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Abstract
Regulatory standards for engineering safety-critical systems often demand both traceable requirements and specification-
based testing, during development. Requirements are often written in natural language, yet for specification purposes, this 
may be supplemented by formal or semi-formal descriptions, to increase clarity. However, the choice of notation of the latter 
is often constrained by the designers’ training, skills, and preferences. The Easy Approach to Requirements Syntax (EARS) 
addresses the inherent imprecision of natural language requirements concerning potential ambiguity and lack of accuracy. 
This paper investigates requirements specification using EARS, and specification-based testing of embedded software writ-
ten in the IEC 61131-3 language, a programming standard for developing programmable logic controllers (PLC). Further, 
we study, utilizing an experiment, how human participants translate natural language requirements into EARS and how they 
use the latter to test PLC software. We report our observations during the experiments, including the type of EARS patterns 
that participants use to structure natural language requirements and challenges during the specification phase, and present 
the results of testing based on EARS-formalized requirements in real-world industrial settings.
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Introduction

PLCs are used in engineering embedded safety-critical soft-
ware (e.g., in the railway and automation control domains) 
[1]. The engineering of such systems commonly demands 
certification according to safety standards [2] that impose 
specific constraints on requirements engineering, implemen-
tation-based, and specification-based testing. Several stud-
ies [3–6] have examined how to generate test input data to 
achieve high implementation coverage for domain-specific 
PLC systems.

However, since requirements are often expressed in natu-
ral language, using them as such to create test cases, and 
also keep requirements and test cases aligned, is a difficult 
task. While such an alignment requires extensive domain 
knowledge, a systematic process for requirements engineer-
ing—including their translation into a semi-formal, non-
ambiguous form—combined with testing would facilitate 
linking requirements to tests. Generally, in industry, such 
translation is most often carried out manually, so manual 
processes are used to model requirements by using struc-
tured notations, and automatically create a set of tests that 
systematically exercises the specification when fed to the 
system under test [7]. Given that there is little evidence on 
the extent to which humans can effectively model require-
ments using semi-formal notations, and how the modeling 
impacts the development and testing of reliable systems, in 
this paper, we investigate the implications of applying struc-
tured requirements specification and test generation based on 
the impact of modeling on development and testing of PLC 
systems. In this context, we study how practitioners write 
requirements using the Easy Approach to Requirements 
Syntax (EARS) [8], a simple notation for specifying textual 
requirements in a structured and unambiguous manner.
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We evaluate the EARS-based requirement modeling by 
involving human subjects. Ten individuals take part as sub-
jects in an experiment. The subjects are given three require-
ments specified in natural language and are asked to rewrite 
them manually, using the EARS notation.

This work builds upon our previous work [9], and it 
extends it by a rigorous investigation of the applicability 
and efficiency of EARS-based testing of industrial PLC pro-
grams, including a comparison of EARS-based testing of 
PLC programs with testing the same programs manually. 
The results of our study show that humans create pattern-
based requirements using semi-formal notations easily, with 
completeness being the most common issue when rewrit-
ing and using such requirements for testing. Additionally, 
we find that test generation and execution using the EARS 
requirements for PLC systems is a promising approach that 
applies to real-world industrial settings. Our results highlight 
the need for more research into how different requirement 
specifications and test design techniques for PLC software 
can influence the efficiency and effectiveness of require-
ments engineering and requirements-based testing for this 
type of software.

Preliminaries

Programmable Logic Controllers (PLCs)

PLCs are the most used logic controllers in today’s automa-
tion industry [10]. PLCs are being widely used in differ-
ent industrial applications such as supervisory systems in 
nuclear and power plants. Programming a PLC device is 
usually done via one or a combination of different program-
ming languages that are proposed in the IEC 61131-3 stand-
ard [11], that is, Function Block Diagram (FBD), Structured 
Text (ST), Ladder Diagram (LD), Sequential Function Chart 
(SFC), and Continuous Function Chart (CFC). Among all 
programming languages for PLC, FBD, and ST are our main 
focus in this study for two reasons. First, these two languages 
have gained remarkable popularity in industry, during the 
last couple of years [12]. Second, the industrial case study 
that is provided to us for this study is a supervisory PLC 
program developed in ST and FBD. ST is a text-based pro-
gramming language with a similar syntax to high-level pro-
gramming languages such as C, whereas, FBD is a visual 
programming language that is easy to use due to its graphi-
cal interface. In PLC programs, a Program Organization 
Unit (POU) is a fundamental building block that consists of 
individual software components such as programs, function 
blocks, and functions. POUs enable modular and reusable 
code, allowing for efficient organization and management 
of complex control systems within a PLC. PLC programs 
are commonly developed in an Integrated Development 

Environment (IDE) and are executed cyclically. Based on 
the provided concept in IEC 61131-3 standard, each cycle 
loop of a PLC program execution consists of 3 main stages, 
that is, read, execute, write [11]. The first stage reads all 
available inputs and stores them in the memory, whereas 
the second stage (execute) carries out the computation tasks 
without interruption. The final stage (write) updates the 
output values based on the completed computations of the 
previous stage.

CODESYS Development Environment

Developing a PLC program and simulating its behavior 
needs to be done in an IDE. Several different PLC IDEs 
have been developed by different vendors so far. One of the 
most popular IDEs in the market is CODESYS,1 which was 
initially developed by CODESYS Group in 1994. CODE-
SYS is a manufacturer-independent IDE that has matured 
by releasing numerous updates and the latest version at this 
moment is V3.5 SP18. Among all available PLC IDEs in 
the market, We have chosen CODESYS as our preferred 
IDE for several reasons. Firstly, CODESYS is very popular 
among practitioners and has almost full compatibility with 
the IEC61131-3 standard and supports all proposed stand-
ard programming languages of this standard [12]. Secondly, 
CODESYS is free for personal use and is equipped with 
good support by releasing different versions. Last but not 
least, CODESYS can execute Python scripts directly inside 
the IDE, and it is also equipped with numerous automation 
add-ons, such as test automation tools.

The official CODESYS test automation tool is called 
CODESYS Test Manager. The CODESYS Test Manager tool 
is a powerful platform designed to streamline the testing 
process for PLC programs. It offers a user-friendly interface 
that simplifies test case creation, execution, and analysis, 
significantly enhancing efficiency and accuracy in PLC test-
ing workflows. One of the key benefits of the Test Manager 
is its set of features, including predefined Test Actions, which 
automate various testing tasks and leverage the capabilities 
of the CODESYS IDE. Test Actions contain various func-
tionalities, such as simulating inputs and outputs, monitoring 
variables, triggering events, and analyzing program behav-
ior. For example, an “Assert” Test Action can be used to 
verify that a specific condition holds true during program 
execution, while a “Delay” Test Action can introduce time 
delays between test steps. These Test Actions allow testers 
to simulate real-world scenarios, validate program behav-
ior, and generate detailed test reports, ultimately facilitating 
faster and more reliable PLC testing processes. an example 
of a Test Action can be observed in Fig. 1.

1 https:// www. codes ys. com/.

https://www.codesys.com/
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EARS Semi‑structured Requirement Engineering 
Syntax

Writing the stakeholder requirements in unconstrained Nat-
ural Language (NL) is not accurate and can raise critical 
problems in lower levels of system development [8]. Aim-
ing at mitigating the ambiguity problems and increasing the 
accuracy in the process of requirements engineering, some 
practitioners argue for using other textual and non-textual 
notations [8]. Using non-textual notations demands transla-
tion of the original requirement, which can be faulty some-
times. Training overhead is another drawback of proposing 
a new type of notation. EARS is a semi-structured require-
ments engineering syntax transforming all-natural language 
requirements into one of the proposed five generic require-
ments syntax simple templates. It was initially proposed 
by Alistair et al. in 2009 [8]. EARS provides a syntax for 
transforming all-natural language requirements in one of the 
proposed five generic requirements syntax simple templates. 
The aforementioned five simple templates of EARS are ubiq-
uitous requirements, event-driven requirements, unwanted 
behaviors, state-driven requirements, and optional features. 
Moreover, EARS supports writing complex requirements 
using a combination of considered conditional keywords, 
including Where, While, and When.

Experimental Design

In this section, we report the description of the performed 
experiment, including the details of the instruction material 
and the artefacts used.

Research Questions

The main goal of this study is to investigate the process of 
requirements creation when constraining the use of NL. 
The EARS modeling notation has been adopted by other 
organizations in different sectors and countries, so it is 
a realistic model for requirements engineering and test 
creation. Since these are intellectual activities in which 
humans allocate a variety of cognitive resources (such as 

attention and effort) that one needs to use when confronted 
with challenges as they perform such tasks, our first step is 
understanding how human practitioners write such require-
ments and how these can be used for test creation.

The main goal of this study is to investigate the appli-
cability of the EARS semi-structured requirement engi-
neering syntax in the context of PLC programs. Aiming 
to achieve this goal, we formulated the following research 
questions.

• RQ1: How are the EARS semi-structured requirement 
engineering syntax and test creation applied in the con-
text of PLC programs?

• RQ2: What EARS patterns are used during the writing 
of requirements?

• RQ3: What challenges are perceived during the specifica-
tion of requirements and test creation using EARS?

• RQ4: How well do PLC test cases created from EARS 
requirements compare to test cases created by industrial 
engineers for PLC programs in industry?

Experimental Setup Overview

Aiming to achieve this study’s goal, we conduct a con-
trolled experiment that asks the participants to write three 
given requirements using EARS syntax. The participants 
can choose their preferred EARS syntax template based on 
their interpretation of the requirements. The subjects of this 
experiment are a group of ten individuals as follows: four 
experienced engineers at a large automation company in 
Sweden and Spain and six researchers and managers from 
different universities and research institutions across Europe. 
All researchers involved in this experiment are postgraduate 
students with substantial expertise in the security and safety 
of cyber-physical systems.

Object Selection

The objects of study are chosen manually on the following 
criteria:

Fig. 1  The generated test cases 
for PRG1 based on the EARS 
syntax for RI1 via the built-in 
Test Actions of CODESYS Test 
Manager tool



 SN Computer Science           (2025) 6:314   314  Page 4 of 21

SN Computer Science

• The requirements should be specified using unambigu-
ous, traceable natural language, for an engineer to be able 
to write executable tests.

• The requirements should represent different real testing 
scenarios in various areas where the IEC 61131-3 stand-
ard is used.

• The requirements should be simple to understand without 
any domain knowledge.

• The resulting test cases should be executed in the COD-
ESYS environment.

We investigated the industrial libraries a large-scale com-
pany provides, focusing on developing and manufacturing 
control systems. We identified three candidate requirements 
matching our criteria, shown in Table 1. We then assess the 
relative difficulty of the identified requirements by manually 
writing and creating tests.

Operationalization of Constructs

Requirements templates. In this experiment, we investigate 
the effect of using the EARS approach for requirements 
engineering and test creation. The proposed generic require-
ments syntax of the EARS patterns we used in this experi-
ment are structured as follows:

<optional preconditions> <optional trigger> the <sys-
tem name> shall <system response>

This simple syntax template forces the requirement engineer 
to emphasize preconditions, triggers, and system responses 
in their developed requirements. In EARS syntax, precondi-
tions and triggers are both optional, and the order of the used 
clauses is very important. The following briefly describes 
each template of EARS.

Ubiquitous Requirements (U)

A ubiquitous requirement is a type of requirement that is 
not bound to any preconditions or triggers and is always 

enabled in the system. The generic structure of this template 
is as follows:

The <system name> shall <system response>

Event‑Driven Requirements (ED)

The event-driven requirement is used only when an event 
is identified in the system. This type of requirement uses 
the When keyword. The generic structure of this template 
is as follows:

WHEN <optional preconditions> <trigger> the 
<system name> shall <system response>

Unwanted Behaviors (UB)

Requirements that are related to unwanted behaviors are 
defined using a structure extracted from event-driven 
requirements. Unwanted behavior refers to covering all 
possible situations that are not desirable and are usually a 
big source of omissions in preliminary requirements. The 
reserved keywords for this type of requirement in EARS 
are If and Then. The generic structure of this template is 
as follows:

IF <optional preconditions> <trigger>, THEN the 
<system name> shall <system response>

It should be noted that there is a difference between ED 
and UB patterns; ED focuses on expected behaviors, while 
UB is looking into undesirable scenarios. More precisely, 
the first pattern should be used to cover positive system 
behavior and the second on negative scenarios or fault 
conditions.

State‑Driven Requirements (SD)

The State-driven requirement is only active if the system 
is in a specific state. The reserved keyword for defining 
State-driven requirements in EARS is While. The generic 
structure of this template is as follows:

WHILE <in a specific state> the <system name> shall 
<system response>

Optional Features (OF)

The Optional feature requirement is designed to be used 
when the author wants to include a specific feature in the 
system. The keyword Where is considered for defining this 
type of feature in EARS. The generic structure of this tem-
plate is as follows:

Table 1  The natural language requirements used during the experi-
ment

Requirement 
ID

Requirement text

RI1 User account should be uniquely identified to a user
RI2 The software shall warn the user of malware detection
RI3 Only authorized devices are allowed to connect to the 

ICS network
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WHERE <feature is included> the <system name> 
shall <system response>

Process Challenges. We are interested in two types of chal-
lenges encountered during using EARS templates and their 
use for testing: challenges faced during the specification 
of requirements and problems when designing test cases 
for PLC systems. We performed thematic analysis [13] 
for qualitative data analysis to extract the main themes as 
reflected by the input given by each participant.

Instrumentation

One session was organized for the sake of the experiment. 
After introducing the EARS semi-formal requirement syn-
tax to the subjects of this study via a short presentation, the 
subjects were given the task of using the three requirements 
and rewriting these in EARS (to the extent they consider 
sufficient based on the given specifications). They were 
instructed to read the specifications, create requirements 
from the EARS templates, and perform tasks without verbal-
izing their thoughts out loud. The subjects were not grouped, 
and the documents needed for this experiment were provided 
digitally and in written form. Before starting the session, a 
short tutorial of approximately 10 min on EARS syntax was 
provided to the subjects to avoid further problems with the 
subjects’ unfamiliarity with the concepts used. The tutorial 
included screencasts demonstrating EARS requirements. 
Detailed information about the problem and instructions 
were provided in the experiment session.

Data Collection Procedure

As part of the instructions, subjects submitted their solutions 
in the form of a textual record documenting their work. Data 
from this experiment session was then used for quantitative 
and qualitative analysis.

Experiment Conduct

Once the experiment design was defined, the requirements 
for executing the experiment were in place. The session 
was held for one hour and preceded by a lesson on EARS 
notation. The requirements specification and testing process 
used during the conduct of this experiment corresponds to 
the methodology in Fig. 2. The first step corresponds to 
the transformation of the requirement specified initially in 
Natural Language (NL) into an EARS requirement using the 
EARS syntax (Step 1 in Fig. 2).

In the next step, we use the resulting requirement to gen-
erate test cases covering the specified behavior (Step 2 in 

Fig. 2). The final steps in this methodology are to execute 
these test cases (Step 3 in Fig. 2) and to compare the actual 
behavior with the expected result to monitor whether the 
program works as expected (Step 4 in Fig. 2).

In total, ten individuals participated in our experiment. 
Before starting the experiment, the participants were informed 
that their work would be used for experimental purposes. The 
participants had the option of not participating in the experi-
ment and not allowing their data to be used this way.

The subjects worked individually during the experiment; 
we briefly interacted with the participants to ensure that eve-
rybody understood the involved notations without getting 
involved in the writing of the solution. All subjects used the 
provided documents and their machines. The experiment was 
fixed to one hour. To complete the assignment, the subjects 
were given the same time to work on writing these require-
ments according to the given instructions. For collecting 
data, we provided a template to enforce the usage of the same 
reporting interface. By having a common template for report-
ing, we eased the data collection and analysis process.

To finish the assignment, we required the participants to 
provide the produced results as soon as they finished writ-
ing their responses. During the experiment, the subjects do 
not directly communicate with others to avoid introducing 
bias. After each individual finished their assignment, a com-
plete solution was saved containing the answers for each 
solution. In addition, we separated the data provided by the 
participants from their names. As shown in Fig. 2, the par-
ticipants in Step 1 (marked in green) are the subjects of this 
experiment, including ten individuals, including industrial 
engineers and researchers. In contrast, Steps 2–4 represent 
the case study performed by the authors of this manuscript, 
as indicated in Fig. 2 by the blue markings.

NL 
Requirement

EARS 
Requirement

PLC PRG in 
CODESYS

CODESYS Test 
Manager

EARS 
Syntax

Test 
Genera�on

Test 
Execu�on

1

2

3

Checking The 
Results

Expected 
Output4

Par�cipant Category:
Experiment's Subjects

Par�cipant Category:
Authors

Par�cipant 
Category:
Authors

Par�cipant Category: 
Authors

Fig. 2  An overview of the proposed EARS-based requirement speci-
fication and PLC testing methodology used in this experiment as well 
as the participant category of each step
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Experiment Analysis

This section provides an analysis of the data collected 
in this experiment. In analyzing the qualitative data, we 
followed the guidelines on qualitative analysis procedures 
provided by Braun and Clarke [13]. For each require-
ment, each subject in our study provided a set of EARS 
expressions. These expressions were used to conduct the 

experimental analysis and testing. For each set of tests 
produced, we provide evidence for their generation and 
execution in CODESYS. These metrics form the basis 
for our analysis toward answering the research questions.

Requirement Engineering Results

For each requirement, we have collected data about the type 
of EARS template used by each participant, the approaches, 
and the challenges participants experienced during require-
ment representation using the EARS notation. The results 
are shown in Tables 2, 3, and 4.

Participants strictly adhered to one or multiple EARS 
templates. It seems that the ubiquitous template has been 
used by all participants to model requirement RI1 and just 
in one case when representing requirements RI2 and RI3 (as 
shown in Table 2). The values in Table 2 represent the num-
ber of participants who selected each EARS template for the 
specified requirement. Participants explained that the “shall” 
statement is clearly indicated and should be used to describe 
the required behavior. However, a participant decided to use 
the unwanted behavior template for RI1 to indicate prohib-
ited behavior in a form that can be used for testing.

The event-driven and unwanted behavior templates have 
been used by participants to represent requirement RI2, 
while some participants used the state-driven pattern (as 
shown in Table 3). Participants chose to do this since they 
drafted requirements in several increments. Firstly, they 
considered how the system typically behaves (also called 
sunny-day behavior). For some participants using EARS, 
this results in requirements in the state-driven and event-
driven patterns. Secondly, some participants decided to 
specify what the system must do in response to the unwanted 
behavior, which produced requirements in the unwanted 
behavior pattern.

Table 2  Number of participants using each EARS template for the 
corresponding requirement (RI1, RI2, RI3) in the experiment

RI1 RI2 RI3 Requirement ID/EARS template

10 1 1 Ubiquitous (U)
0 5 4 Event-driven (ED)
1 5 6 Unwanted behaviors (UB)
0 0 3 State-driven (SD)
0 0 0 Optional features (OF)

Table 3  Results of the requirements writing in terms of the templates 
used by each participant for each requirement. EARS template types 
are shown using their specific acronyms as stated in Sect.  3.4 and 
Table 2

RI1 RI2 RI3 Participant ID

U, UB U, UB, ED U, SD, ED P1
U ED UB P2
U ED UB P3
U UB SD P4
U ED UB P5
U ED UB P6
U SD UB P7
U UB ED, UB, SD P8
U UB ED P9
U UB ED P10

Table 4  Results showing the main themes identified related to approaches and challenges encountered during the translation process

Main themes Theme descriptions

Requirements are not complete and clear enough for EARS translation When starting with the translation, requirements in NL are not complete 
enough to decide precisely which EARS template to use

Using single or multiple EARS templates is not clear enough, espe-
cially when using these for testing

There is a need, when using these patterns for testing, to use multiple 
and separate templates for each requirement to cover both positive and 
negative cases arising

The system perspective is not easily identifiable from the requirements It is difficult to decide which perspective to use when translating the 
EARS requirement (e.g., system, subsystem level)

The optional feature template is not applicable for the selected require-
ments

Even if the Option requirement is used for systems that include a 
particular element and variants, this modeling form was not used 
during requirement transformation using the EARS notation since the 
participants did not need to handle system or product variation
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The results in Table  2 indicate that the Ubiquitous 
requirements are straightforward, encompassing general 
system behaviors that are consistently true. The participants 
perceived these as simple to write and understand. Many 
participants found these templates intuitive because they do 
not require complex conditions or states, making them easier 
to validate and test. Based on the extracted text and a gen-
eral understanding of EARS templates, users prefer certain 
templates due to their simplicity, alignment with real-world 
scenarios, ability to handle the behavior explicitly, and flex-
ibility in specifying state-dependent and optional behaviors. 
The observed preferences reflect the templates’ alignment 
with participants’ experiences and the specific needs of the 
tested systems. We have not conducted a detailed investiga-
tion into the reasons why certain templates are preferred 
over others; this observation is solely based on the results 
of our experiment.

In addition, the thematic analysis of the notes taken by 
participants when performing these steps in requirement 
representation resulted in several main themes related to 
approaches and challenges experienced during the transla-
tion process. Several participants mentioned that the initial 
NL requirements are not complete and clear such that these 
can be used directly for testing. One participant mentioned 
the following: “What happens if the device is not authorized, 
missing failure models, startup/default/safe state...?”. This 
resulted in issues when starting with the translation process, 
especially when deciding which templates to use. Several 
participants had issues in deciding when to use single or 
multiple EARS templates to cover both positive and nega-
tive behaviors that need to be tested. One participant stated 
the following: “We could possibly use event-driven type 
requirement. At the same time, it is unwanted we could use, 
this one is quite complicated”. Some participants preferred 
the use of the “shall not” form, which has been observed 
by some participants as having an impact on the test case 
created since only a set of test cases involving the unwanted 
behavior would need to be created to show satisfaction with 
the requirement. Another observation relates to the use of an 
optional feature template, which for the given requirements 
was not used by any of the participants since there was no 
need to specify any product variation or specific features.

Transformation of EARS Requirements and PLC 
Testing

To evaluate the applicability of using EARS semi-struc-
tured syntax when creating test cases for PLC programs, 
we used three programs that implement the behavior stated 
in the three provided natural language requirements used 
in this experiment. All these three PLC programs are 
developed in CODESYS IDE using the ST programming 
language, whether by the authors or derived from the exist-
ing industrial cases. In this paper, we refer to these pro-
grams as PRG1, PRG2, and PRG3.

We used the concretization steps of the EARS expres-
sions as stated by Flemstrom et al. [14]. This happens by 
mapping the system response, condition, and events to 
the actual implementation in PLC. This contains informa-
tion on the implementation elements of a system and its 
interfaces. An engineer needs to consider this information 
and identify the signals given and their characteristics. In 
this way, we define a set of signals related to the feature 
under test. In these cases, the next step for the selected 
requirements would be to design test cases to show that 
the requirement has been met.

The process of transforming system requirements 
into EARS requirements for PLC testing is a structured 
approach, as shown in Fig. 3. It begins with the require-
ment analysis phase, where system requirements and 
design documentation are used. Next, the information col-
lected is formalized into abstract EARS requirements in 
the abstract EARS requirement construction phase. These 
requirements use logical names for entities, making com-
munication with requirements engineers easier, though 
they are not directly evaluable at this stage. The implemen-
tation analysis phase then involves mapping these abstract 
entities to actual implementation elements by analyzing 
design documents. This includes identifying the signals or 
events corresponding to the abstract entities defined ear-
lier. The process then proceeds to the EARS requirement 
concretization phase, where the abstract EARS require-
ments are transformed into concrete counterparts using 
actual signals and events from the system. This results in 
a set of concrete EARS requirements ready for the creation 
and execution of tests, as shown in Table 5.

Fig. 3  Process overview for 
transforming requirements to 
EARS for PLC testing
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To create test cases for requirement RI1, which involves 
user identification and alerting, we set up a scenario where 
the system attempts to identify a user with invalid creden-
tials, ensuring the uniqueID is FALSE. We then verify that 
the system generates an alert by checking if UniqueUser-
Account results in ResultUnique=FALSE. This involves 
preparing the system to identify users, attempting identi-
fication with invalid data, and checking for the appropriate 
alert response.

To create a test case for RI2, we simulate malicious activ-
ity in the system, ensuring that NormalActivity does not 
equal MaliciousActivity. We then verify that the Malware-
Detection component sets MalwareDetected to TRUE and 
that the system issues a warning to the user. This involves 
running the system to monitor for malware, simulating mali-
cious activity, and checking the detection and the warning 
response.

For requirement RI3, to create a test case, we simulate the 
presence of an authorized device, ensuring that it is found 
(found=TRUE). We then verify that the SearchID compo-
nent sets ConnectionAllowed to TRUE and that the system 
grants access to the device. This involves configuring the 
system to authorize devices, simulating the authorization 
of a device, and checking that access is granted correctly.

After generating the EARS-based test cases for each 
program, we execute these automatically using the COD-
ESYS test automation framework named CODESYS Test 
Manager.2 The final step in this methodology is to manu-
ally compare the actual output with the expected output to 
observe whether the program works as expected.

To clarify the key roles in each part of the experiment, 
Fig. 2 illustrates that we first conduct a controlled experi-
ment (Step 1 in Fig. 2). Subsequently, using the resulting 
EARS requirements, we perform a case study and trans-
form these requirements into test cases (Steps 2, 3, and 4 
in Fig. 2).

Test Results of PRG1

PRG1 is the PLC program we considered for testing the RI1 
requirement in the PLC environment. This program is using 
the values of the user account and user lists. Then it checks 
for unique IDs and returns an indication of whether each 
user account is uniquely identified to a user or not. A snippet 
of the PRG1 PLC program is shown in Listing 1.

To design and execute the required test cases to test the 
RI1 Requirement in PRG1, we use the transformed require-
ment from the NL requirement shown in Table 5.
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Listing 1   A listing showing part of the PRG1 PLC interface program written in the ST language in CODESYS IDE cor-
responding to the evaluation of the RI1 requirement

Based on the EARS requirement, we use two test cases 
to cover the identification of the user and the case when the 
user is not identified. Each test case includes the following 
three Test Actions: two WriteVariable Test Actions to alter 
the user and user account inputs and one CompareVari-
able Test Action that compares the actual output with the 
expected one. The generated test cases for PRG1 used to 
test the adherence of the program to RI1 requirements are 
shown in Fig. 1.

After designing the required test cases, we execute them 
automatically on PRG1 to investigate the adherence of the 

mentioned PLC program to the RI1 requirement. As can 
be observed in Fig. 4, all test cases have been executed in 
0.3 s. All executed test cases have successfully passed on 
the PRG1 program.

Test Results of PRG2

The PLC program we use for executing the generated test 
cases for RI2 in Table 1 is named PRG2. This program is 
shown as a black-box malware detection system in the PLC 

Fig. 4  Test execution results for PRG1 PLC program based on the EARS-based generated test cases for RI1
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environment that can be used to investigate the context 
of RI2. PRG2 consists of the following interfaces: two 
input signals named MaliciousActivity and NormalActiv-
ity as well as one output signal named MalwareDetected. 
When MaliciousActivity and NormalActivity signals have 
divergent information, the Malware Detection system is 
triggered, and the value of the MalwareDetected signal 
becomes True. An interface snippet of PRG2 is shown in 
Listing 2.

Listing 2   A listing showing part of the PRG2 PLC interface program written in the STlanguage in CODESYS IDE cor-
responding to the evaluation of the RI2 requirement

Considering the results of the experiment, we use the 
resulting EARS Event-driven requirement pattern as the 
most suited type of template for transforming the require-
ment from NL to EARS in the form shown in Table 5.

Based on the developed EARS requirement for RI2 
requirement, we generate two test cases for PRG2. Each test 
case consists of two Test Actions (MaliciousActivity and 
NormalActivity) that alter the value of the inputs, as well as 
one Test Action (Expected Output that compares the actual 
behavior with the expected one. The first test case checks if 

a (Malware is Detected) while the second test case checks if 
a (Malware is Not Detected)

The generated test cases for PRG2 based on the RI2 
requirement are then automatically executed using COD-
ESYS Test Manager in 1.71 s. All developed test cases have 
successfully passed.

Test Results of PRG3

PRG3 is the PLC program used to execute the generated 
test cases for RI3 in Table 1 (“Only authorized devices are 
allowed to connect into the ICS network”. This program 

consists of the following units: (1) a database of authorized 
device IDs, which is implemented using an array of IDs, (2) 
an input signal corresponding to the device ID that needs to 
be authorized, and (3) a boolean output signal (i.e., found) 
which returns True in the case of the authorized device being 
allowed to connect given the ID is known. We show a snap-
shot of this PLC program in Listing 3.

Listing 3  A listing showing part of the PRG3 PLC program written in the ST language in CODESYS IDE corresponding to 
the evaluation of the RI3 requirement
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As discussed in Sect. 5.1, different individuals trans-
formed the NL requirement into the EARS requirement in 
different forms. We use the most common form developed by 
the participants to transform RI3 to an EARS Event-Driven 
syntax pattern in the following form shown in Table 5.

Based on the aforementioned EARS requirement for RI3, 
we developed 2 test cases for Successful Authorization and 
Unsuccessful Authorization. Each developed test case con-
sists of two Test Actions, including the provision of a new 
Input ID and Comparing the actual output with the expected 
output. The generated test cases have been automatically 
executed on PRG3 using CODESYS Test Manager in 1.14 s. 
Both test cases have successfully passed after being executed 
on the PRG3 PLC program.

EARS‑Based Testing in Real‑world Industrial 
Settings

To expand our investigation of the applicability and effi-
ciency of PLC testing using EARS patterns in real-world 
industrial settings (RQ4), in this section, we extend our 
evaluation by including a real-world PLC program that is 
being used in the context of crane supervision by a large 
automation company in Sweden. To be more specific, we 
compare the EARS requirement-based test cases with real-
world test scripts that are being used by the industry for PLC 

testing. We believe the conduction of this comparison can 
reveal hidden facts about the applicability and efficiency of 
using EARS-based testing versus the current real-world PLC 
testing in the industry.

Methodology for EARS‑Based Testing in Real‑World 
Industrial Settings

The methodology we propose for using EARS-based test-
ing in real-world industrial settings consists of seven steps 
and is shown in Fig. 5. The first step is to extract the 
functional requirements from the real-world PLC program 
(step 1 in Fig. 5). The purpose and process of functional 
requirements extraction in the context of this study were 
necessary for the experiment, as we lacked requirements 
at this level. The second step is to have a team of indus-
trial PLC engineers evaluate the validity of the functional 
requirements (step 2 in Fig. 5). The next step is to trans-
form the NL requirements into EARS requirements to 
mitigate the potential ambiguity and increase the clar-
ity of the extracted requirements for the tester (step 3 in 
Fig. 5). As the next step, the EARS requirements need to 
be concretized to facilitate the test generation by convert-
ing the Inputs/Outputs (I/O) into signals (step 4 in Fig. 5). 
After having the concretized test cases, it is time to manu-
ally generate test cases via the pre-defined Test Actions 
inside the CODESYS Test Manager tool (step 5 in Fig. 5). 

Fig. 5  The proposed EARS-
based testing method for real-
world industrial PLC testing
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The next step is to automatically execute the test cases 
on the PLC program using the CODESYS Test Manager 
tool (step 6 in Fig. 5). The final step in this methodology 
is to enhance the generated test report of CODESYS Test 
Manager by measuring the code coverage automatically 
using the CODESYS Profiler tool and checking the results 
(step 7 in Fig. 5).

Real‑World Industrial PLC Program

In this section, we start by introducing the included real-
world PLC program in this study by defining its purpose and 
functionality. Then, we analyze the industrial test script of 
this PLC program and compare it to our proposed EARS-
based testing approach.

The included real-world PLC program in this work 
is called CraneNumberCheck and is shown in Listing 4. 
This simple but critical PLC program is a POU within a 

more complex PLC program that supervises the coop-
erative functionality of large industrial cranes in a port. 
This POU must check whether the crane numbers match 
or mismatch to generate a flag based on this information 
in the crane’s supervision system. As can be observed in 
Listing 4, this PLC program is developed in ST language 
and is composed of two input variables which represent 
the crane numbers and are called Crane_1 and Crane_2 
(Lines 2–6 in upper box in Listing 4). Moreover, this PLC 
program consists of two output variables called Matched_
Crane_No and out_Safe_Crane_No (Lines 7–10). The 
first one checks if the crane numbers match and are not 
equal to EmptyWord, whereas the latter checks if the 
crane number is safe and if crane numbers mismatch, this 
word is set to an empty word.

Listing 4   A listing showing the CraneNumberCheck PLC program as a real-world industrial case study in the context 
of port crane supervision program
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As can be seen in the rest of the code in Listing 4, the func-
tional logic of the PLC program consists of two main parts and 
works as follows. In the first part, the Matched_Crane_No is 
set to True if the crane numbers are equal and Crane_1 is not 
an empty Word (Lines 16–18 in the bottom box of Listing 4). 
The second part of the PLC program’s logic checks whether 
the crane numbers are matched. In case of success, the pro-
gram returns the safe crane number; otherwise, it returns an 
empty Word (Lines 20–24 in the bottom box in Listing 4).

Listing 5  A listing showing part of the real-world test script for testing the CraneNumberCheck PLC program in the 
current industry

Fig. 6  A snapshot showing the function block instantiation of Crane-
NumberCheck POU inside the main PLC program to prepare it for 
testing/
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Testing of the Real‑world Industrial PLC Program 
Under Test

The current testing process of the CraneNumberCheck PLC 
program in industry is handled by manually developing a 
counterpart testing POU in ST language. Part of the real-
world industrial test script used for testing this PLC program 
is shown in Listing 5. As can be observed in Listing 5, the 
industrial test script consists of several main steps.

It starts with the initialization of a puls starting block as 
a trigger for starting the testing process, followed by an IF 
condition for enabling the test cases one by one (Lines 1–6 
in Listing 5). The next step is initializing variables for test 
control (Lines 7–16 in Listing 5). After setting up the ini-
tialization, the next step is to define the main testing process, 
which includes setting up a delay between test steps and the 
pulse generator, followed by setting up a timer function that 
simulates the cyclic execution behavior of PLC programs 
(Lines 18–26 in Listing 5). The rest of the testing process 
of CraneNumberCheck PLC program consists of unit test 
cases that define inputs and expected output. The authors 
are responsible for artificially creating the PLC system and 
conducting the corresponding EARS-based testing. The 
EARS requirements have been independently derived from 
the functional requirements extracted during the controlled 
experiment. The subsequent transformation into test cases 
is a concretization step, involving the mapping of abstract 
EARS requirements to specific testable elements (e.g., sig-
nals and outputs) in the PLC system.

Results of EARS‑Based Testing of a Real‑World 
Industrial PLC Program

In this section, we use the proposed EARS-based testing meth-
odology (refer to Fig. 5) for testing the CraneNumberCheck 

PLC program as a real-world industrial case study. The first 
step is to extract the functional NL requirements of the PLC 
program (Step 1 in Fig. 5). The second step is to have a team of 
industrial PLC engineers evaluate the validity of the extracted 
functional requirements (step 2 in Fig. 5). Table 6 shows the 
extracted functional unit-level NL requirements for this PLC 
program, which were all validated by a team of experienced 
PLC engineers at ABB Ports and Marine in Sweden. This table 
also includes the used EARS pattern and the EARS version of 
each requirement which is described as step 3 of our proposed 
methodology in Fig. 5.

As can be observed in RQ2 and RQ3 rows of Table 6, the 
extracted functional requirements in NL can sometimes become 
complicated and hard to follow for developers while their EARS 
versions in the “Requirement in EARS” column are modular-
ized and much easier to comprehend for the PLC program 
developer/testers. Moreover, we can observe that one compli-
cated NL requirement can break into several smaller EARS 
requirements, increasing the readability of the requirements.

After having the functional requirements in the EARS 
syntax, we take the next step of our methodology, which is to 
concretize the EARS requirements to generate unit test cases 
(step 4 in Fig. 5). The procedure for concretizing the EARS 
requirements for PLC testing is simple and works as follows. 
Each I/O inside the requirement is transformed into a signal, 
which can facilitate the test generation process as the next 
step. The concretized version of each EARS requirement 
for CraneNumberCheck PLC program is shown in Table 7.

The next step in testing CraneNumberCheck PLC program 
based on the proposed testing approach is to generate test cases 
based on the concretized EARS requirements in the previous 
step (Step 5 in Fig. 5). To do this, first, we need to instantiate 
CraneNumberCheck PLC program as a function block inside 
the main PLC program. A snippet of the function block that 
we instantiated for CraneNumberCheck PLC program can 

Fig. 7  A snapshot showing 
the CODESYS Profiler report 
on gathered full coverage for 
CraneNumberCheck PLC pro-
gram using the proposed EARS-
based method (refer to Fig. 5)
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be observed in Fig. 6. As the next step, we used CODESYS 
Test Manager to design the test cases using the pre-defined 
Test Actions of this tool. After automatic execution of test 
cases on the CraneNumberCheck PLC program and using the 
CODESYS Profiler tool for measuring code coverage (step 6,7 
in Fig. 5), we gathered the following results. All the designed 
test cases with a timeout budget of 1 s have been successfully 
passed within 12 s on the PLC program under test. Moreover, 
the automatic test execution based on the proposed EARS-
based PLC testing method for real-world industrial PLC pro-
grams achieved 100% code coverage on CraneNumberCheck 
PLC program based on the CODESYS Profiler report. A snip-
pet of gathered full code coverage after testing the CraneNum-
berCheck PLC program is shown in Fig. 7. As shown in Fig. 7, 
all the covered code branches after executing EARS-based test 
cases have been marked green. The gathered results promise an 
acceptable level of applicability and efficiency of the proposed 
EARS-based testing method in the context of PLC program-
ming. However, more investigation by applying this method to 
more complicated PLC programs needs to be done to validate 
the generalizability of this claim.

EARS‑Based Testing vs Manual PLC Testing 
in Industry

Comparing the overall current manual testing process of 
CraneNumberCheck PLC program in the industry versus the 
proposed EARS-based testing mechanism reveals several 
observations, including: 

1. Need for domain-specific knowledge. One needs to have 
a good understanding of one of the IEC61131-3 program-
ming languages to develop test cases for the PLC program 
in the current industrial approach. To be more precise, 
the current manual industrial testing method requires the 
tester to write a complete PLC test script in one of the 
IEC61131-3 programming languages, creating a parallel 
POU to the main POU being tested. Additionally, the tester 
must perform continuous testing of the PLC program by 
simulating its cyclic execution behavior using one of the 
IEC61131-3 languages. This approach demands significant 
attention to detail and expertise, as it involves accurately 
mimicking the PLC’s execution cycles. Moreover, the 
manual tester needs a testing background and engineering 
experience to implement and connect all testing units prop-
erly. On the other hand, testing the PLC programs with the 
proposed mechanism using CODESYS Test Manager does 
not demand any deep knowledge of specific programming 
language and can be handled easily using Test Actions.

2. Efficiency. Considering a straightforward PLC pro-
gram like CraneNumberCheck, which is composed of 
25 Lines of Code (LOC), the corresponding real-world 
industrial test script requires 119 LOC, highlighting a Ta
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significant discrepancy in efficiency. In contrast, the 
proposed EARS-based testing approach requires only 
26 Test Actions. A Test Action in CODESYS Test Man-
ager is a predefined step or operation configured within 
test scripts to communicate with the test system. These 
actions manage tasks such as setting communication 
parameters, executing tests, and generating reports. 
Compared to traditional lines of code, Test Actions sim-
plifies the test creation. They encapsulate specific opera-
tions in a user-friendly manner, reducing complexity by 
providing clear, modular steps.

3. Manual overhead and complexity. The industry’s cur-
rent testing process for PLC programs is highly com-
plex, with significant manual intervention. Specifically, 
many features already present in the CODESYS IDE, 
such as cyclic execution, delay, test control process, 
and test start trigger, are being recreated manually. This 
redundancy exacerbates the complexity, especially with 
more intricate PLC programs. Conversely, the proposed 
EARS-based testing approach simplifies this by requir-
ing the manual definition of only the inputs and expected 
outputs. All other features are readily accessible through 
the user-friendly GUI of the CODESYS Test Manager 
tool. Additionally, the availability of pre-defined Test 
Actions within the Test Manager tool enhances the use 
of CODESYS’ features and automation capabilities for 
PLC testers. Migrating to the latest version of the COD-
ESYS IDE is an ongoing process for many automation 
companies due to its powerful features. However, the 
utilization of its testing capabilities has not received suf-

ficient attention from industry practitioners, primarily 
due to practical limitations and established preferences.

4. Test Report. The existing manual testing process in 
the industry offers testers limited information, provid-
ing only the outcomes of passed or failed test cases. In 
contrast, the proposed EARS-based testing approach 
utilizes both CODESYS Test Manager and CODESYS 
Profiler to provide a comprehensive test report. These 
include additional details like test execution time, cov-
erage reports, outcomes of individual Test Actions, test 
verdicts, and more.

5. Ambiguity and clarity of functional requirements. 
After reviewing a limited set of requirements gathered 
from the industry, it became apparent that the current 
functional requirements are predominantly at the system 
level, lacking specificity for individual code branches. 
Additionally, the complexity of industrial testing pro-
cesses relies heavily on the tester’s expertise. In con-
trast, the proposed EARS-based approach reduces the 
vagueness of requirements and encompasses both unit 
and system-level testing, potentially leading to a more 
thorough testing procedure. Furthermore, this approach 
yields requirements and test cases that are straightfor-
ward and understandable, facilitating understanding 
among all stakeholders, including testers, managers, and 
clients.

Table 7  The concretized requirements of CraneNumberCheck PLC program (refer to Fig. 4) which are generated based on the requirements in 
EARS syntax

Requirement in EARS Concretized requirement

The system shall accept two crane numbers (Crane_1 and Crane_2) as 
input parameters

if < Crane_1 & Crane_2 Exist=FALSE>then < 
SystemAcceptance>shall < Acceptance=FALSE>

UB: IF the crane numbers match and are not an empty word, THEN the 
system shall set Matched_Crane_No to true. SD: WHERE the crane 
numbers match, the system shall set out_Safe_Crane_No to a safe 
crane number. SD: IF the crane numbers do not match, THEN the 
system shall set out_Safe_Crane_No to an empty word

UB: if < Crane_1 = Crane_2 & Crane_1 & Crane_2 ≠ Empty>then 
< Matched_Crane_No>shall < Matched_Crane_No=TRUE>SD: 
WHERE < Crane_1 = Crane_2>the < System>shall < 
out_Safe_Crane_No=SafeCraneNumber>SD: IF < Crane_1 
≠ Crane_2>THEN < System>shall < out_Safe_Crane_
No=EmptyWord>

The function block shall implement the following logic: Matched_
Crane_No shall be true if Crane_1 is equal to Crane_2 and both are 
not empty words. If Matched_Crane_No is true, out_Safe_Crane_No 
shall be set to Crane_1. If Matched_Crane_No is false, out_Safe_
Crane_No shall be set to an empty word

WHERE the function block is active, the system shall: - Set Matched_
Crane_No to true IF Crane_1 is equal to Crane_2 and both are 
not empty words. - Set Matched_Crane_No to false IF Crane_1 
is not equal to Crane_2 OR either of them is an empty word. - IF 
Matched_Crane_No is true, THEN set out_Safe_Crane_No to 
Crane_1. - IF Matched_Crane_No is false, THEN set out_Safe_
Crane_No to an empty word

The system shall consider an empty word as a valid condition for not 
matching crane numbers

if < Crane_1 ≠ Crane_2>then < SystemAcceptance>shall < 
Acceptance=Empty Word>
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Discussion, Imitations, Threats to Validity

This section briefly discusses the findings of this work and 
maps them to each related formulated research question. 
This follows by discussing the limitations of this study and 
threats to validity.

Research Questions Revisited

In this subsection, we briefly review the formulated 
research questions of this study and align them with the 
corresponding results obtained.

RQ1: “How are the EARS Semi‑structured Requirement Engineering Syntax and Test Creation Applied in the Context of PLC 
Programs?”

RQ2: “What EARS patterns are used during the writing of requirements?”

RQ3: “What challenges are perceived during the specification of requirements and test creation using EARS?”
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RQ4: “How well do PLC test cases created from EARS requirements compare to test cases created by industrial engineers for PLC 
programs in industry?”

Limitations of the Study and Threats to Validity

External validity. All of our subjects are individuals who 
have limited experience with EARS. Furthermore, because 
these practitioners have experience in requirements engi-
neering, we see no reason the use of professionals with deep 
knowledge of EARS in our study would yield a completely 
different result. Professionals with experience in EARS 
would intuitively write better requirements than the ones 
written by our subjects. Our study has focused on three rela-
tively brief examples with reduced complexity, but these 
requirements represent relevant samples they would encoun-
ter in practice. We have used the CODESYS tool for auto-
mated test creation and execution. There are many tools for 
developing and executing tests, and these may give different 
results. Nevertheless, CODESYS is one of the most used 
development environments for PLCs, and its output in tests 
is similar to the output produced by other tools.

Internal validity. All subjects were assigned to experi-
ment at the same time. This was dictated by how the experi-
ment was organized, with a presentation followed by practi-
cal work. Subjects without sufficient knowledge of EARS 
may affect the final result. To avoid this problem, the session 
was structured to follow the corresponding EARS lesson. 
Another threat to internal validity could arise from using 
unclear objectives given to the subjects. To address this, we 
tested the material ourselves.

Constructs validity. Capturing the challenges of require-
ments engineering and testing is a difficult problem. We rely 
on human feedback by using a think-out-loud method that 
gives a rough measure of the challenges encountered. More-
over, a potential threat to validity is the authors’ involve-
ment in transforming requirements into test cases. While 
this ensured consistency when using a PLC development 
environment, it introduces potential biases, as the authors 
have been involved in the case study. To mitigate this, par-
ticipants have performed the initial requirement formaliza-
tion, independently.

Conclusion validity. The results of this study are based 
on an experiment using 10 participants and three require-
ments. For each requirement, all participants performed the 
study, which is a relatively small number of subjects. Never-
theless, this was sufficient to obtain various results showing 
an effect between the modeling of these different types of 
requirements. Another limitation of this experiment is that 
participants were not asked to formulate testable require-
ments using EARS patterns. However, our primary focus 
was not on their testability, as the translation step performed 
by participants did not involve direct concretization. This 
step was completed after the data collection phase.

Related Work

Requirement engineering (RE) for testing embedded sys-
tems plays a crucial role in ensuring the reliability and 
functionality of these systems, which are ubiquitous in 
various domains, including automotive, aerospace, and 
healthcare. Model-checking, a formal verification technique, 
has emerged as a promising approach for formally verify-
ing embedded system requirements. This section explores 
recent advancements and insights in the intersection of 
requirement engineering for testing embedded systems and 
model-checking.

Mavin and Wilkinson [15] reflected on the ten years of 
EARS [8] and shared some lessons learned in their review 
paper. For example, they found that EARS users manage to 
author more useful draft requirements as they incrementally 
work to find the appropriate EARS pattern. They recom-
mend that new engineers write several requirements and 
seek expert review with the application of EARS being more 
useful if one can apply the following activities: training, 
thinking, semantics, syntax, and review. In our study, we 
confirm some of these results even if we do not cover all of 
the activities stated.
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Mavin et al. [16] report on the understanding of four 
experienced EARS practitioners and their reflections on 
their experiences of applying EARS in different projects and 
domains over six years. They report the following EARS-
specific lessons learned: training should be short, use EARS 
with or without a tool, use coaching to embed learning, chal-
lenge the EARS Patterns, and question if the EARS clauses 
are necessary and sufficient.

Mäntylä et al. [17] performed a controlled experiment 
on test case development and requirement review and the 
effects of time pressure. They saw no statistically significant 
evidence that time pressure would lower effectiveness or 
negatively influence motivation, frustration, or performance.

Dalpiaz et al. [18] investigated the adequateness, com-
pleteness, and correctness of use cases and user stories for 
the manual creation of a static conceptual model. They per-
formed a controlled experiment with 118 subjects, and their 
results show that user stories work better than use cases 
when creating conceptual models. Furthermore, user story 
repetitions and conciseness contribute to these results. How-
ever, as we aim with our study, more evidence needs to be 
provided regarding the aspects that must be considered when 
selecting and using a modeling and requirement notation.

Weninger et al. [19] report the results of a controlled 
experiment in which they compared two approaches for 
defining restricted use case requirements from multiple 
perspectives, including misuse, understandability, and 
restrictiveness. Their results indicate the usefulness of the 
restricted use case modeling approach.

The paper by Levi Lucio et al. [20] introduces the EARS-
CTRL tool, an editor built on MPS, designed to aid in the 
crafting and analysis of EARS requirements for controllers. 
This editor inherently ensures well-formedness, offering 
a structured method and suggesting relevant terms from a 
glossary during the editing process. The paper discusses 
automated checks for the feasibility of requirements, utiliz-
ing a controller synthesis tool, and the generation of syn-
chronous dataflow diagrams for verified requirements. While 
it recognizes the challenges in representing complex states, 
the research emphasizes the importance of closing the gap 
between natural language requirements articulated in EARS 
and formal specifications, thereby enhancing the automation 
of requirement analysis and synthesis within an industrial 
setting.

The embedded systems industry demands specialized RE 
methods to effectively manage the complexity of require-
ments specifications and ensure high-quality outcomes. 
However, the adoption of novel RE approaches by industry 
practitioners remains slow. To address this, Sikora et al. [21] 
conducted an industrial study aimed at gaining a comprehen-
sive understanding of practitioners’ needs in RE research 
and method development. Through qualitative interviews 
and quantitative questionnaires, they explored five key 

aspects of RE approaches: (i) the use of requirements mod-
els, (ii) support for high system complexity, (iii) quality 
assurance for requirements, (iv) the transition between RE 
and design, and (v) the integration of RE with safety engi-
neering. They conducted their study with representatives 
from seven large companies across multiple branches and 
identified significant industry needs and constraints. Their 
key findings include the advocacy for increased use of mod-
els in RE, challenges surrounding the use of requirements 
models in legally binding documents, and the critical impor-
tance of method support for abstraction layers. Additionally, 
practitioners emphasized the need for solutions addressing 
requirements for quality assurance, particularly in con-
sistency, traceability, and testability. While the automated 
transition from requirements to design was not deemed a 
prevalent need, the study highlighted the importance of 
integrating safety engineering concerns into RE approaches. 
Compared to our work, this work focuses on the embedded 
systems industry, using qualitative and quantitative methods 
to identify broad RE challenges such as model usage, system 
complexity support, and safety engineering integration. In 
contrast, our work targets PLC systems, conducting experi-
ments with EARS notation to assess its effectiveness and 
flexibility in RE and testing. While Sikora et al. identify 
industry needs and constraints, our research demonstrates 
the practicality of EARS-based test cases and suggests future 
automation.

Iqbal et al. [22] underscore the key role of requirement 
validation within the automotive industry, where the accu-
racy of embedded systems’ functionalities directly impacts 
product integrity. They identify a prevailing challenge: con-
ventional validation methods often prove inefficient, result-
ing in heightened project failure rates. The authors propose 
an innovative model-based approach to tackle this issue, 
harnessing existing verification and validation frameworks. 
Central to their methodology is the integration of virtual 
prototyping, enabling early-stage error detection. Through 
meticulous case studies, the authors showcase the benefits of 
their approach, including heightened productivity, simplified 
development cycles, and improved product quality. The key 
differences between this study and our study are as follows. 
Their work focuses on the automotive industry, proposing 
a model-based validation approach that integrates virtual 
prototyping to improve early error detection, productivity, 
development cycles, and product quality. In contrast, our 
work targets PLC systems, using EARS notation to evalu-
ate its effectiveness and flexibility in RE and testing. While 
Iqbal et al. aim to enhance validation efficiency in auto-
motive embedded systems, our research demonstrates the 
practicality of EARS-based test cases and suggests future 
automation for PLC RE.

In summary, recent advancements in requirements engi-
neering for testing embedded systems have witnessed the 
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integration of model-checking techniques to improve for-
mal verification and test case generation processes. These 
developments underscore the importance of leveraging test 
automation methods to ensure embedded systems’ reliability 
and safety.

Conclusions and Future Work

In this paper, we have conducted an experiment in require-
ments engineering and testing using EARS notation for 
PLC systems. In the requirements engineering part of 
our experiment, we found out that most participants pre-
ferred the EARS ubiquitous pattern for transforming the 
RI1 requirement from NL to the EARS syntax, whereas 
the unwanted behavior and event-driven patterns were the 
most popular types for RI2 and RI3 requirement transfor-
mations. It was observed that different individuals used 
different EARS patterns for transforming the same require-
ment based on their interpretation, which shows an accept-
able level of flexibility in EARS syntax. In the testing 
part of our experiment, we assessed the use of EARS pat-
terns for PLC testing in two phases. Initially, we executed 
EARS-based test cases on three PLC programs written 
in the ST language, which were developed based on the 
requirements included in our study. Subsequently, we 
introduced an EARS-based testing methodology to real-
world industrial PLC programs. The results from these 
tests and the subsequent comparison with traditional PLC 
testing methods indicate that EARS-generated require-
ment-based test cases for PLC programs are effective and 
offer an accessible means for PLC testers to express test 
specifications.

In future work, we want to investigate the applicability 
of using EARS in PLC requirement engineering on other 
levels of testing and by including more PLC programs. 
Inspection of the impact of choosing different EARS tem-
plates for describing the requirements over the quality of 
the generated test cases can be another future direction 
of our work. Moreover, we want to automate our solution 
and generate test cases from the created EARS require-
ments based on existing functional and non-functional 
requirements.
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