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Abstract. Robotic systems often operate under real-time constraints,
requiring timely responses to sensor inputs. Early consideration of such
requirements during design is advantageous. The Robot Operating Sys-
tem (ROS) provides a mature framework for system setup and communi-
cation, with ROS 2 offering real-time capabilities. However, determining
the maximum reaction time within a ROS-based application is intricate
due to complex variable processing and scheduling, especially with pe-
riodic and event-triggered tasks. In this paper, we propose a model of
ROS-based designs with timed automata semantics, facilitating exhaus-
tive real-time model checking of system behavior. We extend this model
to stochastic timed automata, thus incorporating non-deterministic ex-
ecution time and probabilistic loads, employing statistical model check-
ing for scalability and accuracy. We compare against previous work to
confirm the validity of our approach, and show its applicability on a
real-world robotic system example.

1 Introduction

This paper is dedicated to Professor Marjan Sirjani, to honor her impactful con-
tributions to the field of formal methods, which have advanced the reliability and
correctness of complex systems profoundly, including robotic systems. Marjan’s
work embodies a vision where robotic systems not only meet functional require-
ments, but also achieve high standards of dependability, addressing the nuanced
interplay of concurrency, real-time constraints, and emergent behaviors [19].

According to this vision, we also consider robotic systems to be subject to
real-time constraints that should be obeyed, for example, a system might be
required to react to a certain sensor input within a time bound (e.g., door open-
ing when the light sensor is activated). Ensuring such requirements already at
early design stages is beneficial and can be done through formal methods. Model
checking is an approach that can help establish both liveness and safety proper-
ties subject to timing constraints, by employing timed automata as the modeling
formalism [4]. When designing a robotic system there are many aspects to take
into consideration, e.g., computation and communication issues must be decided
upon and addressed. To address this, one can use a pre-existing solution that
already solves many challenges; the Robot Operating System (ROS) provides



such a framework for setting up nodes and their communication. However, es-
tablishing properties of a ROS-based application, e.g., finding an upper bound
for the maximum reaction time, is complex as it is affected by the run-time of
the involved tasks, respectively, and how the latter are scheduled.

Previous work has helped to establish bounds on reaction times in ROS,
through simulation [18]. However, such an approach is hard to extend with non-
deterministic behavior, as it is based on simulating one scenario at a time. For
example, while task run-time is usually limited by a worst-case execution time
(WCET), in practice a task can finish early (and tasks finishing earlier than
their WCET can counter-intuitively result in a longer reaction time). Using a
model-checking approach, it is possible to investigate multiple traces simulta-
neously (i.e., corresponding to different task execution times), thus enabling
efficient checking of properties in non-deterministic systems. With this in mind,
we address the following research question: How can model checking help ana-
lyze end-to-end reaction times in ROS-based applications with non-deterministic
properties?

In this paper, we present a model of ROS-based designs and assign semantics
to allow model checking with respect to real-time behavior to help establish
such properties, in particular on end-to-end reaction time bounds. We assign
semantics in the form of timed automata (TA) [2] templates, yielding a precise
definition of the underlying behavior of ROS scheduling. We begin with basic
semantics and validate it against previous work [18], after which we extend the
semantics with non-deterministic execution times and probabilistic loads. For
scalability and richness of modeling purposes, we employ the statistical model
checking (SMC) [13] technique, where properties are guaranteed to a specific
degree of confidence. We model and check systems in this paper via the UPPAAL
SMC [12] tool. In sum, we present the following contributions:

– Introduction of a pattern-based TA semantics of ROS designs, covering both
deterministic and probabilistic running times and loads.

– Validation of our base semantics against previous simulation-based work that
uses analytic real-time scheduling theory.

– Application of UPPAAL/UPPAAL SMC to find maximum reaction times in
an industrial example, demonstrating the approach.1

The paper is structured as follows: after the preliminaries in Section 2, we
present our formalization of ROS-based application behavior in Section 3, fol-
lowed by our TA semantics in Section 4 and its validation in Section 5. After-
wards, we extend the semantics in several directions in Section 6, and demon-
strate with an industrial example in Section 7. Finally, related work and compar-
ison to our approach are presented in Section 8, and our conclusions in Section 9.

1 Source code is available at: https://github.com/ptrbman/ros2-modeling/
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2 Preliminaries

In this section, we briefly present scheduling of, and communication between,
tasks in the robot operating system and summarize timed automata and UP-
PAAL as used in this work.

2.1 Robot Operating System

The Robot Operating System (ROS) is intended to provide developers with
a set of open-source software frameworks, libraries, and tools to create appli-
cations for robots. The platform offers services for a heterogeneous computer
cluster, such as hardware abstraction, device control, implementation of func-
tionalities, message-passing between processes, and package management [16].
The operating system’s version ROS 1 underwent a major revision and became
ROS 2 [15], bringing many improvements, most notably the Data Distribution
Service (DDS) support. DDS acts as middleware for inter-node communication,
using the quality-of-service profile to provide real-time communication, scalabil-
ity, performance enhancement, and security benefits not found native in ROS 1.

The ROS 2 platform has already been used in designing the communication
architecture of collaborative and intelligent automation systems [10], or of self-
driving cars that require safe and reliable real-time behavior [17]. Most such
robotic systems are subject to real-time constraints that, if not met, might re-
sult in issues of various severity degrees, from the application failing to perform
correctly to a lowered performance of the overall system. Verifying if such un-
desired issues occur in a ROS-based robotic system, already at a design level, is
very desirable. To achieve this, the basic, high-level communication and compu-
tation paradigms of ROS need to be given formal semantics, to be amenable to
analysis, e.g., via model checking. In this paper, we consider a ROS architecture
to consist of nodes and topics. Communication is done through two paradigms,
publish/subscribe and local variables. Whenever a node wishes to communicate
data, it can publish it onto a topic, or write it to a local variable. A node can
read data either through receiving it from a subscribed topic, or reading it from
a local variable.

Scheduling A node is a component that has one or more tasks (i.e., callbacks)
that can be scheduled for execution. When a task is scheduled, a job is instanti-
ated and added to the scheduling queue. When a job has finished, it can publish
its value to a topic, or store it locally on the node. The ROS scheduling works
as follows: at each polling point, i.e., beginning of a processing window, it picks
one job from each task (which has queued job) and schedules them according to
priority (with timers always having higher priority than subscribers). Next, each
of the tasks are executed in order, and afterwards a new polling point is reached.
If at any polling point, there are no jobs queued, then the scheduler idles until
a task becomes scheduled. The process is illustrated in Fig. 1. In this paper we
consider a ROS system with only one host, that is, all nodes are processed on
the same CPU.
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Fig. 1: Scheduler in ROS.

Reaction Time In this paper, we are interested in the reaction time of a
ROS application. By this, we mean the time that passes between a job (e.g.,
corresponding to a sensor read) being released (i.e., when the job is instantiated)
and the reaction of the system’s actuator (i.e., when the actuator job is executed).
We wish to establish an upper bound, that is, to find the maximum reaction time
from a particular sensor being able to observe some data, until the actuator
finishes executing, according to the scheduling policy described above.

2.2 Timed Automata and UPPAAL

Formal Syntax. A Timed Automaton (TA), as used in the model-checker UP-
PAAL [12], is defined as a tuple, ⟨L, l0, C,A, V,E, I⟩, where L is the set of finite
locations, l0 is the initial location, V is the set of data variables, C is the set of
clocks, A = Σ ∪ τ is the set of actions, where Σ is the finite set of synchroniz-
ing actions(c! denotes the send action, and c? the receiving action) partitioned
into inputs and outputs, Σ = Σi ∪ Σo, and τ /∈ Σ denotes internal or empty
actions without synchronization, E ⊆ L × B(C, V ) × A × 2C × L is the set
of edges, where B(C, V ) is the set of guards over C and V , that is, conjunc-
tive formulas of clock constraints (B(C)), of the form x ▷◁ n or x − y ▷◁ n,
where x, y ∈ C, n ∈ N, ▷◁∈ {<,≤,=,≥, >}, and non-clock constraints over
V (B(V )), and I : L −→ Bdc(C) is a function that assigns invariants to lo-
cations, where Bdc(C) ⊆ B(C) is the set of downward-closed clock constraints
with ▷◁∈ {<,≤,=}.

Invariants bound the time that can be spent in locations, ensuring the progress
of TA’s execution. An edge from location l to location l′ is denoted by l

a,g,r,u−−−−→ l′,
where a is an action, g is the guard of the edge, r is the clock reset set, that is,
the clocks that are set to 0 over the edge, and u is a data variable update action.
Initially, all clocks are set to 0, and the update action assigns 0 to one or more
variables. A location can be marked as urgent or committed, indicating that time
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cannot progress in such locations. The latter is more restrictive, indicating that
the next edge to be traversed needs to start from a committed location.

Example. For illustration purposes, in Figure 2, we show a simple TA model
of a lamp 2(a), and its user 2(b). The lamp has three locations: off, low, and
bright. If the user presses a button, modeled by the synchronization variable
press!, then the lamp is turned on, that is, the lamp TA synchronizes with the
user TA via press?, and changes location from off to low. If the user presses the
button again, the lamp is turned off, and the lamp TA moves back to location
off. However, if the user is fast and presses the button twice, rapidly, the lamp
is turned on and becomes bright, modeled by the lamp TA moving to location
bright. The user can press the button arbitrarily at any time or not press the
button at all. The clock y of the lamp is used to detect if the user is fast, via
the guard (y < 5) over the edge between locations low and bright, or slow, via
the guard (y >= 5) over the edge between locations low and off.

to specify properties to be checked, is a subset of TCTL (timed computation tree
logic) [39,3]. In this section we present the modelling and the query languages
of Uppaal and we give an intuitive explanation of time in timed automata.

2.1 The Modelling Language

Networks of Timed Automata A timed automaton is a finite-state machine
extended with clock variables. It uses a dense-time model where a clock variable
evaluates to a real number. All the clocks progress synchronously. In Uppaal,
a system is modelled as a network of several such timed automata in parallel.
The model is further extended with bounded discrete variables that are part of
the state. These variables are used as in programming languages: They are read,
written, and are subject to common arithmetic operations. A state of the system
is defined by the locations of all automata, the clock values, and the values of the
discrete variables. Every automaton may fire an edge (sometimes misleadingly
called a transition) separately or synchronise with another automaton1, which
leads to a new state.

Figure 1(a) shows a timed automaton modelling a simple lamp. The lamp
has three locations: off, low, and bright. If the user presses a button, i.e.,
synchronises with press?, then the lamp is turned on. If the user presses the
button again, the lamp is turned off. However, if the user is fast and rapidly
presses the button twice, the lamp is turned on and becomes bright. The user
model is shown in Fig. 1(b). The user can press the button randomly at any time
or even not press the button at all. The clock y of the lamp is used to detect if
the user was fast (y < 5) or slow (y >= 5).

off low bright

press?

y:=0

y>=5

press?

press?

y<5

press?

‚

‚

‚

‚

‚

idle
press!

(a) Lamp. (b) User.

Fig. 1. The simple lamp example.

We give the basic definitions of the syntax and semantics for the basic timed
automata. In the following we will skip the richer flavour of timed automata
supported in Uppaal, i.e., with integer variables and the extensions of urgent
and committed locations. For additional information, please refer to the help

1 or several automata in case of broadcast synchronisation, another extension of timed
automata in Uppaal.
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(b) User
Fig. 2: A Simple TA model of a lamp and its user

Operational Semantics. The semantics of TA [5] is defined as a labeled tran-
sition system. The states of the labeled transition system are pairs (l, u), where
l ∈ L is the current location, and u is the clock valuation in location l. The
initial state is denoted by (l0, u0), where all clocks are initialized to 0: ∀x ∈
C, u0(x) = 0. Let u ⊨ g denote the clock value u that satisfies guard g. We use
u + d to denote the time elapse where all the clock values have increased by d,
for d ∈ R≥0. There are two kinds of transitions:

(i) Delay transitions: < l, u >
d−→< l, u + d > if u ⊨ I(l) and (u + d′) ⊨ I(l),

for 0 ≤ d′ ≤ d, and
(ii) Action transitions: < l, u >

a−→< l′, u′ > if l g,a,r−−−→ l′, a ∈ Σ, u ⊨ g, clock
valuation u′ in the target state (l′, u′) is derived from u by resetting all clocks
in the reset set r of the edge, such that u′ ⊨ I(l′).

A real-time system can be modeled as a network of TA (NTA) composed via
the parallel composition operator (“||”), which allows an individual automaton
to carry out internal actions, while pairs of automata can perform handshake
synchronization. The locations of all automata, together with the clock valua-
tions, define the state of an NTA. The requirements (queries in UPPAAL) to

5



be verified by model checking on the resulting NTA are specified in a decidable
subset of (Timed) Computation Tree Logic ((T)CTL), and checked by the UP-
PAAL model checker. In this paper, we verify (T)CTL queries of the following
kinds (p is a state property):

– Reachability: E ♢ p - The requirement evaluates to true if there exists a path
where p eventually holds.

– Invariance: A□ p - The requirement evaluates to true if (and only if) every
reachable state satisfies p, in other words, for all paths p always holds.

UPPAAL is also capable of handling statistical model checking (SMC) [13],
where simulations are used to extract information of the system. In UPPAAL
SMC, automata have a stochastic interpretation based on: (i) the probabilistic
choices between multiple enabled transitions (uniform distribution by default,
marked with weighted probabilities otherwise2), and (ii) the non-deterministic
time delays that can be refined based on probability distributions, either uniform
distributions for time-bounded delays, or user-defined exponential distributions
for unbounded delays. SMC has the downside of not providing full guarantees of
results, but allows handling models of much larger sizes, as well as including prob-
abilistic aspects of the system. UPPAAL SMC uses a probabilistic extension of
weighted metric temporal logic (WMTL) [6] to provide qualitative analysis, that
is, hypothesis testing, and probability comparison, as well as quantitative anal-
ysis, by probability evaluation: calculate the probability Pr[<= bound](⋆x≤Cϕ)
to reach a state ϕ within time cost x ≤ C for some network of stochastic timed
automata, where ⋆ stands for either future (♢) or globally (□) temporal opera-
tor, and [<= bound] denotes the time bound of the executions. In this paper, we
focus on probability evaluation only.

3 Formalization of ROS-based Systems

In this section, we provide a formalization of constrained ROS-based systems. In
this work, we model communication via publish/subscribe for inter-node com-
munication and read/write for intra/node communication and the scheduling of
tasks on nodes. We assume that each node can be subscribed to zero or more
nodes, read from zero or one variable, publish to zero or one topic, and write to
zero or one variable. We define three kinds of nodes: timer nodes, subscription
nodes and data-generator nodes. A timer node is triggered at periodic intervals
and then schedules a task to publish or write its result. A subscription node has a
special triggering subscription, and schedules a task to publish or write its result
whenever data is published onto the triggering topic. Finally, a data-generator
node is a timer node that has no subscriptions or reads from any variable. For
simplicity, we assume that there is only one publishing node per topic.

2 We annotate edge guards with ?prob to denote that the edge weight is prob
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3.1 Nodes

We define a set of nodes N , a set of topics T and a set of global variables V. The
set of global variables includes a special variable, pd , which is the most recently
published data. We define each kind of node separately, as follows.

Definition 1. A timer node is defined as: tn = TMR(p, d,wcet , S, St, t, rv, wv),
where:

– p ∈ N+ is the period,
– d ∈ N is the delay,
– wcet ∈ N is the WCET of the main task,
– S = {s1, . . . , sn}, si ∈ T , are the non-triggering subscribed topics,
– St = {st1, . . . , stn}, sti ∈ N, are the WCET of subscription tasks,
– t ∈ T is the result-topic,
– rv ∈ V, is the read-variable,
– wv ∈ V is the write-variable.

Intuitively, a timer node is activated each p period, with the first activation
after a delay of d, (i.e., the second activation is at p + d, third at 2p + d, etc.),
creating a job of the main task. The node subscribes to the topics S and uses
the data from the variable rv. Whenever a message is received on topic si, a job
is created to process the retrieved value, with WCET sti, writing its result to
variable V(tni).

Definition 2. A subscriber node is defined as: sn = SUB(s,wcet , S, St, t, rv, wv),
where:

– s ∈ T , s ̸∈ S, is the triggering topic,
– wcet ∈ N is the WCET of the main task,
– S = {s1, . . . , sn}, si ∈ T , are the non-triggering subscribed topics,
– St = {st1, . . . , stn}, sti ∈ N, are the WCET of subscriptions tasks,
– t ∈ T is the result-topic,
– rv ∈ V, is the read-variable,
– wv ∈ V is the write-variable.

A subscriber node works like a timer node, except that it is triggered when-
ever a message is published on the triggering topic s, instead.

Definition 3. A data-generator node is defined as: dn = DGEN (p, d,wcet , t, wv),
where:

– p ∈ N, is the period,
– d ∈ N is the delay,
– wcet ∈ N is the WCET of the main task,
– t ∈ T is the result-topic,
– wv ∈ V is the write-variable.

A data-generator works as a timer except that it has no subscriptions or
read-variable.
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Example 1. Consider the small system in Fig. 3 with four nodes. One sensor node
publishes data to a filter node, which in turn publishes data to the actuator node.
There is also an additional sensor node that publishes directly to the actuator.
We are interested in measuring the reaction time from the second sensor node
to the actuator, that is, to monitor data published by the second sensor and
measure the time until it is processed by the actuator. Each component can be
formalized (for particular values of WCET, etc.) as:

– first sensor, a data-generator node:
s1 = DGEN (200, 0, 50, T (s1),V(s1)),

– second sensor, a data-generator node:
s2 = DGEN (200, 50, 30, T (s2),V(s2)),

– filter, a subscriber node:
f = SUB(T (s1), 30, ∅, ∅, T (f), pd ,V(f)),

– actuator, a subscriber node:
a = SUB(T (f), 10, {T (s2)}, {10}, T (a),V(a1),V(a)).

Note that the read-variable for the actuator is V(a1), indicating that the value
to be used in published data is equal to the value retrieved from the subscription
to the second sensor.

Sensor 1

Sensor 2

Filter

Actuator

Publish

Publish

Publish

Fig. 3: Small ROS network

3.2 Tasks

Each node contains one or more tasks. All nodes have a main task that is re-
sponsible for combining all data, compute and publish/write the output. Addi-
tionally, every node has for each non-triggering subscription a task responsible
for retrieving the published data, process it, and store it in a local variable. All
tasks have an assigned WCET. Let τn denote the main task of node n and τ in to
refer to the subscription task for subscribed topic si of node n. For convenience,
we introduce a unique topic and variable for each task τ denoted by T (τ) and
V(τ), respectively.

Example 2. The system presented in the previous example contains four nodes.
The sensors and filter nodes contain only one main task each: τs1 , τs2 triggered
by timers and τf triggered by a subscription. The actuator node has one main
task τa triggered by the filter node, and one subscription task τ1a triggered by
the second sensor node.
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3.3 Job chains

To define the notion of reaction time precisely, we first present the notion of task
chain, and (forward) job chains, respectively.

Definition 4. A task chain T = {τ1, . . . , τn} is a sequence of tasks such that:

– the task τ1 is the main task of a data-generator, and
– ∀τi ∈ [τ1, . . . , τn−1] either:

• τi stores its result in V(τi) and τi+1 reads from V(τi), or
• τi publishes its result to T (τi) and τi+1 subscribes to T (τi).

Definition 5. A (forward) job chain J = {j1, . . . jn} is a sequence of jobs such
that for a task chain T:

– ∀ji ∈ J, ji is an instance of τi.
– ∀i ∈ [j1, . . . , jn−1] either:

• ji+1 is the unique earliest job of τi+1 that reads the result from ji, or
• ji+1 is the unique earliest job of τi+1 that receives the result from ji

(through subscription).

Let release(τ) and end(τ) represent the release-time and end-time of the task
τ , respectively, where release(τ), end(τ) ∈ N.

Definition 6. For a job chain J = {j1, . . . , jn}, the reaction time rt(J) =
end(jn)− release(j1).

Example 3. Consider again the small example network in Figure 3, now executed
(according to semantics in next section) with scheduling as presented in Sec-
tion 2.1. The resulting trace is shown in Figure 4. The job chain J = {τs2 , τ1a , , τa}
has a reaction time of 80.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

τs1

τs2

τs2

τ1
a

τa

Fig. 4: Schedule for small ROS network example. Processing windows are sepa-
rated by red dashed lines. An orange upwards arrow indicates the release of a
job, a black upwards arrow the start of a job, and downwards indicates the end
of a job. The blue line traces the reaction time.

In this paper, we focus on the case where there is only one host (i.e., executor),
on which all functions are executed, and we further assume that there are no
cycles in the dependencies between nodes. Then we can define the maximum
reaction time for a given ROS system:
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Definition 7. We define the maximum reaction time for a task-chain T as
maxj∈J(rt(j)), where J is the set of all job-chain instances of T.

We acknowledge that for an over-utilized system, no finite maximum reaction
time may exist, but for a non-over-utilized system, the maximum reaction time
will be finite.

4 TA Semantics for ROS

In this section, we present a formalization of ROS semantics in UPPAAL timed
automata. As we focus on analyzing the end-to-end maximum reaction time, we
do not model how data is processed, but rather the age of data. In particular, we
instantiate with a particular task chain T in mind, such that the resulting system
considers the reaction time of T. We introduce TA templates that are instantiated
depending on the nodes of the ROS application, and the task chain that should
be monitored. We begin by introducing the global variables and functions used,
followed by each TA template. Finally, we describe how a particular system is
instantiated. For simplicity, we assume that each task always publishes to its
dedicated topic, and writes to its dedicated variable.

4.1 Constants, Variables, Functions and Channels

Table 1 shows a set of constants, variables, functions and channels. Some con-
stants are used for easier reading, while some have a semantic impact. In par-
ticular, BUF_SIZE and MONITORS must be set sufficiently large. In the remainder
of this paper we assume that this is the case. Note that PRIO[C], WCET[C] must
also be initialized with proper values.

4.2 TA Templates

The semantics are given as template-based instantiation, i.e,. for each node in the
ROS system, we introduce an UPPAAL TA, based on the templates given in this
section. Furthermore, each TA is given a unique ID. Since we are interested only
in the reaction time of data processed in the task chain T under analysis, we can
ignore all other data values (however me must remember to trigger subscription
tasks). Thus, every task only needs to consider the received or read values from
the previous task of the task chain.

Subscriber. A subscriber, sn = SUB(s, wcet, S, St, t, rv, wv), is represented by
an instantiated Subscriber TA template using three parameters: task_id , s and
data_source. A suitable task_id is chosen, and while the triggering subscription
s is initialized to the counter-part in sn, the data_source is set to rv. The
subscriber waits for a message to be published to s and then queues a job to
publish the result, based on data from data_source, to the task_id topic (as we
assume each task publishes to its own topic). The template is shown in Figure 5.

Moreover, for each subscribed topic si ∈ S, the Subscriber TA template
is additionally instantiated using a suitable task_id , s = si, and data_source
equal to pd .
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Constant Description
EMPTY Value for representing empty data.

MONITORS Number of parallel monitors.
FIRST_PAYLOAD Represents the value of the first monitored package.
MIN_PAYLOAD Minimum value of payloads (to reduce state space).

MONITOR_FREE/MONITOR_SENT Status value of a free/busy monitor.
BUF_SIZE Buffer size of queues.
PRIO[C] Priority of each task.
WCET[C] WCET of each task.

deterministic_host If true, jobs always takes wcet to execute.
Variables Description

PAYLOAD value of next payload value to be sent.
LAST_PAYLOAD value of last sent payload.
next_monitor (nm) Index of next free monitor.
last_monitor (lm) Index of oldest busy monitor.
published_data (pd) Value of last published data.

monitor_status[MONITORS] Status of monitors.
monitor_payload[MONITORS] Payload monitored.

QUEUES[C][BUF_SIZE] Job queues (one for each task).
QUEUES_COUNT[C] Number of jobs in each queue.

JOBS[C][2] ID and data of scheduled jobs.
JOBS_COUNT Number of scheduled jobs.

DATA[C] Unique variable for each task.
Function Description

waiting_jobs Returns the number of jobs waiting for the host.
queue_job Add a job to the host queue.
dequeue Dequeue the first job from the host queue.
schedule Sort all jobs in the host waiting list by priority.
take_jobs Take (up to) one job of each task.

next_job_idx Get the index (i.e., task id) of next job.
get_data Get data for a specific task.

relevant_payload True if just published data is monitored.
assign_monitor Assign next free monitor to current package.
free_monitor Free all finished monitors.

Channel Description
new_job Announce the (possible) scheduling of new job.

start_monitor Signal to start monitoring next data.
publish[C] Unique topic for each task.

Table 1: Constants, variables, functions and channels of the model

L = {l}, ℓ0 = l, C = ∅, A = {s?}, V = {vpublished_data}, I = ∅,

E = {l
s?,∅,∅,queue_job(id,vdata_source)−−−−−−−−−−−−−−−−−−−−−→ l}

Fig. 5: Template of a Subscriber

11



Timer. A timer node tn = TMR(p, d, wcet, S, St, t, rv, wv) is represented by
an instantiated Timer TA template using four parameters: task_id , p, d, and
data_source. A suitable task_id is chosen, and while the period p and delay d
are initialized to the counter-part in tn, data_source is set to rv. The clock is
initialized as x = p− d, to ensure that the first activation happens after d. The
timer is activated each period p. If two or more timers are activated at the same
time instant, one of them will use the active synchronization new_job! and all
others will follow using new_job?, ensuring that all jobs are added at the same
time point. The template is shown in Figure 6.

In the same vein as for the subscriber node, for each subscribed topic an
additional Subscriber TA template is instantiated.

L = {l}, ℓ0 = l, C = {x}, A = {new_job!,new_job?},
V = ∅, I = {l 7→ x ≤ p},

E = {lwait
new_job!,x=p,x,queue_job(id,data_source)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ lwait ,

lwait
new_job?,x=p,x,queue_job(id,data_source)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ lwait}

Fig. 6: Template of a Timer

Data-Generator. The template for a data-generator, dn = DGEN (p, d, wcet, t, wv),
is represented by an instantiation of the Data-Generator TA template using three
parameters: task_id , p, and d. A suitable task_id is chosen, and the period p
and delay d are initialized to their counter-part in tn. The clock is initialized as
x = p− d, to ensure that the first activation occurs after d. The data-generator
is responsible for generating a value each period p, then queuing a job of type
τdn. The template is shown in Figure 7. In addition, location lfire is marked
committed.

Monitored Data-Generator: A monitored data-generator is identical to a data-
generator with the difference that the edge from lfire to lwait is replaced by:

lfire
start_monitor !,∅,x,queue_job(id,PAYLOAD)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ lwait

Intuitively, this means that when a monitored data-generator publishes data,
a monitor is requested to be started and a payload value is queued. The first
task of the task chain T should be instantiated as this.

Host. A host is the most complicated template, but has no parameters. The
host awaits waiting jobs, and when the latter are present, it picks (up to) one
of each task, and schedules them according to their respective priority (through
the schedule function, called by the takejobs function). It then simulates the
execution of each job with reading, storing and publishing data accordingly. The
host sends a message on the corresponding node-specific topic when it finishes
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L = {lwait , lfire}, ℓ0 = lwait , C = {x}, A = {new_job!,new_job?},
V = ∅, I = {lwait 7→ x ≤ p},

E = {lwait
new_job!,x=p,∅,∅
−−−−−−−−−−−→ lfire ,

lwait
new_job?,x=p,∅,∅
−−−−−−−−−−−→ lfire ,

lfire
τ,∅,x,queue_job(id,EMPTY )
−−−−−−−−−−−−−−−−−−→ lwait}

Fig. 7: Template of a Data-Generator

executing a job with the resulting data written to the associated variable. The
template is shown in Figure 8. In addition, locations lcheck , lnext and ldone are
marked urgent, and lloop is marked committed.

L = {lidle , lcheck , lnext , lexec , ldone , lloop}, ℓ0 = lidle , C = {x},

A = {new_job!,new_job?} ∪ {T (n)! ∀n ∈ N )}}, V = {idx , job, data},
I = {lexec 7→ x ≤ WCET [job]},

E = {lidle
new_job?,∅,∅,∅
−−−−−−−−−−→ lcheck , lcheck

τ,¬waiting_jobs(),∅,∅
−−−−−−−−−−−−−→ lidle ,

lcheck
τ,waiting_jobs(),∅,take_jobs()
−−−−−−−−−−−−−−−−−−−→ lnext ,

lnext
τ,∅,x,idx :=next_job_idx(),job:=JOBS [idx ][0 ],data:=get_data(JOBS [idx ][1 ])
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ lexec ,

lexec
τ,deterministic_host∧x=WCET [job],∅,DATA[job]=data;pd=data−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ldone ,

lexec
τ,¬deterministic_host∧WCET [job]

2
≤x≤WCET [job],∅,DATA[job]=data;pd=data

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ldone ,

ldone
publish[job]!,∅,∅,∅−−−−−−−−−−−→ lloop , lloop

τ,JOBS_COUNT>0,∅,∅
−−−−−−−−−−−−−−−→ lnext ,

lloop
new_job!,JOBS_COUNT=0,∅,∅
−−−−−−−−−−−−−−−−−−−−→ lcheck}

Fig. 8: Template of a Host

Monitor. A monitor is instantiated with two parameters: actuator , the last task
of the task chain, and the period p of the first task if the chain. The monitor
waits for a data-generator to start monitoring and assigns a free monitor (setting
the clock to p to allow for worst-case analysis). The location lmeasure is reached
whenever the monitored actuator publishes data, so queries can be over this
location to check worst-case reaction times. For compatibility with the validation
case, we allow for a second parameter p, which can be set to the period of the
data-generator of the first task in the chain. This allows the measured reaction-
time to include the worst-case delay from an external event occurring (instead
of its measuring). The template is shown in Figure 9. In this model, location
lmeasure is marked committed.
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L = {li , lmeasure}, ℓ0 = li , C = {x1, . . . , xMONITORS},

A = {start_monitor? T (actuator)?, V = ∅, I = ∅,

E = {li
start_monitor?,∅,∅,xnm=p;assign_monitor()
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ li ,

li
T (actuator)?,relevant_payload(),∅,∅
−−−−−−−−−−−−−−−−−−−−−−→ lmeasure , lmeasure

τ,∅,∅,free_monitors()
−−−−−−−−−−−−−→ li}

Fig. 9: Template of a Monitor

4.3 Instantiation

For a given ROS-based design, each component is instantiated with the corre-
sponding template using suitable values for the parameters. In addition, each
component is also given a global integer id (from zero and up), and the global
constants PRIO and WCET are set accordingly. The first data-generator node of
the task chain T is instantiated as a monitored data-generator, while remaining
data-generator nodes are instantiated as regular data-generators. The resulting
TA network will be deterministic in the sense that the clock values in the monitor
automaton will always be the same whenever they are measured at the measure
location.

Example 4. We instantiate the ROS-based application of Ex. 3 according to the
above formula, and obtain five TA: a Data-Generator for Sensor 1 (task_id =
0, p = 150, d = 0), a Subscriber for Filter (task_id = 1, s = T (0), data_source =
pd), a Monitored Data-Generator for Sensor 2 (task_id = 2, p = 150, d = 50),
two Subscribers for the Actuator ((task_id = 2, s = T (1), data_source = pd)
and (task_id = 3, s = T (1), data_source = pd)), a Monitor (actuator = 0, p =
0), and a Host.

4.4 Queries

Given an instantiated ROS-based application, we can establish an upper bound
on the maximum reaction time for T, using the following TCTL query:

A□monitor .measure → monitor .x[last_monitor ] ≤ t

Intuitively, this query checks that reaction times are lesser than t, i.e., that t is
an upper bound. This bound is not guaranteed to be tight. We can find a tight
bound by using the following query to check if reaction time can exceed t:

E ⋄monitor .measure ∧monitor .x[last_monitor ] ≥ t

In order to find an upper bound, the above query is used with t = 0. When
UPPAAL finds a greater bound t′, the query is checked once again with the new
bound t′. This process is repeated until UPPAAL states that no greater value
exists, establishing the final value of t to be the upper bound. Furthermore,
UPPAAL allows the extraction of a trace for a given bound.
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Example 5. If we use UPPAAL to query for an upper bound for Example 1, we
can the extract trace in Figure 4. This shows that the figure indeed demonstrates
(an instance of) the worst case.

5 Validation

To validate our semantics, we have implemented the case-study ROS system from
literature [18], where Teper et. al. provide a simulation-based measurement of the
maximum end-to-end reaction time. It is a system that consists of: (i) sensors
with filters, representing processing of data, (ii) a fusion node, which merges
data, and (iii) an actuator at the end of the processing chain. The network is
depicted in Figure 10. The case-study varies the type of the fusion node and
the actuator node. Both nodes can either be subscription-based or timer-based,
resulting in four combinations, respectively.

For a specific case (Fusion subscription/Actuator timer), each node is for-
malized as shown in Table 2 (we do not show the other three cases). Note that
in our formalization, we must pick a specific task-chain to observe, in this case
from Sensor 1 to the Actuator (it can be changed by changing the read-variable
of the Fusion node).

In Table 3 the computed maximum reaction times are shown for both the
simulation-based measurement of Teper et. al. and the model checking-based
computation from UPPAAL. Note that we only consider the under-utilized case
presented in related work [18]. For the over-utilized system we have different
results, as the solution from Teper et. al. throws away messages when buffers
are overflown. The results show that our semantics seems to agree with the one
presented by Teper et. al. (at least on the four cases tested).

Component Formal object
Sensor 1 s1 = DGEN (420, 0, 10, T (s1),V(s1)
Sensor 2 s2 = DGEN (420, 0, 20, T (s2),V(s2)
Filter 1 f1 = SUB(T (s1), 10, ∅, ∅, T (f1), pd ,V(f1)
Filter 2 f2 = SUB(T (s2), 20, ∅, ∅, T (f2), pd ,V(f2))
Fusion fs = SUB(T (f1), 30, {T ({∈)}, {30}, T (fs), pd ,V(fs)

Filter 3 f3 = SUB(T (fs), 30, ∅, ∅, T (f3), pd ,V(f3)
Actuator a = TMR(840, 0, 30, {T (f3)}, {30}, T (a),V(a1),V(a))

Table 2: Formalized validation case
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Sensor 1 Filter 1

Sensor 2 Filter 2

Fusion Filter 3 Actuator

Component Parameter Value Component Parameter Value
Sensor 1 WCET 10 Sensor 1 period 420
Sensor 2 WCET 20 Sensor 2 period 420
Filter 1 WCET 10 Filter 2 WCET 20
Fusion Sub1 WCET 30 Fusion Sub2 WCET 30
Filter 3 WCET 30
Actuator WCET 30 Actuator period 840
Actuator Sub1 WCET 30

Fig. 10: Case-study system and parameter values for subscriber/timer-scenario
from literature [18]. Fusion Sub1 is the triggering subscription task of the fusion
node, whereas Fusion Sub2 is the first non-triggering subscription task of the
Fusion node.

Case Fusion Actuator Simulation (ms) Model-Checking (ms)
1 Subscriber Subscriber 540 540
2 Subscriber Timer 1320 1320
3 Timer Subscriber 1470 1470
4 Timer Timer 2490 2490

Table 3: Comparison of the simulation approach [18] and (our) model-checking
approach. Results indicate the computed maximum end-to-end reaction time in
milliseconds.

6 Modeling Non-Determinism

In this section, we extend our semantics to capture non-determinism: we allow
tasks to execute in less than their worst-case execution time, respectively, and
data-generators to generate data with a certain probability only.

6.1 Non-deterministic Execution Time

In the base semantics, the host would always execute jobs for the duration of their
respective WCET. However, in general, a job’s execution time t is constrained
by BCET ≤ t ≤ WCET , where BCET is the best-case execution time. In this
extended semantics, we modify the host accordingly, by changing the guard as
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follows: x = WCET [job] is replaced by BCET [job] ≤ x∧x ≤ WCET [job]. Note
that this requires the introduction of a BCET-constant for each task.3

Example 6. We revisit the small system introduced in Ex. 1. If we allow for
non-deterministic running times (that is, a job’s running time is in the interval
[wcet

2 ,wcet ]), the maximum reaction time is actually increased, demonstrated by
the trace in Fig. 11. The reaction time depicted in the graph is 280− 50 = 230,
greater than 80, the original bound when only worst-case execution times are
considered. The reason for the increase in reaction time is due to the filter task
being triggered before the second sensor is scheduled (which cannot happen if
the first sensor task executes according to its WCET).

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

τs1

τs2

τs2

τ1
a

τa

Fig. 11: Schedule for small ROS-based system example with non-deterministic
reaction times. Processing windows are separated by red dashed lines. An orange
upward arrow indicates the release of a job, a black upward arrow the start of a
job, and a black downward one indicates the end of a job. The blue line traces
the reaction time.

6.2 Probabilistic Data-Generator

The sensor, as presented in Section 4, would always read a new value each period .
However, we now introduce a probabilistic data-generator which only generates
a value each period with a probability p. In other words, for each period p, there
is a prob chance that a new value is generated and thus a job scheduled, in the
other cases nothing happens. If prob = 100, the behavior is identical to a regular
data-generator. The probabilistic data-generator is shown in Figure. 12. Also,
location lchoose and lfire are marked committed.

Monitored Probabilistic Data-generator is identical to the probabilistic data-
generator with the difference that the edge from lfire to lwait is replaced by:

lfire
start_monitor !,∅,∅,queue_job(id,PAYLOAD)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ lwait

3 We assume for convenience that in this paper BCET [job] = WCET [job]/2.
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L = {lwait , lchoose , lfire}, ℓ0 = lwait , C = {x}, A = {new_job!,new_job?},
V = {∅}, I = {lwait 7→ x ≤ p},

E = {lwait
new_job!,x=p,x,∅
−−−−−−−−−−−→ lchoose , lwait

new_job?,x=p,x,∅
−−−−−−−−−−−−→ lchoose ,

lchoose
τ,?prob,x,∅−−−−−−−→ lfire , lchoose

τ,?100−prob,x,∅−−−−−−−−−−→ lwait ,

lfire
τ,∅,∅,queue_job(id,EMPTY )
−−−−−−−−−−−−−−−−−−→ lwait}

Fig. 12: Template of a Probabilistic Data-Generator

6.3 Statistical Model Checking

When a probabilistic model is chosen, it might no longer be interesting to es-
tablish maximum upper bounds, as in many cases these will be the same as for
the non-probabilistic case (i.e., the worst case with maximum load). However,
the worst case could be very rare, and thus acceptable. Using statistical model
checking (SMC) it is possible to find an upper bound which is only violated with
a certain (low) chance. For example, the following UPPAAL SMC query yields
the probability that the reaction time is observed to be more than t within u
time-steps:

Pr[≤ u] (⋄((monitor .measure ∧monitor .x[last_monitor ] ≥ t)))

The answer to such a query can be p ≤ 0.05 with 95 % CI. This means that the
probability that the bound of t is violated within u is less than 5 %, and that
if we would redo the test, the probability that we would yield the same answer
is 95 %. Depending on the application these probabilities could be sufficiently
tight to be acceptable.

7 Industrial Example: Camera-Guided Robots

In this section, we present an example inspired from an industrial use case. To
assist in production, a factory uses autonomous transport robots to transfer tools
and parts as necessary. The robots are guided by a central control system that
observes the environment through cameras. The cameras are equipped with a
local processor that ensures that pictures are only sent if they changed since last
time, that is, if the image is static no data is sent. During production humans
can walk around in the same areas as the autonomous robots, and it is important
that a collision is avoided by stopping the robot if someone would walk in front
of it. Hence, it is crucial to ensure a low maximum reaction time from observing
an obstacle through a camera, to sending a stop signal to the robot.

We model each camera as a separate data-generator, each being forwarded to
a separate object detection, modeled as a subscriber. All object detection is fused
in the fusion timer node. Finally, the managing and actuation is a subscriber
node. The resulting ROS design is shown in Figure 13.

18



Camera 1 Object
detection 1
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Camera n
Object

detection n

Fusion Managing/Actuation

Fig. 13: Industrial example modeled as a ROS Design

We consider configurations with a various amount of cameras and instantiate
the suitable templates in accordance with Section 4 with parameters and con-
stant values shown in Table 4. Since cameras might not have new information to
send, we model them using probabilistic data-generators. For simplicity, we let
all cameras have the same probability of being activated at each instant, and we
consider different combinations of number of cameras and the probability that
a camera will be activated (load). All experiments are run on a 11th Gen i5 @
2.40 GHz with 16.0 GB of RAM. Run-times are presented for each query and
can be seen to mostly be around one second or less.

Component Parameter Value Component Parameter Value
Camera WCET 20 Camera period 1000
Object Detection WCET 50 Fusion sub WCET 10
Fusion Timer WCET 90 Fusion Timer period 500
Managing/Actuation WCET 50

Table 4: Parameter values for the case-study system

We use the queries from Section 6.3, to establish if within 10,000 time steps
there is less than a five percent chance of the reaction time exceeding 850 with
a 95 % confidence interval. The results for the different scenarios are shown in
Table 5. From the table, we can see that having more than five cameras already
risks overloading the system in such a way as to violate a deadline of 850 time
units. Note that since we do not distinguish the cameras from each other, the
probabilities that we estimate are for the deadline violation of one camera. Since
in most cases, for more than six cameras the deadline requirement is violated,
in the following, we only consider cases from one to six cameras. The results in
Table 5 are from the perspective on the data from the first camera, and when
monitoring other cameras the results remain the same.

Next, we consider what happens if we extend the time period tenfold. Thus
we consider a period of 100,000 time steps and with same reaction time (850),
chance (5%) and confidence interval (95%). The results can be seen in Table 6.
As expected, the acceptable loads are reduced, since running the system longer
increases the chances of bad scenarios to occur: now only two cameras are safe
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#Cams Load ≤ 850 Time #Cams Load ≤ 850 Time #Cams Load ≤ 850 Time
1 25% Yes 0.18 2 25% Yes 0.19 3 25% Yes 0.20
1 50% Yes 0.16 2 50% Yes 0.19 3 50% Yes 0.21
1 75% Yes 0.18 2 75% Yes 0.20 3 75% Yes 0.23
1 100% Yes 0.17 2 100% Yes 0.23 3 100% Yes 0.25
4 25% Yes 0.22 5 25% Yes 0.22 6 25% Yes 0.23
4 50% Yes 0.23 5 50% Yes 0.24 6 50% No 0.18
4 75% Yes 0.23 5 75% Yes 0.27 6 75% No 0.13
4 100% Yes 0.29 5 100% Yes 0.31 6 100% No 0.13

#Cams Load ≤ 850 Time #Cams Load ≤ 850 Time #Cams Load ≤ 850 Time
7 25% Yes 0.29 8 25% Yes 0.34 9 25% No 0.30
7 50% No 0.14 8 50% No 0.13 9 50% No 0.14
7 75% No 0.12 8 75% No 0.14 9 75% No 0.12
7 100% No 0.13 8 100% No 0.12 9 100% No 0.14
10 25% No 0.22 11 25% No 0.19 12 25% No 0.15
10 50% No 0.13 11 50% No 0.14 12 50% No 0.13
10 75% No 0.14 11 75% No 0.14 12 75% No 0.14
10 100% No 0.12 11 100% No 0.13 12 100% No 0.14

Table 5: Results from industrial example. A Yes in column ≤ 850 means that
there is less than 5 % chance that the system violates the deadline (within the
first 10000 time steps) under that configuration.

under a 75 % load, and three for a 50 % load. Moreover, the fact that the analysis
time is roughly five times longer is also noteworthy.

#Cams Load ≤ 850 Time #Cams Load ≤ 850 Time #Cams Load ≤ 850 Time
1 25% Yes 0.68 2 25% Yes 0.82 3 25% Yes 0.93
1 50% Yes 0.77 2 50% Yes 0.95 3 50% Yes 1.15
1 75% Yes 0.81 2 75% Yes 1.09 3 75% No 1.38
1 100% Yes 0.91 2 100% No 1.20 3 100% No 1.55
4 25% Yes 1.05 5 25% No 1.22 6 25% No 3.04
4 50% No 1.31 5 50% No 1.58 6 50% No 0.19
4 75% No 1.59 5 75% No 1.85 6 75% No 0.14
4 100% No 1.83 5 100% No 2.19 6 100% No 0.13

Table 6: Use case monitoring 1, with timer-based fusion (period of 500) analyzing
100000 time steps.

We can also use modeling to explore alternatives. As an example, we change
the fusion node from a timer-based node to a subscription-based one, trigger-
ing whenever the first camera produces data (remember, a subscription node is
triggered by only one topic), with a WCET of 90. Now there is a substantial
difference between the end-to-end reaction times from different cameras. Since
the first camera triggers the fusion, its reaction time will be very short. However,
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if we look at camera three, the performance is very poor, as shown in Table 7,
indicating that not even a scenario with two cameras is safe. If the load is 100 %,
the scenario is safe, since that boils down to a timer-based fusion with a period
equal to the period of the first camera.

#Cams Load ≤ 850 Time #Cams Load ≤ 850 Time #Cams Load ≤ 850 Time
1 25% n/a 0.00 2 25% No 0.11 3 25% No 0.13
1 50% n/a 0.00 2 50% No 0.12 3 50% No 0.11
1 75% n/a 0.00 2 75% No 0.11 3 75% No 0.11
1 100% n/a 0.00 2 100% Yes 0.18 3 100% Yes 0.21
4 25% No 0.11 5 25% No 0.11 6 25% No 0.12
4 50% No 0.12 5 50% No 0.13 6 50% No 0.12
4 75% No 0.14 5 75% No 0.14 6 75% No 0.12
4 100% Yes 0.23 5 100% Yes 0.28 6 100% Yes 0.30

Table 7: Use case monitoring 2, with subscription-based fusion analyzing 10000
time steps.

Another point that can be investigated regards answering the question: Can
increasing/decreasing the period of the fusion node improve the performance
of the system? In Table 8, we observe the results (when monitoring the first
camera) with fusion periods 250 and 750. It can be seen that both alternatives,
in comparison to a fusion time of 500, are performing worse, with only four and
cameras being safe for the shorter period and none for the longer period.

Further investigations can be made by additional queries with different con-
fidence intervals, limits on guarantees, etc., to help in gathering insights of the
system model, and allow for experimentation with different parameters, aiming
to help eliminate poor design choices.

8 Related Work

The closest to our work is the TA-based approach, proposed by Halder et. al. [11],
which models and verifies safety and liveness properties of ROS applications, fo-
cusing on the communication between nodes, and considering queue sizes and
internal timeouts. While the work is carried out at a lower level of abstraction
than ours, the authors consider only a publish-subscribe scenario and do not
propose methods to enable both end-to-end reaction time verification in deter-
ministic settings, as well as stochastic analysis of reaction time under probabilis-
tic loads. Dust et. al. [9] propose a pattern-based modeling and UPPAAL-based
verification of latencies and buffer overflow in distributed robotic systems, in-
cluding all versions of the single-threaded executor in ROS 2, yet the authors
do not consider processing chains in their verification, focusing on the node
behavior only. Lin et. al. [14] propose formal models for the real-time publish-
subscribe protocol using UPPAAL and analyze the protocol’s behavior by sim-
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#Cams Load ≤ 850 Time #Cams Load ≤ 850 Time #Cams Load ≤ 850 Time
1 25% Yes 0.22 2 25% Yes 0.24 3 25% Yes 0.33
1 50% Yes 0.22 2 50% Yes 0.25 3 50% Yes 0.29
1 75% Yes 0.26 2 75% Yes 0.28 3 75% Yes 0.31
1 100% Yes 0.30 2 100% Yes 0.28 3 100% Yes 0.32
4 25% Yes 0.26 5 25% Yes 0.32 6 25% No 1.32
4 50% Yes 0.29 5 50% No 0.16 6 50% No 0.12
4 75% Yes 0.32 5 75% No 0.13 6 75% No 0.11
4 100% Yes 0.35 5 100% No 0.11 6 100% No 0.12

#Cams Load ≤ 850 Time #Cams Load ≤ 850 Time #Cams Load ≤ 850 Time
1 25% No 0.11 2 25% No 0.12 3 25% No 0.12
1 50% No 0.12 2 50% No 0.11 3 50% No 0.12
1 75% No 0.10 2 75% No 0.11 3 75% No 0.11
1 100% No 0.10 2 100% No 0.11 3 100% No 0.12
4 25% No 0.11 5 25% No 0.12 6 25% No 0.12
4 50% No 0.11 5 50% No 0.11 6 50% No 0.13
4 75% No 0.11 5 75% No 0.12 6 75% No 0.10
4 100% No 0.11 5 100% No 0.11 6 100% No 0.12

Table 8: Use case monitoring 1, with timer-based fusion period of 250 (above)
and 750 (below) analysing 10000 time steps.

ulation in Simulink/Stateflow, however the authors do not validate the formal
models against the simulation results, as we show in this paper.

Carvalho et al. [7] introduce a model-checking technique for verifying system-
wide safety properties in message-passing systems, employing an Alloy extension
called Electrum, and its Analyzer. Their approach emphasizes high-level archi-
tectural verification of message passing, while our work focuses on timing prop-
erties verification. Webster et al. [20] propose a formal verification method for
industrial robotic programs using the SPIN model checker, with an emphasis on
behavioral refinement and the verification of selected robot requirements.

The Coq-based verification of ROS implementations has been the focus of
several works, out of which that of Cowley and Taylor verifies robotic behaviour
using linear logic embedding in Coq [8], and that of Anand and Knepper pro-
poses ROSCoq, a framework for developing certified Coq programs for robots,
where subsystems communicate using messages [3]. Neither of these works fo-
cuses on verifying end-to-end reaction time of job chains, the authors analyzing
implementation levels instead.

The work of Hong et al. [19] can be seen as complementary to our work, as it
bridges the Timed Rebeca [1] model of a realistic multiple autonomous mobile
robots system and its generated ROS 2 demo code, showing the match between
the model and the program. Our work does not focus on ROS 2 code generation,
hence on such semantic bridge, but on modeling and analyzing formally the main
communication concepts of ROS 2, both in a deterministic and a probabilistic
context.
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9 Conclusions and Future Work

In this paper, we have presented a formalization of ROS semantics in UPPAAL
timed automata. To establish its validity, we ensure equal behavior with previous
work available in the literature, with respect to the application’s timeliness.
Afterwards, we have extended it with non-determinism, by allowing variable run-
time of tasks, as well as probabilistic data generation, by employing stochastic
timed automata. To demonstrate the usability of the approach, we demonstrate
how the UPPAAL tool can be used with regular and statistical model checking,
respectively, to establish upper bounds of end-to-end timing properties of ROS 2
applications.
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A UPPAAL Functions

1 bool wait ing_jobs ( ) {
2 i n t i ;
3 f o r ( i =0; i<C; i++) {
4 i f (QUEUES_COUNT[ i ] > 0) re turn true ;
5 }
6 re turn f a l s e ;
7 }
8

9 void queue_job ( i n t task , i n t data ) {
10 QUEUES[ task ] [QUEUES_COUNT[ task ] ] = data ;
11 QUEUES_COUNT[ task ] += 1 ;
12 }
13

14

15 // Right−most job f i r s t , i . e . , g r e a t e s t p r i o r i t y f i r s t
16 void schedu le ( ) {
17 i n t i , j , tmp_id , tmp_data ;
18

19 // Sort f i r s t by id
20 f o r ( i =0; i<JOBS_COUNT; i++) {
21 f o r ( j =0; j<JOBS_COUNT−1; j++) {
22 i f (PRIO[JOBS[ j ] [ 0 ] ] > PRIO[JOBS[ j + 1 ] [ 0 ] ] ) {
23 tmp_id = JOBS[ j ] [ 0 ] ;
24 tmp_data = JOBS[ j ] [ 1 ] ;
25 JOBS[ j ] [ 0 ] = JOBS[ j + 1 ] [ 0 ] ;
26 JOBS[ j ] [ 1 ] = JOBS[ j + 1 ] [ 1 ] ;
27 JOBS[ j +1 ] [ 0 ] = tmp_id ;
28 JOBS[ j +1 ] [ 1 ] = tmp_data ;
29 }
30 }
31 }
32 }
33

34 i n t dequeue ( i n t task ) {
35 i n t i , tmp ;
36 a s s e r t (QUEUES_COUNT[ task ] > 0) ;
37 tmp = QUEUES[ task ] [ 0 ] ;
38 f o r ( i =0; i<BUF_SIZE−1; i++)
39 QUEUES[ task ] [ i ] = QUEUES[ task ] [ i +1] ;
40 QUEUES[ task ] [ BUF_SIZE−1] = 0 ;
41 QUEUES_COUNT[ task ] −= 1 ;
42 re turn tmp ;
43 }
44

45 void take_jobs ( ) {
46 i n t i , j ;
47



48 a s s e r t (JOBS_COUNT == 0) ; // Host jobs should be zero
here

49 f o r ( i =0; i<C; i++) {
50 i f (QUEUES_COUNT[ i ] > 0) {
51 j = dequeue ( i ) ;
52 JOBS[JOBS_COUNT] [ 0 ] = i ;
53 JOBS[JOBS_COUNT] [ 1 ] = j ;
54 JOBS_COUNT += 1 ;
55 }
56 }
57 schedu le ( ) ;
58 }
59

60 i n t next_job_idx ( ) {
61 JOBS_COUNT−−;
62 re turn JOBS_COUNT;
63 }
64

65 // I f va lue i s negat ive , we don ’ t p ick from queue , but from
node

66 i n t get_data ( i n t va lue ) {
67 i f ( va lue < 0) {
68 re turn value ;
69 } e l s e {
70 re turn DATA[ value ] ; // Do we need to remove read

va lue s ?
71 }
72 }
73

74 void assign_monitor ( ) {
75 i f ( lm == −1) {
76 lm = nm;
77 }
78 monitor_status [nm] = MONITOR_SENT;
79 monitor_payload [nm] = PAYLOAD;
80 PAYLOAD = PAYLOAD − 1 ;
81 i f (PAYLOAD < MIN_PAYLOAD) {
82 PAYLOAD = FIRST_PAYLOAD;
83 }
84 nm = (nm + 1) % MONITORS;
85 }
86

87

88 // True i f payload i s monitored ( i . e . , not empty or a l r eady
seen )

89 bool re levant_payload ( i n t payload ) {
90 i n t i = 0 ;
91 i f ( payload == EMPTY)
92 re turn f a l s e ;
93 f o r ( i = 0 ; i < MONITORS; i++) {



94 i f ( monitor_payload [ i ] == payload )
95 re turn true ;
96 }
97

98 re turn f a l s e ;
99 }

100

101

102

103

104 // When f r e e i n g up , we f r e e up a l l monitors i n c l . those whose
data got thrown away .

105 void free_monitors ( ) {
106 i n t i ;
107 // We could get an old value , in that case i t i s not in

the monitored payloads
108 bool old_value = true ;
109 f o r ( i = 0 ; i < MONITORS; i++) {
110 i f ( monitor_payload [ i ] == pd)
111 old_value = f a l s e ;
112 }
113

114 // I f i t i s an o ld value , we can j u s t i gno re i t as i t has
a l r eady been seen once

115 i f ( old_value )
116 re turn ;
117

118 // Free p r ev i ou s l y used monitors
119 whi le ( monitor_payload [ lm ] != pd) {
120 monitor_status [ lm ] = MONITOR_FREE;
121 monitor_payload [ lm ] = EMPTY;
122 lm = ( lm + 1) % MONITORS;
123 }
124

125 // Also f r e e the one j u s t handled .
126 monitor_status [ lm ] = MONITOR_FREE;
127 LAST_PAYLOAD = monitor_payload [ lm ] ;
128 monitor_payload [ lm ] = EMPTY;
129 lm = ( lm + 1) % MONITORS;
130 }



B Graphical Representation of UPPAAL TA

Fig. 14: UPPAAL figure of data-generator.

Fig. 15: UPPAAL figure of monitored data-generator.

Fig. 16: UPPAAL graphical representation of subscriber.



Fig. 17: UPPAAL graphical representation of Monitor.

Fig. 18: Template for monitored probabilistic data-generator.

Fig. 19: Template for timer.



Fig. 20: Template for host.

Fig. 21: Template for probabilistic data-generator.
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