
State-of-Practice in Architectural Change
Management for Software-Intensive Systems: An

Interview Study
Ifrah Qaisar

Mälardalen University
Västerås, Sweden

ifrah.qaisar@mdu.se

Robbert Jongeling
Mälardalen University

Västerås, Sweden
robbert.jongeling@mdu.se

Jan Carlson
Mälardalen University

Västerås, Sweden
jan.carlson@mdu.se

Abstract—Modern software-intensive systems are growing
more complex, evolving continuously, and requiring extensive
collaboration across diverse domains. Effective documentation
and communication of architectural changes are critical to
managing the development of such systems. But this task re-
mains challenging due to constraints in time, resources, and
standardized practices. This study investigates the practices and
challenges related to architectural documentation and communi-
cation in the development of software-intensive systems through
semi-structured interviews with architects from four partner
companies. The findings reveal key challenges, including identi-
fying stakeholders for communication, inconsistent architectural
definitions across teams, and knowledge transfer issues due
to differing tools and terminologies. Participants also shared
their reliance on informal mechanisms and ad hoc processes
to address these challenges. Insights from this study highlight
the need for more structured, standardized approaches, flexible
documentation methods, and improved cross-domain collabora-
tion tools. The results provide actionable recommendations for
both practitioners and researchers to enhance documentation
practices, improve team alignment, and ensure the effective
management of architectural changes in dynamic and large-scale
software systems.

Index Terms—Software-intensive systems, architectural
changes, semi-structured interviews, cross-domain
communication

I. INTRODUCTION

Software-intensive systems are systems where software
plays a critical role in enabling interactions with various
components such as other systems, sensors, actuators, devices,
applications, and users [1]. These systems are often highly
interconnected and operate across different domains, including
automotive, telecommunications, embedded systems, indus-
trial automation, and business applications. Their complexity
arises from the need to manage diverse and interdependent
elements within dynamic and evolving environments.

Within this context, architectural and design documenta-
tion emerges as a critical component, playing a key role
in managing complexity while ensuring system reliability,
scalability, and maintainability. Within the context of this
study, architectural documentation is primarily intended for

This work was supported by Software Center: www.software-center.se

internal use during development and maintenance. It serves as
a record of design decisions and their rationale while offering a
clear view of the system’s structure to provide a common point
of reference for cross-functional teams, including developers,
testers, managers, and other stakeholders. Additionally, it
serves as a vital communication tool, enabling stakeholders to
understand and align on the design decisions and supporting
effective collaboration across teams [2].

Despite the important role of software architecture doc-
umentation, it is frequently overlooked by software practi-
tioners due to several reasons such as time and resource
constraints, increased complexity of the system and lack of
standardized practices [2]. This lack of attention can result
in miscommunication of architectural information, misaligned
understanding among stakeholders, and difficulties when it
comes to maintaining and evolving the system over time.

As part of a broader industry-academia collaboration with
multiple partner companies, this interview study explores
how architectural changes are documented and communicated
within and across teams developing software-intensive sys-
tems. Our goal is to understand how software practitioners in
these organizations navigate the complexities of architectural
documentation, the practices they currently employ, and the
challenges they face. By examining these aspects, we aim to
provide actionable insights to enhance industry practices and
support effective collaboration in this dynamic and evolving
field. Our investigation is guided by the following research
questions.
RQ1. What are the current industry practices for document-
ing and communicating architectural changes in software-
intensive systems?
RQ2. What challenges do software practitioners face when
documenting and communicating architectural changes in
software-intensive systems?

Based on our analysis of the interview transcripts, we
highlight key challenges and practices related to document-
ing and communicating architectural changes in software-
intensive systems. Participants shared insights into the varying
approaches used across teams or within the teams, and the
difficulties faced in aligning goals and managing complexity.

www.software-center.se


These insights not only provide a deeper understanding of
current industry practices but also emphasize the need for more
structured, standardized approaches to improve communica-
tion and collaboration. In the following sections, we present
these findings and explore their implications for improving ar-
chitectural documentation processes in dynamic development
environments.

The remainder of this paper is organized as follows. In
Section II, we describe the design of the interview study. In
Section III, we present our research findings and analyses. In
Section IV we discuss the findings presented in Section III.
Section V highlights the related work and Section VI con-
cludes the paper.

II. RESEARCH METHODOLOGY

A. Interview Design

In this study, we conducted semi-structured interviews,
following Oishi [3] as guidelines for designing the interview
process. We developed an interview guide aligned with the
research questions to structure the discussion effectively. To
maintain the open-ended nature of the interviews and avoid
influencing the responses, the guide was not shared with the
participants beforehand. The interview guide has been made
available online.1

The interviews were conducted online using Microsoft
Teams, where each session was recorded and later transcribed
for analysis. Two individuals facilitated the interviews: the
first author of this paper was the interviewer, leading the
discussion, while the other (alternating second and third author
of this paper) served as the observer, responsible for asking
follow-up questions for clarification, monitoring the interview
duration, taking notes, and ensuring the discussion stayed on
track.

The analysis was carried out in a more relaxed and flexible
manner, focusing on identifying key insights and recurring
patterns in the data. Each transcript was thoroughly reviewed,
and notable points were highlighted and grouped into broad
categories that aligned with the research objectives.

B. Participants and Contexts

A total of 12 participants from four companies, for
anonymity referred to as Company A, Company B, Company
C, and Company D, were interviewed. These companies
operate within the domain of software-intensive systems,
encompassing diverse fields such as advanced engineering
(B), mobility solutions (A), construction equipment (D), and
energy-efficient systems (B,C). Three of the companies are
located in Sweden and one company is located in Denmark.
The participants included five representatives from Company
A, two from Company B, four from Company C, and one
from Company D. All interview participants held roles as
system or software architects, with some also serving in
additional capacities, such as product owners and develop-
ers. This diversity of roles provided a broad perspective on

1https://doi.org/10.5281/zenodo.14733882

the practices and challenges related to architectural change
documentation and communication within these organizations.
When asked about team size and the number of collaborating
teams, participants reported that the average team consists
of approximately 10 members, typically organized as Scrum
teams. However, participants were often unsure about the exact
number of collaborating teams, as many are involved in large-
scale projects. The details, such as their current job roles,
years of experience and over all team structure including total
number of teams and number of people per team are mentioned
in Table I.

C. Threats to Validity

The relatively small sample size of 12 participants limits
the generalizability of the findings. With a small number,
the results might not fully represent the broader industry or
capture diverse perspectives, especially when considering the
large and varied nature of the software industry. We mitigate
this threat by selecting experts from organizations operating
in different sectors of software-intensive systems, thereby
covering a broader range of industry practices. Additionally,
by including participants from different companies in the
domain of software-intensive systems, we captured insights
from different organizational contexts, further enhancing the
richness of the data. While the sample size remains a limi-
tation, we aimed to gather in-depth, qualitative insights from
those with direct experience in architectural documentation
and communication within their respective teams.

Interviewees were invited based on relevance to the topic of
architectural documentation and communication in software-
intensive systems, the selection was non-random, which in-
troduces a potential threat of selection bias. However, because
our study focuses on the specific domain of software-intensive
systems within multiple industries, a random selection ap-
proach would not have been suitable. To mitigate the potential
threat of selection bias, we carefully selected interviewees
who were directly involved in architectural documentation and
communication within software-intensive systems. We ensured
that participants represented a variety of roles, including sys-
tem and software architects, product owners, and developers,
to gather diverse perspectives on the topic. Furthermore, by
selecting participants from multiple companies working across
different sectors (e.g., engineering, mobility solutions, and
energy-efficient systems), we aimed to capture a broad set of
practices and challenges, reducing the risk of bias introduced
by focusing on a single organization or industry. This purpose-
ful, targeted selection allowed us to gather relevant and diverse
insights while maintaining a focus on the specific challenges
in the domain of interest.

A notable limitation of this study is the over-representation
of participants from Company A, as half of the interviewees
were from this organization. While this might skew the find-
ings toward practices and perspectives specific to Company
A, it is important to note that Company A is a very large
organization with participants coming from different subunits
and groups, offering diverse experiences. However, this over-



TABLE I
PARTICIPANT DETAILS

ID Company Current role Time on cur-
rent project

Previous experience Team Structure

P1 A Product Owner 1 year Working with archi-
tecture of the plat-
form

150 people in functional safety, 2 platform, and 10
application agile release trains.

P2 A Software Developer and
Software Architect

5 years 10 years Typically works in Scrum teams with 7–9 members.
Current team has three core developers.

P3 A Platform Architect (infor-
mally), formally titled Expert
System Design Engineer

13 years 16 years in architec-
tural role

Large project involving 500-700 people, organized into
various streams and sub-streams. Individual teams typi-
cally consist of 8–10 people.

P4 A System Architect 12 years Software Developer Estimated typical team size is 5 to 10 people. Currently
involved in around 10 different teams working on various
projects, each consisting of 5 to 10 members.

P5 A Expert Function System De-
sign Developer

8 years No experience before
that

13 people in the team. Collaboration with other teams
varies depending on the project, typically involving 3 to
5 teams or more.

P6 B Software Architect 2.5 years Architect for approx.
6 years

7 to 10 people per team

P7 B Software Architect 2 years Software Architect
for 16 years

Several teams spread all over the world. Did not mention
the exact number

P8 C Software Developer and
Software Architect

6-7 months - Collaboration between teams in India and Europe of 7 to
10 people

P9 C System Engineer 11-12 years Software Developer Scrum team, 7 people per team and 10 different teams.
But in this project roles are not assigned

P10 C Embedded software devel-
oper + extra role as architect

7 years Developer 3 people in current team, no idea about total number of
teams

P11 C Product Owner / Architect 2 years - 12 people per team

P12 D Electronic System Architect 1.5 year Application Engineer 10 people per team, total teams more than 10

‘-’ means that the participant did not mention any previous experience

representation remains a limitation to keep in mind when
interpreting the results.

III. RESEARCH FINDINGS

This section presents the findings derived from the analysis
of the interview data, addressing the research questions central
to this study. The first section provides a detailed overview of
current industry practices for documenting and communicat-
ing architectural changes in software-intensive systems, and
offers insights into common approaches and methods (RQ1).
The subsequent section highlights the challenges reported by
interview participants in effectively documenting and com-
municating architectural changes within and across different
teams (RQ2).

A. State of Practice

In documenting architectural changes, it was observed that
informal practices, such as descriptive text, basic sketches, or
block diagrams, are predominantly used due to their simplicity
and ease of application. These methods are often favored
for their flexibility in quickly capturing and communicating
changes. However, for larger projects with strict compli-
ance requirements, such as those mandated by standards like
ISO26262, companies are compelled to adopt more formal
techniques, including Unified Modeling Language (UML) and
Systems Modeling Language (SysML), to ensure adherence
to regulatory standards. The major reason that participants

highlighted for the preference for informal documentation
practices is the ease of communicating design and architectural
changes to team members, particularly cross-functional teams.
The participants highlighted several tools, including draw.io,
Enterprise Architect, and Confluence, commonly used for
architectural documentation across different teams within the
same organization.

Architectural changes within teams are generally communi-
cated through informal verbal exchanges, in-person or virtual
meetings, and shared collaboration tools such as Confluence
and Microsoft Teams. For cross-team communication, in-
person or virtual meetings are also the primary coordination
methods. However, the way these meetings are conducted
varies across organizations and even among teams within the
same organization.

Most of these processes are informal, but in some cases,
formal review meetings are held, such as those conducted by
a Product Change Review Board or a Technical Ownership
Group. Participants from one company noted that these formal
reviews often occur too late in the decision-making process,
after changes have already been finalized. Additionally, they
highlighted that meetings with large attendance (50–60 partic-
ipants) tend to become more informational than consultative,
limiting meaningful feedback. To address this, participants
from another company shared that such meetings are attended
by one representative per team, who is responsible for relaying



the discussed information back to their respective teams.
Several participants from a single company shared that

architectural practices in their project, particularly in their
team, often revolve around addressing customer requests,
which are communicated through stakeholders or product
owners. These requests are documented in a “solution doc-
ument” which outlines the desired feature, stakeholder re-
quirements, and system requirements. This document serves
as a collaborative tool where team members contribute their
inputs for example details about specific interfaces to ensure
alignment across various teams, such as developers, cloud
engineers, and testers. This solution document does not contain
details about implementation and design. It serves as a living
document during development but is not maintained after
implementation. Instead, its contents are transferred into other
tools that manage the interfaces between different teams, to
preserve documentation, leading to information being frag-
mented across multiple platforms. The participant expressed a
preference for a centralized repository where comprehensive
feature descriptions, beyond high-level summaries, could be
consistently maintained. Moreover, to some extent, they also
use the C4 model [4] for high-level documentation of their
architecture, primarily as a reference architecture. However,
the use of UML modeling semantics within their C4 model
is quite basic, offering only a lightweight form of formalism.
One participant said the following about C4 model: “To me
C4 model makes sense that you have four different levels, you
have the very high level and then slightly lower levels and
then all down to the code. If you have that, then you can use
that model to communicate with pretty much everyone from
the system architects to the implementation to I guess even
the users of the whatever you had.”

Overall, communication practices for architectural changes
vary significantly depending on the project and the nature of
the changes, highlighting the lack of a standardized approach
across teams. Changes affecting interfaces are often addressed
informally and on a case-by-case basis, which can lead to
inconsistencies.

B. Challenges

This section outlines the challenges that the software practi-
tioners who participated in this study face towards effectively
documenting and communicating architectural changes, both
within individual teams and across multiple teams in the
industry. Based on the challenges identified by the participants,
we have categorized them into three distinct groups. These
categories, along with the number of companies that reported
each challenge, are presented in Table II.

1) Knowledge Management and Sharing Challenges: The
participants reported that it is difficult to transfer knowledge
between different domains due to differences in terminology
and tools. For instance, SysML (Systems Modeling Language)
is commonly used in domains like vehicle development for
modeling complex system architectures. However it cannot
be utilized in the same way, or at all, in domains like cloud
software development, where lightweight tools or code-based

solutions, are preferred to meet the specific needs of that
domain. These differences often lead to misunderstandings,
misalignment of expectations, and difficulties in achieving
seamless collaboration. For instance, terminology unique to
one domain is not easily understood by teams in another
domain, creating a communication gap. Similarly, the use of
domain-specific tools can complicate knowledge sharing, as
not all teams may be familiar with or have access to the same
tools, further hindering the efficient transfer of architectural
knowledge and practices.

It is also interesting to note that a few participants men-
tioned that there is usually a lack of familiarity among staff
with UML as one participant said: “I talk UML, if the listeners
understand that language, I try to use UML, otherwise I fake
it and do something similar. My age is so that UML was sort
of a hot when I was young in the trade. So I talk it but the
young people have never heard of it. It seems like so. So if
you’re like in your early 30s or late 20s, you probably haven’t
seen it before.”

Several participants also reported that there is a lack of
structured mechanism like centralized knowledge management
systems or shared tools for knowledge transfer and tracking
changes, between different teams, which often results in
inefficiencies and miscommunication. Without standardized
processes or tools in place, the exchange of critical informa-
tion, such as architectural changes or domain-specific insights,
becomes inconsistent and fragmented. This lack of structure
can lead to misunderstandings, and inconsistencies among
different architectural and design documents. Furthermore, the
reliance on informal methods, such as ad-hoc discussions or
broadcasting of information on teams channels, fails to ensure
that all team members or stakeholders receive the necessary
information, ultimately affecting the alignment and coherence
of collaborative efforts.

One participant reported that “We see that and I’m doing
that myself also, that in MS team channels I normally turn
off a lot of notifications because I will be overwhelmed with
all the notifications all the time. So I turn it off and then it’s
easier to forget about them. So therefore even teams channel
is not easy to work with.” Another participant reported that “If
people don’t check system viewer on time then they can miss
important updates leading to inconsistency problems.”

The participants also shared that it can be challenging
to figure out which stakeholders need to be informed about
architectural changes. This difficulty arises due to the com-
plexity of software-intensive systems that involve many teams,
domains, and areas of expertise with varying responsibilities.
One contributing factor is the ambiguity in ownership; when
areas of responsibility are not well-defined, it becomes unclear
who needs to know about specific tasks or decisions. Addition-
ally, some teams may implement architectural changes without
fully understanding which other teams depend on their work,
or even when teams know to involve. Delays in communication
or feedback can create further challenges, as concerns or issues
may surface after decisions have already been finalized and
work has progressed. Without a clear process or a list of



TABLE II
CHALLENGES REPORTED BY PARTICIPANTS

Categories Challenges No. of Companies

Knowledge
Management and
Sharing

Knowledge transfer between different domains due to difference in tools and terminology 3

Lack of familiarity with UML / SysML 2

Lack of structured mechanism for communication between different teams 2

Difficulty in identifying which stakeholders need to be informed about architectural changes 4

Tools and
Documentation
Challenges

Hard to incorporate informal diagrams into formal models 1

Architectural documentation is stored in several different formats that leads to inconsistency 2

Limitations in the current tools that they are using. 2

Organizational
Challenges

Misalignment between the goals of system and software architects 1

Architecture definition is different for different teams. 3

Lack of a clear and structured organizational hierarchy for communication and decision-making
processes.

2

roles and responsibilities, it’s easy to miss key people who
should be included. As a result, some stakeholders might
be left out of important updates or discussions, leading to
miscommunication, or conflicts during various activities. The
lack of a structured way to identify the right stakeholders
makes this issue even harder to manage.

2) Tools and Documentation Challenges: The participants
pointed out that informal diagrams and sketches are often
used to explain architectural changes clearly, especially in
meetings or discussions. These quick drawings, using e.g.
Visio or draw.io diagrams, are easy to create and help get
ideas across quickly. However, trying to include these informal
visuals into more formal tools like Sparx Enterprise Architect
is a challenge. The process of converting informal diagrams
into the structured formats required by formal tools can be
time-consuming and may lose important context or details.
Several participants mentioned that these tools don’t easily
support importing informal sketches, creating a gap between
informal and formal documentation. This disconnect makes
it difficult to ensure consistency where it is needed, as the
information from the informal sketches might not be captured
or might be interpreted differently when transferred into for-
mal documentation. This gap not only makes communication
harder but also adds extra work to align informal ideas
with the formal documentation needed for project tracking or
compliance. Participants stressed the need for tools that could
better integrate informal and formal documentation, making
the process smoother and more efficient.

The participants further highlighted that architectural doc-
umentation is often stored in multiple formats, such as MS
Word documents, presentations, and informal diagrams. This
diversity in formats makes it challenging to maintain alignment
and consistency across the documentation. Many teams rely
on manual processes to update and manage these different
documents, which is often time-consuming and prone to errors.
As a result, keeping all these representations of the system in
sync becomes a significant effort, particularly when updates
or changes are made in one format but not reflected in others.

This lack of integration or standardized approach creates gaps
in the documentation, making it harder for teams to have
a clear, unified view of architectural changes. Participants
expressed the need for more streamlined methods or tools to
automate and synchronize the documentation process, reduc-
ing the burden of manual updates and ensuring consistency
across all formats.

A few participants pointed out the limitations of the tools
they are currently using, mentioning issues such as limited
modeling capabilities, difficulty in navigation, and a lack
of integration with other tools. One participant said about
the modeling tool that has been used in their company that
“It’s a requirement administration tool. They claim to be a
modeling tool but it’s quite a poor tool for what it claims
to be. Essentially, you can only use it to document what
has already been done, with the major artifacts being the
requirements. Designing a system solely through requirements,
however, is not an ideal approach. This highlights the gaps
in our architectural thinking.” While another participant from
other company acknowledges that the tool works “okay” and
outputs good data, but he does not seem very enthusiastic
about it. He mentions that “the visual output (like the diagrams
and documents) generated from the tool isn’t very pleasant to
look at.” His statement suggests that the tool while functional,
might not be the best tool for communication and visualization
due to its aesthetic limitations or perceived lack of usability.

These constraints make it harder to effectively capture
and manage architectural changes. For instance, the tools do
not offer the necessary features to model complex systems
accurately, forcing teams to work around these limitations.
Additionally, participants found navigating through the tools
to be cumbersome, which slows down their workflow. The
absence of seamless integration with other tools further com-
plicates the process, as it requires manual data transfer and
increases the risk of inconsistencies across different platforms.
A few participants emphasized the need for more advanced
modeling tools capable of automatically propagating design
changes to multiple artifacts. They highlighted that such tools



could play a crucial role in resolving consistency issues by en-
suring alignment between design artifacts. Another participant
highlighted the need of a tool that helps users easily find and
follow relevant processes, particularly in complex situations
like mergers or component integration, without navigating a
cumbersome system. This tool should provide clear guidance,
making it easier to identify the appropriate steps and improve
consistency. He mentioned that “I am indicating that I have
high hopes with regards to processes because that is sort of the
guardrails. I am seeing that. Some parts of the organization
might not be as interested in processes as other and I think
maybe that’s because the availability of the processes.”

3) Organizational Challenges: In the context of software-
intensive systems, misalignment between system and software
architects is a recurring challenge highlighted by participants,
primarily stemming from differing priorities and communica-
tion gaps. System architects often focus on high-level goals,
viewing architecture as a conceptual arrangement of boxes
and arrows, which can seem flexible and easy to change. In
contrast, software architects and developers prioritize quality
concerns such as testability, maintainability, and the real-world
impact of changes on the codebase. This difference in focus
can create friction. For example, a system architect might
modify the connection (an arrow) between two components
in a design, considering it a minor change. However, for the
software architect, this could translate to significant rework,
such as revising dependencies or testing, potentially requiring
months of effort. Ultimately, the key issue remains ensuring
effective communication and collaboration as a participant
mentioned that “With the introduction of agile in this industry,
it felt like we removed software architects, it sort of disap-
peared and wasn’t a role here for a few years. I think that
meant that the leverage shifted towards the system architects
and that wasn’t super good. To me, the main problem is
communication with the overall architects, with the actual
software architects and understand how changes actually in
what do they induce in the code base and how do they
influence testability and all that stuff that I optimize towards.”
System architects must recognize the downstream effects of
their decisions on implementation, while software architects
need a channel to convey these impacts effectively, creating a
shared understanding across roles.

Three participants from three different companies high-
lighted the fact that the different parts of the organization have
different definitions of what a software architecture is. In some
cases, the responsibilities of architects are not clearly defined
which leads to the lack of consistent architectural thinking
across organization that ultimately reflects in the architectural
documentation and hence causes inconsistency issues.

Another key challenge identified was the lack of a clearer,
structured organizational hierarchy to improve communica-
tion and decision-making processes within large organiza-
tions. Without a well-defined structure, coordination becomes
difficult, leading to inefficiencies and delays in addressing
architectural changes.

IV. DISCUSSION

In this section, we discuss the implications and lessons
learned from this study, for both software practitioners and
software engineering researchers.

Our findings highlight several critical challenges that prac-
titioners face in the context of software-intensive systems, as
shown in Table II. Three of these challenges were reported by
the highest number of participating companies, making them
particularly significant.

1) Difficulty in identifying which stakeholders need
to be informed about architectural changes: As
emerging technologies in software-intensive systems in-
creasingly require cross-domain collaboration, we ob-
served that the interviewed practitioners often prefer
informal diagrams and communication mechanisms over
formal methods to communicate architectural and design
changes within and across teams. This preference is
due to informal methods being simpler and more ef-
fective for conveying information. Regarding cross-team
communication, practitioners rely on shared software
interfaces, updating these interfaces whenever changes
occur. These modifications are communicated to other
teams through platforms such as Microsoft Teams chan-
nels. However, with a large number of teams, some
geographically distributed, practitioners face difficulties
identifying the relevant stakeholders to communicate
changes. This challenge risks critical information not
reaching all necessary parties, leading to confusion or
misalignment during change implementation.

2) Varying definitions of architecture across different
teams: It was also noted that all participating companies
maintain a basic, high-level architecture, usually referred
to as reference architecture, which is rarely modified.
On top of this core framework, different teams indepen-
dently build their own architectural or design models,
often unstructured and informal in nature. The approach
to architecture and design varies significantly across
teams, reflecting a flexible yet sometimes disjointed
process. While such methods allow teams to adapt to
their specific project needs, this variability leads to
inconsistent documentation and communication break-
downs. Misalignment in how architecture is defined
across teams undermines the overall coherence of the
project, complicating collaboration and documentation
efforts.

3) Knowledge transfer between different domains, aris-
ing from differences in tools and terminology: This
challenge was reported by several participants from all
participating companies. In software-intensive systems,
teams often operate within different domains, each using
its own specialized tools and terminology. To facilitate
collaboration, practitioners rely on shared interfaces that
define the incoming and outgoing data points. How-
ever, beyond these interfaces, effective communication
is challenging due to the lack of a common language or



tools across domains. This fragmentation leads to mis-
communication and inconsistencies when architects and
engineers from various domains attempt to collaborate.

Overall, reliance on informal documentation, such as basic
diagrams and text, alongside informal communication chan-
nels, creates significant challenges, leading to inconsistent
documentation. To address these issues and maintain consis-
tency, practitioners currently employ manual processes such as
manual review processes, version locking, assigning personnel
to oversee document updates, handling consistency at the unit
level, and maintaining an appropriate level of abstraction to
minimize frequent updates. The individual making the changes
is solely responsible for document updates, with no automated
consistency checks, nor a well-defined manual processes in
place to ensure accuracy.

When we inquired about ideal solutions that the intervie-
wees would imagine to address these challenges, several in-
teresting ideas were shared. Participants emphasized the need
for a clearer, structured hierarchy to improve communication
and decision-making processes in large organizations. They
also suggested developing better strategies for communicating
architectural changes to all involved teams, including those
no longer active on the project, to address unexpected issues
effectively. Another proposed solution was the creation of
a core metamodel that could be translated across different
domains, enabling improved traceability between them. Addi-
tionally, participants highlighted the potential of AI tools, such
as ChatGPT or Copilot, to generate documentation for open-
source software, thereby reducing the administrative burden
on practitioners.

Based on the findings of our study, we present the following
implications for both industry practitioners and researchers.

• There is a clear need for more flexible documentation
methods that can accommodate fast changing require-
ments of agile development practices while also meeting
the regulatory requirements where required.

• Enhancing cross-domain communication and knowledge
sharing should be prioritized, possibly through the devel-
opment of common terminologies or translation mecha-
nisms.

• Research into effective communication methods for co-
ordinating architectural changes across multiple teams,
departments, or organizations involved in large and com-
plex software systems could provide significant value
to the field. Such methods would help ensure that ar-
chitectural changes are clearly communicated, properly
understood, and consistently implemented across diverse
and distributed groups.

• The development of integrated and shared documentation
tools across multiple teams that can centralize informa-
tion while maintaining flexibility could help overcome
many of the identified challenges.

• Further investigation into lightweight tools and well-
defined processes and their applicability in real-world
scenarios will provide valuable insights to improve ar-

chitectural documentation practices.

In conclusion, while current practices for documenting
and communicating architectural changes in software-intensive
systems have demonstrated adaptability to project-specific
needs, significant opportunities remain to improve standard-
ization, cross-domain collaboration, and tool integration. Fu-
ture research should focus on addressing these challenges
to enhance the overall effectiveness of architectural change
management in complex software systems.

V. RELATED WORK

We believe that understanding current industry practices
and challenges in documenting and communicating software
architecture within software-intensive systems is a crucial
step toward developing effective architectural communication
strategies. Our work is closely related to the study by Wan,
Zhang, and Xia [5], which explores a wide range of chal-
lenges in software architecture practices, spanning various
stages of the development life-cycle (requirements, design,
construction, testing, and maintenance). It focuses on architec-
tural styles, documentation, analysis, evaluation, conformance,
and refactoring challenges. Our study narrows the focus to
communication and documentation challenges during software
architecture and design activities, particularly in the context of
software-intensive systems, providing a more targeted explo-
ration on these aspects.

Another study by Ivanov [2] aligns closely with our study
as both emphasize the critical role of software architecture
documentation in creating system understanding, stakeholder
collaboration, and effective decision-making. While our study
focuses on the challenges and practices specific to software-
intensive systems, such as cross-domain collaboration and in-
formal communication, this paper provides general guidelines
and tools for improving documentation quality. The insights
complement our findings by highlighting strategies to address
inconsistencies, maintain up-to-date documentation, and im-
prove cross-team communication, reinforcing the need for
adaptive and structured documentation approaches in dynamic
development environments.

In another study [6], Babar highlights the tension between
agile principles and architectural needs, noting the perception
among some agile practitioners that architectural processes are
overly formal, while architecture proponents emphasize the
importance of sound practices. Through an empirical study
involving practitioners experienced in both agile and plan-
driven approaches, the study investigates how agile adoption
impacts architecture-related practices in large-scale software-
intensive systems and explores solutions for bridging the gap
between agile and architecture centric approaches. A challenge
identified in common with our work is the use of informal
architectural documentation due to the introduction of agile
practices.

Nahar et al. [7] conducted an interview study focusing on
collaboration challenges between data scientists and software
engineers during the development of ML-enabled systems,



highlighting the critical role of effective communication, doc-
umentation, and process management. Although this study
focuses on challenges specific to ML-enabled systems, its
broader themes of interdisciplinary collaboration, interface
documentation, and organizational practices offer valuable
insights. These findings are particularly relevant to under-
standing and addressing communication barriers in software-
intensive systems, which are central to our study.

Ovaska et al. [8] highlight the critical role of software
architecture as a coordination mechanism in multi-site devel-
opment projects, emphasizing the importance of maintaining
a shared understanding of architectural decisions and manag-
ing interdependencies across distributed teams. The findings
regarding the role of architectural documentation, proactive
communication, and shared project contexts align closely
with our investigation into best practices for architectural
documentation and communication. These insights provide
a foundation for understanding how effective documentation
and communication can mitigate barriers in complex software
development environments.

In another study, Hadar et al. [9] focus on adapting ar-
chitectural documentation to align with agile principles by
proposing a leaner and more concise documentation approach.
The study highlights the complexities of maintaining up-to-
date and effective documentation, particularly in agile and
cross-domain collaborative settings. The proposed solution of
a lean, abstract specification in this paper complements our
findings on the need for more structured and light-weight
documentation strategies to enhance collaboration, reduce
miscommunication, and maintain consistency in architectural
documentation.

Prause and Durdik [10] presents the results of structured
interviews focusing on architectural design and documentation
in agile development. The experts interviewed acknowledged
the challenges associated with both, emphasizing the need for
improvement. The paper offers an analysis of these challenges
and explores their origins, proposing “reputation” as a strategy
to enhance documentation and establish a clearer architectural
design. An evaluation of the proposed solutions based on
expert opinions is also included. The paper concludes by
suggesting that these challenges are not exclusive to agile de-
velopment and calls for further research to refine the proposed
solutions, with plans for a larger study involving more industry
experts.

VI. CONCLUSION

This study underscores the critical role of documenting and
communicating architectural changes in managing software-
intensive systems, which are characterized by their continuous
evolution and collaborative nature. Through interviews with
software and system architects from four companies devel-
oping software-intensive systems, we identified significant
challenges that impact these practices, including difficulties in
stakeholder identification, inconsistent architectural definitions
across teams, and knowledge transfer barriers due to differing
tools and terminologies.

Practitioners rely heavily on informal documentation and
communication methods, which, while flexible and practical
in dynamic environments, often lead to inconsistency and
misalignment. Current mitigation strategies, such as manual
review cycles, version control, and assigning responsibility
for updates, reflect an ad hoc approach to addressing these
challenges. However, these practices fall short of ensuring
alignment and scalability in large projects.

Participants emphasized the need for structured solutions,
such as clearer organizational hierarchies, a core metamodel
that is translatable across domains, and AI-based tools to
automate documentation and minimize administrative effort.
Based on these findings, we derive insights that highlight the
importance of flexible documentation strategies, standardized
processes, and advanced tools to improve communication and
ensure consistency.

We believe that the findings are of interest to both prac-
titioners and researchers. For practitioners, the study sug-
gests prioritizing flexible documentation strategies and cross-
domain collaboration mechanisms. For researchers, the results
identify several directions for future inquiry, including ex-
ploring lightweight formal methods, integrated documentation
tools, and scalable communication strategies. By addressing
these challenges, we can improve the documentation and
communication of architectural changes, thereby supporting
the effective evolution and maintenance of software-intensive
systems in increasingly dynamic and distributed settings.

REFERENCES

[1] L. Barolli and O. Terzo, “Complex, intelligent, and software intensive
systems,” 2020.

[2] M. Ivanov, “Software architecture documentation – guidelines and tools:
Studying guidelines and tools for documenting software architecture
effectively to facilitate communication and decision-making,” Journal
of Artificial Intelligence Research and Applications, vol. 4, no. 1, pp.
82––92, May 2024.

[3] S. M. Oishi, How to conduct in-person interviews for surveys. Sage
Publications, 2003.

[4] S. Brown, Software architecture for developers. LeanPub, 2013.
[5] Z. Wan, Y. Zhang, X. Xia, Y. Jiang, and D. Lo, “Software architecture

in practice: Challenges and opportunities,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2023, pp. 1457–1469.

[6] M. A. Babar, “An exploratory study of architectural practices and chal-
lenges in using agile software development approaches,” in 2009 Joint
Working IEEE/IFIP Conference on Software Architecture & European
Conference on Software Architecture. IEEE, 2009, pp. 81–90.

[7] N. Nahar, S. Zhou, G. Lewis, and C. Kästner, “Collaboration challenges
in building ML-enabled systems: Communication, documentation, engi-
neering, and process,” in Proceedings of the 44th international confer-
ence on software engineering, 2022, pp. 413–425.

[8] P. Ovaska, M. Rossi, and P. Marttiin, “Architecture as a coordination tool
in multi-site software development,” Software Process: Improvement and
Practice, vol. 8, no. 4, pp. 233–247, 2003.

[9] I. Hadar, S. Sherman, E. Hadar, and J. J. Harrison, “Less is more: Archi-
tecture documentation for agile development,” in 2013 6th International
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). IEEE, 2013, pp. 121–124.

[10] C. R. Prause and Z. Durdik, “Architectural design and documentation:
Waste in agile development?” in 2012 international conference on
software and system process (icssp). IEEE, 2012, pp. 130–134.


	Introduction
	Research Methodology
	Interview Design
	Participants and Contexts
	Threats to Validity

	Research Findings
	State of Practice
	Challenges
	Knowledge Management and Sharing Challenges
	Tools and Documentation Challenges
	Organizational Challenges


	Discussion
	Related Work
	Conclusion
	References

