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Abstract—Unmanned Aerial Vehicle (UAV) swarm, also
named drone swarm, has been the study object of many types
of research due to its potential to improve applications such
as monitoring, surveillance, and search missions. With several
drones flying simultaneously, the challenge is to increase their
level of automation and intelligence while avoiding collision,
reducing communication level with these entities, and improving
strategical organization to accomplish a specific task. In this
sense, we propose a solution to coordinate a UAV swarm using
bivariate potential fields with autonomous and distributed intel-
ligence among drones for a cooperative target search application.
Results have shown an improvement in the swarm effectiveness
by reducing the number of UAVs blocked at local minima by
using distributed decision-making methods, proving to be an
effective approach to solve this frequent problem in potential
fields.

Index Terms—UAV Swarm, Target Search, potential fields,
Swarm intelligence, Collective intelligence.

I. INTRODUCTION

A swarm is called a group of ten or more homogeneous enti-
ties working cooperatively towards a common goal [1]. Swarm
is a common and natural phenomenon among some groups of
animals, such as bees, fishes, and birds, which through simple
rules manage to move in space with coordination and cohesion.

The application of Unmanned Aerial Vehicles (UAV) in a
swarm has been gaining attention and interest from researchers
nowadays. This approach presents numerous challenges, with
the capability to communicate among drones that make up the
UAV swarm network being an important one [2]. The highest
level of UAV swarm autonomy is the ability to perform a task
coordinated among multiple UAVs without the intervention of
a human operator [3].

Given a large number of drones, the control and autonomy
of the UAV swarm are crucial for the success of a mission, i.e.,
similar to the animal behaviors, a UAV swarm has to cooperate
to achieve a goal. Despite the various inherent challenges,
the possible applications of a UAV swarm are numerous.
Applications that use cameras or other types of remote sensing
equipment are the most prominent, including photogrammetry,
video surveillance, traffic monitoring, and search and rescue
[4]. Another important application is the search for targets,
which we address in this paper.
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Search patterns with a UAV swarm are usually associated
with some heuristic, since it is not possible to propose an
optimal solution [5]. In this work, we develop a simulator to
implement and test a set of proposed search heuristics. The
dynamics of the autonomous UAVs is modeled with steering
force method, for guiding the movement, associated with a
potential field model to avoid collisions.

This work contributes by developing a novel swarm intel-
ligence model, which also provides a heuristic to avoid the
frequent problem of local minima in drone swarm applications
that use the potential fields as a method to avoid collisions.
Our proposed method is based on distributed decision-making
to provide autonomy to UAVs, combined with the development
of a collective intelligence module for the coordination of the
swarm, with a shared discrete map search strategy for the
search mission of a missing target (e.g., an individual).

This paper is organized as follows. In Section II we present
the theoretical background. The problem is formulated in
Section III. Later, in Section IV we describe our solution
using collective and distributed heuristics. Then we proceed to
the experiments, results, and discussion in Section V. Lastly,
Section VI concludes and shares ideas for future work.

II. THEORETICAL BACKGROUND

In this section, we present the main techniques found in the
literature regarding the swarm approach.

A. Steering Force Model

A basic theory of autonomous behavior of vehicles is
proposed by Shiffman [6], using the steering force dynamics
for guiding an autonomous vehicle. The modeling is based on
a simple principle of the sum of vectors that guide the drone
to the desired position by applying a force F calculated by
the difference of the desired velocity VD vector by the current
velocity vector V , as indicated in:

F(t+ 1) = VD(t)− V(t). (1)

This force is then applied to the drone model, respecting a
maximum threshold according to the model’s limitations, and
it is used to update the vehicle’s velocity and position through
numerical integration. This method is used as an attractive
force to guide the UAVs to a desired coordinate due to its
effectiveness, easy implementation, and fast computation.
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B. Potential Fields for Collision Avoidance

A traditional technique for the interaction of multiple enti-
ties is the potential fields method [7]. In this method, obstacles
exert repulsive forces (|−→Fr|) on the agent, base on the distance
d to the obstacles and a repulsion coefficient Q. The formula
is derived from the electric potential field, which is given by

|−→Fr| =
Q

d2
. (2)

An alternative implementation is proposed by Barnes [1],
using the bivariate normal function as a potential field, where
the potential function is applied to contain multiple drones
within an elliptical area for a formation flight [1]. The normal
bivariate function is

f(x, y) = e−α(x−xc)
2−γ(y−yc)2 , (3)

where α and γ are constants to be tuned, [xc, yc]T is the center
of the field and [x, y]T is a position on which the potential field
has an influence. The x and y partial derivatives of (3) create
a velocity field that is used for the movement of drones within
the formation according to

[
∂f(x,y)
∂x

∂f(x,y)
∂y

]
=

[
−2αf(x, y) 0

0 −2γf(x, y)

] [
(x− xc)
(y − yc)

]
. (4)

along the x and y axis, respectively. In the simulator, α = γ
in order to generate a symmetrical field.

The normal bivariate function has the advantages of allow-
ing easy tuning of the field’s actuation region by the constants
α and γ along the x and y axis, respectively. We can see in
Fig. 1, where α and γ are equal, generating a symmetrical
field in x and y. The maximum f(x, y) value is unitary for
any values of α and γ, which occurs when the entities are
very close, facilitating the adjustment of the maximum force
value.

The disadvantage of potential fields technique is the possi-
bility of local minima in the scenario [8], which can make
a UAV stationary by the cancellation of the repulsion and
attraction forces of the various objects present in a scenario.
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Fig. 1. One-dimensional normal bivariate function.

C. Search Algorithms and Swarm Intelligence

Using UAVs for search operations is not a new concept,
but using systems of several UAVs is a subject still not fully
explored and with very few works discussing it [4]. Aunon
and Cruz [5] performed a study of heuristic algorithms for the
search task using UAV swarms and concluded that the search
by line and with a displacement to unvisited cells presented the
greatest simplicity in the implementation and the most efficient
algorithm for target search among the studied methods. Thus,
this is the method that we explore in this paper.

In the line search method proposed by Aunon and Cruz
[5], the search area is divided into cells, and each drone is
designated to start the search in a specific line, as illustrated
in Fig. 2. The drone navigates in search of the target to
the end of the initial line. At the end of its respective line
(and considering the non-localization of the target), the UAV
restarts the search in a new line not yet visited by another
UAV in the swarm. There is also a communication effort to
be considered for the UAV swarm network, as UAVs must
share with the swarm which lines and cells were previously
visited. Therefore, they need to have a world model, such as a
discrete map, which must be continuously shared by all agents.

Fig. 2. Line search method with two agents, yellow and blue points [5].

III. PROBLEM FORMULATION

In this section, we present the problem formulation, the
description of the scenario, and the research question.

A. Scenario

As an application of the search problem, we propose a
scenario where a UAV swarm is applied in a search mission to
find a missing individual in a forest region of about 60, 800m2.
The scenario area is divided into (38× 16m) squares, where
each square is equivalent to 100 m2 (10 × 10 m). N is
the number of UAVs performing the search mission in this
area. Considering a vision system on each UAV capable of
identifying a target at less than 20 meters, we restrict the UAVs
to flying at heights less than the treetops, allowing the UAV
to successfully identify the target using its vision system.

We assume as the swarm’s primary hypothesis that the
UAVs do not have previous information about the position of
the missing target. Also, the UAVs must not collide with each
other and avoid surrounding obstacles, represented as trees.
Drones are considered to have a common UAV swarm network
in which they share mission information such as positions of
all mission components and target location when identified.
The target is considered found when a drone is less than two
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squares away (less than 20 meters), illustrated in Fig. 3 as a
circle around the target.

The simulator was developed in Python with the aid of the
Pygame library for visual representation, as seen in Fig. 3.
Our simulator aims to facilitate future simulations and different
scenarios through an easy to use and modify open-source code.
Interested readers can watch our simulator presentation video2

and also find more implementation details in our repository on
Github3.

Fig. 3. Simulation view of the search scenario using only 8 obstacles.

B. Research Question

The proposed mission objective is to identify the location
of a previously unknown target. Thus, considering the swarm
search and intelligence heuristic implemented, we evaluate
how the search time of an unknown target is affected by the
number of drones and obstacles. It is considered a reference
for the shortest time to locate the target if the drones known
the target and move directly to its position.

In addition, the influence of the proposed heuristics and
implemented swarm intelligence is investigated against metrics
of interest such as mission time, i.e., when all drones reach
the unknown target location, and the amount of occurrence of
local minimum when the drones cannot move.

IV. DISTRIBUTED AND COOPERATIVE DECISION-MAKING

Our decision-making can be divided into two categories:
autonomous intelligence, referring to a single UAV, and col-
lective swarm intelligence, referring to the group. Therefore,
decisions are decentralized to each UAV, and cooperative, as
the group must cooperate to attain the mission. The imple-
mented intelligence modules are described in Table I.

A. Autonomous Intelligence

In the target search module, the UAVs are equally dis-
tributed among the scenario lines according to the number of
drones used, and each drone begins the search for the target
autonomously, by searching in a line on the neighboring cells.
Thus, the drones perform a horizontal sweep across the scene.

The behavior module was developed to control the au-
tonomous behavior of the drones, consisting of a finite state
machine (FSM), with each state representing a behavior, only

2https://www.youtube.com/watch?v=l07YPjrnLNw
3https://github.com/luizgiacomossi/Search Drone Swarms/tree/grid search

TABLE I
PROPOSED HEURISTICS FOR SWARM INTELLIGENCE

Swarm
Intelligence Module Description

Autonomous
Intelligence

Target
Search

Target search is performed
on a discrete map.

Behavior Intelligent drone behavior through
a finite state machine.

Collision
Avoidance

Potential fields for collision avoidance
between drones and obstacles.

Collective
Intelligence

Swarm
Search

Target search in regions mapped as
not visited using a common map.

Blockage
Prevention

Prevents drones from getting
stuck in local minimums
present in the scenario.

Mission
Closure

When a drone finds the target
the coordinates are shared and

all drones move to this position.

one state is executed at a time, with events leading to behavior
changes [9]. Our FSM for a UAV can be seen in Fig. 4,
structured with two main states: SearchState and SeekState.
There are also two auxiliary states: GoToClosestDrone and
RandomTarget, used to avoid the blockage by local minimums.
Note that there is a FSM for each drone in the swarm.

Fig. 4. Finite State Machine controller the drone’s behavior.

By default, the drone is in the SearchTarget state, which
represents the search behavior for the missing target. If the
target is found, by this UAV or another agent in the swarm,
the behavior will change to SeekState, in which the target’s
coordinates are now found and are transmitted to all agents
in the swarm, then the drone stops the search and heads to
those coordinates directly. If the drone gets blocked in any
region of the map, the FSM identifies that the drone is not
moving and transitions to the GoToClosestDrone behavior, in
which the drone heads to the closest agent coordinates as a
first heuristic to solve the situation. As a final solution, if the
drone is still blocked, the agent transition to RandomTarget
state which defines random targets on the map until it can
unlock itself. When the agent is unblocked the FSM returns
to its default search state. Note that the drone can transit to
the SeekState state from any state.

As autonomous intelligence, there is also the module to
avoid collisions. The potential field technique, using the
normal bivariate function, was applied to calculate repulsive
forces among drones and obstacles, efficiently solving this
problem. By experimentation, a value of α = γ = 0.0001
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was found to be efficient to the UAVs field force and α =
γ = 0.005 for the collision avoidance with obstacles.

Thus, based on the distance between drones (
−→
d i,k) and in

the distance between the drone and the obstacles (
−→
d i,j and−→

d k,j), a resulting force (attraction force using the steering
force method and repulsion’s using potential fields) is applied
to the drone, resulting in movement to avoid collision. In Fig.
5 we see a graphics representation of how it works, we see two
drones i and k, and one obstaclej, as force peaks (repulsion
forces), note that the influence of the field depends on the
distances between these elements.

Fig. 5. Interaction of potential fields.

In Fig. 6 we see the technique being executed in simulation,
the trajectory of each drone is drawn on the map, showing that
the drones avoid collision between agents and with obstacles.
Note that the area of action of the potential field is highlighted
by the circumference around the tree and drones in gray.

Fig. 6. Drones avoiding collision during simulation execution.

B. Collective Intelligence

In the collective intelligence module, we have the swarm
search module, responsible for selecting unvisited cells of
the shared map. Each cell h(w, l) have two possible states,
indicated as

h(w, l) =

{
1, if visited,

0, Otherwise,
, (5)

where w varies from 1 to 38 and l varies from 1 to 16,
according to the discrete area of the scenario. The default
state is unvisited, when a cell is visited, the agent informs
the swarm and the cell state is changed.

Fig. 7 demonstrates the marking on the map of the visited
cells, with a green center dot, and the cells not visited by any
member of the swarm, in red. This map is collectively built
and shared with all agents. The map is collectively updated at
every new cell visited and it is constantly being shared, so all
agent have the same map during the execution.

Fig. 7. Cells visited in green and not visited in red.

The mission begins with the UAVs being equally distributed
in the rows of the map, as seen in Fig. 8. Then, the search
for unvisited cells is performed, with the agent selecting an
unvisited cell among the eight neighboring cells of its location
(eight connected) to proceed.

Fig. 8. Mission begins, UAVs marked in yellow, distributed in the map.

If all eight neighboring cells were already visited, the
algorithm chooses a random not visited cell on the map as the
next destination. Fig. 9 illustrates this case, where a UAV with
8 already visited cells is seen in the bottom dashed rectangle.
The agent then selects a random cell not visited on the map
to continue (yellow arrows).

Fig. 9. Implementation of the unvisited cell search.

The collective intelligence also implements heuristics to
avoid the potential field’s local minima, called Stationary State
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by the drone, which prevents the drone from being blocked in
a given location in the scenario. In this sense, if the UAV
identifies that it can no longer move because it is stuck in a
local minimum i.e enters the Stationary State, it will search in
the UAV swarm network for the nearest UAV and try to head to
its coordinates, as seen in Fig. 10. If the Stationary State UAV
still can not move, after this attempt, this agent does a new
search for the second closest drone, and tries to move towards
it. Finally, if the drone remains blocked, the agent chooses
a random cell on the map and repeats this procedure until it
leaves Stationary State, returning to the default SearchTarget
state.

Fig. 10. Drone stuck in obstacle looking for the nearest drone.

Once the target is located by a drone i.e. distance less than
or equal to two squares from the target, all UAVs in the
swarm will transit the mission closure phase. In this phase,
the coordinates of the located target are shared in the swarm
network by the UAV that located the target, so that all drones
must move to this coordinates, as illustrated in Fig. 11.

Fig. 11. Mission closure phase, target is located by one UAV in the swarm.

The simulation with the swarm in mission closure phase
can be seen in Fig. 12, we observe that the target location
was successfully shared in the swarm network, with all UAVs
successfully moving to this coordinate, ending the mission.
Note that the swarm is in formation around the target with
cohesion and without collisions among UAVs.

V. RESULTS AND DISCUSSIONS

In this section, we describe the experiments and their results.

A. Evaluation Planning
The evaluation is based on the computational performance

evaluation methodology, proposed by Jain [10]. The Table II

Fig. 12. Target is located and a swarm is formed around him.

presents the factors and levels considered for the evaluation.
We applied a complete factorial design for the experiments,
with 27 possible combinations for ten repetitions each, totaling
270 executions.

TABLE II
EXPERIMENTS DESCRIPTION.

Factors Drones Obstacles Search Strategy

Level 1 5, 10, 15 10, 15, 30 Target location previously known
and without heuristics - TNH.

Level 2 5, 10, 15 10, 15, 30 No knowledge of target location
and without blockage heuristics - NTNH.

Level 3 5, 10, 15 10, 15, 30 No knowledge of target location
and using blockage heuristics - NTH.

In this evaluation, the metrics observed are: mission com-
pletion time and and the number of observed local minima.
The mission is considered completed when all drones form a
swarm around the located target, see Fig. 12.

At level 1, we run the experiments with the coordinates of
the target previously known, using this result as reference, as
it can be considered as the best possible case, with the UAVs
heading directly to the target.

B. Comparison of mission competition time

in Fig. 13 we have the average time of mission completion
bar chart with a confidence interval of 95%. For all cases,
the strategies in level 2 and 3 presented a longer mission
completion time compared to the level 1 reference. This result
is expected, since there is no guarantee of optimal time with
the use of heuristics for search. Therefore, we note that when
the swarm uses our search strategy, there is a tendency for
them to spread across the area, with some UAVs searching in
regions far from the target location or in complex situations,
with several obstacles on the way to the target, causing this
increased of mission time. Also, statistically, there are no
differences in mission times between level 2 and level 3
strategies, the latter with agents using our blockage prevention
heuristic.

Fig. 13. Mission completion time by the number of drones used.
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Therefore, we note that when the swarm uses our search
strategy, there is a tendency for them to spread across the
area, with some UAVs searching in regions far from the target
location or in complex situations, with several obstacles on the
way to the target, causing this increased of mission time. Also,
note that, statistically, there are no differences in mission times
between level 2 and level 3 strategies, the latter with agents
using our blockage prevention heuristic.

It is interesting to note that with 15 obstacles there are two
cases, with 5 and 15 drones, where there was a large increase
in time with the heuristic on and off. This can be explained by
the complexity of the simulated scenario, counter-intuitively
from fewer obstacles, you can get a more difficult search
scenarios, with the target being found in regions with very
close obstacles, creating big barriers.

C. Comparison of local minima quantities

In Fig. 14 we present the average amount of local minima
chart bar. Notice that, with the increase in obstacles and
amount of UAVs, there is a tendency for the increase in the
average amount of local minima. However, when the swarm
is using our search heuristics, the amount of local minima is
considerably reduced, as seen in the level 2 and 3 strategies.
Note that in the reference level 1 case, the UAVs tended to
get more blocked, this is justifiable as the UAVs are heading
to the target directly in swarm formation, thus having little
space to maneuver. The force field of other UAVs in the
surroundings also can influence negatively, aggravating the
amount of blocked drones.

Fig. 14. Local minimums observed in each tested scenarios.

This metric demonstrates that when our heuristics is applied.
it significantly reduces the number of UAVs blocked, when
there is a significant amount of local minima in the scenario.
By using our blockage prevention heuristics, we note that
adding more UAVs to the swarm increases the probability of
a nearby neighboring drone helping a blocked UAV, so fewer
drones got blocked, this can be seen in the experiments with
10 and 15 UAVs using 30 obstacles.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we study the use of UAV swarms in the context
of target search for an individual of unknown location, in a
region with trees. A UAV swarm simulator was developed to
evaluate this study. We developed intelligent search strategies
based on autonomous and collective decision-making for the

UAVs. The UAVs were simulated with individual autonomous
intelligence through a FSM, which controls the behaviors in
decentralized manner. We also developed a collective intelli-
gence strategy using a discrete map of the region, collectively
built and shared, with the UAVs working as a team by sharing
information for the search coordination and distributing the
search task. We also contributed by creating a blockage
prevention heuristic, to reduce the number of UAVs blocked
In local minima.

After the performance evaluation, varying the number of
obstacles and UAVs in the swarm, we observed that our swarm
intelligence proved to be effective, also reduced the number
of UAVs blocked in local minima, showing signs of being an
effective tool for solving this frequent problem in the potential
fields technique. Our results showed mission completion times
proximate to reference time i.e level 1 strategy, which is a
promising result. Note that there is no guarantee of optimal
time when using heuristics for search. Thus, it was verified that
forms of collective swarm intelligence should be evaluated to
improve the target search mission, its usage and improvement
may bring significant advantages in such contexts.

Future research should consider applying optimization al-
gorithms to the decision-making parameters to improve the
results. Another suggestion is the evaluation of additional
effectiveness metrics, such as redundant paths and revisited
cells, that UAVs may occasionally revisit. In order to have
deeper evaluations, a simulated scenario with realistic physics
is suggested. Alternative ideas to avoid blocking at local
minima can also be further evolved.
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