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Abstract

It is a standard engineering practice to design feedback-based control to have a system follow a given trajectory. While the
trajectory is continuous-time, the sequence of references is varied at discrete times, which may not be periodic. In this paper,
we propose a method to determine the discrete-time references which minimizes a weighted L2 distance between the achieved
trajectory and the target trajectory. Also, we consider any arbitrary sequence of sampling instants. The proposed method is
then assessed over different simulation results, analyzing the design parameters’ effects, and over an unmanned aerial vehicle
(UAV) use case.
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1 Introduction

The majority of the engineering applications around us
utilizes feedback-based control mechanisms. A classic
approach is to design a reference signal to be tracked
and then regulate control actions to achieve a desired
system’s behavior. Normally, the desired trajectory is a
continuous-time function, since it represents a motion
in the physical world. However, the reference fed to the
system is in discrete-time, since it is computed by a dig-
ital system. Also, standard approaches assume that the
discretization of time is periodic. Instead, the method
proposed in this paper allows the references to be sam-
pled aperiodically, changing at any time instant and de-
termining the optimal references that minimize the L2

distance to a given trajectory.

This is a common problem, for example, in robotics
applications, where continuous reference trajectories
should be followed, while the robot can be controlled
only by selecting a discrete set of points – also called
waypoints – that are used as a discrete reference for
the robot. Such points must be selected with care to
make the robot follow the actual continuous reference
trajectory in a precise way. A natural choice for such
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waypoints would be to pick them as samples – not neces-
sarily periodic – on the continuous reference trajectory.
However, this may not lead to very accurate results.
Figure 1 shows a scenario where a mobile robot is given
a continuous trajectory to follow but can only utilize a
finite number of waypoints (five in this instance) to ap-
proximate it. Sampling the waypoints on the reference
trajectory (top graph) results in a significant tracking
error. The focus of this paper is to investigate the formu-
lation of discrete-time references to minimize tracking
errors and enable optimal tracking of the original contin-
uous trajectory. The results obtained with the proposed
approach are shown in the bottom graph of Figure 1.

The usage of sampled-data techniques for the control of
linear systems is virtually ubiquitous, thanks to the flexi-
bility given by the adoption of digital implementations of
the control system (Alur et al., 2007; Chen and Francis,
2012; Ragazzini and Franklin, 1958). However, even if
sampled-data techniques provide several advantages, the
digital implementation sets limitations and constraints
on the information available for feedback (Seron et al.,
2012).

In the past, similar problems have been addressed by
designing H2 or H∞ hybrid control systems (Chen
and Francis, 1995; Geromel et al., 2019; Hara et al.,
1994). Most of these approaches focus on the solution
of optimal and robust control problems via convex op-
timization methods whose constraints are expressed by
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Fig. 1. Illustrative example.

LMIs (Boyd et al., 1994), that ensure the optimal per-
formance (Geromel and Souza, 2015). However, such
approaches mostly focus on the optimal design of the
digital controller. In this paper, we focus instead on
the computation of the optimal reference signal in the
discrete-time given a desired trajectory of the system
output, assuming that a control loop system has been
designed. The proposed approach is simpler than other
approaches, e.g., Geromel et al. (2019); Geromel and
Souza (2015), as it provides a closed-form solution with-
out solving an optimization problem. Also, our problem
cannot be cast as a standard optimal sampled-time
LQR design (Anderson and Moore, 2007; Levis et al.,
1971) as we exploit the explicit information of the future
trajectory to be tracked.

The generation of a discrete-time reference signal can be
thought of as similar to the problem of waypoint genera-
tion in robotics systems (Hildebrandt et al., 2020; Hwang
et al., 2003; Lau et al., 2009; Liu and Sun, 2014;Mellinger
and Kumar, 2011; Penicka and Scaramuzza, 2022). Prac-
tical applications range frommobile robotics where way-
points are three-dimensional positions in space (Wang
et al., 2020) to robotic manipulators that use waypoints
defined within a more general state space (Yang et al.,
2021). In fact, the definition of waypoints implicitly de-
fines a timing law of the reference trajectory. For ex-
ample, in the UAV context, optimization-based tech-
niques have been used to find the trajectory in clut-
tered environments while being robust to communica-
tion losses (Higgins et al., 2022). The contribution of
this paper is inspired by this waypoint generation prob-
lem, but it abstracts from it, providing a more general
solution.

This paper extends our preliminary work in (Bini et al.,
2022) by proposing the following new contributions:

(1) We analytically determine a closed-form solution
for the optimal references thatminimize a quadratic

cost, allowing the references to vary at arbitrary
sampling instants (in Section 4);

(2) We extend the closed-form solution to the case ac-
counting for an additional quadratic cost due to the
reference signal (in Section 5).

2 Preliminaries and System Model

In this work, the symbol ⊤ postfixed to vectors or ma-
trices denotes their transpose. The symbols R, R+, and
N denote the sets of real, non-negative real, and natu-
ral numbers, respectively. Vector variables are indicated
with bold fonts, e.g., x. The 2-norm of any vector x ∈ Rn

is denoted by ∥x∥ =
√
x⊤x. For any linear operator

L, we denote its null space (or kernel) by kerL that is
x ∈ kerL ⇔ Lx = 0. Finally, we use f ◦ g to denote
the composition of functions, that is f ◦ g(x) = f(g(x)).

The system has an internal controller which is designed
so that the output y(t) follows a given reference r(t)
(represented by the block “Closed-loop Continuous-time
Dynamics” in Figure 2). The internal continuous-time
linear time-invariant dynamics of the system are given
by

ẋ(t) = Ax(t) +Br(t)

y(t) = Cx(t),
(1)

with

• an internal state x(·) : R+ 7→ Rn,
• a reference function r(·) : R+ 7→ Rm, to be followed,

and
• the system output y(·) : R+ 7→ Rp.

We remark that despite r(t) and y(t) normally having
images in the same space, we keep them separate as our
analysis can address the more general case. We assume
that the state x(t) of the system is observable.

The internal state is sampled at the sampling instants in
{tk}k∈N and the sampled state is denoted by x(tk) = xk.
The sampling instants are constant and only in Sec-
tion 4.1 we address the optimization of them. We con-
veniently denote the separation to the next sampling in-
stant by τk = tk+1 − tk. The reference is held constant
during every interval [tk, tk+1), that is

∀k, ∀t ∈ [tk, tk+1), r(t) = rk (2)

with rk ∈ Rm being the constant reference applied over
the k-th interval. We remark once again that we are
allowing non-periodic sampling, i.e. τk may vary with k.

To analyze the dynamics of (1) in the presence of a ref-
erence rk held constant for an interval of duration τk, we
discretize it over the interval [tk, tk+1). For this purpose,
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we define

Φ(t) = eAt, Āk1,k0 = Φ(tk1 − tk0) (3)

Γ(t) =

∫ t

0

eA(t−s) dsB, B̄k = Γ(τk). (4)

Standard properties of Φ(t) and Γ(t) that we may be
using later on are that

Āk,k = Φ(tk − tk) = eA0 = I

Γ(0) = 0.

With these notations, the evolution of the state x as a
function of time can be written as

xk = Āk,0x0 +

k−1∑
i=0

Āk,i+1B̄i ri

∀k, ∀t ∈ [tk, tk+1) x(t) = Φ(t− tk)xk + Γ(t− tk)rk.
(5)

3 Trajectory Tracking: The Problem

The goal of this work is to determine the optimal refer-
ences rk such that the output y(t) of the system follows
as close as possible a given target trajectory ỹ(t). Fig-
ure 2 shows a blocks diagram, in which:

• the inputs of our “Reference Generator” are:
· the continuous-time target trajectory ỹ(t) and
· the sampled state xk, while
• the output is the reference rk, which is then fed to the
system after ZOH.

Let us now formally define the necessary notions and
notations to properly state the problem. The target tra-
jectory is modeled by a function ỹ(·) : R+ 7→ Rp, which
has image in the same set Rp of the output y.

The distance between the target trajectory ỹ and the
achieved output trajectory y is modeled by the norm∫

I

e−βt∥ỹ(t)− y(t)∥2dt

with the integration interval I depending on the specific
characteristics of the problem, and the weight e−βt in-
troduced to give a relative importance to the near or far
future. Notice that by setting β = 0, the norm is the
standard L2 norm.

We denote with tk′ the instant at which the system state
x(tk′) is sampled and a new reference rk′ is set and held
constant over the interval [tk′ , tk′+1). Also, we consider
the integration interval [tk′ , tk′+N ), whereN is the num-
ber of future references rk that should be computed.

Reference
Generator ZOH

Zero-Order Hold
ẋ = Ax+Br

y = Cx

Closed-loop
Continuous-time Dynamics

Sampler

ỹ(t) rk r(t)

x(t)

y(t)

xk

Fig. 2. Control scheme of our approach.

Finally, to have more compact and insightful expressions
we introduce the following inner product between any
pair of functions f, g : R→ Rp with image in the output
space

⟨f, g⟩β,[a,b] =
∫ b

a

e−β(t−a)f⊤(t)g(t) dt, (6)

and the induced norm

∥f∥β,[a,b] =
√
⟨f, f⟩β,[a,b] =

√∫ b

a

e−β(t−a)∥f(t)∥2 dt,
(7)

When the left boundary of the interval of integration is
a = 0, we use the shortcut notations

⟨f, g⟩β,[0,b] = ⟨f, g⟩β,b , ∥f∥β,[0,b] = ∥f∥β,b .

Having introduced these concepts and notations, we de-
fine the optimal references (rk′ , . . . , rk′+N−1) as the so-
lution that minimizes the following cost

min
(rk′ ,...,rk′+N−1)

∥ỹ − y∥2β,[tk′ ,tk′+N ] . (8)

4 Trajectory Tracking: The Solution

In this section, we develop the solution to the problem of
minimizing the cost of (8). To simplify the mathematics,
in this section we are going to assume that the index k′

of the instant when setting the reference is equal to zero,
that is, k′ = 0, and that tk′ = t0 = 0.

First, we re-write the cost of (8) as

J =

N−1∑
k=0

e−βtk ∥ỹ ◦∆k − CΦxk − CΓrk∥2β,τk︸ ︷︷ ︸
Jk

(9)

by exploiting elementary properties of the inner prod-
uct of (6). In (9), ∆k(t) = t + tk denotes a backward
translation over time by tk, and Jk denotes the contribu-
tion to the cost J when integrating over the k-th interval
[tk, tk+1).
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By replacing in (9), the state xk with its explicit expres-
sion of (5), we get

Jk =
∥∥ỹ ◦∆k − CΦĀk,0x0 − CΠkr

∥∥2
β,τk

(10)

with r = (r0, . . . , rN−1) ∈ RmN representing more com-
pactly all the N references. The mapping Πk : R →
L(RmN ,Rn) returns for every value of t a linear map
Πk(t) : RmN → Rn. The map Πk(t) represents the im-
pact of all the N references of r onto the state x(t) over
the k-th interval [tk, tk+1). The map Πk is linear and is
defined by the following matrix in Rn×mN

Πk =

[
multiply r0︷ ︸︸ ︷
ΦĀk,1B̄0

multiply r1︷ ︸︸ ︷
ΦĀk,2B̄1 · · ·

· · · ΦĀk,k−1B̄k−2︸ ︷︷ ︸
rk−2

ΦB̄k−1︸ ︷︷ ︸
rk−1

Γ︸︷︷︸
rk

0︸︷︷︸
rk+1

· · · 0︸︷︷︸
rN−1

]
(11)

so that

Πk(t)r = Φ(t)

k−1∑
i=0

Āk,i+1B̄i ri + Γ(t)rk.

The definition of each of the N blocks of Πk, each one
of size n×m, reveals that:

• The block multiplying rk is set to Γ, which represents
the impact of rk over the k-th interval itself,

• If i > k, then the i-th n×m block of Πk multiplying ri
is set to 0 to represent the fact that future references
ri cannot have an impact on the k-th interval,

• If i < k, ri is multiplied by ΦĀk−i−1B̄i to account
for the impact of the past reference ri onto the k-th
interval.

The cost Jk of (10) is quadratic in r and by isolating
each term by the degree of the dependency on r, we get

Jk =
∥∥ỹ ◦∆k − CΦĀk,0x0 − CΠkr

∥∥2
β,τk

=
∥∥ỹ ◦∆k − CΦĀk,0x0

∥∥2
β,τk

(constant)

− 2
〈
ỹ ◦∆k − CΦĀk,0x0, CΠkr

〉
β,τk

(linear)

+ ∥CΠkr∥2β,τk (quadratic).

The inner product of the second linear term can be writ-
ten as a more explicit linear function of r by〈

ỹ ◦∆k − CΦĀk,0x0, CΠkr
〉
β,τk

= Ỹkr − x⊤
0 Vkr

with Ỹk ∈ R1×mN accounting for the target trajectory

in the k-th interval [tk, tk+1) and defined by

Ỹk =
[
ỸΦ,kĀk,1B̄0· · ·ỸΦ,kB̄k−1ỸΓ,k0· · ·0

]
(12)

ỸΦ,k = ⟨ỹ ◦∆k, CΦ⟩β,τk (13)

ỸΓ,k = ⟨ỹ ◦∆k, CΓ⟩β,τk (14)

and Vk ∈ Rn×mN , expressing the impact of the initial
state x0 over the k-th interval, defined by

Vk = Ā⊤
k,0

[
MΦΦ,kĀk,1B̄0 · · · MΦΦ,kB̄k−1

MΦΓ,k 0 · · · 0
]

(15)

MΦΦ,k = ⟨CΦ, CΦ⟩β,τk (16)

MΦΓ,k = ⟨CΦ, CΓ⟩β,τk (17)

Finally, the quadratic term ∥CΠk(t)r∥2β,τk of Jk is ex-
panded as follows

∥CΠkr∥2β,τk = ⟨CΠkr, CΠkr⟩β,τk = r⊤Qkr. (18)

The quadratic form r⊤Qkr can also be written more
expressively through all its N ×N blocks Qk[i, j] of size
m×m. Each blockQk[i, j] ∈ Rm×m is left-multiplied by
r⊤i and right-multiplied by rj . Formally, we can write:

r⊤Qkr =

N−1∑
i=0

N−1∑
j=0

r⊤i Qk[i, j]rj

with all blocks Qk[i, j] ∈ Rm×m indexed by i, j =
0, . . . , N − 1 and defined by

Qk[i, j] = B̄⊤
i Ā⊤

k,i+1MΦΦ,kĀk,j+1B̄j i ≤ j < k

Qk[i, k] = B̄⊤
i Ā⊤

k,i+1MΦΓ,k i < k

Qk[k, k] = MΓΓ,k

Qk[i, j] = Qk[j, i]
⊤ j ≤ i ≤ k

Qk[i, j] = 0 i > k ∨ j > k.
(19)

The definition of Qk in (19) exploits the definitions of
MΦΦ,k, MΦΓ,k of Eqs. (16) and (17) respectively, and
MΓΓ,k defined by

MΓΓ,k = ⟨CΓ, CΓ⟩β,τk . (20)

The final derivation of Qk allows us to write the cost Jk
accumulated in the k-th interval as

Jk =
∥∥ỹ ◦∆k − CΦĀkx0

∥∥2
β,τk
−2(Ỹk−x⊤

0 Vk)r+r⊤Qkr

(21)
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and then to state the following theorem which offers the
explicit expression of the cost J .

Theorem 1 The cost J of Equation (9) is equal to

J = const.− 2(Ỹ − x⊤
0 V )r + r⊤Qr (22)

with:

• const. =
∑N−1

k=0 e−βtk
∥∥ỹ ◦∆k − CΦĀkx0

∥∥2
β,τk

• Ỹ =
∑N−1

k=0 e−βtk Ỹk

• V =
∑N−1

k=0 e−βtkVk

• Q =
∑N−1

k=0 e−βtkQk

Proof: The expression of (22) follows from (9) and from
each of the costs Jk of (21) properly weighted.

Theorem 1 states that the cost, as initially defined by (9)
is a quadratic form in r. The determination of the opti-
mal r that minimizes such a cost, however, depends on
the characteristics of the linear and the quadratic terms
of (22).

Lemma 1 (Lemma 1 in Bini et al. (2022)) The
matrix Q ∈ RmN×mN is:

• symmetric, and
• positive semi-definite.

The matrix Q, however, not be strictly positive definite.
The next lemma provides some insights about the null
space of Q so that we can find the minimum of the cost
of (22).

Lemma 2 (Lemma 2 in Bini et al. (2022)) If r ∈
kerQ then r ∈ ker(Ỹ − x⊤

0 V ).

Lemma 1 states thatQ is positive semi-definite and sym-
metric. Hence it can be diagonalized as follows:[

Λ 0

0 0

]
=

[
H⊤

H⊤
0

]
Q

[
H H0

]
with:

• Λ the diagonal matrix with the strictly positive eigen-
value of Q,

•
[
H H0

]
the orthonormal matrix which diagonalizes

Q,
• the columns of H0 are an orthonormal basis of kerQ,
and

• the columns of H are an orthonormal basis of the
subspace of RmN orthogonal to kerQ.

Algorithm 1 Optimizing the sampling instants

Input: tper: Periodic sampling, ỹ: Target trajectory,
maxIter: Maximum number of iterations.
Output: t∗: Optimized sampling instants, r∗: Optimal
references.

1: t← tper
2: J∗ ← +∞
3: i← 0
4: while i < maxIter do
5: r, J ← optRefs(t, ỹ) {Eqs. (24)-(25)}
6: if J < J∗ then
7: t∗ ← t
8: r∗ ← r
9: end if

10: t← samplingOptimStep(t, ỹ, r)
11: i← i+ 1
12: end while
13: return t∗, r∗;

Following the same steps as in Bini et al. (2022), we find
that the space of all solutions is

{r∗}+ spanH0 = {r∗ + v : v ∈ spanH0} (23)

with

r∗ = HΛ−1H⊤(Ỹ ⊤ − V ⊤x0). (24)

By replacing the optimal solution r∗ in the cost, we can
find the minimal cost J∗, that is

J∗ =

N−1∑
k=0

e−βtk
∥∥ỹ ◦∆k − CΦĀkx0

∥∥2
β,τk

− (Ỹ − x⊤
0 V )HΛ−1H⊤(Ỹ ⊤ − V ⊤x0). (25)

4.1 Computing the Aperiodic Sampling Instants

Thus far, we have considered the aperiodic sampling in-
stants t = {t0, t1, . . . , tN−1, tN} as known. However, we
can indeed formulate an optimization problem on the
variables t that minimizes the cost function (22), subject
to the constraint that tN−t0 = T , which is the length of
the horizon. Unfortunately, such an optimization prob-
lem is not convex, and the computation of the optimal
sampling instants tmay not be always possible. Optimal
sampling was investigated by Bini and Buttazzo (2014)
in the context of aperiodic LQR cost. However, the same
techniques do not seem to be directly applicable to our
case.

Different global optimization techniques (Clerc and
Kennedy, 2002; Ugray et al., 2007) can be used to
compute sub-optimal solutions. One possible way of
optimizing over the sampling instants is presented in
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Algorithm 1. The algorithm starts from the periodic
sampling tper, as initial guess. Then, at each iteration,
it performs a step toward a possibly better solution
(line 10). If such a new solution is lowering the cost, then
the current one is updated. Note that the optimization
strategy fixes the initial and final points t0 and tN , and
optimizes the placement of the remaining points, sub-
ject to the constraint that all points are monotonically
increasing, i.e., ti < ti+1 for all i = 0, . . . , N − 1. Con-
vergence is guaranteed by updating the solution only if
the cost is reduced.

We remark that the implemented algorithm allows any
possible choice for taking a step over the solution space.
For example, later in Section 6 we use Particle Swarm
Optimization.

5 Reference Regularization

Although the references belonging to the affine space
of (23) are all optimal, in practice, the positive semi-
definite matrixQmay be poorly conditioned (with mini-
mum andmaximum non-zero eigenvalues differing by or-
ders of magnitude). This may give rise to references with
very large values. For real-world systems, the closed-loop
dynamics (1) may not be valid for such large references.
For example, large references may lead to large input
actuation, which in turn could violate system actuation
limits. One common method to mitigate such concerns
is to include a regularization term within the cost func-
tion that penalizes large values for the decision variable.
This paper proposes a modification to the cost (8) that
includes a term that additionally penalizes the L2 norm
of the references r(t), that is we aim at minimizing

min
(rk′ ,...,rk′+N−1)

∥ỹ − y∥2β,[tk′ ,tk′+N ]+α ∥r(t)∥20,[tk′ ,tk′+N ] .

(26)
with α denoting a relative weight that we are apply-
ing to such an additional cost. Thus, this modified cost
seeks to balance minimizing both the trajectory error
and the reference power. Additionally, this new term is
already quadratic in r(t), which makes it suitable for the
quadratic minimization of the cost function presented
in (22). To explore the implications of including such
regularization, we provide the following Lemma.

Lemma 3 The modified cost of (26)may be rewritten as

J = const.− 2(Ỹ − x⊤
0 V )r + r⊤Qregr (27)

with

Qreg = Q+ α diag[τ ′kIm, ..., τ ′k+N−1Im], (28)

the terms “const.”, Ỹ , V , and Q as in (22), diag[·] rep-
resenting a diagonal block matrix whose input arguments

are the matrices along the diagonal, and Im denoting the
identity over Rm.

Proof: Since the references are assumed to be ZOH, then
the regularization term of (26) may be written as:

∥r(t)∥20,[tk′ ,tk′+N ] = r⊤ diag[τkIm, ..., τk+N−1Im]r

The steps to reach (22) remain the same so that the
modified cost can be written as:

J = const.− 2(Ỹ − x⊤
0 V )r

+ r⊤Qr + r⊤α diag[τ ′kIm, ..., τ ′k+N−1Im]r

Finally, the two weighting matrices of the quadratic
terms may be combined into a single matrix Qreg, de-
fined in (28), completing the proof.

One upshot of Lemma 3 is that the steps to find the op-
timal references (24) and optimal cost (25) remain the
same, effectively replacing Q with the modified matrix
Qreg. Additionally, since Q is positive semi-definite and
α, τk > 0, then Qreg is positive definite and then invert-
ible. This means that, from (24), the solution r∗ under
reference regularization is unique and equal to

r∗ = Q−1
reg(Ỹ

⊤ − V ⊤x0).

6 Simulations

We explore the impact of aperiodic sampling on a two-
dimensional double integrator controlled by a PD, with
x = [px, vx, py, vy]

⊤ and r = [rx, ry]
⊤. Here, pi is the

position of the system in the i = {x, y} direction, vi
is the corresponding velocity, and ri is the correspond-
ing reference position in ith direction. Both x and y
evolve independently of one another, and form a sub-
space xsub = [pi, vi]

⊤, rsub = ri that evolve according
to the subspace matrices Asub and Bsub:

Asub =

[
0 1

−KP −KD

]
, Bsub =

[
0

KP

]
. (29)

In this simulation, the gains of the internal controller
were set asKP = 2 andKD = 3. The full state vector x,
under control of the references r, thus evolves according
to (1) under the block matrices Asub and Bsub:

A =

[
Asub 0

0 Asub

]
, B =

[
Bsub 0

0 Bsub

]
. (30)
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Fig. 3. Illustrating differences between periodic and aperiodic
sampling.

Additionally, only the xy position of the system was
tracked through the output, i.e., y(t) = [px(t), py(t)]

⊤.
This means that in (1), we define:

C =

[
1 0 0 0

0 0 1 0

]
(31)

The aperiodic sampling time instants have been com-
puted as described in Section 4.1, using a Particle Swarm
Optimization (PSO) approach to implement the global
optimization strategy invoked at line 10 of Algorithm 1.

Fig. 3 shows an example situation that highlights the
difference between periodic and aperiodic sampling. The
initial system state is x(0) = [0, 0, 0, 0]⊤, with y(0) =
[0, 0]⊤.The dashed line of Fig. 3(a) shows the target tra-
jectory ỹ(t) defined as the following:

ỹ(t) =

[
sin(2πt)

0.5 sin(πt)

]
(32)

Also shown in Fig. 3(a) is the result of optimal periodic
sampling (blue) as well as optimal aperiodic sampling
(orange), as determined by the PSO. For both periodic
and aperiodic sampling, references were found over a
horizon of 2 seconds, with N = 5, β = 0, and α =
5e−4. These references are also shown in Fig. 3(b) and
Fig. 3(c). Qualitatively, Fig. 3(a) shows how aperiodic
reference sampling results in a trajectory that follows
the target trajectory more closely than with periodic
reference sampling.

To explore the effect of varying N , Fig. 4 shows the
associated cost of both periodic and aperiodic reference
sampling for different values of N . For a lower number
of references, there exists a noticeable difference in cost
between the two cases, illustrating how adding an extra
degree of freedom (the sampling time of the references)
affords a lower overall cost in the aperiodic sampling
case. With larger N , however, more references control
the system over the same time horizon, which has two
effects: (i) the overall cost of both cases is lower, and (ii)

Periodic

Target N = 4 N = 5 N = 6

Aperiodic

Target N = 4 N = 5 N = 6

4 6 8 10 12 14
0.1

0.2

0.3

0.4

N

J
∗

Periodic
Aperiodic

Fig. 4. Illustrating differences between periodic and aperiodic
sampling.

Periodic Aperiodic

-6

6

β

Fig. 5. Resulting trajectories from both periodic and aperi-
odic sampling with various values for β.

the difference in cost between both cases is also lower. For
N = 10, the percentage difference between the periodic
and aperiodic case is 0.6%, with virtually no difference
for N = 15.

The effect of β is also explored in Fig. 5, showing re-
sulting trajectories of both periodic and aperiodic sam-
pling over a time horizon of 2 seconds for various values
of β ∈ [−6,+6]. The target trajectory defined in (32)
was again used, with N = 5. Qualitatively, increasing β
results in the system trajectory more closely following
the target trajectory for earlier times, whereas a lower
β places more importance on tracking the later parts of
the target trajectory.

7 Conclusion and Future Work

This paper presented an approach to optimally com-
pute the discrete-time reference signal rk given a desired
continuous-time trajectory ỹ(t) that the system output
y(t) should follow. This approach was presented for the
aperiodic sampling case and was investigated for its ef-
fects on the obtainable performance over different exam-
ples.

Future works involve investigating the impact of limited
processing and communication capacity on the quality
of the achieved control. Additional directions include the
exploration of the impact of quantization, and the ex-
ploitation of past computations when calculating refer-
ences in a receding horizon fashion.

7



Finally, we plan to apply the presented approach to ad-
ditional use case applications, including experimental
results in our evaluation, and further investigate its ro-
bustness against model uncertainty.
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