizeApp(p, sb);
13 * Store metrics and calculate Pearsonś Correlation coefficient *\

Algorithm 2: Re-run Multiplexing and Sampling of n events

freq for samples s over the total execution_time tp of application as

freq =
tp
s

(6.3)

At the end of characterization each PMU event is sampled as time-ordered
series, mi. All series are then collected in the set M(p) = {mi : 0 ≤ i ≤ n} and,
for each one of them, we calculate Pearson’s correlation coefficient, ri, between
mi and the measured performance of p.

6.3.3 Ranking Events

We determine the most relevant events automatically by sorting them according
to the correlation coefficient. The correlation between a specific event count and
the number of instructions retired shows the application’s resource dependence.
In a way, the relation can simply be drawn by taking the difference of total
instructions retired and total count of ith PMU event but Pearson’s correlation
coefficient can show the linear relationship between two variables.

Pearson’s correlation coefficient is sensitive to outliers but in our case it is
assumed to be natural even if the event data is not distributed evenly across the

6.4 Implementation 57

Figure 6.3. Illustration of rerun multiplexing in comparison to temporal multiplexing of
Hardware Events for PMCs

timeline. Because it still shows there was any one or more points of times when
this event has significant resource demand. However further research is required
to know the exact points in time to profile the behaviour.

6.4 Implementation

We implement the proposed solution using Linux running Ubuntu 4.13.0-21-
generic and g++ 7.2.0. PAPI library version 5.7.0.0 was used to iterate through
all event codes.

As first step, we need to decide the sampling frequency freq, see Equa-
tion 6.3. Instead of applying fixed sampling frequency to every observed pro-
cess/application, we calculate the sampling frequency based on the process’s
execution time tp of p. The process is time stamped before and after the execu-
tion and difference between the two gives execution time tp of p. For symmetric
samples, we have opted to use a sampling size of s = 1ms to calculate the freq

58 Paper A

by using Equation 6.3. Since the tp is calculated in micro seconds (µs), this
sampling rate was experienced well to get enough number of samples as well as
enough time to monitor the probe effect of an event.

To characterize an application for any number of events, a modification was
made to the solution provided by Danielsson et al. [2] so that we can dynamically
populate the event sets and feed those to PAPI engine and monitor n PMU events.
In each iteration, a subset sb of events is monitored leaving the ones those were
not able to attach. The reason a event cannot be attached is that the event is
specified in the JSON event file, but not implemented on the actual hardware.

Once the characterization is done, Pearson’s correlation coefficient of each
PMU event’s metrics are calculated. Their coefficients ri are then sorted to
rank the events such that higher the coefficient the higher the rank, with 0 being
lowest and 1 being highest.

6.5 Experiments

We list some of the basic internal memory properties of our test computer in
Table 6.1. Algorithm running on our experiment platform returns a total of 175
native events. We exemplify some of the events in Table 6.2.

Table 6.1. Hardware specifications Intel® CoreTM i5 8250U

Feature Hardware Component
Core 4xIntel® CoreTM i5-8250U CPU (Kaby Lake) 1.6GHz
L1-cache 32 KB 8-way set assoc. I-cache/core

32 KB 8-way set assoc. D-cache/core
L2-cache 256 KB 4-way set assoc. cache/core
L3-cache 6 MB 12-way set assoc. Inter-core shared cache

Then we continue the experiment by choosing a test application, in our case
it was a malware for side channel attacks known as Meltdown [14]. The reason
to choose malware was they are naturally designed with a distinctive behaviour
to achieve their purpose as compared to other general purpose applications. It
is quite normal for a malware to stay unnoticed for a long time and trigger
the hardware events suddenly in a specific time or environment. Due to their

6.5 Experiments 59

Table 6.2. Some event from Native Event list

Event Code Event Name Description
0x4000006e perf::LLC-STORES Last level cache store accesses
0x40000073 perf::DTLB-LOADS Data TLB load accesses
0x4000007d perf::BRANCH-LOADS Branch load accesses
0x40000089 INSTRUCTION_RETIRED Number of instructions at retirement
0x400000ca DSB2MITE_SWITCHES Number of DSB to MITE switches
0x400000cc FP_ARITH Floatingpoint instructions retireds
0x400000d3 SW_PREFETCH Software prefetches

unexpected behaviour it is more promising to catch any unusual activity in the
event behaviour to visualize it as outlier or anomaly.

Running the community version of Meltdown variant on 4xIntel® CoreTM

i5-8250U CPU (Kaby Lake) 1.6 GHz a total of 175 native events from 2 compo-
nents (perf event and perf event uncore) using PAPI. These non-architectural
events are combination of available hardware and software events. For in-
stance ix86arch::BRANCH_INSTRUCTIONS_RETIRED is a hardware event
whereas perf::PAGE-FAULTS is a software event.

In Figure 6.4, we exemplify our characterization approach by utilizing the
famous meltdown exploit as test application where InstructionsRetired is
used as performance metric. It is good to mention that these micro-architectural
events are sensitive to the nature of application. Moreover, the selection of
sampling frequency may significantly affect the results received.

We run the application 50 times and calculate the median of the Pearson’s
correlation coefficients. We list the events that displays the highest correlation
coefficients in Table 6.3. The micro-architectural events occur at very low
level and fast enough that any slight change in sample size affects the counter
value significantly. Here, each run presents a high probability of counter value
fluctuations, therefore, we rely on median of coefficients to present sound
results.

60 Paper A

Figure 6.4. Characterization of Application based on PMU events

6.5 Experiments 61

Table 6.3. List of most relevant PMU events

Rank Event Name Coefficient
01 BR_INST_RETIRED 0.84
02 ix86arch::BRANCH_INSTRUCTIONS_RETIRED 0.79
03 perf::BRANCH-LOADS 0.52
04 perf::DTLB-LOADS 0.51
05 INSTRUCTION_RETIRED 0.51
06 perf::L1-DCACHE-LOADS 0.36
07 perf::BRANCHES 0.31
08 perf::BRANCH-INSTRUCTIONS 0.31
09 perf::PERF_COUNT_HW_BRANCH_INSTRUCTIONS0.30
10 TLB_FLUSH 0.28
11 BR_MISP_RETIRED 0.25
12 BACLEARS 0.25
13 IDQ_UOPS_NOT_DELIVERED 0.22
14 ix86arch::MISPREDICTED_BRANCH_RETIRED 0.20
15 MOVE_ELIMINATION 0.19
16 perf::INSTRUCTIONS 0.18
17 perf::PERF_COUNT_HW_INSTRUCTIONS 0.18

62 Paper A

6.6 Discussion

We perform measurements for all available hardware events on a computer and
rank their relationships towards an application’s performance using Pearson cor-
relation coefficient. For the sake of this study we measure all hardware events re-
gardless of their nature and redundancy. During event gathering, redundant event
names were also observed whose one reason could be the presence of aliases such
as BR_MISP_RETIRED and ix86arch :: MISPREDICTED_BRANCH
_RETIRED . They seem to be same as per available information but were
listed under different event codes.

Though, temporal multiplexing can give a reasonable coverage of events
but it is prone to blind spots. Not only the blind spots, counter value is also
important to understand, which is an estimation based on the fraction of time it
receives in round robin fashion. So for these two reasons there is high probability
to miss the information as well as a chance of failure to observe the cascading
effect of resource utilization at all. It is good to mention that cascading effects
may only be observed through start-to-end or extended timeline processing. In
contrast to temporal multiplexing our suggested rerun based multiplexing gives
the complete picture of event behaviour for entire event range by utilizing all
available PMCs.

As we do not parse the event description, it is required for once by the
engineers to know the platform specific InstructionsRetired event name from
the acquired list of PMU events. This event name is then used as a benchmark
to measure other PMU events during the characterization of application. It was
also an option to take execution time as predictor but execution time may not be
consistent all the times due to variable number of context switches in general
purpose operating systems. And if the multiplexing is based on rerunning the
application then it might not give us the same execution-time every time. So it
is more reliable to take InstructionsRetired as predictor for performance.

During each iteration, each event set tried to attach a subset of events but
for some it was not possible such as for TLB prefetch misses, stalled cycles and
blocking loads. The sampling for these events was not successful forMeltdown
as a test application but there is a good chance that those events can be monitored
for some other application. Another reason could be that those events were

6.6 Discussion 63

listed is arch event definition file (JSON) by vendors but were not available on
actual hardware. Moreover, we left the costumed assignment and distribution of
events to default between different cores.

Sampling frequency for the events that can be monitored was set to 1 ms
which gave us around 50 samples each of test application as shown in Fig-
ure 6.4. Top most relevant events in Figure 6.4 shows that at the start there
was high InstructionsRetired rate and then a sudden drop. The number of
InstructionsRetired was quite consistent until just before the end of appli-
cation where an exponential increase was observed for all relevant events. At
first glance, it looked like an outlier but with a careful code analysis of test
application the pattern of timeline was logical. In the start, higher activity was
observed due to the exploit happening trying to crack down into kernel module
from user space. Afterwards the utilization was smooth until the time just before
the end of application’s execution while reading the pre-fetch memory. The
pattern did not show any distinction until it reached the point which according
to the code is when the test malware application tried to remove its backtracks
by calling a cleanup function. Due to this massive activity a spike is seen for
high resource utilization.

Pearson’s Correlation is normalized measurement of covariance to reflect
the linear relationship between two variables. It is sensitive to outliers but in
our case we assume outliers as legitimate points for evaluation. Even if the
event data is not normally distributed across the timeline, it shows there was any
one (or more) point of time when this event had significant resource demand.
However further research can be done to know the exact points in time where
the event leaves it marks and profile their behaviour.

Table 6.3 shows BR_INST _RETIRED and ix86arch :: BRANCH _INS−
TRUCTIONS_RETIRED as most relevant events which means that applica-
tion was taking many branches. There was also high relevance to perf :: DTLB−
LOADS which is a count of event when it reads from TLB. This observation ac-
tually brings the most interesting insight about the test application. A TLB load
is lookup for actual physical memory address while using virtual memory. Dur-
ing this lookup, access privileges are also checked and if there is any permission
violation it throws an exception. So the high relevance to this event indicates
a distinctive behaviour of test application which we already know that it tries

64 Paper A

to access kernel memory from user space and in that case there should be high
exception rate. Such knowledge can further be used for categorisation and pro-
filing of applications. Moreover, results showed that application is L1-Dcache
bound too. So based on these event ranks engineers can automatically find out
resource dependence during the execution of any application. Otherwise, it is
based on operators’ skills, experience and knowledge base only. The knowledge
which comes from experience is valuable but it is good to keep in mind that
human-driven approach is prone to mistakes, errors and insufficient skill set.

6.7 Conclusion

The study has successfully presented a solution to characterize any application
p by sampling n base PMU events. The rerun based multiplexing enabled us
to see the start-to-end event behaviour of event. Each sampled PMU event
provided a time-ordered series, on which Pearson’s correlation coefficients, ri
was calculated. Based on these correlations, ranking of events was performed to
shortlist the most relevant PMU events for an application from the performance
perspective. For experimental purposes a malware was tested for which our
proposed service successfully listed the most relevant events. This knowledge
can be further used for QoS, tuning and detection purposes. For instance, the
results showed that Meltdown was taking many branches and it was reading
highly from TLB and L1_DCache. Such kind of ranking of relevant events is
indeed a useful tool for engineers to get better insights of health, performance
and resource dependence of an application.

6.8 Relatedwork

The study is in continuation to the work done by Danielsson et al. [2]. The
researchers determined the resource dependence of an application based on ar-
chitectural events called PAPI presets which are common across many platforms.
One of the limitations of their study was to explicitly feed the list of event names
for the characterization of program with an eventual focus for last-level caches
only. Whereas our study is focused for all native events to automatically extract
from the underlying platform.

6.9 FutureWork 65

Rodrigues et al. [15] have used PMCs to dynamically estimate the power
consumption by finding a minimal set of hardware events as a predictor. This
study is restricted to a very small set of pre-selected hardware events based on
human intelligence only. Also it lacks the statistical endorsement of selection of
baseline events set. Moreover, the study used simulators instead of bare-metal
environment which may jeopardize the accuracy of collected data. In contrast,
our approach is aimed for bare-metal environment to capture as many as possible
events by direct extraction from underlying platform.

There are other studies who have used PMCs to estimate the power and band-
width consumption [16] [9] [17] and to check the performance of application
in terms of CPU load [18]. Another study has used performance counters for
safety and security of the systems by proposing an attack mitigation model [19].
But as per our knowledge, other studies did not automatically monitor all events
regardless of which platform they are coming. Moreover, another interesting
study was performed by [20] on Blue Gene/PTM super computer to monitor
massive number of PMU events (256 concurrent 64b counters). Although the
capability to monitor performance was increased but it is not very commonly
available architecture across many SMEs (Small and Medium Enterprises).

6.9 FutureWork

The study can be extended in many ways such as detection of faults, failure and
malicious activity. Based on the hardware dependence a behavioural analysis of
metrics can finger print any process. One of the biggest challenges is not only
the low number of counters, but is to measure the events based on their nature
such as configure the sampling frequency based on the nature of event to be
monitored.

Occurrence of some events is not as frequent as others and for some the
measurement cost at low frequency is too high. So a model built on top of event
nature would improve the reliability of solution. Also, it would be interesting
to test the measurement with other AI or statistical methods when the data
distribution in non-linear.

Bibliography

[1] Marcus Jägemar, Andreas Ermedahl, Sigrid Eldh, and Moris Behnam. A
scheduling architecture for enforcing quality of service in multi-process
systems. In Emerging Technologies and Factory Automation (ETFA), 2017
22nd IEEE International Conference on, pages 1–8. IEEE, 2017.

[2] Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris Behnam,
and Mikael Sjödin. Resource dependency analysis in multi-core systems.
In 2020 IEEE 44th Annual Computers, Software, and Applications Confer-
ence (COMPSAC), pages 87–94. IEEE, 2020.

[3] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting
Performance Data with PAPI-C. Springer, Berlin, Heidelberg, 2010.

[4] Marcus Jägemar, Andreas Ermedahl, Sigrid Eldh, and Moris Behnam. A
scheduling architecture for enforcing quality of service in multi-process
systems. 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1–8, 2017.

[5] Brendan Gregg. Systems performance: enterprise and the cloud. Pearson,
2nd edition, 2020.

[6] Stijn Eyerman and Lieven Eeckhout. System-level performance metrics
for multiprogram workloads. IEEE Micro, 28(3):42–53, 2008.

[7] Intel. Intel® 64 and ia-32 architectures software developer’s manual.
Technical report, Intel, 2016.

67

68 Bibliography

[8] Andrzej Nowak and Georgios Bitzes. The overhead of profiling using
PMU hardware counters. Technical Report CERN Openlab Report, CERN,
2014.

[9] Stéphane Eranian. What can performance counters do for memory sub-
system analysis? In Proceedings of the 2008 ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness: Held in Conjunction
with the Thirteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’08), MSPC
’08, page 26–30, New York, NY, USA, 2008. Association for Computing
Machinery.

[10] Linux Foundation. pmu-events, 2021.

[11] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting
performance data with PAPI-C. In Tools for High Performance Computing
2009, pages 157–173. Springer, Berlin, Heidelberg, 2010.

[12] Matthew Johnson, McCraw Heike, Shirley Moore, Phil Mucci, John Nel-
son, Dan Terpstra, Vince Weaver, and Tushar Mohan. PAPI-V: Perfor-
mance Monitoring for Virtual Machines. 41st International Conference on
Parallel Processing Workshops, pages 194–199, 2012.

[13] Stephane Eranian, Eric Gouriou, Tipp Moseley, and Willem Bruijn. Linux
kernel profiling with perf. Technical report, Perf, 2015.

[14] Lipp Moritz, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. pages 973–990, 2018.

[15] Rance Rodrigues, Israel Koren, Annamalai Gracioli, and Sandip Kundu.
A study on the use of performance counters to estimate power in micro-
processors. IEEE Transactions on Circuits and Systems II: Express Briefs,
pages 882–886, 2013.

[16] Rafia Inam, Mikael Sjödin, and Marcus Jägemar. Bandwidth measurement
using performance counters for predictable multicore software. IEEE 17th

International Conference on Emerging Technologies & Factory Automation
(ETFA 2012), pages 1–4, 2012.

[17] Rodrigues, Rance and Annamalai, Arunachalam and Koren, Israel and
Kundu, Sandip. A study on the use of performance counters to estimate
power in microprocessors. IEEE Transactions on Circuits and Systems II:
Express Briefs, 60(12):882–886, 2013.

[18] Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, and Björn Lisper. To-
wards feedback-based generation of hardware characteristics. 7th Interna-
tional Workshop on Feedback Computing, 2012.

[19] Alberto Carelli, Alessandro Vallero, and Stefano Di Carlo. Performance
Monitor Counters: interplay between safety and security in complex Cyber-
Physical Systems. IEEE Transactions on Device and Materials Reliability
19, pages 73–83, 2019.

[20] Valentina Salapura, Karthik Ganesan, Alan Gara, Sexton Gschwind, John
James C., and Robert E. Walkup. Next-generation performance counters:
Towards monitoring over thousand concurrent events. ISPASS 2008-IEEE
International Symposium on Performance Analysis of Systems and software,
139-146:189–204, 2008.

Chapter 7

Paper B:
Automatic Segmentation of
Resource Utilization Data

Shamoona Imtiaz, Moris Behnam, Gabriele Capannini, Jan Carlson, Marcus
Jägemar
In proceedings of 1st IEEE Industrial Electronics Society Annual On-Line
Conference (ONCON 2022).

71

Abstract

Industrial systems seek advancements to achieve required level of quality
of service and efficient performance management. It is essential though to
have better understanding of resource utilization behaviour of applications in
execution. Even the expert engineers desire to envision dependencies and impact
of one computer resource on the other. For such reasons it is advantageous to
have fine illustration of resource utilization behaviour with reduced complexity.
Simplified complexity is useful for the management of shared resources such
that an application with higher cache demand should not be scheduled together
with other cache hungry application at the same time and same core. However,
the performance monitoring data coming from hardware and software is huge
but grouping of this data based on similar behaviour can display distinguishable
execution phases. For benefits like these we opt to choose change point analysis
method. By using this method our study determines an optimal threshold which
can identify more or less same segments for other executions of same application
and same event. Furthermore the study demonstrates a synopsis of resource
utilization behaviour with local and compact statistical model.

7.1 Introduction 73

7.1 Introduction

Many modern industrial systems require performance management to control
machines, improve productivity and predict future problems. In performance
management, it is critical to maintaining a satisfying service level to achieve
business goals. These levels are highly susceptible to the resource utilization
behavior of applications since the platform are different. However, different
applications may have different resource utilization behavior during their execu-
tion. For example, an application is considered to be compute-bound if it mostly
requires the processing unit. An application can be seen as I/O bound if it mainly
utilizes I/O devices, and similarly, an application is memory bound if it has high
memory utilization. For compute-bound applications, schedulers usually work
well and keep the services aligned to Service Level Agreement (SLA) but in
case of I/O bound applications, there is a possibility of some processes stressing
others, especially in case of concurrent applications [1]. Therefore, it is valuable
to know at what time a process demands more resources, such as cache memory,
so that the engineers can separate the processes that has similar demand on same
resources.

Such resource usage knowledge can be obtained through extensive resource
utilization analysis of applications (running individually or in parallel with oth-
ers). One way to get this information is through using Performance Monitoring
Counters (PMCs). PMCs are special purpose, configurable, hard-wired registers
available in the Performance Monitoring Unit (PMU) of modern processors to
monitor PMU events [2]. These registers are used to count how many times
a resource under observation is been utilized. Characterization of acquired
measurements can indicate an application’s behavior based on distribution of
data over a period of time.

There are hundreds of different PMU events to select from, and any one
typically can create thousands of data points per second of execution. Manual
analysis of this wealth of data is very difficult and time-consuming. As shown in
Figure 7.1 the utilization behaviour can be too rational, affinitive or hierarchical
in nature that one single model is not able to represent such a complex data.
However, a way to reduce the complexity is segmentation. Therefore, our
contribution in this paper is to automatically analyse the acquired measurements

74 Paper B

and determine the application behavior over time. More specifically the idea is
to automatically identify segments in the data, similar to what Tukey formulated:
“At a low and practical level, what do we wish to do? We wish to separate the
varieties into distinguishable groups, as often as we can without too frequently

separating varieties which should stay together.” [3]
Such distinguishable groups, which we call segments in our study, are often

useful for practitioners, analysts, and engineers to intuitively visualize similar
groups of data. These segments reflect a particular data distribution over a period
of time. Several methods have been proposed to identify segments or groups
such as clustering, segmentation, time series, change point detection [4], [5], [6]
and basic block frequencies [7]. However, one of the widely used is change
points detection which reports departure from the past norm. These change
points split the behavior into segments based on abrupt change in the distribution
and structure of data [6]. Each segment is segregated based on a model such
as mean, median, standard deviation [5]. With such a statistical method it is
possible to identify segments without any prior information both when sequences
are independent or dependent of each other.

The case we are investigating here considers complete time series view
and the objective is to provide more accurate estimation of change in time and
magnitude. Therefore, the proposed solution is an offline method, as part of the
manual analysis of applications, rather than online within a running system. This
is also a common approach to evaluate applications before going into production
or deployment. Such a solution can be standalone artifact or could be a part of
a bigger intelligent tool. Overall, our work is towards automatically creating a
resource utilization profile of an application. The main contributions presented
in this paper are:

Segment detection: Our interest lies where the change is happening after a
stable behaviour. In Figure 7.1(c), for L1D_PEND_MISS, around timed-sample
850 the count goes significantly up and keeps the level until before sample 1000.
Such period we call a segment and we aim to automatically identify appropriate
segments based on variance analysis.

Segment-wise statistical model: Once the potential segments are known,
finding a local statistical model for each segment seems a viable solution for
representing complex data series in a compact way using simple statistical

7.2 Background 75

methods. The model provides information about how much resource utilization
is expected during that interval of time. Thus, instead of permitting static
over-provisioning for the entire execution period, resource allocation can be
optimized to the segment lengths.

This paper begins with a technical background in Section 8.2 to provide
relevant knowledge required to easily understand the contribution made through
this work. Next, Section 8.3 explains the proposed approach to achieve the goal
of the study. Section 8.4 extends the readers knowledge for implementation
details and experimental setup. After successful implementation, results are
being discussed in Section 8.5. We also relate our work to the state-of-the-art
in Section 8.6. Finally the anticipated future work followed by the conclusion
wraps up the paper in Section 8.7.

7.2 Background

We collect the data using Performance Monitoring Counters to observe hardware
utilization of an application. The segments are then detected using Change Point
Detection method. And finally a compact representation of each segment is
provided using statistical methods. We present these concepts in Section 8.2.1,
Section 8.2.2, Section 7.2.3 respectively.

7.2.1 Performance Monitoring Counters

The PMU is typically implemented as a set of registers programmed with a
particular event to be counted. After a user specified time, the counted events
can be read from the registers. These registers are configured to count events
which is an observable activity, state, or signal coming from hardware, software,
or kernel [8] such as Instructions Retired, Cache Hits, Cache Misses, CPU Clock
Cycles. The name and number of events can vary on different platforms and
different models [2]. The events which are common across other platforms are
called architectural events (such as Instructions Retired, UnHalted Core Cycles)
and events which are not consistent across various platforms are called non-
architectural (such as L1D_PEND_MISS) [2]. The event-counting approach
can be polling or sampling where polling means the arbitrary request for count

76 Paper B

and sampling is an interrupt-based collection of event count [9]. An interrupt
can either be generated based on time or when the counter exceeds a certain
threshold. Our approach for data collection is interrupt-based timed sampling.

There are several tools available to acquire PMU measurements but it is
possible to have variations in measurements depending on profiling tool, hard-
ware type, starting time, reading technique, measurement level, noise etc. [9]
but mostly they are good approximations.

7.2.2 Change Points Detection

Change point is a method of detecting structural and distributional changes
based on statistical methods like mean, standard deviation, and variance. The
analysis can be parametric or non-parametric. A parametric analysis estimates
by explicitly providing the location and/or the number of change points which
is somewhat vulnerable to deviation [10]. On the other hand, non-parametric
analysis does not require a probability distribution assumption beforehand.
These methods can be offline or online. Online methods use a subset of data
series whereas offline methods use complete data series, from start to end, to
make an analysis.

Some of the commonly used methods are likelihood ratio and Bayesian point
of view for single change point and multiple change points detection respec-
tively. From a Bayesian point of view, it is possible to update the probability of
hypothesis with more data and a penalized contrast function [4]. The process is
offline and the penalized contrast function starts with splitting the data series into
two. An empirical estimation of statistical property (such as standard deviation,
root mean square level, slope) is then calculated for each. Next, the sum of
deviation from all the points in each part is calculated to see how much residual
error exists. The Sum of aggregated deviations of each part gives a total residual
error. This process is repeated until the final residual error is minimum [11].
Therefore, the Bayesian point befits the aim of our study.

Some of the popular applications of change points detection are signal pro-
cessing, genome, trend analysis, time series, intrusion detection, spam filtering,
website tracking, quality control, step detection, edge detection, and anomaly
detection.

7.3 Proposed Solution 77

7.2.3 Statistical Methods

Statistical methods are a conventional approach to analyse, interpret, and present
huge amounts of data into meaningful, brief notation. Statistics are valuable for
engineers to identify working ranges, behavior, relations, level of significance
and dispersion of data. Some of the common measures are standard deviation,
mean and root mean square level. Standard deviation is the measure of spread,
to show how much the data points are distant from the mean of the data set. A
low standard deviation means that the data is closely clustered around the mean
whereas a high standard deviation means that the data is dispersed over a wide
range of values.

Since standard deviation is the square root of variance one might choose
standard deviation over variance because it is a smaller unit, which in some cases
is easier to work with. Also, it is less likely to get the impact of skewing. Variance
treats all the numbers in the series in a same way regardless of whether they
are positive or negative, which is an advantage when the direction of data is
not important. A disadvantage of variance in case of larger outlying values is
skewing so this is not necessarily a calculation that offers perfect accuracy [12].

Finally, to have a dimensionless analysis, we use Coefficient of Variance. It
is a ratio of standard deviation to mean. Since it is percentage so the comparison
between data of different units becomes coherent.

7.3 Proposed Solution

We have devised a method that is univariate because it involves one variable; the
measurement of PMU event with respect to time. We start with presenting the
definition of measurement approach, change point and segment.

Measurement Approach: For application, p, we define a set of PMU
events, E , of size n . For each e ∈ E , a measurement series, rm , is a series
of L data points collected at frequency, f [13]. We run the test application x
number of times so that multiple measurements for each e ∈ E are acquired in
Re = {rm : 1 ≤ m ≤ x}.

Change Point: For a measurement series, rm , a change point, ptsj , is the
point in time where the statistical model changes abruptly. A measurement series,

78 Paper B

rm , can have d number of change points such that pts(rm) = {ptsj : 1 ≤ j ≤ d}.
Segment: Given a set pts(rm) of d values, we can split the series of

L points in rm into a partition of d+1 segments defined as S(pts(rm)) =
{[1, pts1], (pts1, pts2], , ..., (ptsd, L]}.

The total number of segments may vary depending on the size and behavior
of p. If no change point is detected then whole series is denoted by one segment.
The number of change points are always one less than the total number of
segments.

Applying these concepts, we propose a solution consisting of following
steps:

1. Segment Detection – In this step, our method identifies a threshold for
which root mean square error becomes persistently low. This threshold is
considered optimal threshold and can be used as model threshold for any
measurement of same PMU event of same application.

2. Segment-wise Statistical Model – Next, we find local model of each
segment in terms of standard deviation and mean for a given segment
length.

7.3.1 Segment Detection

Initially, our method determines the individual working threshold for each
measurement so that an optimal threshold can be derived which can work for
any measurement of a PMU event of a application. Thus we present three-step
segment detection as:

1. Compute Primary Threshold: For each measurement, we compute the
threshold for which the residual error is persistently low. We start with
loading Re measurements for x number of runs of an application at step
1 , as shown in Algorithm 32. Then through step 2 till 12 , by using
different values as threshold from 1 to maxThresh we determine where
the residual error starts to increase. During this process we compute
change points with threshold t of current iteration j at step 4 . Resultant
threshold and residual error are initialized during first iteration at step 5

7.3 Proposed Solution 79

but for later iterations through steps 8 to 12 we seek to identify threshold
where residual error becomes consistently low. For example, if residual
error was low at threshold 2 and same residual error was received at
threshold 3 then it means the method can sustain low residual error up till
threshold 3 therefore primary threshold should be 3 in such case. This
was an important consideration during the experiment to nicely stop the
detection process and report the primary threshold for PMU event e with
decent accuracy.

2. Compute Optimal Thresh: Next, the method computes optimal thresh-
old from all the primary thresholds at step 13 . The subroutine receives
series of thresholds & residual errors and computes optimal threshold
based on median of corresponding residual errors of primary thresholds
from each measurement. Therefore first the median is computed at step
19 then matching residual error is identified through steps 21 to 24 . If the
matching residual error is found then we take the corresponding threshold
into thresh otherwise we find a residual error closer to median of primary
residual errors into thresh , as shown from step 22 to 23 . The subroutine
then returns optimal threshold into th at step 13 as optimal threshold for
a PMU event of an application.

3. Compute Segmenfts: Finally, we compute segments for each measure-
ment from step 14 to 17 and report change points and residual error for a
PMU event e .

This three step process can be repeated for any or each of the PMU event.
Therefore above described method is illustrated as a method to determine opti-
mal threshold th which can detect d number of change points. These change
points eventually provides the number and length of segments as describe in the
definition of segment in Section 8.3.

7.3.2 Segment-wise Statistical Model

Once the segments with decent accuracy are detected a compact illustrations
of resource utilization behaviour of each segment is presented using statistical
methods. A PMU event having zero or one segment shows no variability to

80 Paper B

1 r contains x measurements in Re
2 for j = 1 to x do
3 for t = 1 to maxThresh do
4 〈resError , pts〉 = findchangepts(r[j], t)

/* tr contains primary threshold for one
measurement of PMU event e */

5 if t == 1 then
6 tr[j] = t
7 re[j] = resError
8 end
9 if resError == lastResError then

10 tr[j] = t
11 re[j] = resError
12 break
13 end
14 lastResError = resError
15 end
16 end
/* th contains optimal threshold for all

measurements of PMU event e */
17 th = computeOptimalThresh(tr, re)
/* Find segments using optimal threshold */

18 for j = 1 to x do
19 〈resError , pts〉 = findchangepts(r[j],th)
20 S[j].pts = pts
21 S[j].resError = resError
22 end
/* Find optimal threshold */

23 function computeOptimalThresh(t, re)
24 med = median of re
25 thresh = 0
26 for j = 1 to length(re) do
27 if (re[j] == med) or (re[j] < med and re[j+1] > med) then
28 thresh = t[j]
29 end
30 end
31 return thresh
32 end

Algorithm 3: Find segments for PMU event e

7.4 Implementation and Experiments 81

model so such PMU event is not profiled. Also a PMU event with too many
segments is also pruned away because it means the behaviour is too arbitrary or
inconsistent to profile.

7.4 Implementation and Experiments

We implement the proposed solution using PAPI library version 5.7.0.0 for the
sampling of PMU events with 5 milliseconds frequency. The number of samples
may go different depending on the execution time of the application to profile.
Then, findchangepts() function in Matlab version R2021 is used to find the
segments. The measure of distinction to compute these segments is root mean
square level. Evaluation of results is performed with the help of Coefficient of
Variance.

Test Application: For the experiment we opt to chose 2x2 matrix multipli-
cation of PolyBench bench-marking tool, known for kernel instrumentation as a
test application. The motive behind its selection is significant use of matrices
in image recognition software. Such applications can enormously impact the
system performance due to their eager resource utilization demands. The execu-
tion period of the test application is around 22 seconds which gives thousands
of number of samples based on 5 millisecond frequency.

Measurements: The same test application was characterised 20 times for
its complete execution period. For each execution period measurements were
acquired through re-run based multiplexing of 4 PMCs available in 4xIntel®

CoreTM i5-8250U CPU (Kaby Lake) 1.6GHz using the solution provided by
Imtiaz et al. [13]. The test application running on our experiment platform
returned in total 172 native PMU events.

Results: The PMU event with zero, one or more than 20 change point(s)
was pruned away as explained in Section 7.3.2. These bounds can be re-adjusted
based on the total execution time of process and number of samples. As a result
total 53 PMU events were identified with distinct pattern based on a statistical
model. Lastly, we exemplify some of the PMU events with their segments in
Figure 7.1.

At the end of experiment we evaluate the results to learn if an optimal
threshold can find segments with low residual error for any measurement of

82 Paper B

(a) Segments for Branch Instructions Retired (b) Segments for Instructions Retired

(c) Segments for L1D_PEND_MISS (d) Segments for L1D

(e) Segments for TLB_FLUSH (f) Segments for perf-CPU-CYCLES

Figure 7.1. Simulation results for the network.

7.5 Discussion 83

a same PMU event. Therefore the variance of residual error is examined and
validated by calculating coefficient of variance (CoV). Since variance could be
a big number depending on unit of data set so for the readability sake we prefer
to express percentage. Therefore, coefficient of variance (CoV) is a reasonable
choice which is defined as the ratio of the standard deviation (σ) to mean (µ)

such that CoV = 100 ∗
√

σ
µ .

Table 7.1 shows resultant CoV for some of the PMU events. We also present
maximum residual error received by applying the proposed method in Table 7.1.

Table 7.1. Accuracy of segment detection method

PMU Event Coefficient of
Variance (%)

Maximum Residual Error

Branch Instructions Retired 2.63 1.0130e+05
Instructions Retired 2.66 1.1767e+05
L1D_PEND_MISS 1.79 1.3675e+05
L1D 1.68 1.0144e+05
TLB_FLUSH_DATA 1.98 1.1829e+05
perf-CPU-CYCLES 4.11 1.2375e+05

7.5 Discussion

The proposed dynamic approach automatically detects number and location
of segments based on root means square level. The method does not need to
know the number of change points as an input parameter to find segments. This
sequential method takes the complete data series into account to be able to
iteratively investigate and adjust key points until the residual error becomes
minimum. The results in Figure 7.1 shows samples on x-axis and resource
utilization count on y-axis. Vertically segmented series shows where there is
a change in resource utilization behaviour. For instance PMU event Branch
Instructions Retired shows how many branch instructions were completed when
the event was sampled. Figure 7.1(a) shows how the trend is changing from
one segment to other i.e. going up for segment starting around 250 to 450 and
then it goes down during the next segment and then again it goes up and so on.

84 Paper B

Also Table 7.1 for Branch Instructions Retired show CoV is only 2.63% and
maximum recorded residual error from actual points is 1.0130e+05 which is
quite nice accuracy for segmentation.

Change point is similar to outlier with a slight difference i.e in change point
there is a time step into a new model (such as a change in mean value) whereas
in the case of an outlier there is a significant time step out of a single model [5].
This we can see in data distribution of TLB_FLUSH in Figure 7.1(e). In segment
starting around 600 and ending around 1850, time steps out of a single model are
ignored as outliers, and the time series does not split into a new segment for each
outlier. Therefore this segmentation approach is independent of pre-screening,
pruning, or normalization of given data.

In Figure 7.1(d), last segment of L1D shows consistent higher L1D cache
utilization starting roughly from sample 600 to 3700. This knowledge can be
useful in the case of hyper-threading which allows to run more than one thread on
each core. Applications running on a hyperthreaded CPU utilize two hardware
threads that share the same physical processor and L1 cache so running them
in parallel with higher L1 cache utilization may cause L1 congestion. Cache
congestion can lead to bad or unpredictable application performance. Therefore,
such knowledge can also be used by other automated tools responsible for
decision-making or can be a standalone tool for critical analyses. For instance, a
scheduler or container’s orchestrator can consider these points to estimate the
resource utilization during these segments.

Furthermore, in Figure 7.1(f) for perf_CPU_CYCLES, segment starting
roughly from 250 to 490 shows high CPU cycle count which means the applica-
tion was more active during this time interval and utilized more computational
resources. The hype in the CPU cycles can be related to dynamic frequency
scaling which allows the microprocessors to adjust the CPU frequency on the
fly depending on the actual needs for power management. The segments with
such hypes can then be useful if an application may require underclocking or
overclocking.

7.6 Related Work 85

7.6 Related Work

To identify similarities and differences between multiple data sets some of the
standard methods are least square and likelihood. The algorithms for change
point detection are E-Agglomerative, Wild Binary Segmentation, Bayesian
analysis of change points and Iterative Robust detection of change points [6].
E-Agglomerative is cluster based approach to estimate change points depending
on the goodness of fit [14]. The method is used to detect multiple change
points within a data set. However, many of the methods require pre-screening to
exclude the irrelevant points to obtain an improved accuracy which is not the
case with proposed solution.

Multiple change points was also considered by Yao [15] where Bayesian
point of view was involved which is a form of statistical reasoning based on
calculated probabilities to provide best possible prediction. Bayesian point of
view is used when the inputs and information is not sufficient to determine
the output. Yao also presented graph based change point detection for high
dimensional and non-euclidean data [16]. He took single-point case to estimate
change even when there is noise in data. The method can even estimate when
number of jumps are unknown and they are within defined bounds.

Another study used randomly sampled basic block frequencies (sparse)
without any dedicated hardware support. They propose Precise Event Based
sampling (PEBS) to reduce run time overhead as one of the prime goals of their
study [7]. But it require extensive normalization of data before processing.

7.7 Conclusion and Future Work

The study has successfully presented how a change in resource utilization
behavior can be automatically identified by using penalty-based function from
a Bayesian point of view. The Bayesian approach iterates until the change in
statistical function has a minimum residual error. This study has shown an
improved automated approach to determine the empirical threshold that can
provide segments without prior knowledge of the number of change points.
With this method, the total number and location of segments is reported with a
low segmentation cost. Such knowledge can be a component of performance

86 Paper B

management system and can save from exceeding resource capacities. Moreover,
when the data is small and solitary then differences can be visible to the human
eye but when the data is huge, complex and continuous then a manual analysis
can not help benefit the process management. Therefore, a boxed representation
of each segment can be further used during performance management, QoS,
tuning, and detection purposes.

Lastly, we keep working on extending the method into a forked activity
which can then be used for reliable decision making purposes. One of the
extension can be providing these segments details to orchestrator which can
consider the resource utilization demand while scheduling the containers.

Bibliography

[1] Marcus Jägemar, Andreas Ermedahl, Sigrid Eldh, and Moris Behnam. A
scheduling architecture for enforcing quality of service in multi-process
systems. 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1–8, 2017.

[2] Intel. Intel® 64 and ia-32 architectures software developer’s manual.
Technical report, Intel, 2022.

[3] John W. M Tukey. Comparing individual means in the analysis of variance.
In Biometrics, pages 99–114. JSTOR Arts and Sciences II Scopus, 1949.

[4] Marc Lavielle. Using penalized contrasts for the change-point problem.
Signal processing, 85(8):1501–1510, 2005.

[5] ArcGIS Pro. How change point detection works, 2022.

[6] Shilpy Sharma, David A. Swayne, and Charlie Obimbo. Trend analysis and
change point techniques: a survey. In Energy, Ecology and Environment,
volume 1, pages 123–130, 2016.

[7] Andreas Sembrant, David Eklov, and Erik Hagersten. Efficient software-
based online phase classification. In 2011 IEEE International Symposium
on Workload Characterization (IISWC), pages 104–115. IEEE, 2011.

[8] Brendan Gregg. Systems performance: enterprise and the cloud. Pearson,
2nd edition, 2020.

87

[9] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis,
and Fabian Monrose. SoK: The challenges, pitfalls, and perils of using
hardware performance counters for security. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 20–38. IEEE, 2019.

[10] Yao Wang, Chunguo Wu1, Zhaohua Ji, Binghong Wang, and Yanchun
Liang. Non-parametric change-point method for differential gene expres-
sion detection. PloS one, 6(5):e20060–e20060, 2011.

[11] MathWorks. findchangepts - Find abrupt changes in signal, 2023.

[12] Indeed. What Is Variance? Definition And How To Calculate It, 2022.

[13] Shamoona Imtiaz, Jakob Danielsson, Moris Behnam, Gabriele Capan-
nini, Jan Carlson, and Marcus Jägemar. Automatic platform-independent
monitoring and ranking of hardware resource utilization. In 26th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1–8. IEEE, 2021.

[14] David S. Matteson and Nicholas A. James. A nonparametric approach
for multiple change point analysis of multivariate data. Journal of the
American Statistical Association, 109(505):334–345, 2012.

[15] Yi-Ching Yao. Estimating the number of change-points via
schwarz’criterion. In Statistics & Probability Letters, volume 6, pages
181–189, 1988.

[16] Yi-Ching Yao and S. T. AU. Least-squares estimation of a step function.
The Indian Journal of Statistics, Series A, pages 370–381, 1989.

Chapter 8

Paper C:
Automatic Clustering of
Performance Events

Shamoona Imtiaz, Gabriele Capannini, Jan Carlson, Moris Behnam, Marcus
Jägemar
In 28th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA2023).

89

Abstract

Modern hardware and software are becoming increasingly complex due to
advancements in digital and smart solutions. This is why industrial systems
seek efficient use of resources to confront the challenges caused by the complex
resource utilization demand. The demand and utilization of different resources
show the particular execution behavior of the applications. One way to get this
information is by monitoring performance events and understanding the rela-
tionship among them. However, manual analysis of this huge data is tedious and
requires experts’ knowledge. This paper focuses on automatically identifying
the relationship between different performance events. Therefore, we analyze
the data coming from the performance events and identify the points where
their behavior changes. Two events are considered related if their values are
changing at approximately the same time. We have used the Sigmoid function
to compute a real-value similarity between two sets (representing two events).
The resultant value of similarity is induced as a similarity or distance metric in a
traditional clustering algorithm. The proposed solution is applied to 6 different
software applications that are widely used in industrial systems to show how
different setups including the selection of cost functions can affect the results.

8.1 Introduction 91

8.1 Introduction

Computers are subject to hardware resource management in a fashion similar to
cognitive load management in humans. Consider a technician decommissioning
hardware from a data center while enjoying the music with headphones on.
Meanwhile, a sudden alarm urges immediate attention. Listening to the music
while handling the alarm does not amuse anymore, a vigilant response of the tech-
nician to handle the situation is imperative. This is cognitive load and switching
off the music is required to manage the case. The same applies to machines, re-
source management is the amount of information a machine can load and process
at one time. A system can possibly be efficient and competitive by improving
its software and hardware utilization behavior. In general, it needs to be consid-
ered critically which applications are running in the environment and how they
affect the system performance. This is why deploying industrial applications
requires extensive resource utilization analysis in terms of computational cost,
memory requirements, load balancing, scheduling and Quality of Service (QoS).
Performance events such as L1_Cache_Misses, Branch_Instruction_retired,
Instructions_Retired, Page_faults, TLB_Misses demonstrate the resource utiliza-
tion of an application on a platform [1]. The knowledge gained is useful for
software developers, system integrators and performance engineers in terms of
load & efficiency, responsiveness and resource utilization analysis respectively.

One way to monitor performance events is the use of Performance Moni-
toring Counters (PMCs), available in the Performance Monitoring Unit (PMU)
of the modern computer. These hard-wired special purpose registers are used
to record the events that occurred by the utilization of software and low-level
hardware resources such as cache, memory, processor, translation lookaside
buffers (TLB) and data bus. On the one hand, it is possible that multiple per-
formance events are related to the same hardware resource and on the other
hand one performance event may cause the generation of another performance
event. Moreover, in a shared resource environment the impact, relations and
dependency between different performance events are more significant than
apparent. A shared cache can really destroy the performance and increasing
the cores to serve the simultaneous hardware utilization demand of all the ap-
plications running in parallel is not an efficient use of resources. However, the

92 Paper C

interpretation of such a complex execution behavior is indeed hard to visualize
without an intelligent tool. Moreover, tools to investigate which performance
events are related are not openly available if there exists any. Consequently,
the probability of missing the signs and clues of parallelism, dependencies and
relationship between different resources gets higher.

Nonetheless, a problem cannot be solved without solving the cause and not
every performance problem can be solved in one scenario. Hence, the focus of
the study is to identify the existence of a relationship between different perfor-
mance events with respect to time. However, the captured resource utilization
behavior is sensitive to the sampling rate and the platform where the application
is running. For such reasons, finding one single model for complex behavioral
data is itself a challenge. One way to reduce the complexity of the working set is
using segmentation [2]. Segmentation divides the longer sequence into smaller
parts (segments) based on applied criteria. The positions where the sequence
is chopped down are called segmentation points. So rather than point-to-point
comparison, identifying relationships based on the segmentation points is more
appropriate to circumvent the sampling bias and different loads of the execution
environment. It also gives the advantage of breaking down the rational and
affinitive behavior based on the abrupt changes in the data distribution [3, 4].
Therefore, instead of quantifying the magnitude of change for the sake of simi-
larity, we consider performance events to be related who experience a change
from their previous norm in a similar time fashion.

Groups of related data sets can be determined statistically through clustering
analysis. However, clustering analysis is not limited to one approach. Regardless
of the constitutional basis of a clustering algorithm (such as distance, density,
or connectivity) [5] all clustering algorithms require at least one homogeneous
feature for grouping. Having change points as a feature of similarity hinders
the use of off-the-shelf clustering algorithms since the number of changes in
each performance event is unlikely to be the same. That being the case, we have
instrumented the traditional Hierarchical Clustering algorithm with a customized
cost function to handle the inconsistency of the data sets. This work builds upon
our previous work on automated performance monitoring [6] and segmentation
of resource utilization data [7], addressing clustering of performance data based
on the identified segments. The provision of such knowledge helps engineers to

8.2 Background 93

make interpretations based on their interests. They can target a particular group
of performance events rather than multiplexing the hundreds of performance
events, especially when the number of performance monitoring counters is
limited per platform. Therefore, our main contributions are:

Similarity based on segmentation points: Our first contribution is to identify
not the same but somewhat similar performance events based on the segmen-
tation points. Based on that we calculate the proximity of similarity for the
ordered sequences of numbers. The length of ordered sequences in comparison
can be different.

Clustering based on customized distance function: Our second contribu-
tion is to compute the pairwise matrix using our similarity function. Such that
the matrix can be utilized by the traditional clustering algorithms to identify the
groups of similar performance events.

Briefly, we start our study by presenting a technical background in Sec-
tion 8.2 for the readers to easily understand the contribution made through this
work. Next, we present our proposed solution in Section 8.3 describing the
approach used to achieve the goal of the study. The implementation details
and the experimental setup is then outlined in Section 8.4. Following the im-
plementation details, results are discussed in Section 8.5 to extend the reader’s
knowledge. The state-of-the-art and related work to our study is then presented
in Section 8.6. Finally, the anticipated future work followed by the conclusion
concludes the paper in Section 8.7.

8.2 Background

We use the Performance Monitoring Counters (PMCs) to capture the resource
utilization data of the applications. The segmentation points are identified using
the change point detection method. Having these working sets ready for analysis
similarity is measured using different cost functions. The weights of these costs
are then considered during the grouping of performance events.

94 Paper C

8.2.1 Performance Monitoring Counters

The processor is one of the main information sources when observing activities
in computing devices. A fixed number of registers are available to record the
low-level performance information at the CPU cycle level [8]. The performance
information is an observable activity, state or signal coming from hardware,
software, or kernel. This observable activity is called an event and there can
be hundreds of such events that are been generated by the application when it
is running on a platform. In comparison to a large number of available events,
only a limited number of registers are available per platform. These registers
are called Performance Monitoring Counters (PMCs) [1]. Though the number
of available PMCs is processor-specific, they are always significantly less than
the available performance events [1, 9, 10]. Therefore, multiplexing is required
when monitoring a high number of performance events. A non-standardized
event naming and numbering scheme between hardware architectures further
complicates the portability of low-level performance monitoring tools. However,
a significant effort has been made by the cross-platform tool called Performance
Application Programming Interface (PAPI) to standardize the performance
events names [11]. PAPI also gives the ability to collect all platform-specific
performance events called native events. In this study, we use PAPI to collect
performance monitoring data.

8.2.2 Change Point Detection

Change point detection is a well-known statistical method for locating changes in
terms of mean, variance, or standard deviation of a data set. The offline method
requires complete data series beforehand and applies a penalized contrast func-
tion to locate the positions of abrupt changes in the entire data distribution. The
iterative method continues to repeat until the aggregate deviation based on em-
pirical estimate becomes minimum, called residual error [3, 4]. The parametric
function allows different attributes for trend analysis such as the number of
changes, the statistical method to be applied, the threshold for minimum residual
error improvement, and the minimum distance between change points.

Some of the popular applications of change point detection are signal pro-
cessing, genome, trend analysis, time series, intrusion detection, spam filtering,

8.2 Background 95

website tracking, quality control, step detection, edge detection, and anomaly
detection. We use change point detection to identify the change in trend such that
the change in the behavior of one performance event leads towards an impact on
another performance event’s behavior.

8.2.3 Sequence Similarity - Similar Is Not Same

Sequence analysis or sequence similarity analysis is a popular method of iden-
tifying DNA similarity, a span of life trajectories & career and text similarity,
alignment distances, document similarity and classification [12]. Some of the
known methods are distance function (Chi-Squared, Euclidean), common at-
tributes (Hamming Distance, Longest Common Subsequence), edit distance,
cosine similarity and Jaccard similarity. These methods are usually based on
the measure of distance, order, position, time, duration and/or the number of
repetitions [12]. Edit Distance can be an appropriate choice if the aim is to
quantify the inequality. It applies a weight for each edit function (insertion, dele-
tion, substitution) until a sequence becomes identical to the other one. Cosine
similarity is useful when similarity is not intended in terms of the size of the data.
It can also be used in situations when the data sets are of different lengths and
the orientation of the data is more important than the magnitude of the data [13].
The Jaccard similarity is a proximity measurement of shared properties i.e., size
of intersection over the size of union [14].

All of these methods are based on an exact match of elements. However, in
a classification problem, it is possible that some items are similar but not the
same. Things are the same if they are identical to each other. Things can still be
similar if they are not exactly the same. For example, if there are four sequences
as below:

S1 = {3, 5, 7, 1700},
S2 = {3, 5, 7, 1700},
S3 = {2, 5, 9, 1700},
S4 = {3, 5, 1700}

We can see, the sequence S1 and sequence S2 are the same because all of
their elements are an exact match to each other yet S3 and S4 are similar to S1

96 Paper C

and S2. The matching criteria of this study is similarity.

8.2.4 Bounded Cost Function

In a matching principle, the similarity is quantified with probability when the
objects in comparison are not exactly the same. There are many ways to compute
the probability such as the Binary step function, Linear functions, and Non-linear
functions. The binary step function applies a static cost if a certain threshold
is passed. The drawback is that it does not provide back-propagation. Linear
functions are mean, variance, and covariance and they also do not offer back-
propagation and the absence of one value can augment the cost of the others.
In comparison, there is a variety of non-linear cost functions such as Sigmoid,
Hyperbolic Tangent (Tanh), Rectified Linear Unit (ReLU), and Exponential
Linear Unit (ELU) [15]. These functions have the advantage to propose a
smooth and bounded cost. For example, Sigmoid converts the number on a scale
of 0 and 1 and gives the probability value as output. Its smooth scale gives the
rate of change based on the gradient descent. The bounded scale is good to
estimate the likelihood of probability which is why they are considered reliable
to use with analysis algorithms for optimization purposes. The Sigmoid function
is also important in logistic regression. Logistic regression is used to predict
binary classification where Sigmoid plays the role of the activation function.
Therefore, we use the non-linear Sigmoid function to calculate a decent cost to
be applied while matching the sequences.

8.2.5 Clustering Analysis

Clustering analysis is a classification technique for the grouping of objects with
respect to a predefined matching rule. A rule can be distance, density, location,
similarity, or any. There are various clustering algorithms: Hierarchical, Density-
Based Spatial Clustering of Applications with Noise (DBSCAN), K-means and
Nearest Neighbor [16].

In Hierarchical clustering, a multilevel hierarchy of clusters is formed such
that each cluster is found based on a similarity function between the data points.
First of all pairwise distance based on similarity is computed and then clusters of
objects are created using close proximity. The iterative method keeps growing

8.3 Proposed Solution 97

the binary tree into a larger cluster based on the pairs. However, not to forget,
Hierarchical clustering does not perform well when the data set is too large.
DBSCAN is also a distance-based clustering method and can work not only with
traditional distance measurements like Euclidean, Manhattan and Hamming
distance but also with customized distance functions. A customized distance
function can then be used during the computation of the distance matrix for
making decisions. Both Hierarchical and DBSCAN, do not need to know the
number of clusters to find beforehand therefore this makes them good candidates
for clustering for this study.

8.3 Proposed Solution

We propose a two-step method that identifies the groups of similar performance
events based on our customized similarity measurement.

8.3.1 Similarity Detection

This section firstly describes the measurement approach, segmentation points,
and sequence used in this study and proposed in [7]. Then our method for
evaluating the similarity of two given sets of segmentation points is introduced.
To this end, we defined our own similarity function which is inspired by the
Jaccard similarity coefficient [17]. While the original definition is based on
counting the number of identical elements occurring in two input sets, we aim
to have a more flexible definition of matching between a pair of elements. This
has been achieved by exploiting a pairwise cost function mapping the difference
between two elements into the range [0, 1] where zero denotes a perfect matching,
i.e., the elements are the same. By means of the proposed cost functions, we
defined our similarity measure and, then, populated a similarity matrix that acted
as input for the chosen clustering algorithm i.e., Hierarchical clustering.

Measurement approach For a given application, p, we define a set of perfor-
mance events, E , of size n . For each e ∈ E , a measurement series, mi , of Li

data points is collected at frequency, f [6]. As a result, we get n measurement

98 Paper C

series for the application p such that M(p) = {mi : 1 ≤ i ≤ n} where mi is a
time ordered series of i -th performance event.

Segmentation points and Sequences Segmentation points are the points
where abrupt changes in measurement are coming and the sequence is an ordered
list of successive numeric elements. Using the statistical change point detection
method, the segmentation points are identified through the mechanism devised
in [7]. Thereby an ordered sequence pts(mi) of di number of segmentation
points for each mi is detected such that |pts(mi)| ∈ (1 , di]. Each element in
pts(mi) corresponds to a perceived change in trend after a stable behavior and
|pts(mi)| can be different for each mi .

Cost Functions Let p1 and p2 a pair of points belonging to pts(m1) and
pts(m2), respectively. A cost function returns a higher value when p1 and p2
are more distant. The cost function is required to be defined in [0,+∞) and
return a value in [0, 1] where values near 1 denote a higher difference between
p1 and p2.

As candidate cost functions we defined three monotone non-decreasing
functions depicted in Figure 8.1 where x = |p1−p2 | and defined as:

c1(x) = 0.5 · k1x− k1g1√
(k1x− k1g1)2 + 1

+ 0.5 (8.1)

c2(x) =
k2x√

(k2x)2 + 1
(8.2)

c3(x) = min(1, (g3x)
2) (8.3)

Here, any g parameter (i.e., g1 and g3) is a similarity threshold defining the
dividing point between “similar points” (if x < g) and “different points” (if
x > g) while k (i.e., k1 and k2) is a positive factor used to flatten the functions
thus for tuning the degree of uncertainty in defining the similarity value returned.
Parameter g selection can be challenging in terms of level of strictness therefore
the g is been used in three different scenarios through Equations 8.1, 8.2 and 8.3
as firm, rigorous and strict, respectively. Whereas parameter k is tweaked to
create the ’S’ shape curve of the Sigmoid function. In more detail:

8.3 Proposed Solution 99

0
0

1

g1 g3

c1(x)

c2(x)

c3(x)

Figure 8.1. Plot of the cost functions proposed with the thresholds g1 and g3.

• The first cost function c1, Equation 8.1, is a non-linear Sigmoid function
having the parameter g1 as similarity threshold that denotes the point
where the function becomes concave, as shown in Figure 8.1. The func-
tion also requires the parameter k1 which denotes how fast the function
approaches the extremes (i.e, 0 and 1) while getting away from g1 .

• The second cost function c2, Equation 8.2, corresponds to the concave
part of another non-linear Sigmoid function. Here there is no parameter
defining the similarity threshold (i.e, g = 0), like in c1, just the factor
k2 for flattening the function, which is to set how quickly it reaches the
upper extreme while getting away from zero. This function considers the
absolute distance between p1 and p2 regardless of the similarity threshold
so the cost is calculated at one step function hence resulting in a higher
aggregated cost.

• Our last cost function c3, Equation 8.3, is a quadratic function where a
factor g3 defines the point of maximum distance between p1 and p2 after
which the two compared points returns the maximum cost.

In the following, one of the cost functions is applied at a time to test the
accuracy of each.

Similarity Function Let A,B ∈ pts(mi) be two sequences of ordered num-
bers to be compared. Our similarity function is inspired by Jaccard similar-

100 Paper C

ity [17] defined as:

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B| (8.4)

For our similarity function, rather than using the number of elements that
are present in both sets, |A ∩B|, we calculate the matching degree between the
two sets by means of a given cost function c.

In particular, let |B| ≤ |A|, we assess |A ∩ B| as the result of summing
1− c(|b−a?|) for each b ∈ B where a? refers the closest element of A to b, thus
returning the lowest cost for matching b into A according to c. Therefore, we
define σ =

∑
∀b∈B c(|b−a?|) and replace |A∩B| with |B|−σ in Equation 8.4

to define our similarity function:

jSim(A,B, c) =
|B| − σ
|A|+ σ

(8.5)

The implementation of jSim is presented in Algorithm 27 where A and B
are two non-empty sets of values sorted in ascending order and c is one of our
cost functions. Such assumptions come directly from our case study; in more
general cases, Algorithm 27 can be modified to return zero if either A or B is
empty as well as A and B can be sorted beforehand if they are not (rising, in
this way, the overall computational complexity which is now linear).

First, the algorithm checks that |B| is smaller than |A| otherwise the two
sets are swapped (line 3). This check is crucial since performing the matching
from the smallest set to the largest one, and not vice-versa, limits the number
of matching pairs between A and B so as to ensure that the numerator in
Equation (8.5) does not get greater than the denominator and the returned
similarity value lies in [0, 1]. As counter example, assume that B = {3, 6} and
A = {4} while c(a, b) simply returns 0 if |a − b| < 5 otherwise 1. Skipping
line 3 in Algorithm 27 leads to having jSim(A,B, c) = (2−0)/(1+0) = 2
(since all pairwise absolute distances are less than the threshold 5 hence σ ← 0)
while, enabling the swap-test, jSim(A,B, c) = 0.5 < 1 as required.

The algorithm finds the best match for each value in B by calculating
the related cost against the closest element in A. To keep low the overall
computational complexity, Algorithm 27 takes advantage of the sorted inputs

8.3 Proposed Solution 101

1 function jSim(A,B, c)
2 if |B| > |A| then
3 swap(A,B)
4 end
5 l← −∞
6 r ← a0
7 i← 1
8 j ← 0
9 σ ← 0

10 while true do
11 while j < |B| ∧ bj < r do
12 σ ← σ + c(min(bj − l, r − bj))
13 j ← j + 1

14 end
15 if i = |A| ∨ j = |B| then
16 break
17 end
18 l← r
19 r ← ai
20 i← i+ 1

21 end
22 while j < |B| do
23 σ ← σ + c(bj − r)
24 j ← j + 1

25 end
26 return (|B| − σ)/(|A|+ σ)

27 end

Algorithm 4: jSim(A,B, c) computes the similarity between two non-
empty sets of ordered values,A = {a0, ..., a|A|−1} andB = {b0, ..., b|B|−1},
given a cost function c.

102 Paper C

and logically divides A into a number of ranges defined by pairs of consecutive
elements (identified by l, the left end-point, and r, the right end-point). As
depicted in the example in Figure 8.2, the algorithm calculates the cost associated
with the elements of B belonging to the current range [l, r) by matching each of
them with the closer end-point then adds the related cost to σ (line 12).

A = {5, 7, 37, 237, 433, 630, 1685}

B = {5, 171, 1812}

Figure 8.2. In this example, the red element is the only one in the blue range and it will
be associated to the right end-point (i.e., r = 237) which is closer than the other one

(i.e., l = 37).

As soon as the elements of B become greater than r, the range-endpoints
are shifted forward to include the next A element (lines 18 and 19) and the
matching process is repeated until the end of A or B is reached (line 16). In
case A terminates before all elements of B have been matched, the cost for the
remaining B elements is computed against the last element of A (line 23) which
is straightforwardly the closest one. Once σ has been calculated, Algorithm 27
returns the similarity jSim as defined by Equation 8.5 (line 26).

It turns out that each element of B is tested once while sliding the endpoints
r and l over A while the cost for matching any remaining B elements is calcu-
lated directly sweeping the tail of B, hence the overall number of operations
performed by Algorithm 27 is O(|A|+|B|).

8.3.2 Group Identification

Followed by the similarity detection, let jSimMtrx be the n×n matrix for
pts(m[i ..n]) such that each row contains a pairwise similarity with all other se-
quences in the data set, in Algorithm 7 line 4. The matrix is then used to compute
the distance between any of the two sequences such that ∆(pts(m1), pts(m2))
using a linkage function. Since we opt to choose an unsupervised technique
i.e., agglomerative hierarchical clustering, the linkage function is augmented
with our customized jSimMtrx and linkage type (which is ′complete′ in our

8.4 Implementation and Experiments 103

case). We do not need to define the cut-off since the interest was real proximity
of similarity. The function performs n(n − 1)/2 comparisons to generate a
3-column pairs matrix, Algorithm 7 line 7. The pairs is then used to form the
clusters with respect to the minimum distance between sequences and merge
into a tree of n leaf nodes, the performance events. This multilevel hierarchy
is then visualized with the dendrogram graphical tool which is well-known for
qualitative and quantitative evaluations.

1 load n measurements into mi ∈M(p)
2 for i← 1 to n do
3 for j ← 1 to n do
4 jSimMtrxi,j < −jSim(pts(mi), pts(mj), c)
5 end
6 end
7 jSimClusters(jSimMtrx,′complete′)

Algorithm 5: Identify clusters of similar performance events

8.4 Implementation and Experiments

We measure the performance of the applications by using PAPI library version
5.7.0.0 to sample the PMCs. Since the aim was to identify the groups of similar
performance events so the entire execution period of the applications is measured
for each event. To sample the applications a symmetric 5 milliseconds period
was used which generates a varying number of samples depending on their
execution time. From these time-based measurements, we detect segmentation
points in each using findchangepts() function available in Matlab version
R2021. Overall comparison, analysis, and visualization of grouped sequences
are performed in Matlab.

Test Applications: We have chosen 6 different applications for the experi-
ments based on their functions. We characterize 2×2 matrix multiplication, melt-
down (a malware), SUSAN (image processor to find corners), SIFT (a complex
feature detection algorithm to detects objects rather than just corners), Mul-
tiresolution analysis kernel (MADNESS) and Covariance (for Coefficient of

104 Paper C

(a) Approximate similarity using C1

(b) Approximate similarity using C2

(c) Approximate similarity using C3

Figure 8.3. Pairwise proximity of similarity between some of the performance events of
Meltdown application

8.4 Implementation and Experiments 105

Variance Computation). The motive behind their selection is the significant use
of computation functions and memory utilization in many industrial systems.
Such applications can enormously impact the system performance due to their
eager resource utilization demands.

Measurements: Each test application was characterized 20 times for its
complete execution period using the solution provided in [6, 7]. For each
application, a different number of performance events was captured since these
events are coming from hardware, software and kernel. The hardware events
may remain similar because they are coming from the same platform but the list
of software events may vary since each application produces different events
based on its distinct resource utilization demand.

Results: We run the application and collect sequences of segmentation
points as proposed in [7]. A few of them are listed in Table 8.1 with their
corresponding performance event for application meltdown. Supplying a batch
of sequences to our clustering algorithm, Algorithm 7, the similarity matrices
for a subset of performance events are illustrated in Figure 8.3. A hierarchy is
formed by merging the identified pairs using a similarity matrix and is presented
in Figure 8.4.

Table 8.1. Sequences of segmentation points for some performance events of Meltdown
application

Performance Event Sequence of Segmentation Points

INSTRUCTIONS-RETIRED {37, 48, 66, 70}
PERF-L1-ICACHE-LOADS {3, 29, 52, 64, 70}
PERF-L1-DCACHE-LOAD-MISSES {3, 37, 41, 69}
PERF-DTLB-STORE-MISSES {3, 34, 36, 63}
L2-LINES-OUT {3, 40, 58, 69}
L1D-PEND-MISS {3, 5, 36, 39, 51, 58, 62, 67, 71}
TLB-FLUSH {48, 73}

106 Paper C

(a)

(b)

Figure 8.4. Clustering Results for Different Applications

8.5 Discussion 107

8.5 Discussion

With respect to two major contributions of the paper, it was important to un-
derstand which cost function can establish a good base for the classification
rule. The optimal number of classes will always be the unique data points if the
classification rule is ’identical’ only. Therefore, a prospective cost function is
anticipated to compute a real-value distance from the closest match. Through
visual observation, we evaluate c2 yields a higher cost since it applies the penalty
to the absolute distance between the points instead of a normalized cost up to
the defined threshold. This is also apparent from Figure 8.3 and Table 8.1 that
c2 does not perform well when competing with c1 and c3 such as for perfor-
mance events INSTRUCTIONS-RETIRED and PERF-L1-ICACHE-LOADS. The
sequences of stated performance events are quite similar but c2 identifies them
as far distant. This also implies the fact that more rigorous costs are expected
if the sequences are derived from the measurements consisting of thousands of
data points. However, this means c2 is relatively advantageous when strict or
close matches are desired.

The above-stated observations stimulate further investigation between c1
and c3. The c3 applies a sharp cost as soon as the distance between the points
exceeds the threshold. This is good in a way to restrict the measure of similarity
but in reality, there is always room for sampling bias and different loads of the
execution environment within the captured performance data. In contrast, c1
applies smoother cost not until the threshold is reached but also while leaving the
boundaries of the similarity zone. For example, if the threshold of similarity is
25 and the distance between two points is 26 then it does not suddenly becomes
dissimilar. Instead of a steep kick out from the similarity zone, a smooth
departure is allowed. Such a smooth method is deemed appropriate when the
data characteristics are complex and rational. Next, talking about TLB-FLUSH
when compared with L1D-PEND-MISS it finds a close match for both elements
yet the similarity is low, also shown in Figure 8.3a. The resultant similarity is
nevertheless factual considering the difference in the cardinality of the compared
sequences. Besides, the visual inspection of the results also verifies the level
of identified similarity. Consequently, the performance of c1 is recognized as
accepted.

108 Paper C

Moving on to the second contribution, Figure 8.4 illustrates the groups of
similar performance events for applications meltdown and 2x2matrix multiplica-
tion. The formulated hierarchy of different sequences demonstrate how distant
they are, as shown in the case of PERF-L1-DCACHE-LOAD-MISSES, PERF-
DTLB-STORE-MISSES and L2-LINES-OUT in Figure 8.4a. The dendrogram
clearly presents that they might not be the same but comes in the same cluster
with a certain distance.

Although the groups are not identified based on the magnitude of change,
the visual analysis of clusters observes the change in behavior at a similar time
for BRANCH-INSTRUCTIONS-RETIRED, PERF-BRANCH-LOADS, PERF-
L1-ICACHE-PREFETCHES and PERF-LLC-LOADS, in Figure 8.4b. This
information can be used to identify possible relevance between various resources
such as processor and L1 cache. However, to detect impact and dependence
more features are to be investigated such as the trend of data at the segmentation
points.

8.6 Related Work

PMCs have also been used for behavioral-image formation where each perfor-
mance event is considered as a feature [18]. The research includes features
(PMCs) as images for behavioral analysis using a deep learning algorithm to
know the normal or abnormal state of the system.

For finding similarity there are many existing approaches such as DNA
similarity, cosine similarity, edit distance, and Jaccard index but they have
preconditions such as identical or different lengths, same data structure or exact
matches [12, 13, 14]. The way they compare is more strict and can be applied
in absolute conditions. When it is not the case researchers like Fletcher and
Islam [19] have used the Jaccard index for comparing patterns coming from
different techniques. Their proposed method converts each pattern into a single
element which is also the commonality between their and our solution. However,
our method to get a discrete value of similarity is different. Their method
translates each pattern into an element of its own set whereas we compute the
similarity based on element-wise weighted distance with respect to the lengths
of the sequences. This is an additional strength of our proposed mechanism to

8.7 Conclusion and Future Work 109

handle the inconsistencies of data.
A similar approach has also been applied by Koch, Zemel and Salakhut-

dinov [20] for one-shot image recognition where very limited or sometimes
single example is available to compare in supervised machine learning. They
employed the sigmoid function in convolutional neural networks to find the
similarity between the final and hidden layers of the twin network. The approach
was to scale the absolute distance between 0 and 1 with the help of training
parameters. Since their problem was binary classification so instead of utilizing
real-value output the values from 0.5 to 1 were taken as dissimilar. Whereas we
use the resultant weighted cost as a probability of similarity. Moreover, their
working sets were of the same length so one-to-one comparisons were directly
possible which on the contrary was not a viable option for us. So we provide
additional functionality to find the closest possible match with our holistic and
intelligent approach.

8.7 Conclusion and Future Work

We have presented a mechanism that can compute the proximity of similarity
between ordered sequences of uneven lengths. The method based on weighted
real-value costs nicely handles the measure of dissimilarity. The method is
also flexible to choose between firm, rigorous and strict penalties based on the
needs of how strict or moderate comparisons are to be performed. We outline
the method that applies the appropriate cost by investigating the closest match.
The mechanism was able to group different performance events based on the
segmentation points. We have also argued the possible leads towards identifying
relations and dependence between different performance events.

Lastly, we continue toward automatically creating an application fingerprint
based on its resource utilization for detection, identification or even decision-
making. An immediate extension can be relating the trends in the data before and
after the segmentation points to identify the impact between different resources.

Bibliography

[1] Intel. Intel® 64 and ia-32 architectures software developer’s manual.
Technical report, Intel, 2022.

[2] Ella Bingham, Aristides Gionis, Niina Haiminen, Heli Hiisilä, and Heikki
Mannila. Segmentation and dimensionality reduction. In 2006 SIAM
International Conference on Data Mining, pages 372–383. Society for
Industrial and Applied Mathematics, 2006.

[3] MathWorks. findchangepts - Find abrupt changes in signal, 2023.

[4] SAMIR BEN HARIZ, JONATHAN J. WYLIE, and QIANG ZHANG.
Optimal rate of convergence for nonparametric change-point estimators
for nonstationary sequences. 2007.

[5] Dengsheng Zhang. Fundamentals of image data mining. Springer Interna-
tional Publishing, 2nd edition, 2019.

[6] Shamoona Imtiaz, Jakob Danielsson, Moris Behnam, Gabriele Capan-
nini, Jan Carlson, and Marcus Jägemar. Automatic platform-independent
monitoring and ranking of hardware resource utilization. In 26th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1–8. IEEE, 2021.

[7] Shamoona Imtiaz, Moris Behnam, Gabriele Capannini, Jan Carlson, and
Marcus Jägemar. Automatic segmentation of resource utilization data.
In 1st IEEE Industrial Electronics Society Annual On-Line Conference
(ONCON 2022, pages 1–6. IEEE, 2022.

111

112 Bibliography

[8] Brendan Gregg. Systems performance: enterprise and the cloud. Pearson,
2nd edition, 2020.

[9] AMD. Open-source register reference for amd family 17h processors
models 00h-2fh, 2018.

[10] ARM. Arm architecture reference manual - armv8, for armv8-a architec-
ture profile.pdf, 2017.

[11] Philip J. Mucci, Shirley Browne, Christine Deane, and George Ho. PAPI:
A portable interface to hardware performance counters. In Proceedings of
the department of defense HPCMP users group conference, volume 710,
1999.

[12] Matthias Studer and Gilbert Ritschard. What matters in differences be-
tween life trajectories: a comparative review of sequence dissimilarity
measures. Journal of the Royal Statistical Society: Series A (Statistics in
Society), 179: 481-511,, 179(2):481–511, 2016.

[13] Alfirna Rizqi Lahitani, Adhistya Erna Permanasari, and Noor Akhmad
Setiawan. Cosine similarity to determine similarity measure: Study case in
online essay assessment. In 2016 4th International Conference on Cyber
and IT Service Management, pages 1–6. IEEE, 2016.

[14] Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and
Supachanun Wanapu. Using of jaccard coefficient for keywords similarity.
In International multiconference of engineers and computer scientists,
volume 1, pages 380–384. IEEE, 2013.

[15] Dabal Pedamonti. Comparison of non-linear activation functions for
deep neural networks on mnist classification task. In rXiv preprint
arXiv:1804.02763, 2018.

[16] Matlab. Choose cluster analysis method, 2023.

[17] Allan H. Murphy. The finley affair: A signal event in the history of forecast
verification. Weather and Forecasting, 11(1):3 – 20, 1996.

[18] Gaddisa Olani Ganfure, Chun-Feng Wu, Yuan-Hao Chang, and Wei-Kuan
Shih. Deepware: Imaging performance counters with deep learning to
detect ransomware. In IEEE Transactions on Computers, volume 72, pages
600–613, 2022.

[19] Sam Fletcher and Md Zahidul Islam. Comparing sets of patterns with the
jaccard index. Australasian Journal of Information Systems, 22, 2018.

[20] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural
networks for one-shot image recognition. ICML deep learning workshop,
2(1), 2015.

	Thesis
	Introduction
	Research Overview
	Problem Overview
	Research Goals
	Research Method
	Research Approach

	Background and Related Work
	Performance
	Performance Monitoring Counters
	Change Point Detection
	Sequence Similarity - Similar Is Not Same
	Bounded Cost Function
	Related work

	Research Results
	Thesis Contributions
	C1: An automated cross-platform mechanism to capture the overall performance of the applications
	C2: An automated mechanism to identify the most relevant PMU events related to performance
	C3: An automated approach to present a compact representation of complex performance events based on statistical methods
	C4: An automated approach to group up similar performance events based on a measure of similarity

	Included papers
	Paper A
	Paper B
	Paper C

	Publications not included in the thesis
	Paper X

	Conclusion and Future Work
	Future Work

	Bibliography

	Included Papers
	Paper A: Automatic Platform-Independent Monitoring and Ranking of Hardware Resource Utilization
	Introduction
	Background
	Performance Monitoring
	Performance Monitoring Unit
	Perf and PAPI
	Multiplexing

	Methodology
	Event fetch
	Application Characterization using Multiplexing
	Ranking Events

	Implementation
	Experiments
	Discussion
	Conclusion
	Relatedwork
	FutureWork
	Bibliography

	Paper B: Automatic Segmentation of Resource Utilization Data
	Introduction
	Background
	Performance Monitoring Counters
	Change Points Detection
	Statistical Methods

	Proposed Solution
	Segment Detection
	Segment-wise Statistical Model

	Implementation and Experiments
	Discussion
	Related Work
	Conclusion and Future Work
	Bibliography

	Paper C: Automatic Clustering of Performance Events
	Introduction
	Background
	Performance Monitoring Counters
	Change Point Detection
	Sequence Similarity - Similar Is Not Same
	Bounded Cost Function
	Clustering Analysis

	Proposed Solution
	Similarity Detection
	Group Identification

	Implementation and Experiments
	Discussion
	Related Work
	Conclusion and Future Work
	Bibliography

