
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-025-00797-y

GENERAL

Special Issue: ECBS 2023

Learning single and compound-protocol automata and
checking behavioral equivalences

Stefan Marksteiner1,2 · David Schögler3 · Marjan Sirjani2 · Mikael Sjödin2

Accepted: 4 April 2025
© The Author(s) 2025

Abstract
This paper presents a method and a practical implementation that complements traditional conformance testing. We infer a
Mealy state machine of the system-under-test using active automata learning. This automaton is checked for bisimulation with
a specification automaton modeled after the standard, which provides a strong verdict of conformance or nonconformance. We
further present a method to learn models of multiple communication protocols running on the same device using a dispatcher
system in conjunction with the same automata learning algorithms. We subsequently use similar checking methods to compare
it with separately learned models. This allows for determining whether there is some interference or interaction between
those protocols. In the practical execution of the system, we concentrate on lower levels of the Near-Field Communication
(NFC, ISO/IEC 14443-3) and the Bluetooth Low-Energy (BLE) protocols. As a by-product, we share some observations of
the performance of different learning algorithms and calibrations in the specific setting of ISO/IEC 14443-3, which is the
difficulty to learn models of systems that a) consist of two very similar structures and b) timeout very frequently, as well as
the role of conformance testing for compound models and speed optimizations for time-sensitive protocols.

Keywords NFC · BLE · Automata learning · Protocol compliance · Bisimulation · Formal methods

1 Introduction

This article is based on a paper [30], in which we describe an
approach for evaluating the compliance of Near-Field Com-
munications (NFC)-based chip systems with the ISO/IEC
14443-3 NFC handshake protocol [20] using automata learn-
ing and equivalence checking. In this paper, we presented a
tool chain that is easy to use; both the learning and the equiva-
lence checking can run fully automatic. A complete protocol
implementation automaton of the system-under-test (SUT),
in the context of this paper called system-under-learning

(SUL), compared with a specification automaton modeled
after the protocol’s standard, provides a complement to con-
formance testing.

In this paper, we expand the scope of our previous work by
learning a compound-protocol automaton of multiple proto-
cols running on the same device. In particular, we learn
Bluetooth Low-Energy (BLE) [6] alongside with NFC. We
also learn separate models of both protocols from the same
device and subsequently compare them with the compound
automaton. The individually learned automata are used as
a specification with which we compare the behavior of the
learned compound-protocol automaton using the same tech-
nique as described above. By comparing the compound au-
tomaton with the separately learned, we can check if the two
protocols influence each other, whether intentionally or not,
potentially uncovering unintended system states. This deter-
mines if device behaves differently when we stimulate both
protocols. In theory, the approach can also be used to learn
compound-protocol automata of even higher numbers of pro-
tocols. In practice, however, inherent complexity makes it
more unlikely to yield different results and the practical fea-
sibility is limited by timing constraints that are aggravated
with more complex stacking of inputs from different proto-
cols. The remainder of this paper is structured as follows.

� S. Marksteiner
stefan.marksteiner@avl.com

D. Schögler
david.schoegler@avl.com

M. Sirjani
marjan.sirjani@mdu.se

M. Sjödin
mikael.sjodin@mdu.se

1 AVL List GmbH, Graz, Austria
2 Mälardalen University, Västerås, Sweden
3 AVL DiTest GmbH, Graz, Austria

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-025-00797-y&domain=pdf
mailto:stefan.marksteiner@avl.com
mailto:david.schoegler@avl.com
mailto:marjan.sirjani@mdu.se
mailto:mikael.sjodin@mdu.se

S. Marksteiner et al.

First, we provide its motivation and contribution. Section 2
gives an overview of basic concepts in this paper, including
a formal definition of bisimulation for Mealy machines as
used in this paper. Sections 3.1, 3.2, and 3.3 describe the
developed interfaces for automata learning of NFC systems,
BLE systems, and compound-protocol learning, respectively.
Sections 4.1, 4.2, and 4.3 describe the learning setups includ-
ing a comparison of different algorithms and calibrations to
be most suitable for the specifics of the NFC handshake
protocol, while Sect. 5 describes the methods for confor-
mance checking and the respective protocols’ specifics in
this regard. Section 6 shows real-world results, while Sect. 7
compares them to the works of others. Section 8, eventually,
concludes the paper and gives and outlook on future work.

1.1 Motivation

Both the NFC and BLE protocol are widely adopted pro-
tocols in a broad variety of different systems. NFC is used
in often security-critical chip systems like banking cards,
passports, access systems, etc. BLE is used in potentially
privacy- and security-sensitive applications like healthcare,
fitness, audio, and car access systems.

While there are many works about security weaknesses in
NFC (e.g., [24, 49]), also specifically regarding the ISO/IEC
14443-3 handshake (e.g., [15, 29]), and BLE (e.g., [4]), there
are few works on comprehensive testing (see Sect. 7). As-
suring the correctness of the system is a principal step in
the quest to trustworthy systems. As a specific application,
we aim for a strong verdict of ISO compliance for NFC sys-
tems. There is, to the best of our knowledge, no comprehen-
sive work regarding assessment of the handshake protocols,
which is the fundament of secure protocols built atop. To
make this verdict more scalable than manual modeling, yet
strongly verified, we choose automata learning to automat-
ically infer a formal model of the implementations under
scrutiny. For the actual compliance checking, we use bisim-
ulation and trace equivalence checks against a specification
automaton from the ISO/IEC 14443-3 standard (a rationale
is given in Sect. 2.2).

1.2 Contribution

Overall, this paper is on the interface between communi-
cations protocols, embedded systems, and formal methods.
This work provides the following contributions for people
with scholarly or applied interest in this approach of compli-
ance checking:

– Insights regarding the specifics of learning an NFC imple-
mentation using (active) automata learning,

– An evaluation on the performance of different learning
algorithms in systems containing two structures that are
very similar to each other,

– Developing an NFC interface for a learning system,
– Utilizing bisimulation and trace equivalence in a com-

bined approach for automated compliance checking,
– A novel approach for learning compound automata of im-

plementations of multiple protocols,
– A method to compare this compound automaton with

the individually protocol implementations using differ-
ent methods, uncovering any potential cross-influences of
multiple protocols running on the same device.

We saw the NFC handshake to be specific in two aspects: a)
it consists of two parts that are very similar and hard to dis-
tinguish for Learners and b) the vast majority of outputs from
a SUL are timeouts. This has severe impact on the learning
where we examined different algorithms and configurations.
The maximum word length has an impact on correctly in-
ferring an automaton: too short yields incomplete automata,
too long seemed to have a negative performance impact. Sur-
prisingly the L* algorithm [3] with Rivest/Schapire (LSR)
closure [41] surpassed more modern ones in learning per-
formance. For discovering deviations from the standard, the
minimum word length was found to have an impact. Here, the
TTT algorithm [22] performed best, also followed by LSR.
We further created a concrete hardware/software interface
using a Proxmark device and an abstraction layer for NFC
systems. We also integrated bisimulation and trace equiva-
lence checking into the learning tool chain, which enables
completely automated compliance checking with counterex-
amples in the case of deviations from the standard. Lastly, we
developed an approach to learn a compound automaton of
multiple protocols using a specialized SUL class working as
a dispatcher. We subsequently use similar equivalence check-
ing techniques to uncover any interferences among these pro-
tocols by comparing the compound automaton with stand-
alone automata of the protocols (see Sect. 5.2).

2 Preliminaries

This section outlines the theoretical fundamentals of state
machines and automata learning in the context of this pa-
per and describes the used framework and the basics and
characteristics of the scrutinized protocol.

2.1 State machines

A state machine (or automaton) is a fundamental concept
in computer science. One of the most widely used flavors
of state machines are Mealy machines, which describe a
system as a set of states and functions of resulting state
changes (transitions) and outputs for a given input in a certain
state [33]. More formally, a Mealy machine can be defined as
𝑀 = (𝑄,Σ,Ω, 𝛿, 𝜆, 𝑞0), with 𝑄 being the set of states, Σ the

Springer

(Compound) protocol compliance evaluation using automata learning

input alphabet,1 Ω the output alphabet (that may or may not
be identical to the input alphabet), 𝛿 the transition function
(𝛿 : 𝑄 ×Σ→𝑄), 𝜆 the output function (𝜆 : 𝑄 ×Σ→Ω), and
𝑞0 the initial state. The transition and output functions might
be merged (𝛿 × 𝜆 : 𝑄 × Σ→ 𝑄 ×Ω). An even simpler type
of automaton is a deterministic finite acceptor (DFA) [32]. It
lacks of an output (i.e., no Ω and no 𝜆), but instead it has a
set of accepted finishing states 𝐹 , which are deemed as valid
final states for an input word (i.e., sequence of input symbols),
resulting in a definition of 𝐷 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹). The purpose
is to define an automaton that is capable of deciding if an
input word is a valid part of a language. A special subset are
combination lock automata (with the same properties) but
the additional constraint that an invalid symbol in an input
sequence would set the state machine immediately back into
the initial state [35].

2.2 Transitions, equivalence, and preorder

An element of the combined transition/output function can be
defined as 4-tuple (〈𝑝, 𝑞, 𝜎, 𝜔〉) with 𝑝 ∈ 𝑄 as origin state of
the transition, 𝑞 ∈ 𝑄 as destination state, 𝜎 ∈ Σ as input sym-
bol, and 𝜔 ∈ Ω as output symbol. Generally, to conform to a
standard, a system must display the behavior defined in that
standard. The ISO 14443-3 standard [20] describes the states
of the NFC handshake with their respective expected input
and result. That means one can derive an automaton from
this specification. The problem of determining NFC stan-
dard compliance can therefore be seen as comparing two (fi-
nite) automata. There is a spectrum of equivalences between
Labeled Transition Systems (LTS) including automata. For
being compliant with a standard, not necessarily every state
and transition must be identical as long as the behavior of the
system is the same. There might be learned automata that de-
viate from the standard automaton and still be compliant, e.g.,
if they are not minimal (the smallest automaton to implement
a desired behavior). There are some efficient algorithms for
automata minimization, e.g., by Hopcroft [18], and by Paige
and Tarjan [37]. Figure 1 shows a very simple example of a
three-state automaton and its behavior-equivalent (minimal)
two-state counterpart.

To compare this type of equivalence between two LTS,
LTS1 and LTS2, usually (various degrees of) simulation,
bisimulation (noted as LTS1 ∼ LTS2), and trace equivalence
are used. Simulation (as used in the simulation preorder, see
below) means that one automaton can completely reproduce
the behavior of the other; for the bisimulation, this relation
becomes bidirectional (i.e., functional). Because the states
have to be directly related, bisimulation is a stronger relation
than mutual simulation. Even if it is not common, there are
cases where two LTS can simulate each other, but are still

1 It is common to use 𝜀 to denote empty sets in this context.

Fig. 1 Example for a partial automaton and its minimal counterpart

not bisimilar [42]. Trace equivalence compares the respective
input/output sequences of automata (see below). Just unidi-
rectional simulation alone is not sufficient, as this would only
indicate the presence or absence of a certain behavior with
respect to the specification, while the standard compliance
mandates both. Bisimilarity of two transition systems is orig-
inally defined for labeled transition systems (LTS), defined as
LTS = (𝑄, 𝐴𝑐𝑡,→, 𝐼, 𝐴𝑃, 𝐿), with 𝑄 being the set of states,
𝐴𝑐𝑡 a set of actions, → a transition function, 𝐼 the set of
initial states (𝐼 ⊆ 𝑄), 𝐴𝑃 a set of atomic propositions, and 𝐿

a labeling function.

Definition 1 (Bisimilarity)
Bisimilarity of two LTS (LTS1 ∼ LTS2) is defined as exhibit-
ing a binary relation 𝑅 ⊆ 𝑄 ×𝑄 such that [5]:

A) ∀𝑠1 ∈ 𝐼1∃𝑠2 ∈ 𝐼2 · (𝑠1, 𝑠2) ∈ 𝑅 and ∀𝑠2 ∈ 𝐼2 (∃𝑠1 ∈ 𝐼1 ·

(𝑠1, 𝑠2) ∈ 𝑅).
B) for all (𝑠1, 𝑠2) ∈ 𝑅, there must hold

1) 𝐿1(𝑠1) = 𝐿2(𝑠2),
2) if 𝑠1′ ∈ 𝑃𝑜𝑠𝑡 (𝑠1) then there exists 𝑠2′ ∈ 𝑃𝑜𝑠𝑡 (𝑠2) with
(𝑠1′, 𝑠2′) ∈ 𝑅,

3) if 𝑠2′ ∈ 𝑃𝑜𝑠𝑡 (𝑠2) then there exists 𝑠1′ ∈ 𝑃𝑜𝑠𝑡 (𝑠1) with
(𝑠1′, 𝑠2′) ∈ 𝑅.

Condition A of Definition 1 means that all initial states
must be related, while Condition B means that for all re-
lated states the labels must be equal (1) and their suc-
cessor states must be related (2–3). Formally, the succes-
sion (𝑃𝑜𝑠𝑡) is defined as 𝑃𝑜𝑠𝑡 (𝑞, 𝛼) = {𝑞′ ∈ 𝑄|𝑞 𝛼

−→ 𝑞′} and
𝑃𝑜𝑠𝑡 (𝑞) =

⋃
𝛼∈𝐴𝑐𝑡 𝑃𝑜𝑠𝑡 (𝑞, 𝛼), meaning the union of all ac-

tion successions, which again are again the result the tran-
sition function with a defined action and state as input [5].
As this is recursive, a relation of the initial states implies
that all successor states are related. Since all reachable states
are (direct or indirect) successor states of the initial states,
this definition encompasses the complete LTS. We interpret
Mealy machines as LTS using the output functions as label-
ing functions for transitions and the input symbols as actions,
similar to [46]. Based on this, we define Mealy bisimilarity
(𝑀1 ∼ 𝑀2) for our purpose as follows:

Springer

S. Marksteiner et al.

Definition 2 (Mealy bisimilarity)
Bisimilarity of two Mealy machines (𝑀1 ∼ 𝑀2) is defined as
exhibiting a binary relation 𝑅 ⊆ 𝑄 ×𝑄 such that

A) 𝑞01 ∈ 𝑄1, 𝑞02 ∈ 𝑄2 · (𝑞01 , 𝑞02) ∈ 𝑅,
B) for all 𝑞1 ∈ 𝑄1, 𝑞2 ∈ 𝑄2 · (𝑞1, 𝑞2) ∈ 𝑅, there must hold

1) 𝜎 ∈ Σ · 𝜆1 (𝑞1, 𝜎) = 𝜆2(𝑞2, 𝜎),
2) 𝜎 ∈ Σ· if 𝑞1′ = 𝑃𝑜𝑠𝑡 (𝑞1, 𝜎) then there exists 𝑞2′ =

𝑃𝑜𝑠𝑡 (𝑞2, 𝜎) with (𝑞1′, 𝑞2′) ∈ 𝑅,
3) 𝜎 ∈ Σ· if 𝑞2′ = 𝑃𝑜𝑠𝑡 (𝑞2, 𝜎) then there exists 𝑞1′ =

𝑃𝑜𝑠𝑡 (𝑞1, 𝜎) with (𝑞1′, 𝑞2′) ∈ 𝑅.

As the transition function is dependent on the input, we
define 𝑃𝑜𝑠𝑡 (𝑞, 𝜎) = 𝛿(𝑞, 𝜎), which is essentially the same
as for LTS brought into the notation of Sect. 2.1, with the
constraint that the same input on a pair of related states must
lead to another pair of related states. There are some differ-
ent bisimulation types that differentiate by the handling of
unobservable (internal) transitions (ordinarily labeled as 𝜏

transitions), e.g., strong and weak bisimulation, and branch-
ing bisimulation to give a few examples [5]. This distinc-
tion is, however, theoretical in the context of this paper. The
reason is that we intend to compare a specification, which
consists of an automaton that does not contain any 𝜏 transi-
tions, with an implementation that is externally (black box)
learned, rendering 𝜏s unobservable. Therefore, two automata
without any 𝜏s are compared directly, which makes this dis-
tinction not applicable. More precisely, from a device per-
spective, the type of bisimulation equivalence cannot be de-
termined, as the SULs are black boxes, which means that in-
ternal state changes (commonly denoted as 𝜏) are not visible.
From a model perspective, the chosen comparison implies
strong bisimulation, i.e., the initial state is related (formally,
𝑞0𝑀𝑙 = 𝑞0𝑀𝑠) and all subsequent states are related as well
(formally, 𝑄 = 𝑄𝑀𝑙 = 𝑄𝑀𝑠 ; 𝑛 = |𝑄 |;∀𝑛 ∈ 𝑄 |𝑞𝑛𝑀𝑙 = 𝑞𝑛𝑀𝑠).
We, however, use a 𝜏 function for hiding (see Sect. 2.3) to
restrict the input alphabet of a compound-protocol automa-
ton to one of its single component automata and compare
it to a separately learned version (see Sect. 5.2) with weak
bisimulation.

Trace equivalence, on the other hand, means that two
transitions systems produce the same traces for each same
input.

Definition 3 (Trace equivalence)
Trace equivalence of two LTS (LTS1 ∼ LTS2) is defined as
𝑇𝑟𝑎𝑐𝑒𝑠(LTS1) = 𝑇𝑟𝑎𝑐𝑒𝑠(LTS2).

In an LTS, a trace is a sequence of labels of a path (or path
fragment) 𝜋 = 𝑞0, 𝑞1, . . . |𝑡𝑟𝑎𝑐𝑒(𝜋) = 𝐿(𝑞0), 𝐿(𝑞1), . . . [5].
Since in a Mealy machine we use the output function as a
labeling function, traces are sequences of outputs 𝑡𝑟𝑎𝑐𝑒(𝜋) =
𝜆(𝑞0, 𝜎0), 𝜆(𝑞1, 𝜎1), . . . As only the input and output are

directly observable (not the states themselves), we use an
input/output as a notion in the form 〈𝜎0/𝜔0〉, 〈𝜎1/𝜔1〉, . . . ,
with 𝜎 ∈ Σ and 𝜔 ∈ Ω.

Both bisimulation and trace equivalence might be in prin-
cipal capable of comparing a specification with an imple-
mentation automaton for determining the standard compli-
ance. Both determining bisimulation and trace equivalence
are problems to be solved efficiently [2, 19, 37]. In any
case, bisimulation implies trace equivalence (LTS1 ∼ LTS2
=⇒ 𝑇𝑟𝑎𝑐𝑒𝑠(LTS1) = 𝑇𝑟𝑎𝑐𝑒𝑠(LTS2)), but is finer than the
latter [5]. For the purpose of this paper, we consider two
automata equivalent if they are trace or bisimulation equiva-
lent. In practice, we have obtained positive results with both
bisimulation and trace equivalence (see Sect. 5.1).

Simulation preorder means that only one system has to
be able to simulate the other. Informally, this means that the
behavior of a system LTS1 has to be included in another
system LTS2, but the latter might display additional behavior
not included in the former. Formally, it is defined as follows.

Definition 4 (Simulation preorder)
Simulation preorder of two LTS (LTS1 � LTS2) is defined as
exhibiting a binary relation 𝑅 ⊆ 𝑄 ×𝑄 such that [5]:

A) ∀𝑠1 ∈ 𝐼1 · (∃𝑠2 ∈ 𝐼2 · (𝑠1, 𝑠2) ∈ 𝑅),
B) for all (𝑠1, 𝑠2) ∈ 𝑅, there must hold

1) 𝐿1(𝑠1) = 𝐿2(𝑠2),
2) if 𝑠1′ ∈ 𝑃𝑜𝑠𝑡 (𝑠1) then there exists 𝑠2′ ∈ 𝑃𝑜𝑠𝑡 (𝑠2) with
(𝑠1′, 𝑠2′) ∈ 𝑅.

This basically means a not (necessarily) symmetric bisim-
ulation relation. Analogously, this means for the trace pre-
order that the set of traces of LTS1 has to be included in that
of LTS2, which might or might not contain additional traces.

Definition 5 (Trace preorder)
Trace preorder of two LTS is defined as 𝑇𝑟𝑎𝑐𝑒𝑠(𝐿𝑇𝑆1) ⊆

𝑇𝑟𝑎𝑐𝑒𝑠(𝐿𝑇𝑆2).

2.3 Hiding operation

We can use hiding to restrict a compound-protocol automa-
ton to transitions from a certain part of its input alphabet
(particularly, one of the protocol’s input alphabet). Groote
and Mousavi [14] define a hiding operator (𝜏𝐼) that removes
any actions in certain set of actions (𝐼) and labels them as
unobservable (𝜏) transitions. For Mealy machines, we use
input symbols as (part of) label sets for the hiding operator.
This alters the combined output and transition function as
follows:

𝐼 ⊆ Σ |𝜏𝐼 (𝛿 × 𝜆) : 𝑄 × Σ

{
𝑄 ×Ω if 𝜎 ∈ Σ \ 𝐼,

𝑄 × 𝜏 if 𝜎 ∈ 𝐼 .

Springer

(Compound) protocol compliance evaluation using automata learning

The result is a subtraction of the automata parts included in
the set 𝐼 from the observable behavior, which we can use
for comparison with weak bisimulation. This is also similar
to the restriction operator from Hoare (�), only that this
operator is defined for traces where parts of a trace included
in a given subset are ignored [16].

2.4 Automata learning

The classical method of actively learning automata of sys-
tems, was outlined in Angluin’s pivotal work known as the L*
algorithm [3]. This work uses a minimally adequate Teacher
that has (theoretically) perfect knowledge of the SUL behind
a Teacher and is allowed to answer to kinds of questions:

– Membership queries and
– Equivalence queries.

The membership queries are used to determine if a certain
word is part of the accepted language of the automaton, or,
in the case of Mealy machines, which output word will re-
sult of a specific input word. These words are noted in an
observation table that will be made closed and consistent.
The observation table consists of suffix-closed columns (𝐸)
and prefix-closed rows. The rows are intersected in short pre-
fixes (𝑆) and long prefixes (𝑆.Σ). The short prefixes initially
only contain the empty prefix (𝜆), while the long ones and
the columns contain the members of the input alphabet. The
table is filled with the respective outputs of prefixes con-
catenated with suffixes (𝑆.𝐸 or 𝑆.Σ.𝐸). The table closed if
for every long prefix row, there is a short prefix row with
the same content (∀𝑠.𝜎 ∈ 𝑆.Σ∃𝑠 ∈ 𝑆 : 𝑠.𝜎 = 𝑠). The table is
consistent if for any two equal short prefix rows, the long pre-
fix rows beginning with these short prefixes are also equal
(∀𝑠, 𝑠′ ∈ 𝑆∀𝑎 ∈ Σ : 𝑠 = 𝑠′→ 𝑠.𝑎 = 𝑠′.𝑎). A complete, closed,
and consistent table can be used to infer a state machine (set
of states 𝑄 consists of all distinct short prefixes, the tran-
sition function is derived by following the suffixes). Even
though this algorithm was initially defined for DFAs, it has
been adapted to other types of state machines (e.g., Mealy or
Moore machines) [25]. Alternatively, some algorithms use
a discrimination tree that uses inputs as intermediate nodes,
states as leaf nodes, and outputs as branch labels, with a
similar method of inferring an automaton. One of these algo-
rithms, TTT [22], is deemed currently the most efficient [47].
Other widely used algorithms include a modified version of
the original L* with a counterexample handling strategy by
Rivest and Schapire [41], or the tree-based Direct Hypothe-
sis Construction (DHC) [34] and Kearns–Vazirani (KV) [28]
algorithms.

Once this is performed, the resulting automaton is pre-
sented to the Teacher, which is called equivalence query.
The Teacher either acknowledges the correctness of the au-
tomaton or provides a counterexample. The latter is incor-
porated into the observation table or discrimination tree and

the learning steps described above are repeated until the
model is correct. To allow for learning black box systems,
the equivalence queries in practice often consist of a suf-
ficient set of conformance tests instead of a Teacher with
perfect knowledge [38]. Originally for Deterministic Finite
Automata, this learning method could be used to learn Mealy
Machines [44]. This preferred for learning black box reactive
systems (e.g., cyber-physical systems), as modeling these as
Mealy is comparatively simple.

2.5 Abstraction

Ordinarily, when applying automata learning to real-world
systems, the input and output spaces are very large. To re-
duce the alphabets’ cardinalities to a manageable amount,
an abstraction function (∇) is employed, that transforms the
concrete inputs (𝐼) and outputs (𝑂) to symbolic alphabets
(Σ and Ω) using equivalence classes. Of all possible com-
binations of data to be send, we therefore concentrate on
relevant input for the purpose of compliance verification. In
the following, we present some rationale for the chosen de-
gree of abstraction through the input and output alphabets.
These alphabets’ symbols are abstracted and concretized via
an according adapter class that translates symbols to data to
be send (see Sect. 3.1.2).

2.6 LearnLib

To utilize automata learning, we use a widely adopted Java
library called LearnLib [23]. This library provides a variety
of learning algorithms (L* and variants thereof, KV, DHC,
and TTT), as well as various strategies for membership and
equivalence testing (e.g., conformance testing like random
words, random walk, etc.). The library provides Java classes
for instantiating these algorithms and interfaces SULs. The
interface classes further allow for defining the input alpha-
bets that the algorithm routines use to factor queries used
to fill an observation table or tree. Depending on the used
algorithms, the library is capable of inferring DFAs, NFAs
(Nondeterministic Finite Acceptors), Mealy machines or VP-
DAs (Visibly Pushdown Automata).

2.7 Near field communication

Near Field Communication (NFC) is a standard for sim-
ple wireless communication between close coupled devices
with relatively low data rates (106, 212, and 424 kbit/s).
One distinctive characteristic of this standard (operating at
13.56 MHz center frequency) is that it, based on Radio-
Frequency Identification (RFID), uses passive devices (prox-
imity cards, PICCs) that receive power from an induction
field from an active device (reader or proximity coupling

Springer

S. Marksteiner et al.

Fig. 2 NFC handshake automaton after ISO 14443-3 [20] augmented
with abstract outputs. Note that star (*) as input means any symbol that
is not explicitly stated in another outbound transition of the respective
state

device PCD) that also serves as a field for data transmis-
sion. There are a couple of defined procedures that allow for
operating proximity cards in the presence of other wireless
objects in order to exchange data [21]. One standard partic-
ularly defines two handshake procedures based on cascade-
based anticollision and card selection (called type A and type
B), one of which NFC proximity cards must be compliant
with [20]. This handshake is the particular target SUL of this
paper, with the purpose of providing very strong evidence
for compliance. Due to the proliferation and the nature of
the given SUL, this paper concentrates on type A devices.
Therefore, all statements on NFC and its handshake apply
for type A only.

2.8 The NFC handshake automaton

ISO 14443-3 contains a state diagram that outlines the Type
A handshake procedure for an NFC connection (see Fig. 2).

This diagram is not a state machine of the types described
in Sect. 2.1, for it lacks both output and final states. As we
learn Mealy machines, we augmented it with abstract out-
puts (see Sects. 4.1.2 and 5.1) to get a machine of the same
type. The goal of the handshake is to reach a defined state
in which a higher layer protocol (e.g., as defined in ISO
14443-4 [21]) can be executed (the PROTOCOL state). The
intended way described in the standard to reach this state is:
when coming into an induction field and powering up, the
passive NFC device enters the IDLE state. After receiving
a wake-up (WUPA) or request (REQA) message, it enters
the READY state. In this state, anti-collision (AC, remain-
ing in that state) or card selection (SELECT going to the
ACTIVE state) occurs. In the latter state, the card waits for
a request to answer-to-select (RATS), which brings it into
said PROTOCOL state. In all of these states, an unexpected
input would return the system to the IDLE state, giving no
answers (denoted as NAK). Based solely on ISO 14443-3
commands, the card should only leave this state after a DE-
SELECT command, after which it enters the HALT state.
Apart from a complete reset, it only leaves the HALT state
after a wake-up (WUPA) signal (in contrast to the initial IDLE
state, which also allows an REQA message). This brings it
into the READY* state, which again gets via a SELECT into
the ACTIVE* state that can be used to get to the PROTO-
COL state again. The only difference between READY and
READY*, as well as ACTIVE and ACTIVE*, states is that it
comes from the HALT instead of IDLE state. Similar to the
first part of the automaton, an unexpected answer brings the
state back to HALT without an answer (NAK).

Apart from the commands stated above that are expected
by a card in the respective state, every other (i.e., unexpected)
command would reset the handshake if its not complete (i.e.,
wrong commands from IDLE, READY, and ACTIVE states
would lead back to the IDLE state, while HALT, READY*,
and ACTIVE* lead back to the HALT state, and unexpected
commands in the PROTOCOL state let it remain in that
state). Even though this behavior of falling back into a base
state resembles a combination-lock automaton or generally
an accepting automaton, we model the handshake as a Mealy
machine for the following reasons:

a) As we observe a black box, input/output relations are
easier to observe than not intrinsically defined accepting
states.

b) The states are easier distinguishable: a variety of input
symbols with the corresponding output may represent a
broader signature than just if a state is accepting (apart
from the transition to other states).

c) The output may processed at different level of abstraction
(see Sect. 2.5).

There is also one specific feature to the NFC handshake pro-
tocol: unlike most communication protocols, an unexpected

Springer

(Compound) protocol compliance evaluation using automata learning

Fig. 3 Learner interface setup

or wrong input yields no output. This has an implication to
learning, as a timeout will be interpreted as a general error
message.

2.9 Bluetooth Low-Energy

Bluetooth Low-Energy (BLE) is a standard for mid-ranged
wireless communications optimized for low power consump-
tion (through long sleep phases and relatively small active
periods). It operates at data rates up to 2 Mbps in the 2.4 GHz
band (for devices supporting version > 5.0). It is divided in
four layers: application, middleware, data link, and physical.
In the data link and middleware layers, basic connection is
used [6].

3 Learning interfaces

As a learner, we use the algorithm implementations in the
Learnlib Java library (see Sect. 2.6). This section outlines the
details for the setup for NFC, BLE, and compound learning,
and the respective teacher and SUL interfaces.

3.1 NFC interface

The learner is configured as outlined in Sect. 4.1 using an
adapter class (cf. Sect. 3.1.2). To interact with the NFC SUL,
a Proxmark RFID/NFC device (see Sect. 3.1.1) is used that
works with an adapter written in C++ (see Sect. 3.1.2). Fig-
ure 3 provides an overview of the setup.

3.1.1 Learner interface device

The interface with an NFC SUL is established via Prox-
mark3, which is a pocket-size NFC device capable of acting
as an NFC reader (PCD) or tag (PICC), as well as sniffing
device [13]. Proxmark3 can be controlled from a PC, as well
as allowing firmware updates. Thus, it allows us to construct
the NFC frames needed for learning and establishing a con-
nection to the learning library via a software adapter (see
Sect. 3.1.2).

3.1.2 Adapter class

The Java learner communicates with the SUL via a distinc-
tive class that handles input, reset, etc. The actual access
to the NFC interface runs over a C++ program, running on
a PC, based on a provided application that comes with the
Proxmark device. As this application is open source, it was
possible to modify it in order to adapt it for learning. The
main interface to the Java-based Learner is a Socket con-
nection that take symbols from the Learner (see Sect. 2.5)
and concretizes them by translating the symbols into valid
NFC frames utilizing functions from the SendCommand and
WaitForResponse families. These functions send and receive,
respectively, command data (i.e., concrete inputs, symbol for
symbol) to the Proxmark device where the firmware trans-
lates it into frames and sends them to the SUL, and proceeds
vice versa for the response. This, however, turned out to
create an error prone bottleneck at the connection between
the PC application and the Proxmark device running over
USB. Due to round-trip times and timeouts, the learning was
slowed down and occasional nondeterministic behavior was
introduced, which jeopardized the learning process and made
it necessary to repeat the latter (depending on the scrutinized
system, multiple times, which hindered the overall learning
greatly). Therefore, the Learner was reimplemented to send
bulk inputs (i.e., send complete input words instead of single
symbols), which improved the throughput significantly and
solved nondeterminism.

3.1.3 Firmware modifications

In order to be able to transfer traces wordwise instead of sym-
bolwise, significant modifications of the device’s firmware
were necessary. The standard interface of the device is de-
signed for sending a single packet at one time (via a pro-
vided application on a PC) and delivering the answer back to
the application via a USB interface. This introduces latency,
which through the sheer amount of symbols sent in the learn-
ing process, has a significant performance impact. To reach
the device’s firmware with multiple symbols at once, we

Springer

S. Marksteiner et al.

modulate the desired inputs into one sent message in Type–
Length–Value (TLV) format (implemented types are with or
without CRC and a specialized type for SELECT sequences)
and modify the main routine of the running firmware to ex-
ecute a custom function if a certain flag is set. This custom
function deserializes the sent commands and sends them to
the NFC SUL. Answers are modulated into an answer packet
in length–value format, followed by subsequent answer mes-
sages containing precise logging and timestamps, if used. As
NFC is a protocol that works with relatively low round-trip
times and timeouts these modifications, eliminating a great
portion of the latency times of frequently used USB connec-
tions, it boosted the performance of the learning using dif-
ferent learning algorithms significantly (for a performance
evaluation, see Sect. 4.1.1).

3.2 BLE interface

For BLE, we use the same learner as for NFC (based on
LearnLib), but with some distinct SUL classes for Blue-
tooth. Particularly, we developed distinct classes for Input
and Output packets to configure the sent data [43]. We use
an identical socket construction like in the NFC interface to
communicate with the adapter class that handles the actual
BLE connection (see Fig. 3).

3.2.1 Learner interface device

For learning BLE systems, we used a Nordic nRF52840,
which is a multiprotocol SoC that supports most of the de-
fined hardware functionalities in the Bluetooth Core Speci-
fications 5.3 [40]. It comes with the ability to update the and
upload custom firmware. This allows for making the neces-
sary modifications for BLE learning, including the ability to
craft link layer packets, which is not possible on off-the-shelf
adapters.

3.2.2 Adapter class

The BLE adapter is written in Python 3.10 and makes use of a
modified version of Scapy 2.4.5.2 We use Scapy to generate
packets and to parse packets received by the firmware. It
supports most of the specified packets by default, but was
missing some of the newer packets and some fields were not
updated with the changes of Bluetooth 5.0 [6].

The communication with the firmware is split into two
kinds of message:

– Packet transmitted or received
– Commands to change connection parameter

2 https://scapy.net/.

Fig. 4 Compound protocol interface setup. Amber is the Learner class,
turquoise the SUL adapter classes, and blue the actual SUL

The Interface will communicate with the firmware in case
packets are sent and received, or if the Interface wants to
change some aspects of the firmware, like physical connec-
tion parameters of the BLE link. The communication with
the learner works in a similar manner. The Learner will query
the Interface with a trace of packets. In this setting, gener-
ating packets that depend on previously transmitted packets
is challenging, as the trace generated by the learner may
not include these prerequisite packets. To address this is-
sue, we decided that the default value of a field is either
the lowest value in a range or zero. This decision has been
made to improve predictability and prevent nondeterminism.
The learning cache uses a prefix tree (trie) data structure for
caching and error correction. All the queries to the system
will be saved in this trie. This helps prevent requiring the
system with duplicate traces for the equivalence oracle and
allows the system to resume learning.

3.2.3 Firmware modifications

In BLE, the controller and link layer is separated from the
host via a Host Controller Interface (HCI) from the Host
System. The controller is closed source. An of-the-shelf BLE
controller would restrict the packets we are able to send and
remove the ability to introduce faulty packets. Therefore we
needed a custom controller and Host Controller Interface
(HCI) that does not have these limitations. Based on the
Firmware for SweynTooth [12], we reimplemented the BLE
controller to have an open access to all link layer functions
necessary for proper learning.

3.3 Compound protocol interface

To learn multiple protocols at once, we created an adapter
that can act as a SUL interface to the learner and serves as a
dispatcher to actual SUL classes for different single-protocol
SULs. It receives the respective input alphabet and labels
each – when receiving an input symbol it dispatches it to the
respective protocol SUL (see Fig. 4).

Springer

https://scapy.net/

(Compound) protocol compliance evaluation using automata learning

Table 1 Runtime (minutes) per
algorithm and maximum word
length

Max. word length Algorithm
L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B

10 5.92 5.05 6.00 4.38 4.38 5.45 5.37
20 20.08 9.34 10.93 12.24 11.65 7.66 7.40
30 41.90 12.92 9.82 12.19 11.47 10.67 10.04
40 68.17 8.54 11.16 15.56 12.89 10.87 9.49
50 34.75 7.87 11.02 15.60 12.53 11.29 9.91
60 77.33 17.15 12.98 17.16 13.37 13.04 10.85
70 134.65 11.34 14.46 17.68 14.81 13.06 11.32

3.3.1 Adapter class

The class caring about addressing multiple SULs (com-
poundSUL) at once is actually a container. It provides the
same functionalities as other SUL classes, but can have
other SULs as child SULs. Technically, each added SUL
is equipped with an identifier (sequential number) as a prefix
and its input alphabet is added to that of the compoundSUL
(more formally, 𝐼𝑀𝑢𝑙𝑡 =

⋃
𝑗∈𝑛 𝐼 𝑗 with 𝑗 being identifiers of

child SULs and 𝐼𝑀𝑢𝑙𝑡 = 𝜀 for a childless compoundSUL).
Additionally, the identifier of a child SUL is added as a pre-
fix to each element of its input alphabet upon adding it to the
compoundSUL alphabet (𝑖 ∈ 𝐼 𝑗 | 𝑖 = 𝑗_𝑖). The learner uses
the joint alphabet including the prefixes as input symbols (as
the compoundSUL presents the full joint alphabet as possible
input). When receiving an input trace from the learner, the
compoundSUL sequentially hands each input symbol to the
child SUL with the respective index and removes the prefix
(sending each consecutive sequence of inputs for the same
child SUL as a bulk sequence) and queues the output. When
the complete trace has been processed by the child SULs, it
hands the concatenated output trace back to the learner. This
makes the internal structure of the compoundSUL (or even
the fact that it is a composite SUL) completely opaque to the
learner.

4 Learning protocols

In this section we discuss the characteristics of learning com-
munication protocols, particularly NFC and BLE, as well as
of learning compound-protocol automata.

4.1 Learning NFC

One distinctive attribute of ISO14443-3 with respect to learn-
ing is that it specifies to not give an answer on unexpected
(i.e., not according to the standards specification) input. Or-
dinarily, the result of such a undefined input is to drop back
to a defined (specifically, the IDLE or HALT) state. In this

sense, the NFC handshake resembles a combination lock
automaton. A positive output, on the other hand, ordinarily
consists of a standardized status code or information that is
needed for the next phase of the handshake, e.g., parts of a
card’s unique identifier (UID). The non-answer to undefined
input is a characteristic feature of the NFC standard. This
directly affects the learning because it yields many identical
answers and efficient timeout handling is essential. It is there-
fore necessary to evaluate different state-of-the-art learning
algorithms for their specific fitness (see Sect. 4.1.1), as well
as determining the optimal parameter set (Sect. 4.1.1). We
scrutinize the main algorithms supported by Learnlib: clas-
sical L*, L* with Rivest/Schapire counterexample handling,
DHC, KV and TTT – the latter two with linear search (L)
and binary search (B) counterexample analysis.

4.1.1 Comparing learning algorithms and calibrations

All of the algorithms can be parameterized regarding the
membership and equivalence queries. The former are mainly
defined via the minimum and maximum word length, while
the equivalence queries (lack of a perfect Teacher) are deter-
mined by the method and number of conformance tests. Gen-
erally speaking, a too short (maximum) word length results
in an incomplete learning (which, if the implementation is
correct, should contain seven states). The maximum length,
however, has a different impact on the performance for ob-
servation and tree-based algorithms: table-based are quicker
with a short maximum word length, whereas for tree-based
ones there seems to be a break-even point between many sent
words and many sent symbols in our specific setting. Table 1
shows a comparison of the runtime of different algorithms
with different maximum word lengths (in bold the respective
algorithm’s shortest runtime that learned the correct 7-state
model). Some of the nonsteadiness in the results can be ex-
plained by the fact that some calibrations with shorter word
lengths required more equivalence queries and, thus, refine-
ment procedures. Table 2 shows the results with the best
performing (correct) run of the respective algorithm. This,
however, only covers the performance of learning a correct

Springer

S. Marksteiner et al.

Table 2 Performance
evaluation of different
algorithms for a compliant
system with their respective
fastest calibration in the given
setting

Algorithm L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B
(20) (10) (30) (30) (30) (30) (40)

States 7 7 7 7 7 7 7
Runtime (min) 20.08 5.05 9.82 12.19 11.47 10.67 9.49
Words 1137 282 539 496 451 468 382
Symbols 10,192 2588 5124 7932 7607 6628 6213
EQs 2 3 2 5 5 4 4

Table 3 Performance
evaluation of different
algorithms for a noncompliant
system with their respective
fastest calibration in the given
setting

Algorithm L*-RS DHC KV-L KV-B TTT-L TTT-B

Min Length 20 20 10 10 10 10
Runtime (min) 309.81 328.83 520.34 423.27 277.67 131.43
Words 575 855 952 679 688 616
Symbols 14,637 15,262 23,867 19,241 13,353 11,769
Eqs 5 3 6 6 5 5

implementation. The opposite side, discovering a bug, shows
a different picture. We therefore used a SUL with a slightly
deviating behavior (see Sect. 6.2). This system is much more
error-prone, needing significantly higher timeout values, re-
sulting in higher overall runtimes. One key property in this
case seems to be the minimum word length. Some of the
algorithms require a lower minimum word length to discover
than others. This has a significant impact with the special
setting of getting relatively many timeouts, which is greatly
aggravated by the necessary long timeout periods. With a
minimum word length of 10 symbols, again the original L*
with the Rivest/Schapire closing strategy was performing
quickest, but discovered only 7 out of 10 states of the de-
viating implementation. DHC yielded a similar result. Both
needed a word length of 20 to discover the actual uncom-
pliant model, which was significantly less efficient in terms
of runtime. The TTT and KV algorithms needed a mini-
mum length of 10, however, with quite some deviation in
efficiency. While TTT was the best performing algorithm to
learn the SUL’s actual behavior model, KV was performing
the worst. The runtimes roughly correspond with the amount
of sent symbols, in this case a very long timeout has to be
set to avoid nondeterminism. The classical L* is not in the
list, as the algorithm crashed after more than 24 hours of
runtime. Table 3 provides an overview of minimum word
lengths, runtime, words, symbols, and equivalence queries.
Lower minimum word lengths yielded false negatives (i.e.,
the result showed a correct model with the deviation not
discovered).

4.1.2 Input and output alphabets

For the input alphabet, we use that needed for successfully
establishing a handshake (cf. Fig. 2), according to the state
diagram for Type-A cards in the ISO 14443-3 standard [20]:

– Wake-UP command, Type A (WUPA)
– Request command, Type A (REQA)
– Anticollision (AC)
– Select command, Type A (SELECT)
– Halt command, Type A (HLTA)
– Request for answer to select (RATS)
– Deselect (DESEL)

The last two commands are actually defined in the ISO
14443-4 standard [21]. However, as the handshake’s purpose
is to enter and leave the protocol state, they are included
in the 14443-3 state diagram and, consequentially, in our
compliance verification.

In general, the output alphabet does not need to be defined
beforehand. It simply consists of all output symbols observed
by the Learner in a learning run. The Learner can derive the
output alphabet implicitly. This means that if a system be-
haved nondeterministically, the output alphabet could vary –
although when learning Mealy machines, which are deter-
ministic by definition, nondeterminism would jeopardize the
Learner. The output alphabet has obviously to be defined (in
the abstraction layer) when abstracting the output. Therefore,
using raw output has the benefit of not having to define the
alphabet beforehand. The raw method has one drawback:
there are cards that use a random UID (specifically, this be-
havior was observed in passports). Every anticollision (AC)
and SELECT yields a different output, which introduces non-
deterministic behavior. This is not a problem with abstract

Springer

(Compound) protocol compliance evaluation using automata learning

output, as the concrete answer is abstracted away. We there-
fore tried a heavily abstracted output consisting of only two
symbols, namely ACK for a (positive) answer and NAK for
a timeout, which in this case means a negative answer (see
Sect. 2.7). This solves the problem, but degrades the perfor-
mance of the Learner, since states are harder to distinguish
if the possible outputs are limited to two (aggravated by
the similar behavior of certain states – see Sect. 2.8). This
idea was therefore forfeited in favor of raw output for the
learning. We still maintained this higher abstraction for the
equivalence checking (see Sect. 5.1 for the reasoning). Raw
output, however, retains this problematic nondeterminism.
We therefore introduce a caching strategy to cope with this
issue. Whenever a valid (partial) UID is received as an an-
swer to an anticollision or select input symbol, we put it on
one of two caches (one for partial UIDs from AC and one for
full ones from SELECT sequences). The Learner will sub-
sequently only be confronted with the respective top entries
of these caches. We therefore abstract away the randomness
of the UID by replacing it with an actual but fixed one.
This keeps the learning deterministic while saving the other
learned UIDs for analysis, if needed.

4.1.3 Labeling and simplification

An implementation that conforms to the standard will auto-
matically labeled correctly, as the labeling function follows
a standards-conform handshake trace:

a) label the initial state with IDLE,
b) from that point, find the state, where the transition with

REQA as an input and a positive acknowledgment as an
output ends and label it as READY,

c) from that point, find the endpoint of a positively acknowl-
edged SELECT transition and label it as ACTIVE,

d) from that point, find the endpoint of a positively acknowl-
edged RATS transition and label it as PROTOCOL,

e) from that point, find the endpoint of a positively acknowl-
edged DESELECT transition and label it as HALT,

f) from that point, find the endpoint of a positively acknowl-
edged WUPA transition and label it as READY*,

g) from that point, find the endpoint of a positively acknowl-
edged SELECT transition and label it as ACTIVE*.

If the labeling algorithm fails or there are additional states
(which are out of the labeling algorithm’s scope), this is an
indicator for the learned implementation’s noncompliance
with the ISO 14443-3 standard (given that only the messages
defined in that standard are used as an input alphabet – see
Sect. 4.1.2).

To simplify the state diagram for better readability and
analysis, we cluster the transitions of each states for out-
put/target tuples and label the input for that mostly traveled

tuple with a star (∗). Normally, that is the group of transi-
tions that mark an unexpected input and transitions back to
the IDLE or HALT state. This reduces the diagram signif-
icantly. Therefore, in those simplified diagrams, all inputs
not marked explicitly in a state can be subsumed under the
respective star (∗) transition.

4.2 Learning BLE

Like many network protocols, but in contrast to NFC, BLE is
time sensitive with regard to answers to requests within a rea-
sonable time frame. In practice, we observed the importance
of timing within BLE through the necessity of swift message
processing to generate inputs quick enough for learning be-
fore timeouts occur. In order to yield good results, many opti-
mizations were necessary that front-load operations from the
learner into the adapter including caching functionalities to
achieve the speed needed for proper communications. Tests
with this optimized BLE adapter yielded a model with 33
states – but only four output symbols (LL_VERSION_IND,
LL_UNKNOWN_RSP(code=12), ATT_Exchange_MTU_Re-
sponse, and ATT_Error_Response). The relatively high num-
ber of states (given such few input symbols) can be explained
by a narrow margin of time windows to hit. This results in dif-
ferent states to be detected upon timeout occurrences. When
using the BLE learner without optimizations (which is a ne-
cessity for compound-protocol learning), the automaton be-
comes much simpler (three states). With this configuration,
only two packets (maximum, for ATT_Exchange_MTU_REQ
only one) can be sent in time before the connection times out
and we end in a unresponsive sink state (while such restric-
tions do not apply for the optimized version). This means that
we get only one non-timed-out answer per trace, greatly sim-
plifying the automaton (see Fig. 6). This observation is spe-
cific to the used SUL, namely a Tesla key fob (see Sect. 6.2).
The optimized learner, configured with more input symbols,
yielded different results with other systems [11], which also
applies to an updated version of the compound learner (see
Sect. 6.2.1).

4.2.1 Input and output alphabets

To both reduce the resulting model’s complexity and the
effort of learning, we do not use connection requests as a
dedicated input, but as part of the reset procedure. Therefore,
our learner is intrinsically built to connect with the SUL
before using any explicit input symbols. Also, for the sake of
simplicity, we use a small set of low-level messages that are
used to establish BLE connections. This reduced set consists
of

– LL_VERSION_IND
– LL_FEATURE_RSP and

Springer

S. Marksteiner et al.

– ATT_EXCHANGE_MTU_REQ

Like in NFC, the output consists on the system’s reaction
to the input symbols. We therefore do not need to explicitly
define an output alphabet. This is arguably only a small sub-
set of the outputs defined in the standard. The reason is not
only the small input alphabet, but also timing issues. Due
to creating the necessary interlace between NFC and BLE
symbols for learning compound-protocol automata, we were
forced to deactivate some efficiency and caching procedures,
which results in a lower overall performance. This is because
the front-loaded optimizations directly in the adapter cannot
be transferred to the learner, which would be necessary to al-
low for the intertwining of symbols from different protocols.
For the sake of comparability, we used the low-performing
methodology to learn the BLE-only automaton as well.

4.3 Learning compound-protocol automata

For compound protocols, we use a container SUL that dese-
rializes and dispatches SULs to child SULs that handle the
interface to the protocols present in the compound SUL (cf.
Sect. 3.3 and Fig. 4). The actual protocol SULs are invisible
to the learner.

4.3.1 Abstraction

The abstraction layer for compound SUL containers mainly
consists of handling the dispatcher. The container can be
equipped with one or more protocol SULs (which we do
with NFC and BLE SULs – see Sect. 6.2.1). On adding a
protocol SUL, its respective input alphabet will be added
to the compound’s (which is just 𝜀 for an empty compound
SUL) with an identifier as a prefix. When the learner sends
a trace, it will be deserialized and distributed to its child
SULs according to the respective identifiers. The answers
will be assembled again in the same sequence and sent back
to learner as output word.

4.3.2 Input and output alphabets

We used the input alphabets for NFC and BLE described
above. It was necessary to deactivate some performance fea-
tures for each protocol to successfully intertwine the alpha-
bets.

5 Equivalence checking

We mainly use the two mentioned methods of compliance
checking (bisimulation and trace equivalence) to check the

compliance of an implementation with a system specifica-
tion. Additionally, for our proposed method of multiproto-
col learning, we can also use the method set to detect de-
viations of a compound-protocol automaton from its sepa-
rately learned single-protocol counterparts, indicating cross-
protocol influences.

5.1 Compliance evaluation

Proving or disproving compliance needs a verdict if a poten-
tial deviation from the standard violates the (weak) bisim-
ulation relation. We use mCRL2 with the Aldebaran (.aut)
format for bisimilarity and trace equivalence checking (as
described in Sect. 2.2) [9]. As the Learnlib toolset provides
the possibility to store the learned automata in a couple of for-
mats, including Aldebaran, setting up the tool chain is easy,
even though some reengineering was necessary. Learnlib’s
standard function for exporting in the Aldebaran format does
not include outputs. We therefore rewrote this function to use
the transition’s in the label of an LTS as well. mCRL2 comes
with a model comparison tool that uses, among others, the
algorithm of Jansen et al. [26] for bisimilarity checking. For
NFC, we therefore simply model the specification in form
of the handshake diagram (see Fig. 2) as an LTS with the
corresponding Mealy’s input and output as a label in the
Aldebaran format and use the mCRL2 tool to compare it to
automata of learned implementations.

5.1.1 NFC specifics

In NFC, the models of SULs could look very different, even
if the behavior is equal. Due to different UIDs, the outputs
to legit AC and SELECT commands would ordinarily differ
between any two NFC cards. Also most other outputs might
differ slightly. For example, we observed some cards to re-
spond to select with 4800, others with 4400. We therefore
use the higher abstraction level as described above and use
only NAK and ACK as output, circumventing this problem.
This way, inequalities as detected by the tool indicate non-
compliance to the ISO 14443-3 standard of the scrutinized
implementation. A trace of the noncompliant state/transition
is trivial to extract from the automaton (see the example in
Sect. 6.2). If that trace is executed on the SUL and actually
behaves like predicted in the model, we have found the ac-
tual specification violation in the real system, disproving the
compliance.

5.1.2 BLE specifics

One specific of the BLE handshake is that the first request
always has to be a connection request in order to leave the ini-
tial state. To boost efficiency, we included this request in the
reset procedure. Therefore, a connection request is implicit

Springer

(Compound) protocol compliance evaluation using automata learning

in our model and included as a distinct input symbol. Also,
like many other communication protocols but in contrast to
NFC, timing has an influence on the states. Sessions time
out after a specific period. The impact of this circumstance
is that (with our learner’s used timing) the SUL’s state ma-
chine enters an unresponsive sink state after two to four sent
messages, if the timeout is not reset through a message.

5.2 Compound protocol comparison

It is one of the main motivations of this paper to determine if
different protocols running on the same device influence each
other. To determine this, the described equivalence check-
ing methods compare a compound-protocol automaton with
the separately learned automata of each individual protocol
in two different ways: a) based on preorder and b) based
on hiding. The preorder method (see Sect. 2.2), checks for
each of the single protocol automata if it is included in the
compound automaton using simulation or trace preorder. In-
cluded in this context means that the including automaton
can simulate the complete behavior of the included one, but
not (necessarily) vice versa. The hiding method creates mul-
tiple automata (one for each protocol) from the compound
one, by hiding (see Sect. 2.3) transitions from the alphabets
of all other protocols (i.e., replacing them with 𝜏 transitions).
It then checks the equivalence of each automaton generated
this way with its separately learned single-protocol coun-
terpart using weak trace equivalence or weak bisimulation.
Each of the methods generates counterexamples on devia-
tions. If counterexamples are found, they indicate that the
joint behavior is different. This then suggests that an inter-
ference between these protocols on the device has occurred
or an application on the examined systems uses both proto-
cols in conjunction. However, the checks based on hiding are
stronger – as preorder just checks if the compound automa-
ton can simulate the single-protocol, it does not discover
extra behavior. Using both methods in concatenation can
automatically determine if a deviation indicates lack of or
extra behavior: if the preorder check fails, the compound
automaton does not fully simulate the single protocol; if it
succeeds but the hiding-based (weak bisimulation or weak
trace) equivalence checks fail, it provides extra behavior; if
both succeed, the single protocol is exactly reproduced in the
compound automaton.

6 Evaluation

In this section we briefly outline the achieved results with
the described tool chain. We used several different NFC card
systems for testing, which are described below. All of these
systems have shown to be conform to the ISO14443-3 stan-
dard, except for the Tesla key fob. This key fob was also the

main system examined using the dual learning approach, for
it displays both protocols (NFC and BLE) which are used
for its proper functioning: while open/close signals come via
BLE, NFC is used as an out-of-band method during the pair-
ing process for exchanging key material to secure the BLE
connection.

6.1 Test cards, credit cards, and passports

We used five different NFC test cards by NXP (part of an
experimental car access system) to develop and configure the
Learner. Furthermore, we used two different banking cards,
a Visa and a Mastercard debit. All of these cards conform to
the standard, with only minor differences. One of these dif-
ferences is replying with different ATQA to REQA/WUPA
messages with 4400 and 4800, respectively. Overall, the re-
sults with these cards are very similar. Figure 5 shows an
example of a learned automaton (left). We also examined
two different passports from European Union countries: one
German and one Austrian. The main noticeable difference
(at ISO 14443-3 levlel) to other systems is that these systems
answer to AC and SELECT inputs with randomly generated
(parts of) UIDs. This implements a privacy feature to make
passports less traceable. Without accessing the personal data
stored on the device, the passport should not be attributable.
This, however, requires authentication. We also scrutinized
the upper-layer passport protocol in another publication [31].

6.2 Tesla key fob

Apart from significantly slower answers than for the other
devices, which required adapting the timeouts to avoid non-
deterministic behavior, the learned automaton slightly dif-
fers when learned with the TTT algorithm. Figure 5 (right)
shows a model of a Tesla car key fob learned with TTT.
The (unnamed) states 3, 4, and 6 are very similar to the
HALT, READY*, and ACTIVE* states, respectively. Apart
from the entry points (HALTA from the ACTIVE state
for the first and DESEL from the PROTOCOL state, re-
spectively), these two structures are identical and, in the
reference model, those two transitions lead to the same
state. However, the ACTIVE* transition allows for issu-
ing a DESELECT command that actually returns a value
(i.e., an ACK in the higher abstraction), which does not
correspond to the standard. The mCRL2 comparison tool
rightfully identifies this model not to be bisimilar and trace
equivalent with the specification. Using the according op-
tion, the tool also provided a counterexample in the form
of the trace (〈REQA/ACK〉, 〈SELECT/ACK〉, 〈RATS/ACK〉,
〈DESEL/ACK〉, 〈WUPA/ACK〉, 〈SELECT/ ACK〉, 〈DESEL
/ACK〉). According to the specification, the last label should
be 〈DESEL/NAK〉. We also learned a BLE automaton with a
reduced set used for comparison with the compound-protocol

Springer

S. Marksteiner et al.

Fig. 5 NFC automaton of an
NXP test card (left) and a Tesla
car key fob (right) learned with
TTT

Fig. 6 Automaton of a Tesla key fob’s BLE interface, learned with TTT without BLE optimizations (in blue), added (in light gray) is the additional
state class when learning a compound model (see Sect. 6.2.2) (Color figure online) (Zoomable figure online)

automata (see also Sect. 4.2). Figure 6 shows this automaton,
including the deviations from the compound automaton.

6.2.1 Compound protocol automaton

We also learned a compound automaton of the Tesla key fob
(since it supports both NFC and BLE). We used the same
input alphabets as for the NFC and BLE learning, respec-
tively. The result is a 20-state automaton that combines both
protocols (see Fig. 7). We subsequently used the equivalence
checks described in Sect. 5.2. For NFC, we found some devi-
ations with both checking methods because in the compound
setting the learner failed to spot the noncompliance with the

ISO/IEC standard (see above in Sect. 6.2). We subsequently
compared it with the standard’s specification automaton (cf.
Sect. 5.1) and both methods rendered it to be included or
(weakly) equivalent, respectively. An interesting detail is that
in a failed learning attempt with an early error in BLE (trace
#233, that produced a nondeterminism in trace #1391), the
learning took a different path, which resulted in the discov-
ery of the noncompliant transition. For BLE, the preorder
checks were positive, meaning that the compound automa-
ton includes the behavior of the stand-alone BLE automaton.
However, the hiding-based method yielded that they are not
equivalent. This means that there is extra BLE behavior by
using NFC input in parallel.

Springer

(Compound) protocol compliance evaluation using automata learning

Fig. 7 Compound NFC/BLE Tesla key fob model learned with TTT.
Transitions in black are NFC and those in blue are BLE, pale lines are
without output (i.e., timeouts). We also used NFC* and BLE* for all

other BLE and NFC inputs for better readability (Color figure online)
(Zoomable figure online)

6.2.2 Compound protocol deviation analysis

We therefore manually analyzed the compound automaton
with hidden NFC further. First, we built equivalence classes
of states according to labels of outgoing transitions (which
we name 𝜆 analysis after the labeling function). This yielded
4 equivalence classes (i.e., four different types of states,
which corresponds to the stand-alone BLE model). Then,
we checked the transitions for all states, if the respective tar-
get state is in the same equivalence class as the respective
state in the BLE-only model (𝛿 analysis, named after the
transition function). With this, we identified four states (s2,
s11, s15, and s16 in Fig. 7) that differ, i.e., their successor
states do not belong to the same label equivalence classes
as in the stand-alone BLE model (Fig. 6). This means that
these four states form their own class and are not mergeable
with the others – hence the two models cannot be equiv-
alent. This class is characterized by a) having the output
functions as s0 in BLE model, but b) all have the transition
functions just as s1, s2, and s3 (they are not distinguishable,
as all transitions from these classes lead to s2), and c) they
are only reachable via 𝜏 transitions. This indicates that this
behavior is NFC-induced, since the states are unreachable
from BLE transitions alone (black in Fig. 7). An analysis of
the traces yielded that all of them undergo NFC connections
with timeouts, procrastinating the connection. This leads to
a very simple explanation: the NFC transitions use up a good
amount of the timer that checks for BLE connection time-
outs. That way, they deliver an output from the s0 class (just
as its first BLE input symbol), but then immediately jump
to the BLE s2 class without giving s1 or s3 output because

the timer runs out and s2 is a sink state that does not give
BLE output (BLE s2 is the timed-out state – see the 𝜏 state
in Fig. 6). As a result, we found some optimization poten-
tial in the learner code to quicken the send/receive process.
This yielded a more complex model that is subject to future
works.

7 Related work

There are other, partly theoretic, approaches of inferring a
model using automata learning and comparing it with other
automata using bisimulation algorithms. However, they tar-
get DFAs [10] or probabilistic transition systems (PTS) [17].
Neider et al. [36] present some significant theoretic fun-
damentals of using automata learning and bisimulation for
different types of state machines, including Mealys. This
work also contains the important observation that (general-
ized) Mealy machines are bisimilar if their underlying LTS
are bisimilar. Tappler et al. [46] used a similar approach of
viewing Mealy machines as LTS to compare automata re-
garding their bisimilarity. Similarly, bisimulation checking
was also used to verify a model inferred from an embedded
control software [45]. There is also previous work on using
automata learning for inferring models of BLE systems, with
the main target of fuzzing [39]. Another approach that tar-
gets compliance checking based on model checking that also
sequences the subprotocol of BLE is from Karim et al. [27].
There is also work on learning NFC card models [1], which
concentrates on the upper layer (ISO/IEC 14443-4) protocol,
dodging the specific challenges of the handshake protocol.

Springer

S. Marksteiner et al.

Also there is no mentioning of automatic compliance check-
ing in this approach. To the best of our knowledge, there is no
comprehensive approach for compliance verification of the
ISO/IEC 14443-3 and also no work on compound-protocol
learning.

8 Conclusion

In this paper, we demonstrated the usage of automata learn-
ing to infer models of SULs and evaluate their compliance
with the ISO 14443-3 protocol by checking their bisimilarity
with a specification. We described a learning interface setup,
showed practical results and made interesting observations
on the impact of the protocol specifics on learning algo-
rithms’ performance. We further demonstrated the practical
ability to learn a compound automaton of two protocols run-
ning on the same device (particularly using BLE symbols in
the input alphabet) using a dispatcher SUL adapter. We then
used similar techniques to determine differences between
the sum (a compound automaton) and its parts (separately
learned automata): preorder checks if the parts are included
in the compound automaton and dissecting the compound au-
tomaton and comparing it with the parts. The results showed
the compound and separately learned automata to be very
similar. However, the added complexity made it more diffi-
cult to learn. The same learner configuration failed to spot the
NFC nonconformance of the Tesla and showed a standard-
conformant system instead. We also found extra states for
BLE in the compound automaton: preorder yielded a posi-
tive result, while the hiding-base weak equivalence demon-
strated that the automata are not equal. This means that those
two checks combined (or two vice versa executed preorder
checks) can determine if deviations are additional or miss-
ing behavior. The hiding-based method eases the root cause
analysis what causes these deviations.

8.1 Discussion

Examining pure NFC, we found little differences between
the SULs – all examined systems but the Tesla key fob were
compliant to ISO/IEC 14443-3. However, the scrutinized
NFC handshake protocol has two characteristics that are dis-
tinct from other communications protocols: a) it does not
send an answer on unexpected input and b) the automaton
has two almost identical parts that pose challenges in learn-
ing. Supposedly these characteristics are responsible for the
somewhat surprising finding that the L* algorithm with the
Rivest/ Schapire improvement surpasses more modern tree-
based algorithms for correct systems. Still, TTT performed
best in finding a noncompliant system and the minimum
word length has an impact on the ability to find noncompli-
ances. This helps learning similar structures. When looking

at compound automata, we saw that two things were crucial –
conformance testing and timing. Since the input alphabets of
compound automata were bigger and combined words more
complex, the possibility of missing subtle deviations like in
the Tesla key fob is bigger. This induced the need of more
conformance testing. Also, for time-sensitive (like most net-
work) protocols it was important to optimize speed to avoid
extra behavior stemming from timeouts. Since timing also
played a role when learning deterministic machines, corner
cases were important. We easily got a deterministic result if
a session timeout was far away or long passed. But if input
symbols were (coincidentally) sent near the timeout, they
partially yielded a different result even in the same sequence
(producing a nondeterminism): one in-time and one timed-
out. This issue might be overcome by using timed automata,
but this is a complex solution.

8.2 Outlook

Compliance checking is only a first step towards assuring cor-
rectness and, subsequently, cybersecurity for NFC systems.
Concretely, further research directions include test case gen-
eration using model checking and targeting upper layer pro-
tocols (partly addressed in [31], but to be further extended).
The compound learning yielded promising results, but their
significance can be improved with speed optimizations in
the learner as mentioned above. To overcome problems with
timing-induced nondeterminism, we would need the abil-
ity to recognize time properties. Timed automata, however,
are hard to create [7]. To avoid this burden, while still con-
sidering timing, Mealy machines with one [48] or multiple
timers [8] could be used. This could contribute towards a
general solution of learning system models with multiple
protocols.

Acknowledgements We like to thank the reviewers of this paper, as
well as the reviewers of the original conference paper, for their valuable
insights that significantly helped improving this paper’s quality.

Funding information Open access funding provided by Mälardalen
University. This research received funding within the CHIPS Joint Un-
dertaking (JU) under grant agreements No. 876038 (project InSecTT)
and 101007350 (project AIDOaRt) and from the program “ICT of
the Future” of the Austrian Research Promotion Agency (FFG) and
the Austrian Ministry for Transport, Innovation and Technology un-
der grant agreement No. 880852 (project LEARNTWINS). The JU
receives support from the European Union’s Horizon 2020 research
and innovation program and Austria, Sweden, Spain, Italy, France,
Portugal, Ireland, Finland, Slovenia, Poland, Netherlands, Turkey. We
further acknowledge the support of the Swedish Knowledge Foundation
via the industrial doctoral school RELIANT, grant No. 20220130. The
document reflects only the authors’ views and the Commission is not
responsible for any use that may be made of the information it contains.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long

Springer

(Compound) protocol compliance evaluation using automata learning

as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aarts, F., De Ruiter, J., Poll, E.: Formal models of bank cards
for free. In: 2013 IEEE Sixth International Conference on Soft-
ware Testing, Verification and Validation Workshops, pp. 461–468
(2013)

2. Aceto, L., Ingolfsdottir, A., Srba, J.: The algorithmics of bisim-
ilarity. In: Advanced Topics in Bisimulation and Coinduction,
pp. 100–172. Cambridge University Press, Cambridge (2011)

3. Angluin, D.: Learning regular sets from queries and counterexam-
ples. Inf. Comput. 75(2), 87–106 (1987)

4. Antonioli, D., Tippenhauer, N.O., Rasmussen, K., Payer, M.:
BLURtooth: exploiting cross-transport key derivation in Bluetooth
classic and Bluetooth low energy. In: Proceedings of the 2022 ACM
on Asia Conference on Computer and Communications Security.
ASIA CCS’22, pp. 196–207. Association for Computing Machin-
ery, New York (2022)

5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press,
Cambridge (2008)

6. Bluetooth SIG: Bluetooth Specification. Core Specification v5.4,
Bluetooth SIG (2023)

7. Brouwer, R.: Learning Timed Mealy Machines of the Physical
Processes of an Industrial Control System for Anomaly-Based At-
tack Detection. Master’s thesis, University of Twente, Twente, the
Netherlands (2020)

8. Bruyère, V., Garhewal, B., Pérez, G.A., Staquet, G., Vaandrager,
F.W.: Active Learning of Mealy Machines with Timers. Preprint
(2024). arXiv:2403.02019

9. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de
Vink, E.P., Wesselink, W., Wijs, A., Willemse, T.A.C.: The mCRL2
toolset for analysing concurrent systems. In: Vojnar, T., Zhang, L.
(eds.) Tools and Algorithms for the Construction and Analysis of
Systems. Lecture Notes in Computer Science, pp. 21–39. Springer,
Cham (2019)

10. Chen, Y.F., Hong, C.D., Lin, A.W., Rümmer, P.: Learning to prove
safety over parameterised concurrent systems. In: 2017 Formal
Methods in Computer Aided Design (FMCAD), pp. 76–83 (2017)

11. Ebrahimi, M., Marksteiner, S., Ničković, D., Bloem, R., Schö-
gler, D., Eisner, P., Sprung, S., Schober, T., Chlup, S., Schmittner,
C., König, S.: A systematic approach to automotive security. In:
Chechik, M., Katoen, J.P., Leucker, M. (eds.) Formal Methods.
Lecture Notes in Computer Science, vol. 14000, pp. 598–609.
Springer, Cham (2023)

12. Garbelini, M.E., Wang, C., Chattopadhyay, S., Sun, S., Kurni-
awan, E.: SweynTooth: unleashing mayhem over Bluetooth low en-
ergy. In: Proceedings of the 2020 USENIX Conference on Usenix
Annual Technical Conference. USENIX ATC’20, pp. 911–925.
USENIX Association, USA (2020)

13. Garcia, F.D., de Koning Gans, G., Verdult, R.: Tutorial: Proxmark,
the Swiss army knife for rfid security research: Tutorial at 8th
workshop on RFID security and privacy (RFIDSec 2012). Tech.
Rep., Radboud University Nijmegen, ICIS, Nijmegen (2012)

14. Groote, J.F., Mousavi, M.R.: Modelling and Analysis of Commu-
nicating Systems. MIT Press, Cambridge (2023)

15. Hancke, G.: Practical attacks on proximity identification systems.
In: 2006 IEEE Symposium on Security and Privacy (S&P’06),
pp. 6–333 (2006)

16. Hoare, C.A.R.: Communicating Sequential Processes, vol. 178.
Prentice-Hall, Englewood Cliffs (1985)

17. Hong, C.D., Lin, A.W., Majumdar, R., Rümmer, P.: Probabilistic
bisimulation for parameterized systems. In: Dillig, I., Tasiran, S.
(eds.) Computer Aided Verification. Lecture Notes in Computer
Science, pp. 455–474. Springer, Cham (2019)

18. Hopcroft, J.: An 𝑛 log 𝑙 algorithm for minimizing states in a finite
automaton. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and
Computations, pp. 189–196. Academic Press, San Diego (1971)

19. Hopcroft, J.E., Karp, R.M.: A Linear Algorithm for Testing Equiv-
alence of Finite Automata. Tech. Rep., Cornell University (1971)

20. International Organization for Standardization: Cards and secu-
rity devices for personal identification – Contactless proximity
objects – Part 3: Initialization and anticollision. ISO/IEC Standard
“14443-3”, International Organization for Standardization (2018)

21. International Organization for Standardization: Cards and secu-
rity devices for personal identification – Contactless proximity ob-
jects – Part 4: Transmission protocol. ISO/IEC Standard “14443-
4”, International Organization for Standardization (2018)

22. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm:
a redundancy-free approach to active automata learning. In:
Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification. Lec-
ture Notes in Computer Science, pp. 307–322. Springer, Cham
(2014)

23. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In:
Kroening, D., Păsăreanu, C.S. (eds.) Computer Aided Verification.
Lecture Notes in Computer Science, pp. 487–495. Springer, Cham
(2015)

24. Issovits, W., Hutter, M.: Weaknesses of the ISO/IEC 14443 proto-
col regarding relay attacks. In: 2011 IEEE International Conference
on RFID-Technologies and Applications, pp. 335–342 (2011)

25. Jacobs, B., Silva, A.: Automata learning: a categorical perspec-
tive. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J.
(eds.) Horizons of the Mind. A Tribute to Prakash Panangaden:
Essays Dedicated to Prakash Panangaden on the Occasion of His
60th Birthday. Lecture Notes in Computer Science, pp. 384–406.
Springer, Cham (2014)

26. Jansen, D.N., Groote, J.F., Keiren, J.J.A., Wijs, A.: An𝑂 (𝑚 log𝑛)
algorithm for branching bisimilarity on labelled transition systems.
In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. Lecture Notes in Computer
Science, pp. 3–20. Springer, Cham (2020)

27. Karim, I., Ishtiaq, A.A., Hussain, S.R., Bertino, E.: BLEDiff: scal-
able and property-agnostic noncompliance checking for BLE im-
plementations. In: 2023 IEEE Symposium on Security and Privacy
(SP), pp. 3209–3227. IEEE Computer Society (2023)

28. Kearns, M.J., Vazirani, U.: An Introduction to Computational
Learning Theory. MIT Press, Cambridge (1994)

29. Maass, M., Müller, U., Schons, T., Wegemer, D., Schulz, M.: NFC-
Gate: an NFC relay application for Android. In: Proceedings of
the 8th ACM Conference on Security & Privacy in Wireless and
Mobile Networks. WiSec’15, pp. 1–2. Association for Computing
Machinery, New York (2015)

30. Marksteiner, S., Sirjani, M., Sjödin, M.: Using automata learning
for compliance evaluation of communication protocols on an NFC
handshake example. In: Kofroň, J., Margaria, T., Seceleanu, C.
(eds.) Engineering of Computer-Based Systems. Lecture Notes in
Computer Science, vol. 14390, pp. 170–190. Springer, Switzerland
(2023)

31. Marksteiner, S., Sirjani, M., Sjödin, M.: Automated passport con-
trol: mining and checking models of machine readable travel doc-
uments. In: Proceedings of the 19th International Conference on
Availability, Reliability and Security. ARES’24, pp. 1–8. Associa-
tion for Computing Machinery, New York (2024)

Springer

http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2403.02019

S. Marksteiner et al.

32. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas im-
manent in nervous activity. Bull. Math. Biophys. 5(4), 115–133
(1943)

33. Mealy, G.H.: A method for synthesizing sequential circuits. Bell
Syst. Tech. J. 34(5), 1045–1079 (1955)

34. Merten, M., Howar, F., Steffen, B., Margaria, T.: Automata learn-
ing with on-the-fly direct hypothesis construction. In: Hähnle, R.,
Knoop, J., Margaria, T., Schreiner, D., Steffen, B. (eds.) Leverag-
ing Applications of Formal Methods, Verification, and Validation,
vol. 336, pp. 248–260. Springer, Berlin (2012)

35. Moore, E.F.: Gedanken-experiments on sequential machines. In:
Automata Studies, AM-34, vol. 34, pp. 129–154. Princeton Uni-
versity Press, Princeton (1956)

36. Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks
for automata learning and conformance testing. In: Margaria, T.,
Graf, S., Larsen, K.G. (eds.) Models, Mindsets, Meta: The What,
the How, and the Why Not? Lecture Notes in Computer Science,
pp. 390–416. Springer, Cham (2019)

37. Paige, R., Tarjan, R.E.: Three partition refinement algorithms.
SIAM J. Comput. 16(6), 973–989 (1987)

38. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In:
Wu, J., Chanson, S.T., Gao, Q. (eds.) Formal Methods for Proto-
col Engineering and Distributed Systems. IFIP Advances in Infor-
mation and Communication Technology, pp. 225–240. Springer,
Boston (1999)

39. Pferscher, A., Aichernig, B.K.: Stateful black-box fuzzing of
Bluetooth devices using automata learning. In: Deshmukh, J.V.,
Havelund, K., Perez, I. (eds.) NASA Formal Methods. Lecture
Notes in Computer Science, vol. 13260, pp. 373–392. Springer,
Cham (2022)

40. Ribas Sobreviela, J.: Bluetooth Low Energy Based on the
nRF52840 USB Dongle. Bachelor thesis, Universitat Politècnica
de Catalunya (2019)

41. Rivest, R.L., Schapire, R.E.: Inference of finite automata using
homing sequences. Inf. Comput. 103(2), 299–347 (1993)

42. Sangiorgi, D.: On the origins of bisimulation and coinduction.
ACM Trans. Program. Lang. Syst. 31(4), 15:1–15:41 (2009)

43. Schögler, D.: An Automata Learning Framework for Bluetooth
Low Energy. Master’s thesis, Graz University of Technology, Graz,
Austria (2023)

44. Shahbaz, M., Groz, R.: Inferring Mealy machines. In: Cavalcanti,
A., Dams, D.R. (eds.) FM 2009: Formal Methods. Lecture Notes
in Computer Science, pp. 207–222. Springer, Berlin (2009)

45. Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Apply-
ing automata learning to embedded control software. In: Butler,
M., Conchon, S., Zaïdi, F. (eds.) Formal Methods and Software
Engineering, pp. 67–83. Springer, Cham (2015)

46. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT
communication via active automata learning. In: 2017 IEEE Inter-
national Conference on Software Testing, Verification and Valida-
tion (ICST), pp. 276–287 (2017)

47. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95
(2017)

48. Vaandrager, F., Ebrahimi, M., Bloem, R.: Learning Mealy ma-
chines with one timer. Inf. Comput. 295, 105013 (2023)

49. Vila, J., Rodríguez, R.J.: Practical experiences on NFC relay at-
tacks with Android. In: Mangard, S., Schaumont, P. (eds.) Ra-
dio Frequency Identification. Lecture Notes in Computer Science,
pp. 87–103. Springer, Cham (2015)

Publisher’s note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

	Learning single and compound-protocol automata and checking behavioral equivalences
	Abstract
	Introduction
	Motivation
	Contribution

	Preliminaries
	State machines
	Transitions, equivalence, and preorder
	Hiding operation
	Automata learning
	Abstraction
	LearnLib
	Near field communication
	The NFC handshake automaton
	Bluetooth Low-Energy

	Learning interfaces
	NFC interface
	Learner interface device
	Adapter class
	Firmware modifications

	BLE interface
	Learner interface device
	Adapter class
	Firmware modifications

	Compound protocol interface
	Adapter class

	Learning protocols
	Learning NFC
	Comparing learning algorithms and calibrations
	Input and output alphabets
	Labeling and simplification

	Learning BLE
	Input and output alphabets

	Learning compound-protocol automata
	Abstraction
	Input and output alphabets

	Equivalence checking
	Compliance evaluation
	NFC specifics
	BLE specifics

	Compound protocol comparison

	Evaluation
	Test cards, credit cards, and passports
	Tesla key fob
	Compound protocol automaton
	Compound protocol deviation analysis

	Related work
	Conclusion
	Discussion
	Outlook

	References

