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Abstract—Trustworthy decision support systems utilizing a
multimodal approach (MMA) integrate diverse data modalities
to enhance robustness, transparency, and fairness in artificial
intelligence (AI) applications. In this study, we present an MMA
for decision support in the Air Traffic Management (ATM)
domain, particularly within Remote Digital Towers (RDTs).
RDTs replace traditional control towers with AI-driven digi-
tal solutions, enhancing operational efficiency. Our approach
addresses key multimodal challenges—translation, alignment,
and co-learning—by implementing (a) an open-vocabulary-based
object detection model for video processing and (b) an audio-
to-text transcription and semantic word identification model.
The YOLO-World deep-learning model is employed for ob-
ject detection, while audio data analysis takes advantage of
a benchmark data set, semantic identification techniques, and
explainability. Additionally, the system integrates robust ma-
chine learning techniques, including data augmentation and
perturbation, to maintain consistent performance across varied
operational conditions. This proof-of-concept demonstrates the
potential of multimodal AI systems to enhance decision support
and improve safety in ATM environments.

Index Terms—Decision Support, Multimodal, Air Traffic Man-
agement, ATM, Remote Digital Tower, RDT.

I. INTRODUCTION

The concept of trustworthy decision support systems incor-
porating a multimodal approach (MMA) has many aspects,
encompassing robust and resilient learning, transparency, fair-
ness, and human-machine teaming. MMA is defined when it
involves multiple modalities, where each modality contains
different statistical properties in the data generation process
or in the form of the data. Multimodal data are often het-
erogeneous, and some challenges dealing with MMAs are
representation, alignment, translation, fusion, and co-learning
[1]. It is an essential aspect of trustworthy Artificial In-
telligence (AI) systems, teaching computers to process and
synthesize information from various inputs—visual, auditory,
textual, etc. Few surveys have been conducted within these
domains, e.g., Moujahid et al. reviewed multimodal magnetic
resonance imaging scans for segmentation [2], Fereidoonian
et al. presented a study on human activity recognition using
multimodal machine learning [3], etc.

This study was supported by the following projects: 1) TRUSTY, financed
by SESAR JU under the EU’s Horizon 2022 Research and Innovation
programme, Grant Agreement No. 101114838; 2) Trust_Gen_Z, funded by
VINNOVA, Diary No. 2024-01402.

In this paper, we have demonstrated an MMA for decision
support in the Air Traffic Management (ATM) domain. In
ATM, Air Traffic Control Officers (ATCOs) involve complex
multi-activity, which usually impacts psychology [4]. In a
study with ATCOs, the authors fused multimodal neurophysi-
ological data to assess the impact of stressful events on them
[5]. Modi et al. presented a review on intelligence traffic
management applying machine learning (ML) algorithms [6].
Remote Digital Towers (RDTs) replace physical towers by
incorporating digital technologies as tools to assist tower
controllers, for example, runway and taxiway monitoring and
adaptive management of critical situations. To improve their
abilities, digital towers should be able to take benefit of digital
images, such as computer vision, to automatically recognize
flying objects (e.g., aircraft, birds, drones, etc.) without persis-
tent monitoring by human operators. As the objects are being
considered as videos, this method can deal with processing the
time frames of the videos. The Single Shot multi-box Detector
[7] was used to detect objects which are faster than YOLO [8].
The framework described by Schumann et al. is used to detect
a moving object by subtraction of the background and frames
[9]. Jiang et al. mentioned in a review study that these type of
methods run faster than R-CNN [10] and YOLO [11], although
the accuracy might be lower [8].

Recent advancements have highlighted the critical role of
ML in aircraft and drone detection, enabling accurate tracking
and improved response times [12]. Studies have also examined
the visual implications of digital tower technologies in ATCOs,
demonstrating the importance of ensuring safety and clarity in
visual displays [13]. An innovative example in RDTs is the
integration of visual spectrum and infrared fusion technolo-
gies, coupled with optical tracking, to enhance performance
under restricted visibility conditions [14]. Automated speech-
based service request systems, which recognize callsigns, input
commands, and support digital ATC systems, are another AI-
driven innovation. These systems reduce ATCOs’ workload
and improve usability, particularly compared to traditional
manual methods [15]. Research into multimodal augmenta-
tions has also demonstrated their potential in single remote
tower contexts, improving controllers’ situational awareness
and operational performance under diverse conditions [16].

The objective of this study is to investigate and develop a
multimodal AI solution that will be trustworthy in terms of
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transparency (i.e., the model is interpretable) with the aim of
accessibility of user’s decision. Here, the MMA addresses 1)
translation, 2) alignment, and 3) co-learning aspects through
two approaches: a) a vocabulary-based object detection model
from video, and b) an audio-to-text transcription and semantic
word identification model. Thus, the paper presents a proof-
of-concept of an MMA for decision support in the RDTs
environment. The system consists of object detection and
audio data analysis for two scenarios: enhanced runway and
taxiway monitoring, and adaptive management of critical situa-
tions. The YOLO-World, a deep-learning pre-trained model, is
considered for object detection. For audio-to-text transcription,
we have generated a benchmark dataset as an example-based
or dictionary model. Different methods, such as Word2Vec
[17], LIME (Local Interpretable Model-agnostic Explanations)
[18], and SHAP (Shapley Additive Explanations) [19] tools
are used for identification of semantic meaning. The study
also incorporates the development of robust ML through better
calibration, data augmentation and perturbation to ensure
consistent performance under normal, long-tail and unusual
conditions.

II. SCENARIO-SPECIFIC CHALLENGES AND SOLUTIONS

The MMAs for RDT operations are explored and validated
through the TRUSTY1 project. This solution is designed to
support ATCOs by improving situational awareness in runway
and taxiway monitoring. Using multimodal data inputs such
as video feeds, audio signals, and communication data, the
AI processes these streams to detect high-risk situations, such
as runway incursions or the impact of adverse weather and
promptly directs the ATCO’s attention to critical scenarios.

Human operators play a vital role in developing trustworthy
AI systems. Hence, we have focused on the human-centred
MMA design for XAI, which addresses the following issues:
(1) identify assumptions and requirements of the RDT domain,
(2) marginalize the requirements as components, (3) rational-
ize and realize the requirements, and (4) develop explainable
ML models to embody the marginalized components. Several
workshops with the ATCOs are conducted to design user-
acceptable explanations so that the requirements of the XAI
design are met. One of the important suggestions from ATCOs
is the clarity of AI explanations, i.e., the explanation should
not be diluted with too much information.

A. Scenario 1: Enhanced Runway and Taxiway Monitoring

Context: In an RDT environment, ATCOs are required to
manage multiple remote airfields simultaneously. This includes
monitoring runway and taxiway conditions to ensure safe and
efficient aircraft movements.

Challenges: In multi-airfield RDT environments, ATCOs
face significant cognitive demands when monitoring run-
ways and taxiways. Unauthorized vehicles, debris, or adverse
weather conditions, such as fog or wind shear, can increase
the risk of runway incursions. Traditional systems often rely

1https://research.dblue.it/trusty/

on static sensors or basic video feeds, limiting the accuracy
and immediacy of anomaly detection, especially under low
visibility or dynamic conditions.

MMA Solution: The TRUSTY system applied MML, inte-
grating high-definition video feeds and audio communication
data to enhance monitoring. The AI employs object detection
on live video streams, supported by Explainable AI (XAI)
technologies that offer detailed reasoning for anomalies. For
instance, if an unauthorized vehicle enters the runway, the sys-
tem cross-references visual inputs with contextual audio cues
(e.g., communication logs) to flag the intrusion and pinpoint
its location on the ATCO’s interface. The robustness of MMA
ensures accurate detection even in challenging conditions, such
as poor lighting or weather interference.

B. Scenario 2: Adaptive Management of Critical Situations

Context: Different operational events and situations signif-
icantly impact air traffic operations, necessitating real-time
monitoring and adaptive management to ensure safety. In an
RDT setup, ATCOs rely on accurate situational information
and clear communication of potential impacts on operations.

Challenges: Critical incidents, such as sudden changes
of wind, bird strikes, etc., significantly impacting air traffic
operations and posing safety risks. In RDT settings, ATCOs
must rely on precise, real-time weather updates, information
on critical incidents, and effective communication to quickly
adjust protocols. Traditional systems may struggle to syn-
thesize data from pilot communications, leading to delayed
responses or misinterpretation of critical information.

MMA Solution: The TRUSTY AI integrates video and audio
data to detect and manage sudden wind changes and criti-
cal situations proactively. By analyzing pilot communications
(e.g., reports of wind shear, bird strikes, engine failures, etc.),
the system identifies potential risks and generates alerts with
detailed explanations of the predicted impact on air traffic
operations. These alerts enable ATCOs to adjust take-off and
landing procedures proactively and communicate instructions
effectively to pilots.

III. MULTIMODAL APPROACH FOR REMOTE DIGITAL
TOWERS

The overall MMA approach for RDT solutions is shown
in Fig. 1. Here, the tasks start with problem formulation
and datafication, i.e., data processing and feature extraction;
selecting ML algorithms; classifiers (e.g., object detection
model) and evaluation of individual classifiers, i.e., algorithm
selection, tuning, training, and validation; and finally, compar-
ison and validation of the output models. For the translation
of video data, the YOLO-World model, which is an Open-
Vocabulary Object Detection (OVD) model, is considered. For
audio, a benchmark dataset of audio transcription is generated
as an example-based or dictionary model. Computer vision and
deep learning models have been used for implicit alignment,
and explicit alignment was achieved through a rule-based
approach. Co-learning is complementary information sharing
across the different modalities using transfer learning. Using
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Fig. 1. Overall approach of MMA for RDT operations.

pre-trained models as a transfer learning approach, this study
has not only shared the information but also learned.

A. Video and Vocabulary

In the airport surveillance setting, objects can vary sig-
nificantly in size or be partially hidden or unclear, making
detection a difficult task. For object detection, the YOLO-
world model is exploited, which is a cutting-edge system
built on Ultralytics YOLOv8, designed for OVD [20]. Instead
of relying on a fixed list of known objects (like “dog” or
“car”), OVD uses descriptive text or general knowledge to
recognize objects it has never seen before, which makes it
more flexible and capable of handling a wider range of tasks
[21]. The study uses a lightweight YOLO architecture, a
re-parameterizable vision-language path aggregation network,
and a prompt-then-detect paradigm (a strategy for increasing
the efficiency of open-vocabulary object detection), allowing
for real-time inference, which is easy to deploy. YOLO-
world is also pre-trained with region-text contrastive learning
on large-scale datasets, including detection, grounding, and
image-text data, allowing it to perform well in zero-shot cases
on the LVIS dataset (a benchmark for large vocabulary in-
stance segmentation). It can also be fine-tuned for downstream
tasks such as traditional object detection and open-vocabulary
instance segmentation [20]. The workflow is illustrated in the
diagram provided in Fig. 2.

Fig. 2. Workflow of object detection from video data.

For the detection and annotation of objects, we have used
Supervision2, which is an open-source Python library designed
to streamline and simplify the development of computer vision
applications. It comprises many tools and functionalities that
enhance the efficiency and effectiveness of working with
vision models, particularly in the context of object detection
and annotation. Some of its key features are the integration
of various object detection models, such as Ultralytics YOLO
and Transformers. Developers can easily load and use this pre-
trained model without customising it with their own dataset.
Rich sets of annotators for visualising and labelling detections,
like bounding boxes, segmentation masks, and labelling ob-
jects with confidence scores, support for object tracking, and
efficient handling of large datasets, etc., are great features of
Supervision.

1) Rule-based Approach: Object detection with a set of
constraints approach is used to detect objects in videos em-
ploying specific rules or limitations. For this purpose, the
three regions of interest, the runway, the taxiway, and the sky,
are specified in the videos. Several constraints are employed,
which include:

• Spatial Constraints — Detecting objects only within a
specific region, e.g., detecting aircraft, animals, or vehi-
cles only within a designated zone.

• Object class Constraints — Detecting specific types of
objects, e.g., detecting only aircraft.

• Temporal Constraints — for effectively tracking objects
to be present for a certain duration in the scene.

• Environmental Constraints — specific conditions are ig-
nored for detections, e.g., low light, occlusion, etc.

Based on these constraints, several dangerous and non-
dangerous cases and their associated rules are formulated.
Table I represents some examples of these events and rules.

The algorithm for object detection with bounding boxes for
dangerous and non-dangerous cases is presented in Algorithm
1.

B. Audio and Text Data

The proposed solution incorporates advanced AI techniques
to analyse audio and transcribed communication data, enabling

2https://github.com/roboflow/supervision
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TABLE I
EXAMPLE OF EVENTS AND RULES ASSOCIATED WITH DANGEROUS AND NON-DANGEROUS CASES FOR OBJECT DETECTION.

Event Condition Dangerous Case Non-dangerous Case
An aircraft
stopped on the
runway.

No other objects on the runway ex-
cept an aircraft.

If the aircraft stopped for ≥ threshold sec-
onds on the runway, then the bounding box
is Red.

If the aircraft is staying at the edge of the
runway or the aircraft is moving or the
aircraft is holding short (< threshold sec)
of the runway, then the bounding box is
Green.

An aircraft lands
and stops on the
runway.

No other objects are on the runway
while an aircraft is landing.

If the aircraft stops for ≥ threshold seconds
either on the runway or at the threshold
between the runway and taxiway, then the
bounding box is Red.

If the aircraft is moving or the aircraft
initiates a go-around, then the bounding
box is Green.

Birds or Drones
are present at
the runway
threshold.

The runway is empty, or an aircraft
is on the runway, or an aircraft wants
to land.

If there are folks of birds or drones at the
threshold of the runway, then the bounding
box on the birds, drones and/or aircraft on
the runway is Red.

If the birds or drones are away from the
threshold or flying high in the sky, then the
bounding box on the birds, drones and/or
aircraft is Green.

Vehicle, animal
or human on the
runway.

There is a vehicle, animal or human
on the runway. There is an aircraft
on the taxiway that wants to take off
or an aircraft that wants to land.

If there is a vehicle, animal or human on the
runway (moving/stopped), then the bounding
box on the vehicle, animal, human and/or
aircraft is Red.

When the vehicle, animal or human exits
the runway to a safety margin, then the
bounding box on the vehicle, animal, hu-
man and/or aircraft is Green.

A smoke or fire
event near the
runway.

There is smoke near the runway, and
there is an aircraft that wants to land.
Or there is an aircraft catching fire
and smoke.

Because of the smoke, there is low visibility,
so the bounding box of the smoke area is
Red. In the case of an aircraft on fire, the
bounding box of that aircraft is Red.

If the smoke is outside some threshold
distance, the bounding box of the smoke
area is Green.

real-time monitoring and situational awareness in RDT oper-
ations. By processing pilot and ATCO communications, the
system detects critical patterns and anomalies, such as sudden
weather changes or operational irregularities, ensuring timely
and precise decision-making in complex air traffic scenarios.

The audio and text data processing workflow in the
TRUSTY solution with MMA consists of three major stages,
as depicted in Fig. 1. The three stages are: i) transcription of
pilots’ radio messages, ii) classification of transcriptions for
high-risk situations, and iii) generation of an explanation for
the classified transcription. Each stage is described briefly in
the sub-sections below and illustrated in Fig. 3.

Fig. 3. Workflow of audio transcription and text classification with specific
models.

The first step in the approach for audio data is to transcribe
pilots’ radio messages into text using the WhisperATC model
[22], which is a variant of OpenAI’s Whisper model [23]. This
specialized Automatic Speech Recognition (ASR) system was

trained on labelled data [23] from the ATCO23 project, which
provides a diverse dataset of real-world air traffic communi-
cations. Given the noisy and domain-specific nature of pilot-
ATCO radio message exchanges, WhisperATC was fine-tuned
to handle such variability effectively. However, the context
of RDT differs from that of physical towers, which is also
quite rare in the ATM domain, resulting in scarce pilot-ATCO
radio messages and transcriptions. To bridge this gap, synthetic
transcriptions were generated using Large Language Models
(LLM), ensuring that the RDT-specific context remains well-
represented and sufficient data. The synthetic transcriptions
were lastly validated and annotated by aeronautical experts
and an ATCO to ensure accuracy and operational relevance.

After preparing the pilots’ radio message transcriptions, the
next step in the MMA is to classify the transcriptions into
high- and low-risk situations using a fine-tuned Google-BERT
model [24]. A critical component of this process is Named
Entity Recognition (NER), which identifies and extracts key
entities from transcriptions, such as call signs (e.g., AF123),
measurements (e.g., altitude 3000 feet), operational situations
(e.g., engine failure or wind shear), and other contextual
information critical to air traffic operations. These extracted
entities serve as valuable input to understand the operational
context and informing the classification task.

The Google-BERT model is trained on a rich dataset
combining real-world and synthetic transcriptions. Here, the
synthetic transcriptions are generated using LLM and curated
by domain experts, covering a wide range of scenarios. Here,
the synthetic dataset complements the scarcity of trainable
real-world transcriptions in critical situations with all possible
variations. These include high-risk situations such as occupied

3https://www.atco2.org/
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Algorithm 1 Object detection with bounding boxes
input: videos of a specific event and pre-trained YOLO-World

model.
output: object(s) detected with bounding boxes indicating

dangerous or non-dangerous cases.
1: initialize an empty list for filtered detections.
2: define constraints:

a) set allowed object classes.
b) define the region of interest (ROI).
c) set a confidence threshold.

3: for each detected object in the video do
4: get the detected object’s class, confidence score, and

bounding box coordinates.
5: apply constraints

a) check if the object belongs to the target classes.
b) verify that the confidence score is above the
threshold.
c) ensure the object is within the defined region
of interest.
d) if all constraints are met, add the object to the
filtered list.

6: draw bounding boxes, labels, and colours (red or
green)

for valid objects in the image.
7: end for
8: save the coordinates of the boxes and display the pro-

cessed video.
return list of valid detections, i.e., bounding boxes with green

and red colors.

runways, low fuel alerts, and mechanical failures, as well as
low-risk conditions like touch-and-go manoeuvres or standard
communication exchanges. By incorporating NER, the model
can identify and focus on these critical elements, ensuring that
even subtle cues in the text contribute to accurate classification
outcomes.

The classification is evaluated using standard accuracy met-
rics, with higher accuracy indicating the system’s ability to
distinguish between high- and low-risk situations reliably. By
integrating NER into the pipeline, the Google-BERT model
can also capture nuanced patterns in the data, such as specific
call signs associated with urgent messages or measurements
indicating unsafe conditions. This approach not only improves
the robustness of the classification process but also provides
ATCOs with more contextually relevant information, aligning
the AI outputs with the complex and dynamic needs of the
ATM domain.

To improve the transparency and explainability of the clas-
sification process, explanation techniques such as LIME [18]
and SHAP [19] are employed. These methods identify and
highlight the most relevant words or phrases in the transcrip-
tions that contribute to the classification of high- or low-risk
situations. For example, in a high-risk scenario involving wind
shear, terms like wind and shear would be annotated as critical
contributors. By providing these explanations, the system not

only intends to enhance user trust but also facilitates validation
and feedback from domain experts, ensuring alignment with
operational expectations [25].

IV. RESULTS AND EVALUATION

MMAs, both for video and audio data, are evaluated sepa-
rately with quantitative evaluation methods. The output of the
exploited models and the evaluation results are presented in
the following sections.

A. Evaluation on Video Dataset

Object detection and annotation of supplied videos using
the YOLO-world model gave us a good result, as some of the
samples of the resulting videos are presented in Fig. 4.

For the evaluation, several metrics have been considered,
i.e., Intersection over Union (IoU), Mean Average Precision
(mAP), Precision and Recall. The IoU is a metric used to
measure the overlap between the predicted bounding boxes and
the ground truth bounding boxes drawn using the Computer
Vision Annotation Tool. To calculate the IoU in this context
the following steps are considered:

1) For each detected object, the YOLO-world model gener-
ates a predicted bounding box.

2) The predicted bounding box is compared to the ground
truth bounding box for that object.

3) The IoU is calculated as the area of overlap between the
predicted and ground truth boxes divided by the total area
covered by both boxes.

The mAP is a commonly used metric to evaluate the
overall performance of an object detection model. It considers
both the precision and recall of the model across different
IoU thresholds. To calculate mAP, the following steps are
considered:

1) For each IoU threshold, the model’s precision and recall
are computed.

2) The average of these precision values is taken to get the
Average Precision (AP) for that IoU threshold.

3) The mAP is then calculated by taking the mean of the
APs across all the IoU thresholds.

Precision measures the fraction of predicted detections
that are true positives, and Recall measures the fraction of
ground truth objects that are correctly detected. The standard
deviations (σ) of both the Precision (σPrecision) and Recall
(σRecall) values provide a measure of how stable these metrics
are across the different IoU thresholds.

TABLE II
CLASS DISTRIBUTION BETWEEN GROUND TRUTH AND DETECTED

OBJECTS.

Category Truck Aeroplane
Ground Truth Class Distribution 992 1084

Detected Object Class Distribution 992 1086

Here, the evaluation data and results for the object detection
analysis are presented in Tables II and III for one original
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Fig. 4. Result of object detection within the region of interests.

and one object-detected video. These metrics help evaluate the
overall quality and robustness of the object detection model.
In addition, the object detection model performed with a
high mAP score of 0.9829 (98.29%) that indicates the model
is performing very well at almost accurately detecting and
classifying the objects of interest.

TABLE III
SUMMARY RESULTS OF IOU AND OTHER METRICS OF OVERALL

BOUNDING BOXES.

IoU Threshold Precision σPrecision Recall σRecall

0.1 0.9940 0.0707 0.9960 0.0634

0.2 0.9940 0.0707 0.9960 0.0634

0.3 0.9936 0.0715 0.9956 0.0642

0.5 0.9837 0.0989 0.9857 0.0940

0.75 0.9493 0.1386 0.9513 0.1357

B. Evaluation on Audio Dataset
The MMA for audio-to-text transcription and classification

incorporates quantitative evaluations to ensure its reliability
and usability. For transcription, the Word Error Rate (WER)
is used as the quantitative metric, measuring the accuracy
of transcribed text against the ground truth. WER quantifies
errors by comparing the trained model’s predicted transcription
with the reference (ground truth) transcription and represents
these errors as a percentage of the total number of words. The
formula for calculating WER is structured as (1) [22]:

WER =
Substitutions+Deletions+ Insertions

Total Words in Reference
(1)

Here, the three different errors are addressed:
• Substitution: A word from the reference transcription is

replaced by an incorrect word in the predicted transcrip-
tion.

• Deletion: A word present in the reference transcription is
missing from the predicted transcription.

• Insertion: An extra word appears in the predicted tran-
scription that does not exist in the reference transcription.

This metric provides a comprehensive assessment of tran-
scription accuracy by considering all possible error types.

For classification, regular accuracy is the performance metric,
reflecting the model’s ability to correctly label transcriptions
into high- and low-risk categories. These evaluations provide
a robust assessment of the system’s overall performance.

The first evaluation was done for audio transcriptions with
the WhisperATC model for transcribing pilots’ radio messages
WER as the primary metric. The results indicated a WER
of 25.67%, meaning that 25.67% of the words in the tran-
scriptions differed from the reference transcripts due to sub-
stitutions, deletions, or insertions. While this WER suggests
room for improvement, it is within an acceptable range for
handling noisy and domain-specific air traffic communications,
where overlapping speech, radio static, and varying accents
can affect ASR performance. The WhisperATC model, trained
on ATCO24 corpus, demonstrated robustness in handling real-
world pilot-ATCO exchanges despite these challenges. Future
improvements, such as domain-specific fine-tuning or addi-
tional training on augmented datasets, could further reduce
the WER and enhance transcription reliability for downstream
classification tasks.

As the risk classifier, the Google-BERT model was evalu-
ated on a dataset consisting of 38 selected audio transcriptions,
with 30 samples used for training and 8 samples reserved
for testing. The model achieved an accuracy of 75.00%,
correctly classifying 5 high-risk cases and 1 low-risk case
while misclassifying one low-risk case as high-risk and one
high-risk case as low-risk. The precision of the model was
83.33%, indicating that 83.33% of the instances predicted
as high-risk were high-risk. The recall was also 83.33%,
meaning the model successfully detected 83.33% of all actual
high-risk cases without missing any. Additionally, the F1-
score, which balances precision and recall, was recorded
at 83.33%, highlighting a well-balanced performance. The
confusion matrix is illustrated in Fig. 5. These results suggest
that the model effectively identifies high-risk situations while
maintaining a moderate level of false positives. However,
further improvements in model generalization may be needed
with a larger dataset and additional fine-tuning.

Lastly, explanations are generated for both high- and low-

4https://github.com/idiap/atco2-corpus
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Fig. 5. Confusion matrix for risk classification of transcribed audio messages.

risk situations from the classified transcriptions. Two examples
of explanations on classified transcriptions are illustrated in
Fig. 6.

(a) High Risk

(b) Low Risk

Fig. 6. Examples of explanations on the classification of audio transcriptions.

V. CONCLUSION

The main objectives of this study were to investigate and
develop an MMA for AI solutions in RDTs. The study has
also considered the trustworthiness of the MMA in terms
of transparency (i.e., the model is interpretable), and human-
centred explainability. Two operational use cases are consid-
ered during the development: 1) enhanced runway and taxiway
monitoring and 2) adaptive management of critical situations.
For the first use case, object detection and event annotation
from video is employed. The audio data transcription and
semantic meaning identification model is developed for the
second use case. For both use cases, state-of-the-art deep
learning models are considered with a rule-based approach
for bounding box detection through computer vision and
explainable AI algorithms.

The proposed MML approach incorporates video and audio
modalities through an interface for ATCOs as shown in Fig.
1. One possible improvement could be multimodal integration
using late fusion approaches by weighting visual and audio
inputs differently based on context. In this work, YOLO-World
is used since it is an efficient and practical model with zero-
shot learning capability. Further, investigations will be carried
out to compare YOLO-World with Vision Transformers. Also,
transformer-based multimodal architectures such as CLIP or
Perceiver will be investigated for visual and audio feature
alignment.

ATM is a safety- and time-critical domain where ATCOs
do not want to be overwhelmed with information [25]. Hence,

for both video and audio modalities, simplified explanations
are generated with the bounding box and highlighted texts.
The system’s trustworthiness can be improved by expanding
on explainability techniques, e.g., counterfactual explanations;
however, counterfactual explanations are not favourable in
operational settings. Explanations with bounding boxes are
simple explanations for ATCO, whereas AI system developers
may be interested in understanding model decision-making
based on the heat-map-based attention method and counter-
factuals.

The initial experiment shows promising results with a high
score of 83% according to the evaluation. It is noteworthy that
the videos and the audios were developed through brainstorm-
ing sessions with air traffic controllers. Subsequently, these
datasets were internally validated by aeronautical experts, with
a final review conducted by an ATCO. The proposed MMA
shows a high potential for developing AI solutions in RDTs.
However, one limitation is that the LLM used in this study was
not specific to aviation and might require other specific adjust-
ments for remote tower operations. Also, there is a scarcity
of video data in real RDT environments, and these datasets
are often not publicly accessible. Hence, our contribution is
the benchmark dataset that we have generated through the
TRUSTY project. In the future, environmental conditions such
as fog, night-time, glare, etc., will be integrated to ensure
dataset diversity. These conditions will help to avoid AI bias
in RDT environments across different weather conditions and
operational scales, as well as impact detection accuracy in
predicting potential hazards such as runway incursions. Thus,
this paper presented a proof of concept based on benchmark
evaluation, with a follow-up work focusing on user evaluation.
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