
Proceedings of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Edited by Eirik Bjorheim Abrahamsen, Terje Aven, Frederic Bouder, Roger Flage, Marja Ylönen

©2025 ESREL SRA-E 2025 Organizers. Published by Research Publishing, Singapore.

doi: 10.3850/978-981-94-3281-3_ESREL-SRA-E2025-P1440-cd

Making Systems of Systems Orchestration Safer

Julieth Patricia Castellanos Ardila, Nazakat Ali, Sasikumar Punnekkat and Jakob Axelsson
School of Innovation, Design and Engineering, Mälardalen University, Sweden.
E-mail: (julieth.castellanos, nazakat.ali, sasikumar.punnekkat, jakob.axelsson)@mdu.se

Orchestration, an approach to service composition, has emerged as a promising solution to integrate independent
constituent systems (CS) in a System of Systems (SoS). However, safety in SoS orchestrations remains unexplored.
In this paper, we introduce SOSoS (Safe Orchestration of Systems of Systems), a process that utilizes the
System-Theoretic Process Analysis (STPA) steps extended with the features proposed in the software product line
engineering (SPLE) approach to cope with safety in the inherent SoS variability. We also demonstrate SOSoS in
action by considering a case study from the construction domain. As a result, we define SoS-level safety constraints
that could lead to actionable technical recommendations for making systems of systems orchestrations safer.

Keywords: System of Systems, Orchestration, Safety Analysis, System-theoretic Process Analysis, Variability.

1. Introduction

A System of Systems (SoS) (ISO/IEC JTC 1/SC
7, 2019) is an assembly of constituent systems
(CS) that, with individual capabilities, achieve a
more general goal. SoS can be formed in different
topologies (Maier, 1998) (Dahmann and Bald-
win, 2008), i.e., directed and acknowledged SoS,
which have centralized authority, and collabora-
tive and virtual SoS, where CS loosely collabo-
rate. The CS collaboration facilitate the formation
of SoS that are diverse (Axelsson and Svenson,
2022), adaptable (Fisher, 2006), and reconfig-
urable (Axelsson and Kobetski, 2018). However,
if not properly managed, the SoS may also have
undesirable effects (Beland and Miller, 2007).

A promising solution for SoS management
is orchestration (Klein and McGregor, 2013)
and (Nordstrom et al., 2024)). Orchestration is a
composition approach in which a central module
collects, coordinates, and distributes services (Jo-
suttis, 2007). For SoS, this module, called the
orchestrator, is meant to be a service hub pro-
viding explicit instructions to CS in direct and
acknowledged SoS. We also see the orchestrator
as a neutral facilitator for collaborative and virtual
SoS. However, safety in SoS orchestrations has
not yet been explicitly considered. Thus, safety
analysis approaches tailored to the unique charac-
teristics of SoS orchestrations are imperative.

In this paper, we introduce a process for Safe
Orchestration of Systems of Systems (SOSoS).
In particular, SOSoS considers the steps pro-
posed by the System-Theoretic Process Analysis
(STPA) (Leveson and Thomas, 2018), an analysis
method based on the System-Theoretic Accident
Model and Processes (STAMP) (Leveson, 2016).
STPA facilitates the management of safety risks
in complex systems by considering the principles
of systems thinking, i.e., interactions and control
structures. However, the orchestrator is a platform
with core characteristics, where the independent
nature of CS leads to variable configurations (Bot-
terweck, 2013). Thus, we extend the STPA analy-
sis in a novel fashion to include such variability
by using the features proposed in the software
product line engineering (SPLE) approach (Pohl
et al., 2005). As a final contribution, we demon-
strate SOSoS in action with a case study from the
construction domain. As a result, we define SoS-
level safety constraints that can be used to embed a
safety concept into the SoS orchestration at design
time to enable confident SoS deployments.

This paper is organized as follows. Section 2
presents the required background. Section 3 in-
troduces our process called SOSoS. Section 4
presents a case study to illustrate SOSoS in action.
Section 5 presents a discussion of our findings.
Section 6 presents related work. Finally, Section 7
presents conclusions and future work.

41



42 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

2. Background

2.1. Variability in SoS

An SoS orchestrator (Klein and McGregor, 2013)
targets missions while integrating CS capabilities.
During such integration, it also enable large-scale
service reuse (Botterweck, 2013). For example,
CS with different technology need to have means
to communicate with the SoS via common inter-
faces. A mechanism for enabling flexible variant
binding to a common core is SPLE.

2.2. SPLE

SPLE-Software Product Line Engineering (Pohl
et al., 2005) is an approach to ensure that
while shared components or their properties are
standardized, their differences are intentionally
planned to adapt to specific contexts. This ap-
proach comprises two distinct processes. First,
the domain engineering, which is responsible for
establishing the reusable platform, i.e., the com-
monality and the variability of the product line.
Second, the application engineering, where spe-
cific products are derived from the platform, i.e.,
the variants. In summary, the strategy is to focus
on identifying and leveraging three key aspects:

A1. Commonalities. Shared features that serve
as the stable foundation of the system.
A2. Variability. Features that differ.
A3. Variant. Instances selected from the associ-
ated variability to form different configurations.

2.3. STPA

STPA-System Theoretic Process Analysis (Leve-
son and Thomas, 2018) is a safety analysis method
that focuses on interactions and control structures.
STPA comprises the following four steps:

S1. Define the purpose of the analysis. Describe
the system of interest (SoI) together with potential
losses, hazards and application scenarios.
S2. Model the control structure. The SoI is
modeled considering the set of functional compo-
nents together with their control loops.
S3. Identify unsafe control actions (UCA). Ex-
amine the control structure against the following
control action type (CAT), i.e., a) A required con-

trol action (CA) is not provided, b) An unsafe CA
is provided. c) A required CA is provided too early
or too late or out of sequence. d) A required CA is
stopped too soon or applied too long.
S4. Identify loss scenarios. Develop scenarios
describing how a UCA occurs, considering factors
like unsafe control input (UCI), inadequate con-
trol algorithm (ICA), inadequate process model
(IPM) and inadequate or missing feedback (IF).

3. SOSoS

An SoS platform enables orchestration by provid-
ing services for the CS (see Section 2.1). However,
poorly managed orchestrators may hide hazards
that could impair SoS safety. To address this, we
introduce SOSoS, a process for Safe Orchestration
of Systems of Systems (see Fig. 1). SOSoS uses
STPA steps (see Section 2.3), for safety analysis
(tasks in blue), intertwined with SPLE aspects
(see Section 2.2) for feature reasoning (tasks in
pink). Verification tasks (depicted in white) are
also suggested so that the system behavior can
also be checked. SOSoS is an iterative process,
i.e., it refines the orchestrator control logic and
its associated safety concept from the verified
model (see the blue arrows depicted in the figure).
This iterative process also opens room for SoS
evolution, i.e., when the orchestrator capabilities
change, or new types of CS are incorporated.
SOSoS is conformed by three activities as follows.

3.1. Design

In this activity, three tasks are performed to design
the control logic of the orchestrator featuring the
core functionality:

(a) SoS Description. Provide a concise overview
of the SoS mission, focusing on the core purpose
without going into technical or implementation
details. The description shall include the losses to
be avoided, the derived hazards, and associated
safety requirements to facilitate the safety anal-
ysis, as proposed by STPA-S1. The output is a
description of the System of Interest (SoI).
(b) Core Identification. Identify core features
needed across all CS in the SoS, based on the SoI
description, as proposed by the SPLE-A1. Core



43Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

features are SoS aspects that refer to the shared el-
ements or properties common to all CSs, enabling
them to work together to achieve the SoS mission.
The output is the description of the orchestrator
core features that is used to form the foundation
for control logic.
(c) Control Structure Modeling. Create a con-
trol structure including the identified core fea-
tures, as proposed by STPA-S2. The output is
a structure that graphically describe how those
features hierarchically align in the control logic.

3.2. Safety Analysis

In this activity, four tasks are carried out to define
the orchestrator safety concept:

(a) UCA Identification. Examine the unsafe
control actions (UCA) in the control structure
arising from deficiencies, as proposed by STPA-
S3. The output is a list of UCA, which describes
the actions (or lack of actions) by the orchestrator
that can lead to hazardous SoS states.
(b) Causal Analysis. Analyze the causal factors
that could lead UCA to a loss scenarios, as pro-
posed by STPA-S4. The output is a list of loss
scenarios, which describes how the orchestrator
could make the SoS transition into a unsafe state,
resulting in a loss (e.g., workers’ death).
(c) Constraints Definition. Establish constraints
based on the list of loss scenarios previously iden-

tified. The output is a list of safety constraints
which describe what shall or shall not happen to
prevent hazardous conditions.
(d) Variability Analysis. Analyze variable fea-
tures across CS, as in SPLE-A2, to include all pos-
sible SoS forms and their associated constraints.
The output is a set of constraints targeting vari-
ability that can be used to refine the previously
identified safety constraints.

3.3. Configuration Verification

In this activity, three tasks are performed to verify
a model of the orchestrator by considering the
associated control logic and the safety concept.

(a) Variant Selection. Select specific CS in-
stances or variants, as proposed by the SPLE-A3,
to concretize the control logic. The output is a set
of SoS Configurations.
(b) Behavior Modeling. Represent the behavior
of the identified SoS configurations. The output is
a behavioral model of the SoS in the form of state
machines or agent-based models.
(c) Model Verification. Perform procedures that
permit dynamic verification of the behavioral
models representing SoS configurations (e.g., ex-
ecute model checking or simulations). The re-
sulting test reports accounting for requirements
satisfaction and counterexamples can be used for
further analysis.

SoS
Description

Core
Identification

Control
Structure
Modeling

UCA
Identification

Causal
Analysis

Orchestrator
Core Features

Control
Structure

Variant
Selection

System of
Interest (SoI)

UCA Loss
Scenarios

Constraints
Definition

Safety
Contraints

Model
Verification

Design Safety Analysis

Configuration Verification
Orchestrator Control Logic Orchestrator Safety Concept

Variability
Analysis

SoS
Configuration

Behavior
Modeling

SoS Behavioral
Model

Test
Results

Verified Orchestrator Configuration

Fig. 1. SOSoS Process.



44 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

4. SOSoS in Action

In this section, we illustrate in detail the first
two activities included in SOSoS, i.e., design and
safety analysis (Sections 4.1 and 4.2) and briefly
describe the safety verification (Section 4.3).

4.1. Design

This section presents the steps required to design
the orchestrator control logic (see Section 3.1).

(a) SoS description. The mission of the SoS in
this case study is to facilitate mass removal at a
construction site. To achieve this mission, the or-
chestrator shall integrate various constituent sys-
tems (CS), such as excavators, trucks, and loaders.
A critical aspect of this process is task allocation,
an action where the orchestrator assigns specific
tasks to CS based on operational needs. However,
during task execution, CS may operate in danger-
ously close proximity, increasing the risk of colli-
sions. For example, an excavator moving soil with
its arm may hit a truck that approaches to load and
transport such soil. This event poses serious safety
hazards, potentially injuring the truck operator or
causing death. To mitigate this risk, the orchestra-
tor shall enforce a minimum safe distance between
CS, preventing dangerous interactions and ensur-
ing safer operations. A summary of the System of
Interest (SoI) is provided in Table 1.

Table 1. System of Interest (SoI).

Aspect Description

Mission Mass removal in a construction site.
Action Task allocation.
Loss Workers dead or severe injuries.
Hazard CS dangerous proximity.
Safety Req. Maintain a safe distance between CS.

(b) Core Identification. As outlined in the pre-
vious section, the orchestrator’s primary role is
task allocation, a common function to all CS.
To perform this task, the orchestrator must un-
derstand the overarching SoS mission, the sur-
rounding environment, and the CS capabilities and
availability. Since the SoS mission is broad, it is
first broken down into smaller, manageable sub-
missions that can be assigned to different CS.

However, not all CS may interpret them directly,
especially if some are fully automated. Therefore,
the orchestrator must translate sub-missions into
specific tasks, schedule them by considering the
safe distances required to prevent collisions, and
allocate them accordingly. This process requires
that the orchestrator acquire specific information
with the help of well-defined interfaces to receive
mission, gather environmental data, and access CS
information. A summary of the orchestrator core
description is provided in Table 2.

Table 2. Orchestrator Core Description.

Aspect Description

Functionality

Mission understanding.
Mission breakdown.
Safe scheduling.
Task assignment.

Inputs

SoS Mission.
Environmental data (world view).
CS capability and availability.

(c) Control Structure Modeling. We take as in-
puts the information presented in Table 2 to model
the control structure of the orchestrator. The re-
sulting model includes four blocks with their cor-
responding interactions (see Fig. 2).

Constituent Systems (CS)

System of Systems (SoS) Owner

Physical Process (Environment)

SoS Mission

Task Performed

CapabilityLocation

World View

SoS Orchestrator
SoS Mission[]

CS Location[]
CS Capability[]

CS Status[]

Process Model Control Algorithm

Task Allocation

Task Assignment()
Scheduling()
Mission Breakdown()Operational

Idle Status

World View[]
Mission Understanding()

Fig. 2. Control Structure.

The outmost blocks are the SoS Owner (at the
top), in charge of describing missions, and the
Physical Process (at the bottom), affected by the



45Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

executed tasks. Those blocks provide inputs to
the SoS, which contains the orchestrator and the
orchestrated CS. The orchestrator takes the mis-
sions from the SoS owner, the world view from
the environment, and the CS capability, location,
and status. This information is maintained in the
orchestrator’s process model and processed by the
control algorithm to produce the required con-
trol action, i.e., task allocation, which is critical.
The functions previously identified, i.e., mission
understanding, mission breakdown, safe schedul-
ing (which shall enforce the safety requirement
included in Table 1), and task assignment, are
included in the algorithm of the control structure.

4.2. Safety Analysis

This section presents the steps required to derive
the orchestrator safety concept (see Section 3.2).

(a) UCA Identification. The control action (CA)
under analysis is task allocation, represented by
the red arrow leaving the orchestrator in Fig. 2.
To identify unsafe control actions (UCA), we ap-
ply the control action types (CAT) defined in the
STPA process (see Section 2.3-S3). This struc-
tured approach helps uncover seven UCAs that
may contribute to specific hazards, requiring fur-
ther detailed examination. The results of this anal-
ysis are summarized in Table 3.

(b) Causal Analysis. All unsafe control actions
(UCA) identified in Table 3 are analyzed based on
the four possible loss scenarios outlined in Sec-
tion 2.3-S4. To keep the discussion concise, we
illustrate only the analysis for UCA-1 in Table 4.
However, a similar analysis should be conducted
for all identified UCAs.

Table 4. Causal Analysis for UCA-1.

Cause Scenario

UCI-1 Unsafe parameters, e.g., wrong localization
or capability are input into the orchestrator,
leading to the allocation of dangerous tasks.

ICA-1 The algorithm does not consider the asso-
ciated safety constraint when determining
task allocations, leading to unsafe choices.

IPM-1 The model does not include needed param-
eters, e.g., machine limitations or task com-
pletion, leading to unsafe task allocation.

IF-1 Inadequate real-time feedback from the CS
or incorrect status updates leading the or-
chestrator to make unsafe allocations.

(c) Constraints Definition. The causal analy-
sis identifies 28 scenarios, which are categorized
based on their root causes: UCI, ICA, IPM, and IF
(see abbreviations description in Section 2.3-S4).
After organizing them, root causes are reviewed to
eliminate redundancies, and corresponding safety
constraints are proposed (see Table 5).

Table 3. Unsafe Control Action (UCA).

Id CAT UCA Hazard Description

UCA-1 Unsafe
CA-provided

The orchestrator allocates tasks
that are unsafe.

CS may operate too closely, leading to colli-
sions between them.

UCA-2 CA-not
provided

The orchestrator does not allo-
cate tasks when required.

Gaps in task allocation can create overlapping
zones or improper system placements.

UCA-3 CA-provided
too early

The orchestrator allocate the
tasks prematurely.

CS may begin tasks before the operational envi-
ronment is ready, increasing the collision risk.

UCA-4 CA-provided
too late

The orchestrator delays the al-
location of tasks.

Workers may attempt to act manually to com-
pensate for delays, increasing human errors.

UCA-5 CA-out of se-
quence

The orchestrator allocates tasks
in the wrong sequence or to the
wrong CS.

Wrong sequencing may cause multiple CS to
operate in overlapping zones, increasing the
likelihood of collisions.

UCA-6 CA-stopped too
soon

The orchestrator prematurely
stops the allocated tasks (e.g.,
provides an unexpected stop).

Tasks left unfinished (e.g., partially dug areas
or unremoved debris) can create hazards in the
operational environment.

UCA-7 CA-applied too
long

The orchestrator allocates tasks
repetitively to the same CS or
assigns redundant tasks.

Repetitive execution of the same task can over-
strain CS, causing equipment to fail unexpect-
edly, potentially leading to accidents.



46 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Table 5. Constraints Definition for the Orchestrator.

Cause Safety Constraints The orchestrator shall:

UCI
SSR-1: validate all input data by cross-checking against predefined criteria or supplementary sources.
SSR-2: include a monitoring mechanism that tracks the timing of expected inputs.
SSR-3: notify operators to prevent unsafe task generation if inputs are found to be incorrect or delayed.

ICA

SSR-4: include a monitoring mechanism to ensure the safety distance between CS.
SSR-5: have the ability to stop a CS in case of safety distance violation.
SSR-6: allocate tasks within a specified time frame to prevent delays and bottlenecks in the operation.
SSR-7: ensure that all tasks allocated to CS are within their operational capabilities.
SSR-8: ensure CS dependencies are satisfied before task allocation.
SSR-9: incorporate mission completion criteria to ensure that tasks are allocated adequately.
SSR-10: monitor its own operational integrity to detect faults that may lead to unsafe task allocation.

IPM

SSR-11: maintain an updated process model of each CS, i.e., location, capability, status, and constraints.
SSR-12: tracks ongoing tasks, preventing their premature terminations.
SSR-13: flag tasks that exceed expected timeframes without completion.
SSR-14: update the process model to reflect real-time situations, i.e., changes in the environment.

IF

SSR-15: periodically collect feedback from CS and physical process about task execution outcomes.
SSR-16: periodically require CS to report readiness states.
SSR-17: detect system unresponsiveness or missing updates.

(d) Variability Analysis. Several sources of
variability stem from the environment (e.g., dif-
ferent weather conditions), the CS (e.g., different
versions of a truck), and their status (e.g., iddle
or operational). This variability is expected during
task allocation and can impact the established con-
straints (see Table 5). For this reason, it is essential
to analyze every constraint in the context of each
source of variability. For illustrations purposes,
we focus on two key safety requirements, i.e.,
SSR-4, which ensures continuous monitoring of
safe distances, and SSR-5, which ensures the ex-
istence of collision avoidance functions. Together,
these requirements enforce the initially identified
safety requirement of the System of Interest (SoI)
(see Table 1). However, their effectiveness de-
pends on the specific characteristics of each CS,
such as speed, payload capacity, and maneuver-
ability. Additionally, CS status is dynamic, not
only in terms of availability but also in opera-
tional efficiency and condition (e.g., breakdowns,
performance degradation). Furthermore, CS may
operate at different levels of automation, ranging
from fully autonomous to manual control. These
variations require adapting and refining safety re-
quirements to accommodate different CS capa-
bilities and operational conditions. The necessary
adjustments are outlined in Table 6.

Table 6. Constraints Refinement to include Variability.

ID Refinement The orchestrator shall:

SSR-4

SSR-4.1: calculate safety distances dynami-
cally based on CS capabilities, e.g., speed and
the environmental factors, e.g., weather.
SSR-4.2: adjust safety distances in real-time
to account for changes in CS status (e.g., mal-
functions, low power and automation mode).
SSR-4.3: schedule tasks to avoid overlapping
CS operations within unsafe proximity.

SSR-5

SSR-5.1: issue an immediate stop command
when there are unsafe distances between CS.
SSR-5.2: reallocate CS with degraded status,
minimizing their interaction with other CS.
SSR-5.3: define a priority hierarchy during
emergencies, where safety-critical tasks take
precedence over other tasks.

4.3. Configuration Verification

As presented in Section 3.3(a), specific variants
are selected from the planned variability to form
a possible configuration. At this stage, we can
discover that some variants have not been consid-
ered due to access to new information. To solve
this, we could either test it to see how much it
fits with the configurations or return to the vari-
ability analysis. With the configuration in place,
as presented in Section 3.3(b), the orchestrator is
modeled, for example, as a state machine that con-



47Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

siders a set of variables, such as the mission com-
pletion, CS status, and CS availability. Constraints
like safety distance and the subsequent policies,
such as emergency stops, can also be included.
This model is created using tools that allow the
representation of state transitions to, as presented
in Section 3.3(c)), enable the automated verifica-
tion of specific safety metrics. For example, we
could consider two key safety properties. First,
the safety distance monitoring shall ensure that
no violations of safety distances occur between
CS during operations. Second, correctly using the
collision avoidance signal to verify that CS stops
in case of safety violations. Additionally, prede-
fined safety thresholds can be incorporated, such
as maintaining an error margin of ±0.5 meters
in the safety distance calculation algorithm. The
verification process may reveal counterexamples
indicating where safety properties are violated.
These counterexamples are analyzed further to
refine the control structure and the safety concept
by adding necessary inputs and adjusting specific
parameters. This process continues until all safety
properties are fully satisfied.

5. Discussion

Orchestrating SoS enables the management of the
CS’s interactions in an effective manner. However,
ensuring safety in SoS orchestrations can be chal-
lenging due to the natural variability included in
an SoS (as presented in Section 3). In particular,
CS differ in several aspects, e.g., modes of opera-
tions, and automation statuses. The environments
in which a SoS operates also vary significantly
during operational time. The operational context,
for example, evolves as tasks progress, such as
new areas being excavated, or structures being
erected. These dynamics require the SoS to adapt,
posing significant challenges for maintaining con-
sistent safety in the orchestration.

We have identified several key points based on
the application scenario (see Section 4). First, the
systematic nature of SPLE and STPA ensures con-
sistency in identifying, analyzing, and address-
ing risks, making the process repeatable and less
prone to oversight. Second, an inherent alignment
between top-down (STPA) and bottom-up (SPLE)

perspectives ensures comprehensive coverage of
risks at both granular and systemic levels. For
example, in Table 3, we identified hazards beyond
the one initially considered, i.e., potential human
errors (UCA-4), environmental hazard (UCA-5)
and equipment failure (UCA-6). Third, the result-
ing safety constraints could change the orchestra-
tor’s initial view drastically. For example, from
the lists presented in Tables 5 and 6, we can see
that various new variables and functions must be
included in the control logic. If we do an analysis
of applicable standards, such as IEC 61508 (IEC,
2010), we identify that the monitoring of safety
distances and stop functions (SSR-4 and SSR-5)
are very critical and require independence from
the SoI. Thus, it is vital to clearly delineate the
functional scope of the SoS orchestrator (i.e., as
a central services hub) to avoid unnecessary over-
load. This means that several functions required
for safety may need to be allocated outside of the
orchestrator, e.g., additional controllers to ensure
redundancy or directly on the CS. This trade-off
is crucial for the safety analysis to remain relevant
and manageable within the orchestrator context.

6. Related Work

Safety in SoS has remained a research gap due
to the SoS’s inherent nature, e.g., complexity,
autonomy, and heterogeneity (Despotou et al.,
2009). However, the state of the art has proposed
new perspectives to minimize this gap. In par-
ticular, the authors in (Baumgart et al., 2021)
introduced a model-driven approach to evaluate
SoS safety, including failure mode and effects
analysis (FMEA) and hazard and operability (HA-
ZOP) analyses. Similarly, in (Muram et al., 2019),
the authors contributed to SoS hazard identifica-
tion by combining HAZOP results with the Fault
Tree Analysis (FTA). The Systems perspective
has also been introduced in (Axelsson and Ko-
betski, 2018), where STAMP has been extended
for SoS to address risks beyond safety. Derived
from STAMP, STPA has also been broadly used
for safety analysis in SoS, e.g., (Baumgart et al.,
2019; Castellanos-Ardila et al., 2022; Buysse
et al., 2022). Ontological approaches are also pro-
vided, e.g., (Adach et al., 2023; Ali et al., 2024) to



48 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

facilitate safety and security reasoning in SoS. As
in the previous work, we are proposing a safety
analysis for SoS, which is also based on STPA.
However, we extend such analysis in a novel fash-
ion by considering the inherent SoS variability,
which in our work is analyzed via the use of SPLE.

7. Conclusions and Future Work

SOSoS is aimed at helping practitioners orches-
trate SoS operations safely by leveraging the prin-
ciples of SPLE and STPA. As shown in our ap-
plication scenario, SOSoS systematically guides
the identification of safety risks relevant to SoS
orchestrations that could otherwise be overlooked.

Future work will consider security analysis to
account for threats affecting SoS safety. We also
will provide more case studies to further assess
SOSoS in practice. Finally, we will present the
process and the resulting orchestrations to prac-
titioners and safety assessors to evaluate their per-
ceptions regarding the SoS composition.

Acknowledgement

This research is supported by the Vinnova funded SIM-
CON project and the SSF funded DAISY project.

References

Adach, M., N. Ali, K. Hänninen, and K. Lundqvist
(2023). Hazard analysis on a system of systems
using the hazard ontology. In 18th Annual System
of Systems Engineering Conference, pp. 1–6.

Ali, N., J. P. Castellanos-Ardila, and S. Punnekkat
(2024). Towards an integrated safety-security ontol-
ogy for system of systems. In International Sympo-
sium on Systems Engineering (ISSE), pp. 1–8. IEEE.

Axelsson, J. and A. Kobetski (2018). Towards a risk
analysis method for systems-of-systems based on
systems thinking. In Annual IEEE International
Systems Conference (SysCon).

Axelsson, J. and P. Svenson (2022). On the concepts
of capability and constituent system independence in
sos. In 17th Annual System of Systems Engineering
Conference (SOSE), pp. 247–252. IEEE.

Baumgart, S., J. Fröberg, and S. Punnekkat (2019).
A state-based extension to stpa for safety-critical
system-of-systems. In 4th International Conference
on System Reliability and Safety, pp. 246–254.

Baumgart, S., J. Fröberg, and S. Punnekkat (2021).
How to analyze the safety of concepts for a system-
of-systems? In IEEE International Symposium on
Systems Engineering (ISSE), pp. 1–8.

Beland, S. C. and A. Miller (2007). Assuring a complex
safety-critical systems of systems. SAE Transac-
tions, 974–988.

Botterweck, G. (2013). Variability and evolution in
systems of systems. arXiv preprint arXiv:1311.3627.

Buysse, L., D. Vanoost, J. Vankeirsbilck, J. Boydens,
and D. Pissoort (2022). Case study analysis of stpa
as basis for dynamic safety assurance of autonomous
systems. In European Dependable Computing Con-
ference, pp. 37–45. Springer.

Castellanos-Ardila, J. P., H. Hansson, and S. Punekkat
(2022). Safe integration of autonomous machines in
underground mining environments. In International
Symposium on Systems Engineering (ISSE), pp. 1–8.

Dahmann, J. S. and K. J. Baldwin (2008). Understand-
ing the current state of us defense systems of systems
and the implications for systems engineering. In 2nd
Annual IEEE Systems Conference.

Despotou, G., R. Alexander, and T. Kelly (2009). Ad-
dressing challenges of hazard analysis in systems of
systems. In 3rd Annual IEEE Systems Conference.

Fisher, D. A. (2006). An emergent perspective on
interoperation in systems of systems. Software En-
gineering Institute, Carnegie Mellon), March.

IEC (2010). IEC 61508 - Functional Safety of Elec-
trical/Electronic/Programmable Electronic (E/E/PE)
safety-related systems.

ISO/IEC JTC 1/SC 7 (2019). ISO/IEC/IEEE
21841:2019. Systems and Software Engineering —
Taxonomy of System of Systems.

Josuttis, N. M. (2007). SOA in practice: the art of
distributed system design. O’Reilly Media, Inc.

Klein, J. and J. D. McGregor (2013). System-of-
systems platform scoping. In 4th International Work-
shop on Product LinE Approaches in Software Engi-
neering(PLEASE).

Leveson, N. G. (2016). Engineering a safer world:
Systems thinking applied to safety. The MIT Press.

Leveson, N. G. and J. P. Thomas (2018). STPA Hand-
book.

Maier, M. W. (1998). Architecting Principles for
Systems-of-Systems. The Journal of the Interna-
tional Council on Systems Engineering 1(4).

Muram, F. U., M. A. Javed, and S. Punnekkat (2019).
System of systems hazard analysis using hazop and
fta for advanced quarry production. In 4th Interna-
tional Conference on System Reliability and Safety
(ICSRS), pp. 394–401. IEEE.

Nordstrom, T., L. Sutfeld, and T. Besker (2024). Ex-
ploring different actor roles in orchestrations of sys-
tem of systems. In 19th Annual System of Systems
Engineering Conference (SoSE).

Pohl, K., G. Böckle, and F. van der Linden (2005).
Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Berlin.


