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Abstract—With the application of decision-making techniques,
it is possible to automate many of the intelligent decisions
of UAVs, leaving human commanders to focus on higher-level
decisions in modern warfare scenarios, providing a crucial
tactical advantage. This paper applies key methods to enable
decentralized decision-making for autonomous combat UAVs,
also known as loyal wingman (LW) drones. A simulator was
developed to simulate to implement and analyze the behaviors of
the so-called LW. We used as the main decision-making technique
the construction of a behavior tree (BT) capable of provid-
ing decisions in a decentralized manner, and for parameters
optimization, the PSO optimization algorithm was used. Our
approach shows a promising result of threat elimination efficiency
of approximately 93%.

Index Terms—Cooperative engagement capability; manned-
unmanned teaming; loyal wingman; Decision-Making techniques.

I. INTRODUCTION

The term decision-making is regarded as the cognitive
process resulting in the selection of a belief or a course of
action among several possible alternatives [1]. Historically,
the decision-making for the coordination of combat units was
carried out by humans, involving hundreds to thousands of
people. With the advances of communication and computing,
modern decision-making enabled the so-called Cooperative
Engagement Capability (CEC) among multiple networked
agents [2], which can be applied to multiple manned and
unmanned aircraft systems a.k.a Manned-unmanned teaming
(MUM-T), to cooperatively engage and disable aerial threats.

The future vision combines a manned fighter commanding
multiple unmanned aircraft, extending combat resources [3].
However, developing high-level decision-making techniques to
CEC in real scale require a prohibitive amount of resources.
The MUM-T includes the concept of the Loyal Wingman
(LW) – an unmanned aerial vehicle (UAV) under the tactical
command of a manned leader. Multiple autonomous LWs may
be key to developing a new system that can act as a major
force multiplier for existing human combat aircraft. Recently,
drones have become more accessible and we have witnessed
the emergence of UAVs in the most diverse applications [4],
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luiz.giacomossi@ga.ita.br, mmaximo@ita.br.

2Stiven Schwanz Dias is with the Data Mining group, Mathematics and
Computer Science department, Technische Universiteit Eindhoven, Eind-
hoven, North Brabant, Netherlands. s.schwanz.dias@tue.nl.
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which are now suitable candidates for investigating MUM-T
applications.

In this paper, we focus on the application of the loyal wing-
man concept with autonomous UAVs, allied with the MUM-
T concept and with a combination of artificial intelligence
(AI) techniques to increase their autonomy. It is possible to
automate most of the actions and decisions done by combat
UAVs using modern decision-making techniques, allowing
human pilots to focus on the big tactical picture. We focus the
research on its application in a simulated defensive scenario,
with the objective of protecting a leading manned aircraft and
a critical area from kamikaze drone attacks.

This research contributes by combining modern decision-
making approaches with a swarm of LW UAVs to coordinate
efficient defense actions in a cooperative, autonomous, and
decentralized manner. We also contribute by introducing a
novel defense scenario based on the loyal wingman concept,
which we consider an interesting testbed for cooperative
decision-making. The methodologies were combined with the
creation of a UAV simulator, to make the LW behaviors and
defense strategies easier to apply and evaluate.

The remaining of this document is organized as follows.
In Section IIwe review key decision-making methods from
literature. In the sequel, we describe the scenario of interest
in Section III comprising a MUM-T and a kamikaze swarm.
Later, in Section IV the simulator developed is presented.
Then we proceed to the development of the agent behaviors
in Section V. The experiments and their results are presented
in Section VI, and we move to the discussion and results’
analysis in Section VII. Lastly, Section VIII concludes and
shares ideas for future work.

II. DECISION-MAKING ARCHITECTURES

In this section, the main methods used to control the be-
haviors for autonomous agents are presented. Many selection
mechanisms exist, with finite-state machines (FSMs) [5] and
behavior trees (BTs) [6] being the most popular.

Many approaches have been devised for robotic decision-
making, in applications such as autonomous cars, the
agents are highly deliberative [7]. In these complex sce-
narios, the decision-making is broken down into the so-
called behaviors [8], which are modules tailored to solve
subtasks. For example, Ogren [9] designed behaviors for
a Combat UAV agent, the typical behaviors encompass:
EvasiveManeuvre, DoCombat, disEngage, FlyHome
and Strike.

Behavior selection mechanisms using FSMs or BTs are
often designed by humans. The design is empirical and is
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TABLE I
NODE TYPES OF A BT.

Node
type Success Failure Running

Selector If one child
succeeds

If all children
fail

If one child returns
running

Sequence If all children
succeeds

If one child
fails

If one child returns
running

Parallel If N children
succeeds

If M -N children
fail

If all children return
running

Action Upon completion When impossible
to complete During completion

Condition If true If false Never
Inverter If Failure If Success -

mainly based on experience, creativity, and good practices
[6], [8]. Furthermore, the process is iterative, with the agent
performance being evaluated by a human or through statistics
in order to select the best agent configuration [8]. On the other
hand, optimization methods and machine learning techniques
may be employed to optimize parameters, such as thresholds
used to define conditions for behavior switching [10], [11].

A. Finite State Machines

FSMs are the most common mathematical model of compu-
tation where the system can be in only one of a finite number
of states at any given time [5]. i.e an FSM guarantees the
permanence in a certain state, unless a transition is triggered.
The developer is responsible for defining the behaviors (states)
and the conditions that trigger transitions between behaviors.

The wide use of FSMs is due to their intuitive structure
and ease of implementation. However, FSMs have scalability
disadvantages with the addition of behaviors and transitions, so
code maintenance is laborious [6]. Reusability is also an issue,
making it unpractical for reusing behaviors in other projects.

B. Behavior Trees

The behavior tree (BT) approach is to encode behaviors
that are modular and reactive [6]. Since most of the problems
found in the FSM are easily handled by BTs, the method has
surpassed the FSMs as the industry standard in AI games [9].

A BT framework [6] is composed by nodes, which can
be composite or leaf. Composite nodes control the BT logic,
while leaf nodes execute the behaviors or check condi-
tions. When executed, each node returns a execution status:
Success, Failure, or Running.

The types of composite nodes are: sequence, selector, par-
allel, and decorator. Table I shows the return status logic of
each node type. Sequence nodes sequentially executes all their
children in order, as long as they are successful. A selector is
used when any child can perform the task, it selects the first
child that is successful. A parallel node executes its children
in parallel (at the same run time). A decorator (Inverter)
node changes the execution status of its child, many types
of decorator may exist, depending on the framework used.
Conditional check nodes are used to check if a condition is
satisfied.

The leaf nodes are implemented by the agent developer:
they are the behaviors themselves or conditional checks, e.g.
a behavior such as DefendLeader will keep returning

Running while the behavior is executing. Then, if the threat
attacking was neutralized, the node return Success. Other-
wise, if the leader is destroyed, the node returns Failure.

III. SCENARIO OF INTEREST

In this section, we introduce a novel defensive scenario
based on the loyal wingman concept. An approach to achieve
a higher understanding of the context and enabling its assess-
ment is through gamification [12].
A. Defensive scenario

There are two teams, a MUM-T composed of a remotely-
piloted leading UAV, escorted by a number of LW UAVs, and
a kamikaze swarm. The MUM-T must engage and disable
kamikaze drones, which try to attack the protected area and
the lead drone. The scenario is depicted in Fig. 1.

There are two teams, a MUM-T composed of a remotely-
piloted leading UAV, escorted by a number of LW UAVs, and
a kamikaze swarm. The MUM-T must engage and disable
kamikaze drones, which try to attack the protected area and
the lead drone.

Fig. 1. Defense Scenario – MUM-T being attacked by kamikaze drones.

Therefore, the main objective and definition of the comple-
tion of the scenario are:

1) Mission: The LW shall protect both a protected area and
the leading drone against the incursions of a kamikaze swarm.

2) Game over:
• The leading drone is hit by a single kamikaze drone, or;
• The critical area is hit by five drones, or;
• All loyal wingman were destroyed.

B. Description of the entities

The following list presents a description of the entities. Note
that the parameters are represented using variable names in
snake case naming convention.

1) Manned-unmanned teaming (MUM-T):
• A single-player manually controls the leading drone;
• Loyal wingman agents are fully autonomous, and there

are a fixed number of LW (num_loyal_wingman);
• The leading drone is in charge of the formation and for

passing the formation coordinates to each LW.
2) MUM-T Weaponry:
• MUM-T drones have a mid-range freezing gun and a

short-range vaporizer gun, both with a limited number
of cartridges, given by cartridges_vaporizing
and cartridges_freezing, respectively, and cool-
down time of freezing_cooldown seconds and
vaporizer_cooldown seconds, respectively;
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• The freezing gun has a range of freezing_range
meters and slows down the threat by 2/3 of its maxi-
mum speed for time_frozen seconds with a hitting
probability of freezing_hit_prob. This weapon in-
tends to make the decision space more complex and in
practice the freezing dynamic is infeasible, given current
technology;

• The vaporizer gun has a range of
vaporizer_gun_range meters and destroys
the threat with a hitting probability of
vaporizer_hit_prob.

3) Kamikaze Agents:
• The kamikaze drone aims to strike the leading drone,

protected area, or LW (we assume agents can identify
them) and explode within range of contact;

• Kamikaze drones continuously appear within
the range of ground-based radars, so up to
max_num_of_kamikaze drones are present in
the simulated scenario;

• Each Kamikaze drone will randomly select a target
when created, and will not change the target until it is
destroyed.

4) Ground Assets:
• The ground-based radars share situational awareness with

MUM-T drones, i.e. a vector with the state (pose and
velocity) of all entities. In simulation, in code it is
represented as messages carried out between entities.

IV. SIMULATOR

A simulator was entirely developed in Python, using for
visual representation and user interaction the Pygame library.
This simulator is intended to facilitate simulations through
an easy-to-use, easy-to-modify, open-source code. The imple-
mentation of the defensive scenario focuses on the evaluation
of decision-making techniques, abstracting a simulation with
realistic physics. In this section, we describe the techniques
used for the simulator creation. The interested reader can find
further implementation details in Github2.

A. Position Controller

Drones must be able to move at desired coordinates, for
this purpose, a simplified P + V controller was used, which
computes the force to be applied to the drone rotors, given by

−→
f = Kp(pr − p)−Kvv, (1)

where the force (
−→
f ) is proportional (Kp) to the difference

in position (p) with the desired coordinates (pr) and is
proportional (Kv) to the current velocity (v) of the drone.

Note that the force must be limited to the maximum force
that can be applied by the rotors. In our simulator, the
acceleration of the model is the force divided by the mass of
the UAV. The UAVs are simulated as 2D point mass objects
with decoupled linear dynamics along the x-y axis.

2https://github.com/luizgiacomossi/Simulation Wingman/tree/loyal attacking

B. Collision Avoidance

As a primary assumption, UAVs must not collide with each
other. In potential fields method, obstacles exert repulsive
forces (

−→
F r) on the agent to avoid collision. An implementation

of this method is by using the bivariate function [13], given
by

f(x, y) = e−α(x−xc)
2−γ(y−yc)2 , (2)

where [xc, yc]
T is the center of the field and [x, y]T is a

position on which the potential field has an influence. The x
and y partial derivatives of (2) create a force field that is used
for the collision avoidance among the UAVs, described by

[
∂f(x,y)
∂x

∂f(x,y)
∂y

]
=

[
−2αf(x, y) 0

0 −2γf(x, y)

] [
(x− xc)
(y − yc)

]
. (3)

The advantage of the bivariate function is its easy tune by
constants α and γ, along the x and y axis, respectively. In the
simulator, α = γ in order to generate a symmetrical field.

C. Graphical Interface

A running simulation is seen in Fig. 2. The scenario region
is an open area of 17,100 m2, divided into cells (9 x 19), where
each square is equivalent to 100 m2 (10 x 10 m). Drones are
assumed to fly at altitudes of approximately 40 m.

Fig. 2. Simulator view, we see the MUM-T being attacked by a kamikaze
swarm. Protected area is seen on upper-right corner. A LW is seen up-close.

The graphical interface is composed of three main elements
as seen in Fig. 2. The green line is used to delimit the area
were the kamikaze drones will appear. The simulator also
presents data about an iteration in the upper left corner, such
as the number of drones on both teams, number of kamikazes
destroyed by the MUM-T, execution time, iterations executed
and number of LW remaining.

The user can control the position of the leading drone by
point-and-click actions and the LW will follow in formation.
The kamikaze and the LW drones are autonomous and the user
has no control over them. The simulation run-time is adjustable
in order to facilitate parameter optimization.

V. DECISION MAKING DEVELOPMENT

In this section, behavior development for kamikaze and the
LW agents is discussed. The approach to behavior design is
empirical and uses hand-coded heuristic rules.
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A. Decision-Making for a Kamikaze UAV

The behaviors for the kamikaze UAVs are shown in Tab. II.

TABLE II
BEHAVIOR DESCRIPTION FOR A KAMIKAZE DRONE.

Behavior Description
Wait State Default behavior, a target is randomly selected.

Attack Leader The kamikaze selects the Leading Drone as target.
Attack

Protected Area (PA) The kamikaze selects the Protected Area as target.

Attack
Loyal Wingman (LW) The kamikaze selects the closest Loyal Wingman as target.

Fig. 3 introduces the FSM employed for the autonomous
control of the kamikaze drones. The initial state for a kamikaze
is the WaitState, he waits for t1 seconds (t1 = 1 [s] for first
wave of kamikazes and t1 = 0[s] for the next waves) and then
select a target to attack based on the probabilities p1, p2 and
p3 (equal probabilities were used). Once a target is selected,
the kamikaze will remain in this state until it is destroyed. The
exception is Attack Loyal Wingman that targets the closest LW
every t2 = 1[s], to avoid frequent target switching. Once there
are no LW left, the machine transits to attack the leader or the
protected area (50% probability each).

Fig. 3. Finite-state machine (FSM) for a Kamikaze agent.

B. Decision-Making for a Loyal Wingman UAV

Table III describes the possible behaviors for a LW agent.

TABLE III
BEHAVIOR DESCRIPTION FOR A LOYAL WINGMAN UAV

Behavior Description

Chase Threat The Loyal Wingman leaves the formation to pursue
a threat in order to neutralize it.

Go To Formation The loyal wingman returns to formation.
Vaporize Threat Performs an attack using the vaporizer gun.
Freeze Threat Slows down a kamikaze for a limited period of time.

Sacrifice Attack When there is no ammunition left, the LW will disable
the threat by sacrificing itself as its weapon of last resort.

Next, we offer the agent engagement rules using these
behaviors.

1) Rules of Engagement:
• By default, the LW agents execute the Go To Formation

behavior, i.e. they keep a flying formation surrounding
the leading drone while there are no threats identified;

• When a kamikaze approaches the weapons range, the LW
selects a neutralization method. The selected method may
be the vaporizer gun (short-range), the freezing gun (mid-
range) or by sacrifice as last resort (no ammo left).

• A LW agent selects the closest kamikaze within range of
his freezing gun and try to freeze him. The freezing gun
must be available;

• Whenever a kamikaze drone crosses the engagement
range (distance_engagement), the LW enters the
Chase Threat behavior (the vaporizer gun must be avail-
able). In this case, it leaves the formation to pursue
the threat and tries to neutralize it using its short-range
vaporizer gun;

• A LW agent selects the closest kamikaze within range of
its vaporizer gun to eliminate it. The vaporizer gun must
be available;

• The LW rejoins the formation to protect the leader
whenever a pursued threat is destroyed or is out of range;

• A weapon is considered available if there is still ammo
and if it is not cooling down.

Thus, based on the rules of engagement and behaviors, we
developed the behavior tree for a LW agent, shown in Fig.4.

VI. EXPERIMENTS AND RESULTS

In this section, we describe the experiments, the metrics for
evaluation and the results. The simulations used 10 LW and 4
kamikaze drones, once one kamikaze is destroyed another is
created, maintaining a steady stream of attack. The simulation
set-up parameters are present in Table IV.

TABLE IV
WEAPONS PARAMETERS

Weapon Parameter Value PSO Value

Vaporizer
Gun

vaporizer cooldown 1 [s] num particles 40
cartridges vaporizing 10 inertia weight 0.7
vaporizer hit prob 95% cognitive parameter 0.6
vaporizer range 10 [m] social parameter 0.8

Freezing
Gun

freezing cooldown 1 [s] UAV Parameters Value
cartridges freezing 10 Mass 1 [kg]
time frozen 5 [s] K v 4.5
freezing hit prob 85% K p 0.625
freezing range 30 [m] max speed 2 [m/s]

A. Metrics
The implemented MUM-T intelligence will be investigated

against the following metrics of interest:
• ST (survival time): The duration of the simulation until

the leader or the protected area is destroyed.
• ED (enemies destroyed): The number of kamikazes de-

stroyed before the game is over.
• LWS (LW survived): The number of LW agents that

survived the iteration.
Based on these metrics, a fitness function was empirically

developed to optimize the behavior parameters, with each
iteration of the optimization process being evaluated as

Fitness = ED2 + 10ST − 1000LWS. (4)

The idea of (4) is to reward a bigger number of kamikazes
destroyed and a longer duration time. There is also a penalty
if there are LW drones left when the iteration ends, as the
intelligence is not being effective.

B. Experiments
To assess the effectiveness of intelligence designed for the

LW agents, we executed two experiments. The objective is to
analyze the proposed BT, the parameters involved, see Fig.5,
as well as analyze its effectiveness.
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Fig. 4. Behavior tree for a loyal wingman (LW) agent.

Fig. 5. Parameters description.

1) First Experiment: Test the effectiveness of the LW BT
architecture and manually tune the parameters seen in Fig.5

2) Second Experiment: Optimize the LW fitness using
“Particle Swarm Optimization” (PSO) algorithm [14] for max-
imization of the fitness function (4). The BT parameters to
be optimized are seen in Fig. 5. The PSO is set using the
parameters in Table. IV for 60 generations.

C. Results

The results and the parameters obtained in the experiments
are shown in Table V. Using these parameters, 500 iterations
were performed to obtain the statistical values of mean and
standard deviation (std) for each metric.

TABLE V
EXPERIMENTAL RESULTS.

Exp. Metrics Parameters [m]ED ST [s] LWS

1 Mean 99.45 131.8 1.73 distance_engagement 36.06
Std 8.46 13.56 1.12 distance_formation 13.00

2 Mean 102.1 167.6 1.37 distance_engagement 30.66
Std 7.68 13.52 0.87 distance_formation 10.01

VII. DISCUSSION

First, assuming a reference to analyze the results the fact
that the 10 LW used have only 100 ammunition for threat
elimination (10 for each LW in vaporizer gun), and that this
weapon has a 95% hit rate, i.e. at best we would get 110
kills – no drone misses a shot and can eliminate one threat by
sacrifice when out of ammo – and a long-term average of 105
eliminations (5 misses and 10 eliminations by sacrifice).

From this, we observe the results in Tab. V. In the first
experiment, the agents cooperatively eliminated an average
of 99.45 kamikazes (90.4% of total threats) with a std of
8.46 kamikazes. This result indicates that the LW agents
using the developed BT (Fig. 4), even with parameters found
empirically, are effective as an autonomous defense system.

For the second experiment, both parameters were optimized,
in order to obtain the highest defense effectiveness. The agents
cooperatively eliminated an average of 102.1 kamikazes (92.8
% of the total threats), eliminating about 2.7 more enemies per
iteration than in the first experiment with a smaller standard
deviation. This experiment also resulted in a considerably
better survival time (27.2% longer) and resulting in 20.8%
less LW survivors at the end, which can indicate a better LW
effectiveness.

We observed that the usage of parameter optimization re-
sulted in a considerable improvement, with a smaller standard
deviation in all indicators, contributing to a greater effective-
ness of the decision-making, with results close to the optimal
average of 105 threats eliminated.

A. Qualitative Analysis

The results described can also be seen on video 3. In Fig. 6
we see how a group of LWs manage to cooperate to effectively
eliminate threats. As soon as the kamikaze swarm cross the
engagement limit, three LW leave the formation to neutralize
the threats (a). In sequence, the LW group use their freezing
guns to slow down the threats (b). In (c), the group destroys
the threats, and all LW return to their positions in formation.

Fig. 6. Group attacking – cooperative work to neutralize threats.

Now, in Fig.7 we see a LW sacrificing itself to preserve
the MUM-T leader. In (a) the yellow LW is seen firing his
vaporization weapon and missing, so he runs away from the
threat (yellow arrow). The blue LW also identifies the threat,
however it has no more ammo, so it decides to execute its
SacrificeAttack behavior.

Then in Fig.8, we have the continuation of the events after
the LW sacrifice, where we observe two LW disabling a threat
cooperatively. We see that the yellow and orange LWs run
away after missing their targets (a). During the escape, the

3https://www.youtube.com/watch?v=bWk9x7zUZuM
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Fig. 7. Sacrifice attack to preserve MUM-T as last resort tool.

yellow LW identifies the kamikaze chasing the orange LW
(b). The orange LW succeeds in freezing the threat and then
the yellow one eliminates it (c).

Fig. 8. Cooperative work to neutralize threat.

Lastly, in Fig.9 it is interesting to note the emergence of
group responsibilities according to the kamikaze objective.
The LWs marked in yellow are often responsible for forward
attacks, superior lateral and to the protected area. See (a) how
3 LW leave the formation to protect the Protected Area.

Fig. 9. Loyal Wingman specializations according to regions in formation

The LW marked in blue are responsible for attacks coming
from the bottom, note in (b) how they end up leaving the for-
mation when a threat appears, leaving the leader unprotected.
For cases like this, the green LW stands out, it specializes in
the protection of the leader (b and c). In (c), the yellow LW is
returning to formation after a threat elimination and heading
to neutralize the other kamikaze attacking the leader.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, decision-making methods were employed to
allow applications of autonomous drones as Loyal Wingman
agents in a MUM-T, focusing on FSMs and BTs. Both the
intelligence for LW agents and for kamikaze UAVs have
been developed. Furthermore, we applied such concepts in a
simulator developed for this paper. In addition, we proposed a
novel defense scenario where there is a MUM-T composed of
a user-controlled UAV and a swarm of completely autonomous
LW UAVs. In this approach, the UAVs cooperate to engage and
deactivate a swarm of kamikaze drones that are attacking both
a protected area and the MUM-T. In addition, an optimization

algorithm was used to find the optimal parameters for the
behavior tree developed.

The results in the simulated scenario show promising signs
that the developed decision-making for the LW is effective,
with the elimination of about 93% of the threats after opti-
mization. It was also noted the importance of the formation,
where each drone has defense specifications. It was interesting
to note that the approach using decentralized decision-making,
with simple engagement rules, resulted in the emergence
of cooperative team-work for threats neutralization, with the
LW drones developing specialized defense behaviors, e.g.
one LW exhibits a specialized behavior to defend the leader.
Future research could examine how the formation affects these
specializations.

Further studies should investigate possible formation opti-
mizations and specializations according to alternative types
of kamikazes. Consensus algorithms may be investigated for
better use of LW, in the delegation of responsibilities and
elimination of redundant attacks. Future work on the evolution
of more complex behaviors, possibly using reinforcement
learning, should also be carried out and analyzed. Tests
with realistic physics for further evaluation should also be
performed.
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