
Vol.:(0123456789)

SN Computer Science (2025) 6:314
https://doi.org/10.1007/s42979-025-03843-3

SN Computer Science

ORIGINAL RESEARCH

An Empirical Investigation of Requirements Engineering and Testing
Utilizing EARS Notation in PLC Programs

Mikael Ebrahimi Salari1 · Eduard Paul Enoiu1 · Wasif Afzal1 · Cristina Seceleanu1

Received: 21 November 2023 / Accepted: 27 February 2025
© The Author(s) 2025

Abstract
Regulatory standards for engineering safety-critical systems often demand both traceable requirements and specification-
based testing, during development. Requirements are often written in natural language, yet for specification purposes, this
may be supplemented by formal or semi-formal descriptions, to increase clarity. However, the choice of notation of the latter
is often constrained by the designers’ training, skills, and preferences. The Easy Approach to Requirements Syntax (EARS)
addresses the inherent imprecision of natural language requirements concerning potential ambiguity and lack of accuracy.
This paper investigates requirements specification using EARS, and specification-based testing of embedded software writ-
ten in the IEC 61131-3 language, a programming standard for developing programmable logic controllers (PLC). Further,
we study, utilizing an experiment, how human participants translate natural language requirements into EARS and how they
use the latter to test PLC software. We report our observations during the experiments, including the type of EARS patterns
that participants use to structure natural language requirements and challenges during the specification phase, and present
the results of testing based on EARS-formalized requirements in real-world industrial settings.

Keywords EARS · Requirement engineering · PLC · Testing

Introduction

PLCs are used in engineering embedded safety-critical soft-
ware (e.g., in the railway and automation control domains)
[1]. The engineering of such systems commonly demands
certification according to safety standards [2] that impose
specific constraints on requirements engineering, implemen-
tation-based, and specification-based testing. Several stud-
ies [3–6] have examined how to generate test input data to
achieve high implementation coverage for domain-specific
PLC systems.

However, since requirements are often expressed in natu-
ral language, using them as such to create test cases, and
also keep requirements and test cases aligned, is a difficult
task. While such an alignment requires extensive domain
knowledge, a systematic process for requirements engineer-
ing—including their translation into a semi-formal, non-
ambiguous form—combined with testing would facilitate
linking requirements to tests. Generally, in industry, such
translation is most often carried out manually, so manual
processes are used to model requirements by using struc-
tured notations, and automatically create a set of tests that
systematically exercises the specification when fed to the
system under test [7]. Given that there is little evidence on
the extent to which humans can effectively model require-
ments using semi-formal notations, and how the modeling
impacts the development and testing of reliable systems, in
this paper, we investigate the implications of applying struc-
tured requirements specification and test generation based on
the impact of modeling on development and testing of PLC
systems. In this context, we study how practitioners write
requirements using the Easy Approach to Requirements
Syntax (EARS) [8], a simple notation for specifying textual
requirements in a structured and unambiguous manner.

 * Mikael Ebrahimi Salari
 mikael.salari@mdu.se

 Eduard Paul Enoiu
 eduard.enoiu@mdu.se

 Wasif Afzal
 wasif.afzal@mdu.se

 Cristina Seceleanu
 cristina.seceleanu@mdu.se

1 Department of Innovation, Design, and Engineering,
Mälardalen University, Universitetsplan 1, 72220 Västerås,
Västmanland, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-025-03843-3&domain=pdf
http://orcid.org/0000-0002-6992-9200

 SN Computer Science (2025) 6:314 314 Page 2 of 21

SN Computer Science

We evaluate the EARS-based requirement modeling by
involving human subjects. Ten individuals take part as sub-
jects in an experiment. The subjects are given three require-
ments specified in natural language and are asked to rewrite
them manually, using the EARS notation.

This work builds upon our previous work [9], and it
extends it by a rigorous investigation of the applicability
and efficiency of EARS-based testing of industrial PLC pro-
grams, including a comparison of EARS-based testing of
PLC programs with testing the same programs manually.
The results of our study show that humans create pattern-
based requirements using semi-formal notations easily, with
completeness being the most common issue when rewrit-
ing and using such requirements for testing. Additionally,
we find that test generation and execution using the EARS
requirements for PLC systems is a promising approach that
applies to real-world industrial settings. Our results highlight
the need for more research into how different requirement
specifications and test design techniques for PLC software
can influence the efficiency and effectiveness of require-
ments engineering and requirements-based testing for this
type of software.

Preliminaries

Programmable Logic Controllers (PLCs)

PLCs are the most used logic controllers in today’s automa-
tion industry [10]. PLCs are being widely used in differ-
ent industrial applications such as supervisory systems in
nuclear and power plants. Programming a PLC device is
usually done via one or a combination of different program-
ming languages that are proposed in the IEC 61131-3 stand-
ard [11], that is, Function Block Diagram (FBD), Structured
Text (ST), Ladder Diagram (LD), Sequential Function Chart
(SFC), and Continuous Function Chart (CFC). Among all
programming languages for PLC, FBD, and ST are our main
focus in this study for two reasons. First, these two languages
have gained remarkable popularity in industry, during the
last couple of years [12]. Second, the industrial case study
that is provided to us for this study is a supervisory PLC
program developed in ST and FBD. ST is a text-based pro-
gramming language with a similar syntax to high-level pro-
gramming languages such as C, whereas, FBD is a visual
programming language that is easy to use due to its graphi-
cal interface. In PLC programs, a Program Organization
Unit (POU) is a fundamental building block that consists of
individual software components such as programs, function
blocks, and functions. POUs enable modular and reusable
code, allowing for efficient organization and management
of complex control systems within a PLC. PLC programs
are commonly developed in an Integrated Development

Environment (IDE) and are executed cyclically. Based on
the provided concept in IEC 61131-3 standard, each cycle
loop of a PLC program execution consists of 3 main stages,
that is, read, execute, write [11]. The first stage reads all
available inputs and stores them in the memory, whereas
the second stage (execute) carries out the computation tasks
without interruption. The final stage (write) updates the
output values based on the completed computations of the
previous stage.

CODESYS Development Environment

Developing a PLC program and simulating its behavior
needs to be done in an IDE. Several different PLC IDEs
have been developed by different vendors so far. One of the
most popular IDEs in the market is CODESYS,1 which was
initially developed by CODESYS Group in 1994. CODE-
SYS is a manufacturer-independent IDE that has matured
by releasing numerous updates and the latest version at this
moment is V3.5 SP18. Among all available PLC IDEs in
the market, We have chosen CODESYS as our preferred
IDE for several reasons. Firstly, CODESYS is very popular
among practitioners and has almost full compatibility with
the IEC61131-3 standard and supports all proposed stand-
ard programming languages of this standard [12]. Secondly,
CODESYS is free for personal use and is equipped with
good support by releasing different versions. Last but not
least, CODESYS can execute Python scripts directly inside
the IDE, and it is also equipped with numerous automation
add-ons, such as test automation tools.

The official CODESYS test automation tool is called
CODESYS Test Manager. The CODESYS Test Manager tool
is a powerful platform designed to streamline the testing
process for PLC programs. It offers a user-friendly interface
that simplifies test case creation, execution, and analysis,
significantly enhancing efficiency and accuracy in PLC test-
ing workflows. One of the key benefits of the Test Manager
is its set of features, including predefined Test Actions, which
automate various testing tasks and leverage the capabilities
of the CODESYS IDE. Test Actions contain various func-
tionalities, such as simulating inputs and outputs, monitoring
variables, triggering events, and analyzing program behav-
ior. For example, an “Assert” Test Action can be used to
verify that a specific condition holds true during program
execution, while a “Delay” Test Action can introduce time
delays between test steps. These Test Actions allow testers
to simulate real-world scenarios, validate program behav-
ior, and generate detailed test reports, ultimately facilitating
faster and more reliable PLC testing processes. an example
of a Test Action can be observed in Fig. 1.

1 https:// www. codes ys. com/.

https://www.codesys.com/

SN Computer Science (2025) 6:314 Page 3 of 21 314

SN Computer Science

EARS Semi‑structured Requirement Engineering
Syntax

Writing the stakeholder requirements in unconstrained Nat-
ural Language (NL) is not accurate and can raise critical
problems in lower levels of system development [8]. Aim-
ing at mitigating the ambiguity problems and increasing the
accuracy in the process of requirements engineering, some
practitioners argue for using other textual and non-textual
notations [8]. Using non-textual notations demands transla-
tion of the original requirement, which can be faulty some-
times. Training overhead is another drawback of proposing
a new type of notation. EARS is a semi-structured require-
ments engineering syntax transforming all-natural language
requirements into one of the proposed five generic require-
ments syntax simple templates. It was initially proposed
by Alistair et al. in 2009 [8]. EARS provides a syntax for
transforming all-natural language requirements in one of the
proposed five generic requirements syntax simple templates.
The aforementioned five simple templates of EARS are ubiq-
uitous requirements, event-driven requirements, unwanted
behaviors, state-driven requirements, and optional features.
Moreover, EARS supports writing complex requirements
using a combination of considered conditional keywords,
including Where, While, and When.

Experimental Design

In this section, we report the description of the performed
experiment, including the details of the instruction material
and the artefacts used.

Research Questions

The main goal of this study is to investigate the process of
requirements creation when constraining the use of NL.
The EARS modeling notation has been adopted by other
organizations in different sectors and countries, so it is
a realistic model for requirements engineering and test
creation. Since these are intellectual activities in which
humans allocate a variety of cognitive resources (such as

attention and effort) that one needs to use when confronted
with challenges as they perform such tasks, our first step is
understanding how human practitioners write such require-
ments and how these can be used for test creation.

The main goal of this study is to investigate the appli-
cability of the EARS semi-structured requirement engi-
neering syntax in the context of PLC programs. Aiming
to achieve this goal, we formulated the following research
questions.

• RQ1: How are the EARS semi-structured requirement
engineering syntax and test creation applied in the con-
text of PLC programs?

• RQ2: What EARS patterns are used during the writing
of requirements?

• RQ3: What challenges are perceived during the specifica-
tion of requirements and test creation using EARS?

• RQ4: How well do PLC test cases created from EARS
requirements compare to test cases created by industrial
engineers for PLC programs in industry?

Experimental Setup Overview

Aiming to achieve this study’s goal, we conduct a con-
trolled experiment that asks the participants to write three
given requirements using EARS syntax. The participants
can choose their preferred EARS syntax template based on
their interpretation of the requirements. The subjects of this
experiment are a group of ten individuals as follows: four
experienced engineers at a large automation company in
Sweden and Spain and six researchers and managers from
different universities and research institutions across Europe.
All researchers involved in this experiment are postgraduate
students with substantial expertise in the security and safety
of cyber-physical systems.

Object Selection

The objects of study are chosen manually on the following
criteria:

Fig. 1 The generated test cases
for PRG1 based on the EARS
syntax for RI1 via the built-in
Test Actions of CODESYS Test
Manager tool

 SN Computer Science (2025) 6:314 314 Page 4 of 21

SN Computer Science

• The requirements should be specified using unambigu-
ous, traceable natural language, for an engineer to be able
to write executable tests.

• The requirements should represent different real testing
scenarios in various areas where the IEC 61131-3 stand-
ard is used.

• The requirements should be simple to understand without
any domain knowledge.

• The resulting test cases should be executed in the COD-
ESYS environment.

We investigated the industrial libraries a large-scale com-
pany provides, focusing on developing and manufacturing
control systems. We identified three candidate requirements
matching our criteria, shown in Table 1. We then assess the
relative difficulty of the identified requirements by manually
writing and creating tests.

Operationalization of Constructs

Requirements templates. In this experiment, we investigate
the effect of using the EARS approach for requirements
engineering and test creation. The proposed generic require-
ments syntax of the EARS patterns we used in this experi-
ment are structured as follows:

<optional preconditions> <optional trigger> the <sys-
tem name> shall <system response>

This simple syntax template forces the requirement engineer
to emphasize preconditions, triggers, and system responses
in their developed requirements. In EARS syntax, precondi-
tions and triggers are both optional, and the order of the used
clauses is very important. The following briefly describes
each template of EARS.

Ubiquitous Requirements (U)

A ubiquitous requirement is a type of requirement that is
not bound to any preconditions or triggers and is always

enabled in the system. The generic structure of this template
is as follows:

The <system name> shall <system response>

Event‑Driven Requirements (ED)

The event-driven requirement is used only when an event
is identified in the system. This type of requirement uses
the When keyword. The generic structure of this template
is as follows:

WHEN <optional preconditions> <trigger> the
<system name> shall <system response>

Unwanted Behaviors (UB)

Requirements that are related to unwanted behaviors are
defined using a structure extracted from event-driven
requirements. Unwanted behavior refers to covering all
possible situations that are not desirable and are usually a
big source of omissions in preliminary requirements. The
reserved keywords for this type of requirement in EARS
are If and Then. The generic structure of this template is
as follows:

IF <optional preconditions> <trigger>, THEN the
<system name> shall <system response>

It should be noted that there is a difference between ED
and UB patterns; ED focuses on expected behaviors, while
UB is looking into undesirable scenarios. More precisely,
the first pattern should be used to cover positive system
behavior and the second on negative scenarios or fault
conditions.

State‑Driven Requirements (SD)

The State-driven requirement is only active if the system
is in a specific state. The reserved keyword for defining
State-driven requirements in EARS is While. The generic
structure of this template is as follows:

WHILE <in a specific state> the <system name> shall
<system response>

Optional Features (OF)

The Optional feature requirement is designed to be used
when the author wants to include a specific feature in the
system. The keyword Where is considered for defining this
type of feature in EARS. The generic structure of this tem-
plate is as follows:

Table 1 The natural language requirements used during the experi-
ment

Requirement
ID

Requirement text

RI1 User account should be uniquely identified to a user
RI2 The software shall warn the user of malware detection
RI3 Only authorized devices are allowed to connect to the

ICS network

SN Computer Science (2025) 6:314 Page 5 of 21 314

SN Computer Science

WHERE <feature is included> the <system name>
shall <system response>

Process Challenges. We are interested in two types of chal-
lenges encountered during using EARS templates and their
use for testing: challenges faced during the specification
of requirements and problems when designing test cases
for PLC systems. We performed thematic analysis [13]
for qualitative data analysis to extract the main themes as
reflected by the input given by each participant.

Instrumentation

One session was organized for the sake of the experiment.
After introducing the EARS semi-formal requirement syn-
tax to the subjects of this study via a short presentation, the
subjects were given the task of using the three requirements
and rewriting these in EARS (to the extent they consider
sufficient based on the given specifications). They were
instructed to read the specifications, create requirements
from the EARS templates, and perform tasks without verbal-
izing their thoughts out loud. The subjects were not grouped,
and the documents needed for this experiment were provided
digitally and in written form. Before starting the session, a
short tutorial of approximately 10 min on EARS syntax was
provided to the subjects to avoid further problems with the
subjects’ unfamiliarity with the concepts used. The tutorial
included screencasts demonstrating EARS requirements.
Detailed information about the problem and instructions
were provided in the experiment session.

Data Collection Procedure

As part of the instructions, subjects submitted their solutions
in the form of a textual record documenting their work. Data
from this experiment session was then used for quantitative
and qualitative analysis.

Experiment Conduct

Once the experiment design was defined, the requirements
for executing the experiment were in place. The session
was held for one hour and preceded by a lesson on EARS
notation. The requirements specification and testing process
used during the conduct of this experiment corresponds to
the methodology in Fig. 2. The first step corresponds to
the transformation of the requirement specified initially in
Natural Language (NL) into an EARS requirement using the
EARS syntax (Step 1 in Fig. 2).

In the next step, we use the resulting requirement to gen-
erate test cases covering the specified behavior (Step 2 in

Fig. 2). The final steps in this methodology are to execute
these test cases (Step 3 in Fig. 2) and to compare the actual
behavior with the expected result to monitor whether the
program works as expected (Step 4 in Fig. 2).

In total, ten individuals participated in our experiment.
Before starting the experiment, the participants were informed
that their work would be used for experimental purposes. The
participants had the option of not participating in the experi-
ment and not allowing their data to be used this way.

The subjects worked individually during the experiment;
we briefly interacted with the participants to ensure that eve-
rybody understood the involved notations without getting
involved in the writing of the solution. All subjects used the
provided documents and their machines. The experiment was
fixed to one hour. To complete the assignment, the subjects
were given the same time to work on writing these require-
ments according to the given instructions. For collecting
data, we provided a template to enforce the usage of the same
reporting interface. By having a common template for report-
ing, we eased the data collection and analysis process.

To finish the assignment, we required the participants to
provide the produced results as soon as they finished writ-
ing their responses. During the experiment, the subjects do
not directly communicate with others to avoid introducing
bias. After each individual finished their assignment, a com-
plete solution was saved containing the answers for each
solution. In addition, we separated the data provided by the
participants from their names. As shown in Fig. 2, the par-
ticipants in Step 1 (marked in green) are the subjects of this
experiment, including ten individuals, including industrial
engineers and researchers. In contrast, Steps 2–4 represent
the case study performed by the authors of this manuscript,
as indicated in Fig. 2 by the blue markings.

NL
Requirement

EARS
Requirement

PLC PRG in
CODESYS

CODESYS Test
Manager

EARS
Syntax

Test
Genera�on

Test
Execu�on

1

2

3

Checking The
Results

Expected
Output4

Par�cipant Category:
Experiment's Subjects

Par�cipant Category:
Authors

Par�cipant
Category:
Authors

Par�cipant Category:
Authors

Fig. 2 An overview of the proposed EARS-based requirement speci-
fication and PLC testing methodology used in this experiment as well
as the participant category of each step

 SN Computer Science (2025) 6:314 314 Page 6 of 21

SN Computer Science

Experiment Analysis

This section provides an analysis of the data collected
in this experiment. In analyzing the qualitative data, we
followed the guidelines on qualitative analysis procedures
provided by Braun and Clarke [13]. For each require-
ment, each subject in our study provided a set of EARS
expressions. These expressions were used to conduct the

experimental analysis and testing. For each set of tests
produced, we provide evidence for their generation and
execution in CODESYS. These metrics form the basis
for our analysis toward answering the research questions.

Requirement Engineering Results

For each requirement, we have collected data about the type
of EARS template used by each participant, the approaches,
and the challenges participants experienced during require-
ment representation using the EARS notation. The results
are shown in Tables 2, 3, and 4.

Participants strictly adhered to one or multiple EARS
templates. It seems that the ubiquitous template has been
used by all participants to model requirement RI1 and just
in one case when representing requirements RI2 and RI3 (as
shown in Table 2). The values in Table 2 represent the num-
ber of participants who selected each EARS template for the
specified requirement. Participants explained that the “shall”
statement is clearly indicated and should be used to describe
the required behavior. However, a participant decided to use
the unwanted behavior template for RI1 to indicate prohib-
ited behavior in a form that can be used for testing.

The event-driven and unwanted behavior templates have
been used by participants to represent requirement RI2,
while some participants used the state-driven pattern (as
shown in Table 3). Participants chose to do this since they
drafted requirements in several increments. Firstly, they
considered how the system typically behaves (also called
sunny-day behavior). For some participants using EARS,
this results in requirements in the state-driven and event-
driven patterns. Secondly, some participants decided to
specify what the system must do in response to the unwanted
behavior, which produced requirements in the unwanted
behavior pattern.

Table 2 Number of participants using each EARS template for the
corresponding requirement (RI1, RI2, RI3) in the experiment

RI1 RI2 RI3 Requirement ID/EARS template

10 1 1 Ubiquitous (U)
0 5 4 Event-driven (ED)
1 5 6 Unwanted behaviors (UB)
0 0 3 State-driven (SD)
0 0 0 Optional features (OF)

Table 3 Results of the requirements writing in terms of the templates
used by each participant for each requirement. EARS template types
are shown using their specific acronyms as stated in Sect. 3.4 and
Table 2

RI1 RI2 RI3 Participant ID

U, UB U, UB, ED U, SD, ED P1
U ED UB P2
U ED UB P3
U UB SD P4
U ED UB P5
U ED UB P6
U SD UB P7
U UB ED, UB, SD P8
U UB ED P9
U UB ED P10

Table 4 Results showing the main themes identified related to approaches and challenges encountered during the translation process

Main themes Theme descriptions

Requirements are not complete and clear enough for EARS translation When starting with the translation, requirements in NL are not complete
enough to decide precisely which EARS template to use

Using single or multiple EARS templates is not clear enough, espe-
cially when using these for testing

There is a need, when using these patterns for testing, to use multiple
and separate templates for each requirement to cover both positive and
negative cases arising

The system perspective is not easily identifiable from the requirements It is difficult to decide which perspective to use when translating the
EARS requirement (e.g., system, subsystem level)

The optional feature template is not applicable for the selected require-
ments

Even if the Option requirement is used for systems that include a
particular element and variants, this modeling form was not used
during requirement transformation using the EARS notation since the
participants did not need to handle system or product variation

SN Computer Science (2025) 6:314 Page 7 of 21 314

SN Computer Science

The results in Table 2 indicate that the Ubiquitous
requirements are straightforward, encompassing general
system behaviors that are consistently true. The participants
perceived these as simple to write and understand. Many
participants found these templates intuitive because they do
not require complex conditions or states, making them easier
to validate and test. Based on the extracted text and a gen-
eral understanding of EARS templates, users prefer certain
templates due to their simplicity, alignment with real-world
scenarios, ability to handle the behavior explicitly, and flex-
ibility in specifying state-dependent and optional behaviors.
The observed preferences reflect the templates’ alignment
with participants’ experiences and the specific needs of the
tested systems. We have not conducted a detailed investiga-
tion into the reasons why certain templates are preferred
over others; this observation is solely based on the results
of our experiment.

In addition, the thematic analysis of the notes taken by
participants when performing these steps in requirement
representation resulted in several main themes related to
approaches and challenges experienced during the transla-
tion process. Several participants mentioned that the initial
NL requirements are not complete and clear such that these
can be used directly for testing. One participant mentioned
the following: “What happens if the device is not authorized,
missing failure models, startup/default/safe state...?”. This
resulted in issues when starting with the translation process,
especially when deciding which templates to use. Several
participants had issues in deciding when to use single or
multiple EARS templates to cover both positive and nega-
tive behaviors that need to be tested. One participant stated
the following: “We could possibly use event-driven type
requirement. At the same time, it is unwanted we could use,
this one is quite complicated”. Some participants preferred
the use of the “shall not” form, which has been observed
by some participants as having an impact on the test case
created since only a set of test cases involving the unwanted
behavior would need to be created to show satisfaction with
the requirement. Another observation relates to the use of an
optional feature template, which for the given requirements
was not used by any of the participants since there was no
need to specify any product variation or specific features.

Transformation of EARS Requirements and PLC
Testing

To evaluate the applicability of using EARS semi-struc-
tured syntax when creating test cases for PLC programs,
we used three programs that implement the behavior stated
in the three provided natural language requirements used
in this experiment. All these three PLC programs are
developed in CODESYS IDE using the ST programming
language, whether by the authors or derived from the exist-
ing industrial cases. In this paper, we refer to these pro-
grams as PRG1, PRG2, and PRG3.

We used the concretization steps of the EARS expres-
sions as stated by Flemstrom et al. [14]. This happens by
mapping the system response, condition, and events to
the actual implementation in PLC. This contains informa-
tion on the implementation elements of a system and its
interfaces. An engineer needs to consider this information
and identify the signals given and their characteristics. In
this way, we define a set of signals related to the feature
under test. In these cases, the next step for the selected
requirements would be to design test cases to show that
the requirement has been met.

The process of transforming system requirements
into EARS requirements for PLC testing is a structured
approach, as shown in Fig. 3. It begins with the require-
ment analysis phase, where system requirements and
design documentation are used. Next, the information col-
lected is formalized into abstract EARS requirements in
the abstract EARS requirement construction phase. These
requirements use logical names for entities, making com-
munication with requirements engineers easier, though
they are not directly evaluable at this stage. The implemen-
tation analysis phase then involves mapping these abstract
entities to actual implementation elements by analyzing
design documents. This includes identifying the signals or
events corresponding to the abstract entities defined ear-
lier. The process then proceeds to the EARS requirement
concretization phase, where the abstract EARS require-
ments are transformed into concrete counterparts using
actual signals and events from the system. This results in
a set of concrete EARS requirements ready for the creation
and execution of tests, as shown in Table 5.

Fig. 3 Process overview for
transforming requirements to
EARS for PLC testing

Requirement
Documentation

Requirement
Analysis

EARS
Requirement
Construction

EARS
Requirement

Concrete EARS
RequirementConcretization

Requirement
Documentation

Requirement
Documentation

Requirement
Documentation

Requirement
Documentation

Requirement
Documentation

Requirement
Documentation

Design
Documentation

Implementation
Analysis

Signal
De nitions

Test CasesTest CasesTest CasesTTTest Cases

 SN Computer Science (2025) 6:314 314 Page 8 of 21

SN Computer Science

To create test cases for requirement RI1, which involves
user identification and alerting, we set up a scenario where
the system attempts to identify a user with invalid creden-
tials, ensuring the uniqueID is FALSE. We then verify that
the system generates an alert by checking if UniqueUser-
Account results in ResultUnique=FALSE. This involves
preparing the system to identify users, attempting identi-
fication with invalid data, and checking for the appropriate
alert response.

To create a test case for RI2, we simulate malicious activ-
ity in the system, ensuring that NormalActivity does not
equal MaliciousActivity. We then verify that the Malware-
Detection component sets MalwareDetected to TRUE and
that the system issues a warning to the user. This involves
running the system to monitor for malware, simulating mali-
cious activity, and checking the detection and the warning
response.

For requirement RI3, to create a test case, we simulate the
presence of an authorized device, ensuring that it is found
(found=TRUE). We then verify that the SearchID compo-
nent sets ConnectionAllowed to TRUE and that the system
grants access to the device. This involves configuring the
system to authorize devices, simulating the authorization
of a device, and checking that access is granted correctly.

After generating the EARS-based test cases for each
program, we execute these automatically using the COD-
ESYS test automation framework named CODESYS Test
Manager.2 The final step in this methodology is to manu-
ally compare the actual output with the expected output to
observe whether the program works as expected.

To clarify the key roles in each part of the experiment,
Fig. 2 illustrates that we first conduct a controlled experi-
ment (Step 1 in Fig. 2). Subsequently, using the resulting
EARS requirements, we perform a case study and trans-
form these requirements into test cases (Steps 2, 3, and 4
in Fig. 2).

Test Results of PRG1

PRG1 is the PLC program we considered for testing the RI1
requirement in the PLC environment. This program is using
the values of the user account and user lists. Then it checks
for unique IDs and returns an indication of whether each
user account is uniquely identified to a user or not. A snippet
of the PRG1 PLC program is shown in Listing 1.

To design and execute the required test cases to test the
RI1 Requirement in PRG1, we use the transformed require-
ment from the NL requirement shown in Table 5.

Ta
bl

e
5

 E
A

R
S

re
qu

ire
m

en
ts

 e
xa

m
pl

es
 o

bt
ai

ne
d

fro
m

 th
e

ex
pe

rim
en

t a
nd

 th
e

re
su

lti
ng

 c
on

cr
et

iz
ed

 E
A

R
S

re
qu

ire
m

en
ts

 a
nd

 e
xa

m
pl

e
te

st
ca

se
s

Re
q.

EA
R

S
re

qu
ire

m
en

ts
C

on
cr

et
iz

ed
 E

A
R

S
re

qu
ire

m
en

ts
Ex

am
pl

e
te

st
ca

se
s

R
I1

Th
e

<
 u

se
r a

cc
ou

nt
 sy

ste
m

 >
 sh

al
l <

 id
en

tif
y

th
e

us
er

 >
 If

<

 th
e

us
er

 is
 n

ot
 id

en
tifi

ed
 >

 th
en

 <
 u

se
r a

cc
ou

nt
 sy

ste
m

>

 sh
al

l <
 a

le
rt

>

if
<

 u
ni

qu
eI

D
=

FA
LS

E>
 th

en
 <

 U
ni

qu
eU

se
rA

cc
ou

nt
>

 sh
al

l
<

 R
es

ul
t_

U
ni

qu
e=

FA
LS

E
>

D
es

cr
ip

tio
n:

 V
er

ify
 sy

ste
m

 a
le

rts
 w

he
n

a
us

er
 is

 n
ot

 id
en

ti-
fie

d.
 S

te
ps

: 1
. A

tte
m

pt
 to

 id
en

tif
y

a
us

er
 w

ith
 in

va
lid

cr

ed
en

tia
ls

. 2
. C

he
ck

 u
ni

qu
eI

D
. 3

. V
er

ify
 a

le
rt

is
 g

en
er

at
ed

R
I2

W
he

n
<

 m
al

w
ar

e
is

 d
et

ec
te

d>
 th

e
<

 sy
ste

m
 >

 sh
al

l <
 w

ar
n

th
e

us
er

 >
W

he
n

<
 N

or
m

al
A

ct
iv

ity
 ≠

 M
al

ic
io

us
A

ct
iv

ity
>

 th
e

<
 M

al
-

w
ar

eD
et

ec
tio

n>
 sh

al
l <

 M
al

w
ar

eD
et

ec
te

d=
TR

U
E

>
D

es
cr

ip
tio

n:
 V

er
ify

 sy
ste

m
 w

ar
ns

 u
se

r w
he

n
m

al
w

ar
e

is

de
te

ct
ed

. S
te

ps
: 1

. S
im

ul
at

e
m

al
ic

io
us

 a
ct

iv
ity

. 2
. C

he
ck

ac

tiv
ity

 st
at

us
. 3

. V
er

ify
 w

ar
ni

ng
 is

 is
su

ed
R

I3
W

he
n

<
 th

e
de

vi
ce

 is
 a

ut
ho

ris
ed

 >
 th

e
<

 sy
ste

m
>

 sh
al

l <

gr
an

t a
cc

es
s t

o
th

e
de

vi
ce

>
W

he
n

<
 fo

un
d=

TR
U

E
>

 th
e

<
 S

ea
rc

hI
D

 >
 sh

al
l <

C

on
ne

ct
io

nA
llo

w
ed

=
TR

U
E

>
D

es
cr

ip
tio

n:
 V

er
ify

 sy
ste

m
 g

ra
nt

s a
cc

es
s t

o
an

 a
ut

ho
riz

ed

de
vi

ce
. S

te
ps

: 1
. S

im
ul

at
e

an
 a

ut
ho

riz
ed

 d
ev

ic
e.

 2
. C

he
ck

de

vi
ce

 st
at

us
. 3

. V
er

ify
 a

cc
es

s i
s g

ra
nt

ed

2 https:// store. codes ys. com/ en/ codes ys- test- manag er. html.

https://store.codesys.com/en/codesys-test-manager.html

SN Computer Science (2025) 6:314 Page 9 of 21 314

SN Computer Science

Listing 1 A listing showing part of the PRG1 PLC interface program written in the ST language in CODESYS IDE cor-
responding to the evaluation of the RI1 requirement

Based on the EARS requirement, we use two test cases
to cover the identification of the user and the case when the
user is not identified. Each test case includes the following
three Test Actions: two WriteVariable Test Actions to alter
the user and user account inputs and one CompareVari-
able Test Action that compares the actual output with the
expected one. The generated test cases for PRG1 used to
test the adherence of the program to RI1 requirements are
shown in Fig. 1.

After designing the required test cases, we execute them
automatically on PRG1 to investigate the adherence of the

mentioned PLC program to the RI1 requirement. As can
be observed in Fig. 4, all test cases have been executed in
0.3 s. All executed test cases have successfully passed on
the PRG1 program.

Test Results of PRG2

The PLC program we use for executing the generated test
cases for RI2 in Table 1 is named PRG2. This program is
shown as a black-box malware detection system in the PLC

Fig. 4 Test execution results for PRG1 PLC program based on the EARS-based generated test cases for RI1

 SN Computer Science (2025) 6:314 314 Page 10 of 21

SN Computer Science

environment that can be used to investigate the context
of RI2. PRG2 consists of the following interfaces: two
input signals named MaliciousActivity and NormalActiv-
ity as well as one output signal named MalwareDetected.
When MaliciousActivity and NormalActivity signals have
divergent information, the Malware Detection system is
triggered, and the value of the MalwareDetected signal
becomes True. An interface snippet of PRG2 is shown in
Listing 2.

Listing 2 A listing showing part of the PRG2 PLC interface program written in the STlanguage in CODESYS IDE cor-
responding to the evaluation of the RI2 requirement

Considering the results of the experiment, we use the
resulting EARS Event-driven requirement pattern as the
most suited type of template for transforming the require-
ment from NL to EARS in the form shown in Table 5.

Based on the developed EARS requirement for RI2
requirement, we generate two test cases for PRG2. Each test
case consists of two Test Actions (MaliciousActivity and
NormalActivity) that alter the value of the inputs, as well as
one Test Action (Expected Output that compares the actual
behavior with the expected one. The first test case checks if

a (Malware is Detected) while the second test case checks if
a (Malware is Not Detected)

The generated test cases for PRG2 based on the RI2
requirement are then automatically executed using COD-
ESYS Test Manager in 1.71 s. All developed test cases have
successfully passed.

Test Results of PRG3

PRG3 is the PLC program used to execute the generated
test cases for RI3 in Table 1 (“Only authorized devices are
allowed to connect into the ICS network”. This program

consists of the following units: (1) a database of authorized
device IDs, which is implemented using an array of IDs, (2)
an input signal corresponding to the device ID that needs to
be authorized, and (3) a boolean output signal (i.e., found)
which returns True in the case of the authorized device being
allowed to connect given the ID is known. We show a snap-
shot of this PLC program in Listing 3.

Listing 3 A listing showing part of the PRG3 PLC program written in the ST language in CODESYS IDE corresponding to
the evaluation of the RI3 requirement

SN Computer Science (2025) 6:314 Page 11 of 21 314

SN Computer Science

As discussed in Sect. 5.1, different individuals trans-
formed the NL requirement into the EARS requirement in
different forms. We use the most common form developed by
the participants to transform RI3 to an EARS Event-Driven
syntax pattern in the following form shown in Table 5.

Based on the aforementioned EARS requirement for RI3,
we developed 2 test cases for Successful Authorization and
Unsuccessful Authorization. Each developed test case con-
sists of two Test Actions, including the provision of a new
Input ID and Comparing the actual output with the expected
output. The generated test cases have been automatically
executed on PRG3 using CODESYS Test Manager in 1.14 s.
Both test cases have successfully passed after being executed
on the PRG3 PLC program.

EARS‑Based Testing in Real‑world Industrial
Settings

To expand our investigation of the applicability and effi-
ciency of PLC testing using EARS patterns in real-world
industrial settings (RQ4), in this section, we extend our
evaluation by including a real-world PLC program that is
being used in the context of crane supervision by a large
automation company in Sweden. To be more specific, we
compare the EARS requirement-based test cases with real-
world test scripts that are being used by the industry for PLC

testing. We believe the conduction of this comparison can
reveal hidden facts about the applicability and efficiency of
using EARS-based testing versus the current real-world PLC
testing in the industry.

Methodology for EARS‑Based Testing in Real‑World
Industrial Settings

The methodology we propose for using EARS-based test-
ing in real-world industrial settings consists of seven steps
and is shown in Fig. 5. The first step is to extract the
functional requirements from the real-world PLC program
(step 1 in Fig. 5). The purpose and process of functional
requirements extraction in the context of this study were
necessary for the experiment, as we lacked requirements
at this level. The second step is to have a team of indus-
trial PLC engineers evaluate the validity of the functional
requirements (step 2 in Fig. 5). The next step is to trans-
form the NL requirements into EARS requirements to
mitigate the potential ambiguity and increase the clar-
ity of the extracted requirements for the tester (step 3 in
Fig. 5). As the next step, the EARS requirements need to
be concretized to facilitate the test generation by convert-
ing the Inputs/Outputs (I/O) into signals (step 4 in Fig. 5).
After having the concretized test cases, it is time to manu-
ally generate test cases via the pre-defined Test Actions
inside the CODESYS Test Manager tool (step 5 in Fig. 5).

Fig. 5 The proposed EARS-
based testing method for real-
world industrial PLC testing

PLC Program

Extracted
Func�onal

Requirements

Industry-
validated

Requirements

Transformed
NL to EARS

Requirements

Concre�zed
Test Cases

CODESYS Test
Manager Tool

CODESYS
Profiler Tool

Results
Checking

Requirements
Extrac�on

Ambiguity
Mi�ga�on

I/O to Signal
Transforma�on

Manual Test
Genera�on

Automated
Test Execu�on

Automated Test
Report Genera�on

1

2

3

4

5

6

Industrial
Requirements

Valida�on

7

 SN Computer Science (2025) 6:314 314 Page 12 of 21

SN Computer Science

The next step is to automatically execute the test cases
on the PLC program using the CODESYS Test Manager
tool (step 6 in Fig. 5). The final step in this methodology
is to enhance the generated test report of CODESYS Test
Manager by measuring the code coverage automatically
using the CODESYS Profiler tool and checking the results
(step 7 in Fig. 5).

Real‑World Industrial PLC Program

In this section, we start by introducing the included real-
world PLC program in this study by defining its purpose and
functionality. Then, we analyze the industrial test script of
this PLC program and compare it to our proposed EARS-
based testing approach.

The included real-world PLC program in this work
is called CraneNumberCheck and is shown in Listing 4.
This simple but critical PLC program is a POU within a

more complex PLC program that supervises the coop-
erative functionality of large industrial cranes in a port.
This POU must check whether the crane numbers match
or mismatch to generate a flag based on this information
in the crane’s supervision system. As can be observed in
Listing 4, this PLC program is developed in ST language
and is composed of two input variables which represent
the crane numbers and are called Crane_1 and Crane_2
(Lines 2–6 in upper box in Listing 4). Moreover, this PLC
program consists of two output variables called Matched_
Crane_No and out_Safe_Crane_No (Lines 7–10). The
first one checks if the crane numbers match and are not
equal to EmptyWord, whereas the latter checks if the
crane number is safe and if crane numbers mismatch, this
word is set to an empty word.

Listing 4 A listing showing the CraneNumberCheck PLC program as a real-world industrial case study in the context
of port crane supervision program

SN Computer Science (2025) 6:314 Page 13 of 21 314

SN Computer Science

As can be seen in the rest of the code in Listing 4, the func-
tional logic of the PLC program consists of two main parts and
works as follows. In the first part, the Matched_Crane_No is
set to True if the crane numbers are equal and Crane_1 is not
an empty Word (Lines 16–18 in the bottom box of Listing 4).
The second part of the PLC program’s logic checks whether
the crane numbers are matched. In case of success, the pro-
gram returns the safe crane number; otherwise, it returns an
empty Word (Lines 20–24 in the bottom box in Listing 4).

Listing 5 A listing showing part of the real-world test script for testing the CraneNumberCheck PLC program in the
current industry

Fig. 6 A snapshot showing the function block instantiation of Crane-
NumberCheck POU inside the main PLC program to prepare it for
testing/

 SN Computer Science (2025) 6:314 314 Page 14 of 21

SN Computer Science

Testing of the Real‑world Industrial PLC Program
Under Test

The current testing process of the CraneNumberCheck PLC
program in industry is handled by manually developing a
counterpart testing POU in ST language. Part of the real-
world industrial test script used for testing this PLC program
is shown in Listing 5. As can be observed in Listing 5, the
industrial test script consists of several main steps.

It starts with the initialization of a puls starting block as
a trigger for starting the testing process, followed by an IF
condition for enabling the test cases one by one (Lines 1–6
in Listing 5). The next step is initializing variables for test
control (Lines 7–16 in Listing 5). After setting up the ini-
tialization, the next step is to define the main testing process,
which includes setting up a delay between test steps and the
pulse generator, followed by setting up a timer function that
simulates the cyclic execution behavior of PLC programs
(Lines 18–26 in Listing 5). The rest of the testing process
of CraneNumberCheck PLC program consists of unit test
cases that define inputs and expected output. The authors
are responsible for artificially creating the PLC system and
conducting the corresponding EARS-based testing. The
EARS requirements have been independently derived from
the functional requirements extracted during the controlled
experiment. The subsequent transformation into test cases
is a concretization step, involving the mapping of abstract
EARS requirements to specific testable elements (e.g., sig-
nals and outputs) in the PLC system.

Results of EARS‑Based Testing of a Real‑World
Industrial PLC Program

In this section, we use the proposed EARS-based testing meth-
odology (refer to Fig. 5) for testing the CraneNumberCheck

PLC program as a real-world industrial case study. The first
step is to extract the functional NL requirements of the PLC
program (Step 1 in Fig. 5). The second step is to have a team of
industrial PLC engineers evaluate the validity of the extracted
functional requirements (step 2 in Fig. 5). Table 6 shows the
extracted functional unit-level NL requirements for this PLC
program, which were all validated by a team of experienced
PLC engineers at ABB Ports and Marine in Sweden. This table
also includes the used EARS pattern and the EARS version of
each requirement which is described as step 3 of our proposed
methodology in Fig. 5.

As can be observed in RQ2 and RQ3 rows of Table 6, the
extracted functional requirements in NL can sometimes become
complicated and hard to follow for developers while their EARS
versions in the “Requirement in EARS” column are modular-
ized and much easier to comprehend for the PLC program
developer/testers. Moreover, we can observe that one compli-
cated NL requirement can break into several smaller EARS
requirements, increasing the readability of the requirements.

After having the functional requirements in the EARS
syntax, we take the next step of our methodology, which is to
concretize the EARS requirements to generate unit test cases
(step 4 in Fig. 5). The procedure for concretizing the EARS
requirements for PLC testing is simple and works as follows.
Each I/O inside the requirement is transformed into a signal,
which can facilitate the test generation process as the next
step. The concretized version of each EARS requirement
for CraneNumberCheck PLC program is shown in Table 7.

The next step in testing CraneNumberCheck PLC program
based on the proposed testing approach is to generate test cases
based on the concretized EARS requirements in the previous
step (Step 5 in Fig. 5). To do this, first, we need to instantiate
CraneNumberCheck PLC program as a function block inside
the main PLC program. A snippet of the function block that
we instantiated for CraneNumberCheck PLC program can

Fig. 7 A snapshot showing
the CODESYS Profiler report
on gathered full coverage for
CraneNumberCheck PLC pro-
gram using the proposed EARS-
based method (refer to Fig. 5)

SN Computer Science (2025) 6:314 Page 15 of 21 314

SN Computer Science

be observed in Fig. 6. As the next step, we used CODESYS
Test Manager to design the test cases using the pre-defined
Test Actions of this tool. After automatic execution of test
cases on the CraneNumberCheck PLC program and using the
CODESYS Profiler tool for measuring code coverage (step 6,7
in Fig. 5), we gathered the following results. All the designed
test cases with a timeout budget of 1 s have been successfully
passed within 12 s on the PLC program under test. Moreover,
the automatic test execution based on the proposed EARS-
based PLC testing method for real-world industrial PLC pro-
grams achieved 100% code coverage on CraneNumberCheck
PLC program based on the CODESYS Profiler report. A snip-
pet of gathered full code coverage after testing the CraneNum-
berCheck PLC program is shown in Fig. 7. As shown in Fig. 7,
all the covered code branches after executing EARS-based test
cases have been marked green. The gathered results promise an
acceptable level of applicability and efficiency of the proposed
EARS-based testing method in the context of PLC program-
ming. However, more investigation by applying this method to
more complicated PLC programs needs to be done to validate
the generalizability of this claim.

EARS‑Based Testing vs Manual PLC Testing
in Industry

Comparing the overall current manual testing process of
CraneNumberCheck PLC program in the industry versus the
proposed EARS-based testing mechanism reveals several
observations, including:

1. Need for domain-specific knowledge. One needs to have
a good understanding of one of the IEC61131-3 program-
ming languages to develop test cases for the PLC program
in the current industrial approach. To be more precise,
the current manual industrial testing method requires the
tester to write a complete PLC test script in one of the
IEC61131-3 programming languages, creating a parallel
POU to the main POU being tested. Additionally, the tester
must perform continuous testing of the PLC program by
simulating its cyclic execution behavior using one of the
IEC61131-3 languages. This approach demands significant
attention to detail and expertise, as it involves accurately
mimicking the PLC’s execution cycles. Moreover, the
manual tester needs a testing background and engineering
experience to implement and connect all testing units prop-
erly. On the other hand, testing the PLC programs with the
proposed mechanism using CODESYS Test Manager does
not demand any deep knowledge of specific programming
language and can be handled easily using Test Actions.

2. Efficiency. Considering a straightforward PLC pro-
gram like CraneNumberCheck, which is composed of
25 Lines of Code (LOC), the corresponding real-world
industrial test script requires 119 LOC, highlighting a Ta

bl
e

6
 In

du
str

y-
va

lid
at

ed
 u

ni
t-l

ev
el

 fu
nc

tio
na

l r
eq

ui
re

m
en

ts
 fo

r C
ra

ne
N

um
be

rC
he

ck
 P

LC
 p

ro
gr

am
 (r

ef
er

 to
 L

ist
in

g
4)

 in
 b

ot
h

N
L

an
d

EA
R

S
ve

rs
io

ns

N
o

Fu
nc

tio
na

l r
eq

ui
re

m
en

ts
EA

R
S

pa
tte

rn
Re

qu
ire

m
en

t i
n

EA
R

S

R
Q

1
“T

he
 fu

nc
tio

n
bl

oc
k

sh
al

l a
cc

ep
t t

w
o

cr
an

e
nu

m
be

rs
 (C

ra
ne

_1
 a

nd

C
ra

ne
_2

) a
s i

np
ut

 p
ar

am
et

er
s.

(I
np

ut
 R

eq
ui

re
m

en
ts

)”
U

bi
qu

ito
us

 re
qu

ire
m

en
t (

U
)

Th
e

sy
ste

m
 sh

al
l a

cc
ep

t t
w

o
cr

an
e

nu
m

be
rs

 (C
ra

ne
_1

 a
nd

 C
ra

ne
_2

) a
s i

np
ut

pa

ra
m

et
er

s
R

Q
2

“T
he

 fu
nc

tio
n

bl
oc

k
sh

al
l p

ro
vi

de
 tw

o
ou

tp
ut

 v
ar

ia
bl

es
: M

at
ch

ed
_C

ra
ne

_
N

o:
 T

hi
s v

ar
ia

bl
e

in
di

ca
te

s w
he

th
er

 th
e

cr
an

e
nu

m
be

rs
 m

at
ch

 a
nd

 a
re

no

t a
n

em
pt

y
w

or
d.

 o
ut

_S
af

e_
C

ra
ne

_N
o:

 If
 th

e
cr

an
e

nu
m

be
rs

 m
at

ch
,

th
is

 v
ar

ia
bl

e
sh

al
l s

to
re

 a
 sa

fe
 c

ra
ne

 n
um

be
r.

If
 th

e
cr

an
e

nu
m

be
rs

 d
o

no
t

m
at

ch
, i

t s
ha

ll
be

 se
t t

o
an

 e
m

pt
y

w
or

d.
 (O

ut
pu

t R
eq

ui
re

m
en

ts
)”

U
nw

an
te

d
be

ha
vi

or
s (

U
B

)/
St

at
e-

dr
iv

en
 re

qu
ire

m
en

ts

(S
D

)

U
B

: I
F

th
e

cr
an

e
nu

m
be

rs
 m

at
ch

 a
nd

 a
re

 n
ot

 a
n

em
pt

y
w

or
d,

 T
H

EN
 th

e
sy

ste
m

 sh
al

l s
et

 M
at

ch
ed

_C
ra

ne
_N

o
to

 tr
ue

. S
D

: W
H

ER
E

th
e

cr
an

e
nu

m
be

rs
 m

at
ch

, t
he

 sy
ste

m
 sh

al
l s

et
 o

ut
_S

af
e_

C
ra

ne
_N

o
to

 a
 sa

fe
 c

ra
ne

nu

m
be

r.
SD

: I
F

th
e

cr
an

e
nu

m
be

rs
 d

o
no

t m
at

ch
, T

H
EN

 th
e

sy
ste

m
 sh

al
l

se
t o

ut
_S

af
e_

C
ra

ne
_N

o
to

 a
n

em
pt

y
w

or
d

R
Q

3
“T

he
 fu

nc
tio

n
bl

oc
k

sh
al

l i
m

pl
em

en
t t

he
 fo

llo
w

in
g

lo
gi

c:
 M

at
ch

ed
_C

ra
ne

_
N

o
sh

al
l b

e
tru

e
if

C
ra

ne
_1

 is
 e

qu
al

 to
 C

ra
ne

_2
 a

nd
 b

ot
h

ar
e

no
t e

m
pt

y
w

or
ds

. I
f M

at
ch

ed
_C

ra
ne

_N
o

is
 tr

ue
, o

ut
_S

af
e_

C
ra

ne
_N

o
sh

al
l b

e
se

t t
o

C
ra

ne
_1

. I
f M

at
ch

ed
_C

ra
ne

_N
o

is
 fa

ls
e,

 o
ut

_S
af

e_
C

ra
ne

_N
o

sh
al

l b
e

se
t

to
 a

n
em

pt
y

w
or

d.
 (L

og
ic

)”

St
at

e-
dr

iv
en

 re
qu

ire
m

en
t (

SD
)

W
H

ER
E

th
e

fu
nc

tio
n

bl
oc

k
is

 a
ct

iv
e,

 th
e

sy
ste

m
 sh

al
l:

- S
et

 M
at

ch
ed

_
C

ra
ne

_N
o

to
 tr

ue
 IF

 C
ra

ne
_1

 is
 e

qu
al

 to
 C

ra
ne

_2
 a

nd
 b

ot
h

ar
e

no
t e

m
pt

y
w

or
ds

. -
 S

et
 M

at
ch

ed
_C

ra
ne

_N
o

to
 fa

ls
e

IF
 C

ra
ne

_1
 is

 n
ot

 e
qu

al
 to

C

ra
ne

_2
 O

R
 e

ith
er

 o
f t

he
m

 is
 a

n
em

pt
y

w
or

d.
 -

IF
 M

at
ch

ed
_C

ra
ne

_N
o

is

tru
e,

 T
H

EN
 se

t o
ut

_S
af

e_
C

ra
ne

_N
o

to
 C

ra
ne

_1
. -

 IF
 M

at
ch

ed
_C

ra
ne

_N
o

is
 fa

ls
e,

 T
H

EN
 se

t o
ut

_S
af

e_
C

ra
ne

_N
o

to
 a

n
em

pt
y

w
or

d
R

Q
4

“T
he

 fu
nc

tio
n

bl
oc

k
ex

pe
ct

s t
ha

t a
n

em
pt

y
w

or
d

is
 a

 v
al

id
 c

on
di

tio
n

fo
r n

ot

m
at

ch
in

g
cr

an
e

nu
m

be
rs

. (
C

on
str

ai
nt

s)
”

U
bi

qu
ito

us
 re

qu
ire

m
en

t (
U

)
Th

e
sy

ste
m

 sh
al

l c
on

si
de

r a
n

em
pt

y
w

or
d

as
 a

 v
al

id
 c

on
di

tio
n

fo
r n

ot
 m

at
ch

-
in

g
cr

an
e

nu
m

be
rs

 SN Computer Science (2025) 6:314 314 Page 16 of 21

SN Computer Science

significant discrepancy in efficiency. In contrast, the
proposed EARS-based testing approach requires only
26 Test Actions. A Test Action in CODESYS Test Man-
ager is a predefined step or operation configured within
test scripts to communicate with the test system. These
actions manage tasks such as setting communication
parameters, executing tests, and generating reports.
Compared to traditional lines of code, Test Actions sim-
plifies the test creation. They encapsulate specific opera-
tions in a user-friendly manner, reducing complexity by
providing clear, modular steps.

3. Manual overhead and complexity. The industry’s cur-
rent testing process for PLC programs is highly com-
plex, with significant manual intervention. Specifically,
many features already present in the CODESYS IDE,
such as cyclic execution, delay, test control process,
and test start trigger, are being recreated manually. This
redundancy exacerbates the complexity, especially with
more intricate PLC programs. Conversely, the proposed
EARS-based testing approach simplifies this by requir-
ing the manual definition of only the inputs and expected
outputs. All other features are readily accessible through
the user-friendly GUI of the CODESYS Test Manager
tool. Additionally, the availability of pre-defined Test
Actions within the Test Manager tool enhances the use
of CODESYS’ features and automation capabilities for
PLC testers. Migrating to the latest version of the COD-
ESYS IDE is an ongoing process for many automation
companies due to its powerful features. However, the
utilization of its testing capabilities has not received suf-

ficient attention from industry practitioners, primarily
due to practical limitations and established preferences.

4. Test Report. The existing manual testing process in
the industry offers testers limited information, provid-
ing only the outcomes of passed or failed test cases. In
contrast, the proposed EARS-based testing approach
utilizes both CODESYS Test Manager and CODESYS
Profiler to provide a comprehensive test report. These
include additional details like test execution time, cov-
erage reports, outcomes of individual Test Actions, test
verdicts, and more.

5. Ambiguity and clarity of functional requirements.
After reviewing a limited set of requirements gathered
from the industry, it became apparent that the current
functional requirements are predominantly at the system
level, lacking specificity for individual code branches.
Additionally, the complexity of industrial testing pro-
cesses relies heavily on the tester’s expertise. In con-
trast, the proposed EARS-based approach reduces the
vagueness of requirements and encompasses both unit
and system-level testing, potentially leading to a more
thorough testing procedure. Furthermore, this approach
yields requirements and test cases that are straightfor-
ward and understandable, facilitating understanding
among all stakeholders, including testers, managers, and
clients.

Table 7 The concretized requirements of CraneNumberCheck PLC program (refer to Fig. 4) which are generated based on the requirements in
EARS syntax

Requirement in EARS Concretized requirement

The system shall accept two crane numbers (Crane_1 and Crane_2) as
input parameters

if < Crane_1 & Crane_2 Exist=FALSE>then <
SystemAcceptance>shall < Acceptance=FALSE>

UB: IF the crane numbers match and are not an empty word, THEN the
system shall set Matched_Crane_No to true. SD: WHERE the crane
numbers match, the system shall set out_Safe_Crane_No to a safe
crane number. SD: IF the crane numbers do not match, THEN the
system shall set out_Safe_Crane_No to an empty word

UB: if < Crane_1 = Crane_2 & Crane_1 & Crane_2 ≠ Empty>then
< Matched_Crane_No>shall < Matched_Crane_No=TRUE>SD:
WHERE < Crane_1 = Crane_2>the < System>shall <
out_Safe_Crane_No=SafeCraneNumber>SD: IF < Crane_1
≠ Crane_2>THEN < System>shall < out_Safe_Crane_
No=EmptyWord>

The function block shall implement the following logic: Matched_
Crane_No shall be true if Crane_1 is equal to Crane_2 and both are
not empty words. If Matched_Crane_No is true, out_Safe_Crane_No
shall be set to Crane_1. If Matched_Crane_No is false, out_Safe_
Crane_No shall be set to an empty word

WHERE the function block is active, the system shall: - Set Matched_
Crane_No to true IF Crane_1 is equal to Crane_2 and both are
not empty words. - Set Matched_Crane_No to false IF Crane_1
is not equal to Crane_2 OR either of them is an empty word. - IF
Matched_Crane_No is true, THEN set out_Safe_Crane_No to
Crane_1. - IF Matched_Crane_No is false, THEN set out_Safe_
Crane_No to an empty word

The system shall consider an empty word as a valid condition for not
matching crane numbers

if < Crane_1 ≠ Crane_2>then < SystemAcceptance>shall <
Acceptance=Empty Word>

SN Computer Science (2025) 6:314 Page 17 of 21 314

SN Computer Science

Discussion, Imitations, Threats to Validity

This section briefly discusses the findings of this work and
maps them to each related formulated research question.
This follows by discussing the limitations of this study and
threats to validity.

Research Questions Revisited

In this subsection, we briefly review the formulated
research questions of this study and align them with the
corresponding results obtained.

RQ1: “How are the EARS Semi‑structured Requirement Engineering Syntax and Test Creation Applied in the Context of PLC
Programs?”

RQ2: “What EARS patterns are used during the writing of requirements?”

RQ3: “What challenges are perceived during the specification of requirements and test creation using EARS?”

 SN Computer Science (2025) 6:314 314 Page 18 of 21

SN Computer Science

RQ4: “How well do PLC test cases created from EARS requirements compare to test cases created by industrial engineers for PLC
programs in industry?”

Limitations of the Study and Threats to Validity

External validity. All of our subjects are individuals who
have limited experience with EARS. Furthermore, because
these practitioners have experience in requirements engi-
neering, we see no reason the use of professionals with deep
knowledge of EARS in our study would yield a completely
different result. Professionals with experience in EARS
would intuitively write better requirements than the ones
written by our subjects. Our study has focused on three rela-
tively brief examples with reduced complexity, but these
requirements represent relevant samples they would encoun-
ter in practice. We have used the CODESYS tool for auto-
mated test creation and execution. There are many tools for
developing and executing tests, and these may give different
results. Nevertheless, CODESYS is one of the most used
development environments for PLCs, and its output in tests
is similar to the output produced by other tools.

Internal validity. All subjects were assigned to experi-
ment at the same time. This was dictated by how the experi-
ment was organized, with a presentation followed by practi-
cal work. Subjects without sufficient knowledge of EARS
may affect the final result. To avoid this problem, the session
was structured to follow the corresponding EARS lesson.
Another threat to internal validity could arise from using
unclear objectives given to the subjects. To address this, we
tested the material ourselves.

Constructs validity. Capturing the challenges of require-
ments engineering and testing is a difficult problem. We rely
on human feedback by using a think-out-loud method that
gives a rough measure of the challenges encountered. More-
over, a potential threat to validity is the authors’ involve-
ment in transforming requirements into test cases. While
this ensured consistency when using a PLC development
environment, it introduces potential biases, as the authors
have been involved in the case study. To mitigate this, par-
ticipants have performed the initial requirement formaliza-
tion, independently.

Conclusion validity. The results of this study are based
on an experiment using 10 participants and three require-
ments. For each requirement, all participants performed the
study, which is a relatively small number of subjects. Never-
theless, this was sufficient to obtain various results showing
an effect between the modeling of these different types of
requirements. Another limitation of this experiment is that
participants were not asked to formulate testable require-
ments using EARS patterns. However, our primary focus
was not on their testability, as the translation step performed
by participants did not involve direct concretization. This
step was completed after the data collection phase.

Related Work

Requirement engineering (RE) for testing embedded sys-
tems plays a crucial role in ensuring the reliability and
functionality of these systems, which are ubiquitous in
various domains, including automotive, aerospace, and
healthcare. Model-checking, a formal verification technique,
has emerged as a promising approach for formally verify-
ing embedded system requirements. This section explores
recent advancements and insights in the intersection of
requirement engineering for testing embedded systems and
model-checking.

Mavin and Wilkinson [15] reflected on the ten years of
EARS [8] and shared some lessons learned in their review
paper. For example, they found that EARS users manage to
author more useful draft requirements as they incrementally
work to find the appropriate EARS pattern. They recom-
mend that new engineers write several requirements and
seek expert review with the application of EARS being more
useful if one can apply the following activities: training,
thinking, semantics, syntax, and review. In our study, we
confirm some of these results even if we do not cover all of
the activities stated.

SN Computer Science (2025) 6:314 Page 19 of 21 314

SN Computer Science

Mavin et al. [16] report on the understanding of four
experienced EARS practitioners and their reflections on
their experiences of applying EARS in different projects and
domains over six years. They report the following EARS-
specific lessons learned: training should be short, use EARS
with or without a tool, use coaching to embed learning, chal-
lenge the EARS Patterns, and question if the EARS clauses
are necessary and sufficient.

Mäntylä et al. [17] performed a controlled experiment
on test case development and requirement review and the
effects of time pressure. They saw no statistically significant
evidence that time pressure would lower effectiveness or
negatively influence motivation, frustration, or performance.

Dalpiaz et al. [18] investigated the adequateness, com-
pleteness, and correctness of use cases and user stories for
the manual creation of a static conceptual model. They per-
formed a controlled experiment with 118 subjects, and their
results show that user stories work better than use cases
when creating conceptual models. Furthermore, user story
repetitions and conciseness contribute to these results. How-
ever, as we aim with our study, more evidence needs to be
provided regarding the aspects that must be considered when
selecting and using a modeling and requirement notation.

Weninger et al. [19] report the results of a controlled
experiment in which they compared two approaches for
defining restricted use case requirements from multiple
perspectives, including misuse, understandability, and
restrictiveness. Their results indicate the usefulness of the
restricted use case modeling approach.

The paper by Levi Lucio et al. [20] introduces the EARS-
CTRL tool, an editor built on MPS, designed to aid in the
crafting and analysis of EARS requirements for controllers.
This editor inherently ensures well-formedness, offering
a structured method and suggesting relevant terms from a
glossary during the editing process. The paper discusses
automated checks for the feasibility of requirements, utiliz-
ing a controller synthesis tool, and the generation of syn-
chronous dataflow diagrams for verified requirements. While
it recognizes the challenges in representing complex states,
the research emphasizes the importance of closing the gap
between natural language requirements articulated in EARS
and formal specifications, thereby enhancing the automation
of requirement analysis and synthesis within an industrial
setting.

The embedded systems industry demands specialized RE
methods to effectively manage the complexity of require-
ments specifications and ensure high-quality outcomes.
However, the adoption of novel RE approaches by industry
practitioners remains slow. To address this, Sikora et al. [21]
conducted an industrial study aimed at gaining a comprehen-
sive understanding of practitioners’ needs in RE research
and method development. Through qualitative interviews
and quantitative questionnaires, they explored five key

aspects of RE approaches: (i) the use of requirements mod-
els, (ii) support for high system complexity, (iii) quality
assurance for requirements, (iv) the transition between RE
and design, and (v) the integration of RE with safety engi-
neering. They conducted their study with representatives
from seven large companies across multiple branches and
identified significant industry needs and constraints. Their
key findings include the advocacy for increased use of mod-
els in RE, challenges surrounding the use of requirements
models in legally binding documents, and the critical impor-
tance of method support for abstraction layers. Additionally,
practitioners emphasized the need for solutions addressing
requirements for quality assurance, particularly in con-
sistency, traceability, and testability. While the automated
transition from requirements to design was not deemed a
prevalent need, the study highlighted the importance of
integrating safety engineering concerns into RE approaches.
Compared to our work, this work focuses on the embedded
systems industry, using qualitative and quantitative methods
to identify broad RE challenges such as model usage, system
complexity support, and safety engineering integration. In
contrast, our work targets PLC systems, conducting experi-
ments with EARS notation to assess its effectiveness and
flexibility in RE and testing. While Sikora et al. identify
industry needs and constraints, our research demonstrates
the practicality of EARS-based test cases and suggests future
automation.

Iqbal et al. [22] underscore the key role of requirement
validation within the automotive industry, where the accu-
racy of embedded systems’ functionalities directly impacts
product integrity. They identify a prevailing challenge: con-
ventional validation methods often prove inefficient, result-
ing in heightened project failure rates. The authors propose
an innovative model-based approach to tackle this issue,
harnessing existing verification and validation frameworks.
Central to their methodology is the integration of virtual
prototyping, enabling early-stage error detection. Through
meticulous case studies, the authors showcase the benefits of
their approach, including heightened productivity, simplified
development cycles, and improved product quality. The key
differences between this study and our study are as follows.
Their work focuses on the automotive industry, proposing
a model-based validation approach that integrates virtual
prototyping to improve early error detection, productivity,
development cycles, and product quality. In contrast, our
work targets PLC systems, using EARS notation to evalu-
ate its effectiveness and flexibility in RE and testing. While
Iqbal et al. aim to enhance validation efficiency in auto-
motive embedded systems, our research demonstrates the
practicality of EARS-based test cases and suggests future
automation for PLC RE.

In summary, recent advancements in requirements engi-
neering for testing embedded systems have witnessed the

 SN Computer Science (2025) 6:314 314 Page 20 of 21

SN Computer Science

integration of model-checking techniques to improve for-
mal verification and test case generation processes. These
developments underscore the importance of leveraging test
automation methods to ensure embedded systems’ reliability
and safety.

Conclusions and Future Work

In this paper, we have conducted an experiment in require-
ments engineering and testing using EARS notation for
PLC systems. In the requirements engineering part of
our experiment, we found out that most participants pre-
ferred the EARS ubiquitous pattern for transforming the
RI1 requirement from NL to the EARS syntax, whereas
the unwanted behavior and event-driven patterns were the
most popular types for RI2 and RI3 requirement transfor-
mations. It was observed that different individuals used
different EARS patterns for transforming the same require-
ment based on their interpretation, which shows an accept-
able level of flexibility in EARS syntax. In the testing
part of our experiment, we assessed the use of EARS pat-
terns for PLC testing in two phases. Initially, we executed
EARS-based test cases on three PLC programs written
in the ST language, which were developed based on the
requirements included in our study. Subsequently, we
introduced an EARS-based testing methodology to real-
world industrial PLC programs. The results from these
tests and the subsequent comparison with traditional PLC
testing methods indicate that EARS-generated require-
ment-based test cases for PLC programs are effective and
offer an accessible means for PLC testers to express test
specifications.

In future work, we want to investigate the applicability
of using EARS in PLC requirement engineering on other
levels of testing and by including more PLC programs.
Inspection of the impact of choosing different EARS tem-
plates for describing the requirements over the quality of
the generated test cases can be another future direction
of our work. Moreover, we want to automate our solution
and generate test cases from the created EARS require-
ments based on existing functional and non-functional
requirements.

Acknowledgements This work has received funding from the EU’s
H2020 research and innovation program under grant agreement No
957212, Vinnova through the SmartDelta project, and the MAT-
ISSE project, an EU-funded initiative under Horizon Europe GA no.
101056674.

Author Contributions Mikael Ebrahimi Salari is the main driver and
contributor of the paper, while the rest of the authors contributed to the
methodology and provided valuable feedback.

Funding Open access funding provided by Mälardalen University.
EU’s H2020 research and innovation program under grant agreement
No 957212 and from Vinnova through the SmartDelta project.

Data Availibility Synthetic data and also data from industry. The pro-
grams and data used in this study include proprietary industrial data
that cannot be shared publicly.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Research involving human and/or animals Not applicable.

Informed consent Informed consent was obtained from all individual
participants included in the study.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Schwartz MD, Mulder J, Trent J, Atkins WD. control system
devices: architectures and supply channels overview. In: Sandia
Report SAND2010-5183. Sandia National Laboratories, Albu-
querque, NM, 2010.

 2. CENELEC: 50128: railway application–communications, sign-
aling and processing systems-software for railway control and
protection systems. In: Standard Report, 2001.

 3. Enoiu EP, Čaušević A, Ostrand TJ, Weyuker EJ, Sundmark D,
Pettersson P. Automated test generation using model check-
ing: an industrial evaluation. Int J Softw Tools Technol Transf.
2014;18(3):335–53.

 4. Wu Y-C, Fan C-F. Automatic test case generation for struc-
tural testing of function block diagrams. Inf Softw Technol.
2014;56(10):1100–12.

 5. Jee E-S, Yoo J-Y, Cha S-D, Bae D-H. A data flow-based struc-
tural testing technique for FBD programs. Inf Softw Technol.
2009;51(7):1131–9.

 6. Doganay K, Bohlin M, Sellin O. Search based testing of embedded
systems implemented in IEC 61131-3: an industrial case study.
in: international conference on software testing. Verification and
Validation Workshops. Luxembourg: IEEE; 2013. p. 425–32.

 7. Garousi V, Zhi J. A survey of software testing practices in Canada.
J Syst Softw. 2013;86(5):1354–76.

 8. Mavin A, Wilkinson P, Harwood A, Novak M. Easy Approach to
requirements syntax (EARS). In: 2009 17th IEEE International
Requirements Engineering Conference. IEEE; 2009. p. 317–22.

 9. Salari ME, Enoiu EP, Afzal W, Seceleanu C. An experiment in
requirements engineering and testing using EARS notation for

http://creativecommons.org/licenses/by/4.0/

SN Computer Science (2025) 6:314 Page 21 of 21 314

SN Computer Science

PLC systems. In: 2023 IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW).
IEEE; 2023. p. 10–7.

 10. Auslander DM, Pawlowski C, Ridgely J. Reconciling program-
mable logic controllers (PLCs) with mechatronics control soft-
ware. In: Proceeding of the 1996 IEEE International Conference
on Control Applications. IEEE; 1996. p. 415–20.

 11. Tiegelkamp M, John K-H. IEC 61131-3: programming industrial
automation systems, vol. 166. Berlin, Heidelberg: Springer; 2010.

 12. Hanssen DH. Programmable logic controllers: a practical
approach to IEC 61131-3 using CODESYS. Chichester: Wiley;
2015.

 13. Braun V, Clarke V. Thematic analysis. Washington, DC: American
Psychological Association; 2012.

 14. Daniel F, Enoiu E, Azal W, Sundmark D, Gustafsson T, Kobetski
A. From natural language requirements to passive test cases using
guarded assertions. In: 2018 IEEE International Conference on
Software Quality, Reliability and Security (QRS). IEEE; 2018. p.
470–81.

 15. Mavin A, Wilkinson P. Ten years of EARS. IEEE Softw.
2019;36(5):10–4.

 16. Mavin A, Wilkinson P, Gregory S, Uusitalo E. Listens learned
(8 lessons learned applying EARS). In: 2016 IEEE 24th Interna-
tional Requirements Engineering Conference (RE). IEEE; 2016.
p. 276–82.

 17. Mäntylä MV, Petersen K, Lehtinen TO, Lassenius C. Time
pressure: a controlled experiment of test case development and

requirements review. In: Proceedings of the 36th International
Conference on Software Engineering, p. 83–94, 2014.

 18. Dalpiaz F, Sturm A. Conceptualizing requirements using user
stories and use cases: a controlled experiment. In: International
Working Conference on Requirements Engineering: Foundation
for Software Quality. Springer; 2020. p. 221–38.

 19. Weninger M, Grünbacher P, Zhang H, Yue T, Ali S. Tool support
for restricted use case specification: findings from a controlled
experiment. In: 2018 25th Asia-Pacific Software Engineering
Conference (APSEC). IEEE; 2018. p. 21–30.

 20. Lúcio L, Rahman S, Cheng C-H, Mavin A. Just formal enough?
Automated analysis of EARS requirements. In: NASA Formal
Methods: 9th International Symposium, NFM 2017, Moffett Field,
CA, USA, May 16–18, 2017, Proceedings 9. Springer; 2017. p.
427–34.

 21. Sikora E, Tenbergen B, Pohl K. Industry needs and research direc-
tions in requirements engineering for embedded systems. Requir
Eng. 2012;17:57–78.

 22. Iqbal D, Abbas A, Ali M, Khan MUS, Nawaz R. Requirement
validation for embedded systems in automotive industry through
modeling. IEEE Access. 2020;8:8697–719.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	An Empirical Investigation of Requirements Engineering and Testing Utilizing EARS Notation in PLC Programs
	Abstract
	Introduction
	Preliminaries
	Programmable Logic Controllers (PLCs)
	CODESYS Development Environment
	EARS Semi-structured Requirement Engineering Syntax

	Experimental Design
	Research Questions
	Experimental Setup Overview
	Object Selection
	Operationalization of Constructs
	Ubiquitous Requirements (U)
	Event-Driven Requirements (ED)
	Unwanted Behaviors (UB)
	State-Driven Requirements (SD)
	Optional Features (OF)

	Instrumentation
	Data Collection Procedure

	Experiment Conduct
	Experiment Analysis
	Requirement Engineering Results
	Transformation of EARS Requirements and PLC Testing
	Test Results of PRG1
	Test Results of PRG2
	Test Results of PRG3

	EARS-Based Testing in Real-world Industrial Settings
	Methodology for EARS-Based Testing in Real-World Industrial Settings
	Real-World Industrial PLC Program
	Testing of the Real-world Industrial PLC Program Under Test
	Results of EARS-Based Testing of a Real-World Industrial PLC Program
	EARS-Based Testing vs Manual PLC Testing in Industry

	Discussion, Imitations, Threats to Validity
	Research Questions Revisited
	RQ1: “How are the EARS Semi-structured Requirement Engineering Syntax and Test Creation Applied in the Context of PLC Programs?”
	RQ2: “What EARS patterns are used during the writing of requirements?”
	RQ3: “What challenges are perceived during the specification of requirements and test creation using EARS?”
	RQ4: “How well do PLC test cases created from EARS requirements compare to test cases created by industrial engineers for PLC programs in industry?”

	Limitations of the Study and Threats to Validity

	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

