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Abstract— The federated learning (FL) paradigm effectively
distributes the training burden among several units, each
possessing local datasets. This paper presents a novel privacy-
preserving FL algorithm, FedSecure. Our approach is distinct
from the state of the art as it redefines the conventional
distributed optimization problem inherent in FL. Unlike tradi-
tional frameworks that assume a common weight vector as the
global decision variable, our method introduces an equivalent
constrained problem. Each agent maintains its own weight
vector as the local decision variable under the constraint that
these local weight vectors must be equal. This enables the
dual decomposition method to solve the distributed optimization
problem. A key advantage of FedSecure is its ability to eliminate
the necessity of sharing both the initial weights and the updated
network weight values of each agent with the server. This
feature ensures that the information related to agents’ training
samples remains impervious to potential state-of-the-art cyber
espionage attempts, underscoring the robust security measures
of our algorithm. We validate FedSecure on the MNIST and
CIFAR-10 datasets and compare it to a differential privacy
algorithm, in which artificial noise is added to parameters at the
clients’ side before aggregating, namely, noising before model
aggregation FL (NbAFL).

I. INTRODUCTION

The fundamental concept of FL [1] involves distributing

the training process among various computation units, de-

noted as “agents”, i.e., computers, smartphones, etc., each

possessing local training datasets [2], [3]. While agents

typically aim to keep their local training datasets private to

safeguard their privacy [4], they share a common interest in

collaboratively learning a globally optimal model.

The standard architecture employed in FL follows a server-

worker structure, as illustrated in Fig. 1. Within this architec-

ture, each agent i initiates from a global model and refines

its local model for its specific training dataset, Di, using a

Stochastic Gradient Descent (SGD) algorithm. Subsequently,

the agent communicates the resulting parameters wi to a

central server. In the subsequent step, the server updates the

global model by aggregating the received parameters wi.

The updated global parameters w are then sent back to the

respective agents.

Despite the promising advantages of FL [5], the fact that

this distributes the learning process to numerous processing
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Fig. 1: Server-worker architecture wherein n agents individually
update their models and transmit the calculated weight vector wi

to a server responsible for aggregating them into a global weight
vector w.

units at the edge level makes it vulnerable to various types

of adversarial attacks. These attacks can be classified under

two general umbrellas:

• Attacks on performance: Adversaries manipulate the

training data of agents (data poisoning attacks [6], [7])

or the model communicated from agents to the server

(model poisoning attacks [8], [9]) to reduce the accuracy

of the FL process.

• Attacks on privacy: Adversaries try to infer information

about the agents’ private data [10], [11].

In recent years, several promising aggregation rules e.g.,

trimmed average or median [12], Krum [13], Bulyan [14],

Byrd-SAGA [15], Zeno [16], RSA [17], SETA [18] and

[19] have been introduced to cope with the undesired effects

of data and model poisoning attacks in FL. However, the

privacy defenses in FL still require considerable steps to be

taken. In this paper, we focus on privacy and confidentiality

preserving.

Privacy-preserving was the driving force behind the incep-

tion of FL. While FL facilitates privacy preservation by alle-

viating the necessity to transfer agents’ datasets to an external

server, it does not entirely eradicate the risk of information

leakage. Recent studies show that adversaries can extract



information about the training data through interaction and

analysis of the weight vectors, wi, e.g., [20], [21]. Con-

sequently, various privacy attacks have been demonstrated,

revealing the ability to extract meaningful insights directly

from the model parameters that store information about the

training data. These attacks fall into categories such as model

inversion [20], [21] in which an adversary, who has access

to wi in the training phase, attempts to reverse-engineer or

invert the model to glean information about the individual

data points used during training, and membership inference

[22], [23], where an adversary attempts to determine whether

a specific sample was used in the training set of an agent.

The most popular approach to mitigate attacks on privacy

is differential privacy. Differential privacy aims to protect

privacy by adding noise to sensitive attributes. In FL, dif-

ferential privacy is used to add noise to the weight vectors

of agents communicated within the network [24], [25], [26].

Nevertheless, differential privacy methods typically diminish

the accuracy of FL [26]. As detailed below, this paper

proposes Fedsecure, a novel FL algorithm that improves

typical accuracy levels compared to differential privacy while

preserving privacy.

A. Statement of Contributions

In summary, this paper’s main contributions include:

• Restructuring the conventional FL optimization problem

to an equivalent distributed optimization problem with

constraints.

• Introduction of a novel FL algorithm, FedSecure, which

eliminates the need to share information required to

craft state-of-the-art privacy attacks.

• Evaluation of FedSecure’s accuracy against noising be-

fore model aggregation FL (NbAFL) [26] and to the

standard average aggregation method (FedAvg) with no

privacy guarantees.

B. Organization

The remainder of the paper is organized as follows. We

present the conventional distributed optimization represen-

tation of FL in Section II. In Section III, we introduce

FedSecure. Simulation results over MNIST and CIFAR-10

are presented in Section IV. Finally, we conclude this paper

by summarizing remarks and introducing possible future

research directions in Section V.

C. Notation

Throughout this paper, we adopt the following notation.

The variable R represents the sets of real numbers, scalars are

denoted with light typeface, e.g., x, while (column) vectors

and matrices are denoted as bold lower-case and capital

letters, such as x and X, respectively. Furthermore, we mean

a coordinate-wise comparison when a comparison operator

compares two vectors. In other words, let us denote the ith
coordinate of x as x(i), the notations a < b , a ≤ b and

a = b mean that |a| = |b| and a(i) < b(i) , a(i) ≤ b(i)
and a(i) = b(i) for all i ∈ {1, . . . , |a|}, respectively. The

variables 0 and 1 denote the vectors composed of all zeros

and ones, respectively, with proper dimension. Given a vector

x, the notation [x]+ denotes the element-wise maximum

function with respect to 0, i.e., max{x,0}.

II. FEDERATED LEARNING PROBLEM

STATEMENT

Traditional centralized learning algorithms necessitate the

availability of all training samples to a central processing

unit, which computes the optimal model. However, these

algorithms may not be suitable for certain scenarios. For

example, in cases where:

• The owners of the training samples prefer not to disclose

private information with a central processing unit or

• The number of samples is excessively large, making it

impractical or even impossible to process them with a

single processing unit.

FL addresses these limitations by distributing the learning

process among multiple agents holding private local datasets.

This approach enhances privacy preservation and facilitates

the processing of large datasets in a distributed manner.

Consider a set of n agents, represented as V , communicating

with a central server unit and collectively aiming to learn the

weight vector w of a global model. Each agent, denoted as

i, has access to a local training dataset Di. The goal for each

agent is to determine the optimal weight vector w ∈ R
m,

solving the following optimization problem:

min
w

n
∑

i=1

f (w,Di) = min
w

n
∑

i=1

fi (w), (1)

where fi, generally referred to as loss function, depends on

the local dataset Di. For instance, the cross-entropy loss or

the Mean Square Error functions can be selected as fi.
At each time step k + 1 in conventional FL algorithms,

each agent i begins with a global model received from the

server at time k, denoted as w(k), and iteratively refines it

based on its individual training dataset Di using a Stochastic

Gradient Descent (SGD) algorithm,

wi (k + 1) = w(k)− α · ∇fi (w(k)), (2)

where α > 0 is usually called the learning rate. In the

subsequent step, the updated values of the weight vectors at

time step k+1, wi (k + 1), are communicated to the server.

Given that the server possesses knowledge of w(k), it can

determine ∇fi (w(k)) if it is aware of α. Alternatively, even

if α is kept private from the server, it can still discern the

direction of ∇fi (w(k)).
The core concept in state-of-the-art privacy attacks re-

volves around how an adversary can glean information about

the training dataset, Di, through insights derived from the

disclosure of ∇fi (w(k)).
Remark 1: As depicted in Fig. 1, in this paper, we con-

sider the general scenario where there is a vulnerability in

disclosing all individual weight vectors, wi(k). The scenario

in which the aggregated vector w(k) (i.e., the link from

a server to agents) is not secured can be considered a

special case of our setting. Since w(k) is the outcome of the



aggregation function that the server unit applies to wi(k),
w(k) can therefore be easily determined if the aggregation

function and all wi(k) are known.

III. PRIVACY PRESERVING FEDERATED

LEARNING

Following the discussion regarding the potential disclosure

of information about the local training dataset through eaves-

dropping of wi (k) and ∇fi (w(k)), this section introduces

our proposed privacy-preserving FL algorithm, FedSecure.

A. Problem formulation

In FedSecure, we reformulate the general optimization

problem in FL, as introduced in (1), into an equivalent

constrained optimization problem that mathematically shares

a common optimal value with (1), i.e., each agent i aims to

solve the following problem

min
wi

n
∑

i=0

fi (wi), (3a)

subject to wi = wj , ∀i, j ∈ V. (3b)

In the above formulation, each agent i holds a copy of the

weight vector wi, and all these copies are required to agree

in the constraint (3b), ∀i, j ∈ V , while minimizing the same

cost function as in (1). The total number of constraints in (3b)

is equal to the number of unique unordered pairs from the

set V , which is:
(

n
2

)

=
n(n− 1)

2
. (4)

However, many of these pairs are redundant because of the

transitive property of equality. For instance, if n = 3, the

relations w1 = w2, w1 = w3 and w2 = w3 are redundant;

any two of these relations are sufficient to imply the third.

In the following proposition, we prove that n−1 constraints

are sufficient to represent (3b), and there are infinity many

sets of n− 1 constraints that represent (3b).

Proposition 1: There are infinitely many sets of n − 1
constraints that equivalently represent the full set of pairwise

constraints wi = wj for all i, j ∈ V , where V contains n
agents.

Proof: Let us consider V = {1, 2, . . . , n}, and the full

set of constraints wi = wj for all i, j ∈ V . The complete

system of constraints requires that all elements wi for i ∈ V
are equal, i.e.,

w1 = w2 = w3 = · · · = wn.

This can be viewed as a fully connected graph, where

each node corresponds to an element wi, and each edge

corresponds to a constraint wi = wj between nodes i and

j. The number of edges (i.e., constraints) in this graph is
n(n−1)

2 , representing the total number of pairwise constraints.

To represent the same equality constraints with fewer

equations, we can construct a minimal set of constraints that

ensures that all elements are equal by using the transitive

property of equality. This is equivalent to finding a spanning

tree in the graph of constraints.

A spanning tree of n vertices has exactly n − 1 edges

(constraints), and once these edges are specified, the equality

of all elements follows transitively. Thus, any spanning tree

of the fully connected graph corresponds to a valid set of

n− 1 constraints that fully describe the system.

According to Cayley’s formula, a complete graph with n
vertices has nn−2 spanning trees. Furthermore, any linear

combination of these set of constraints weighted by αi ∈ R,

i = 1, . . . , nn−2 leads to another valid set of n−1 constraints

that represents (3b). As a result, there exists an infinite

number of sets of n− 1 constraints that represent (3b).

The equality constraints in (3) can be replaced with pairs of

double-sided inequality constraints, i.e.,

min
wi

n
∑

i=0

fi (wi), (5a)

subject to wi ≤ wj , and wj ≤ wi, ∀i, j ∈ V. (5b)

Therefore, the formulation in (3) can be rewritten as a

standard constrained distributed optimization problem with

inequality constraints as follows

min
wi

n
∑

i=0

fi (wi), (6a)

subject to

n
∑

i=0

gi (wi) ≤ 0, (6b)

where according to the results we obtained in Proposition 1,

gi (·) ∈ R
m → R

2·m·(n−1) in (6b) and can be designed in

infinitely possible ways to represent the equality constraint

in (3b). For instance, the following matrix

G =
[

g1 (w1),g2 (w2), . . . ,gn (wn)
]

2·m·(n−1)×n
=























w1 −w2 0 · · · 0 0

−w1 w2 0 · · · 0 0

0 w2 −w3 · · · 0 0

0 −w2 w3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · w(n−1) −wn

0 0 0 · · · −w(n−1) wn























, (7)

represents one of infinitely many realization that G can take

to make (6b) equal to (3b). The matrix (7), represents the

case when we select

w1 = w2, w2 = w3, . . . , wn−1 = wn.

as the set of n − 1 constraints to represent (3b), and the

equality constraint is replaced with pairs of double-sided

inequality constraints as in (6).

To achieve the desired results, we assume that the follow-

ing assumptions hold for the functions fi(·) and gi(·).
Assumption 1: For all agents i ∈ V , we assume that the

respective gradients fi(·) and gi(·) are convex and uniformly

bounded. In other words, there exists a positive constant C
such that ‖∇fi(wi)‖ ≤ C and ‖∇gi(wi)‖ ≤ C, where

‖∇gi(wi)‖ represents a Jacobian matrix at wi.

Assumption 2: For all i ∈ V , we assume that the functions



Algorithm 1 FedSecure Protocol

Phase 1 - Initialization

for each i ∈ V do

Randomly initialize wi(1) ∈ R
m.

Define learning rate α > 0.

Define σ > 0.

Initialize λi(1) ∈ R
2·m·(n−1)

← 0.

Initialize yi(1) ∈ R
2·m·(n−1)

← m · gi (wi(1)).

end for

while the stop criterion is not satisfied, do:

Phase 2 - Aggregation in Server Unit

Collect λi(k) and yi(k), i ∈ V .

Update λ̄(k)← 1
n
·

(

n
∑

i=1

λi(k)

)

.

Update y(k)← 1
n
·

(

n
∑

i=1

yi(k)

)

.

Send λ̄(k) and y(k) to all agents.

Phase 3 - Agents Update

for each i ∈ V do

ui(k)← ∇fi (wi(k)) +∇gi (wi(k))
⊺
λ̄(k).

vi(k)← y(k)− σ · α · λ̄(k).

wi(k + 1)← wi(k)− α · ui(k) .

λi(k + 1)←
[

λ̄(k) + α · vi(k)
]

+
.

yi(k + 1)← y(k) +m (gi (wi(k + 1))− gi (wi(k))).

Send λi(k + 1), yi(k + 1) to the server.

end for

end while

gi(·) are private and non-disclosed to the server unit. In other

words, the server unit is unaware of the exact realization of

gi(·) for all i ∈ V . For instance, these functions can be

provided by a trusted third party that assigns proper vectors,

gi(·), to all agents in such a way that the constraint (6b)

represents (3b).

B. FedSecure algorithm

The basic idea of FedSecure is that, by reshaping the

FL problem as in the standard constrained distributed op-

timization form in (6), we can apply a dual decomposition

method and avoid sharing primal information, such as wi

and ∇fi (w(k)), with the server, thus boosting privacy

preservation features. More in detail, in dual decomposition

approaches, constraints are added to the objective function

considering Lagrange multipliers, and then a minmax prob-

lem is solved. Several algorithms have been published in the

literature to solve this type of problem [27], [28], [29], [30],

[31]. Algorithm 1 represents our proposed privacy-preserving

FL, which indeed adopts the results in [30] to this case study.

Phase 1 of Algorithm 1 represents the first (offline) phase

to initialize the system. More specifically, agents randomly

initialize their estimate of the optimal network weight vector,

wi(1), and define a common learning rate, α > 0. The

parameter σ > 0 in Phase 1 is intended to bring consensus

among agents. Furthermore, the Lagrange multipliers vector

Fig. 2: FedSecure architecture where each agent i (blue boxes) holds
a private dataset Di and a local model wi sends the variables λi and
yi to a server unit (on the top). The latter aggregates the received
variables and sends the resulting vectors back to the agents.

denoted as λi(k) is set to the zero vector, and the output

vector yi(k) = mgi(wi(1)) is initialized. These represent

the vectors that will be transmitted to the server.

Next, Phases 2 and 3 are iteratively executed at each

time step until a certain criterion is satisfied, such as a

certain number of training steps is reached, or the local

training loss is below a predefined threshold. In Phase 2,

the server collects the vectors λi(k) and yi(k) from all

agents, aggregates them by computing the respective average

vectors, denoted as λ̄(k) and y(k), respectively, and then

sends the averages back to the agents.

In Phase 3, the agents locally update their estimates of

the optimal weight vector, along with the vectors λi(k + 1)
and yi(k+1) by following [30]. More specifically, for each

agent we introduce two additional auxiliary variables, i.e.,

ui ∈ R
m and vi ∈ R

2·m·(n−1), which are updated based on

the gradients of fi and gi as well as the aggregate variables

λ̄(k) and y(k), as reported in the first lines of Phase 3. Then,

the local weight vector wi(k + 1) is computed using the

learning rate α and the Lagrange multiplier vector λi(k+1)
and the output vector yi(k + 1) are updated. The last two

vectors are sent to the server to perform aggregation in the

next iteration.

A visual representation of FedSecure is provided in Fig. 2.

In the figure, each agent i (represented as a blue box) holds

a private dataset Di and a local model with weights wi. At

each time step k, it receives the aggregated vectors λ̄(k) and

y(k) from the server unit (in the top), use them to update

the local model and sends the updated variables λi(k + 1)
and yi(k + 1) to the server.

Remark 2: Assumption 2 ensures that, when execut-



ing Algorithm 1, the server unit is unable to reconstruct

wi(.), thus preventing it from accessing information about

∇fi (wi(.)). Noticing that state-of-the-art privacy attacks,

such as [20], [21], rely on this information to reveal details

about training datasets, Algorithm 1 strengthens the privacy

of FL by safeguarding the privacy of ∇fi (wi(.)).
Let w∗ denote the optimal solution of (3). We define the

regret functions as follows:

Regf (T ) ,

n
∑

i=1

(

T
∑

k=1

(fi (wi(k))− fi (w
∗))

)

, (8)

and

Regg(T ) ,

∥

∥

∥

∥

∥

∥

[

n
∑

i=1

T
∑

k=1

gi (wi(k))

]

+

∥

∥

∥

∥

∥

∥

. (9)

where T represents the number of training steps. A success-

ful FL algorithm must ensure that:

lim
T→∞

Regf (T )

T
= 0, (10a)

lim
T→∞

Regg(T )

T
= 0. (10b)

The success criteria, as expressed through (10), articulate

the convergence of regrets over time, indicating the effective-

ness and convergence properties of the FL algorithm. The

following theorem, which relies on the results from [30] in

our FL case study, guarantees the desired performance.

Theorem 1: Suppose Assumption 1 is satisfied. Consider

that FedSecure Algorithm 1 is executed by all agents with

α = σ−1T−β , where σ = 2n(nC2 + 1), C is the upper

bound of ‖∇fi(wi)‖ and ‖∇gi(wi)‖ as in Assumption 1,

and β ∈ (0, 1). Then the limits introduced in (10) tend to 0.

Proof: The aggregation process in the server unit during

Phase 2 of Algorithm 1 resembles the scenario where agents

communicate in a complete graph, assigning 1
n

to their

incoming edges. In this context, the graph’s adjacency matrix

is doubly stochastic and strongly connected. Consequently,

noticing the proposed values for α and σ, the fulfillment of

Assumption 1 satisfies all the essential conditions outlined

in Theorem 1 of [30]. As a result, it holds

lim
T→∞

Regf (T )

T
= 0,

lim
T→∞

Regg(T )

T
= 0,

concluding the proof.

IV. SIMULATION RESULTS

In this section, we perform a comparative analysis to

assess the effectiveness of FedSecure compared to a well-

established differential privacy algorithm, NbAFL, and to a

standard FL aggregation method, i.e., the average aggrega-

tion, FedAvg.

Datasets: We consider the MNIST dataset [32] for digit

classification and the CIFAR-10 dataset [33] for image

classification with various classes, including, for example,

birds, dogs, cars, and trucks. The former is composed of

|D|MNIST = 60000 binary images, with dimension 28 × 28
pixel, for training and 10000 for testing. The latter is com-

posed of |D|CIFAR-10 = 50000 color images, with dimension

32×32 and associated with 10 classes, for training and 10000
for testing. The test sets of both datasets are reserved for

performance evaluation.

Agents: In the MNIST case study, we analyze the perfor-

mance obtained with different numbers of agents. Specif-

ically, we consider n ∈ N with N = {5, 10, 20, 30, 50}.

Each agent’s neural network is a multi-layer perceptron with

three fully connected layers with 128, 64, and 10 neurons,

respectively. Local training datasets Di, ∀i ∈ V are obtained

with uniform distribution. In particular, we analyze both the

case where the local dataset size varies according to the

number of agents, i.e., |Di| = ⌊|D|MNIST/n⌋, ∀i ∈ V , and

the case where the local dataset size of each agent is fixed

regardless of the number of agents in the system and is equal

to |Di| = ⌊|D|MNIST/max{N}⌋, ∀i ∈ V . We refer to these

two dataset distributions as varying local dataset size and

fixed local dataset size, respectively.

In the CIFAR-10 case study, we analyze a system com-

posed of n = 10 agents. Each agent’s neural network has

three convolutional layers (16, 32, 64 filters) with batch

normalization, followed by a fully connected layer with

128 neurons and a 10-class output layer. We consider that

the local training datasets are obtained by uniformly dis-

tributing the CIFAR-10 training set among the agents, i.e.,

|Di| = ⌊|D|CIFAR-10/n⌋, ∀i ∈ V .

In both case studies, we consider ReLU activation func-

tions and cross-entropy loss functions for the networks.

Models are trained for 100 steps for the MNIST case

and 200 steps for the CIFAR-10 case with a learning rate

α = 0.01, and all agents contribute to the aggregation step.

Regarding FedSecure, the functions gi(wi) are set as in (7),

and gain σ = 1 is used. It is important to note that the

chosen neural network architectures do not aim to achieve

maximum performance. Instead, this numerical validation

only aims to assess FedSecure’s effectiveness compared to

well-established algorithms with a similar network structure.

Baselines: We consider the following baselines based on the

server-worker architecture in Fig. 1:

• FedAvg [34], that represents the standard aggregation

rule (with no privacy guarantees) computing the global

weight vector w as the coordinate-wise average of the

agents’ local weight vectors wi, ∀i ∈ V;

• NbAFL algorithm [26], that enhances privacy by adding

noise N (0, σ2) to the agents’ local weight vectors

wi, ∀i ∈ V before transmitting them to the server.

Specifically, the variance σ2 is directly proportional

to a constant c, a clipping value C, and inversely

proportional to the minimum dataset size mini∈V{Di}
and a threshold ǫ, which encodes the protection level,

meaning that the higher ǫ, the lower the protection level

provided by the algorithm.

All the methods are implemented using the PyTorch library,

with the weights initialized according to the default uniform
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Fig. 3: Comparison of the accuracy on the MNIST test set achieved
by the baselines and the proposed method when varying the number
of agents and considering fixed local dataset size.

5 10 20 30 40 50 60 70

Number of Agents

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
u
ra
cy

FedAvg (Non private)

FedSecure

NbAFL, ǫ =100

NbAFL, ǫ =50

Fig. 4: Comparison of the accuracy on the MNIST test set achieved
by the baselines and the proposed method when varying the number
of agents and considering varying local dataset size.

distributions. Additionally, for NbAFL, all agents start with

identical weight values, as specified by the algorithm. For

the NbAFL variance, we set c = 20 and C = 1 and analyze

the performance with ǫ = 50 and ǫ = 100.

MNIST results: Figure 3 shows the accuracy on the test

set achieved by the baselines and the proposed method when

varying the number of agents and considering fixed local

dataset size. More in detail, FedAvg is reported in blue, the

proposed FedSecure in orange, and NbAFL with ǫ = 100 and

ǫ = 50 in green and red, respectively. As expected, FedAvg

achieves the highest accuracy across all cases; however, this

comes at the cost of providing no privacy guarantees. In

comparison, FedSecure follows closely in all cases while

providing privacy-preserving features. Furthermore, the plot

shows that the accuracy remains stable for FedAvg and

FedSecure by varying the set of agents involved. Regarding

NbAFL results, we can observe that, coherently with the

results in [26], as the protection level decreases (i.e., as ǫ
increases), the accuracy improves. This indicates a trade-off

between the accuracy and the level of privacy protection.

Moreover, for NbAFL and a given ǫ value, the accuracy

increases as the number of agents in the system grows.

This is due to the reduction in the standard deviation of

the additive noise and the expansion of the global dataset

available for training as more agents participate.

Figure 4 presents a comparison similar to that in Figure 3,

but with varying local dataset sizes taken into account. In

this case, we can observe that as the number of agents
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Fig. 5: Accuracy results on MNIST test set obtained during the
training process with n = 10 and fixed local dataset size.
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Fig. 6: Accuracy results on CIFAR10 test set obtained during the
training process with n = 10.

increases, all methods exhibit a reduction in accuracy. This is

motivated by the fact that as the number of agents increases,

the local dataset size for each agent decreases, resulting in

lower performance for each individual neural network, thus

affecting the performance of the FL algorithm. However, the

figure also shows that FedAvg and FedSecure’s performance

decline is more gradual than that of the NbAFL baseline.

Finally, Figure 5 shows the accuracy obtained by the

baselines and the proposed FedSecure during the training

process in the case of n = 10 and fixed local dataset size. In

particular, at the end of the training process, FedAvg reaches

accuracy equal to 0.93, followed by FedSecure achieving

0.88 and by NbAFL obtaining 0.72 and 0.34 for ǫ = 100 and

ǫ = 50, respectively. Additionally, the figure highlights that

FedSecure exhibits the fastest convergence rate compared to

the other methods.

CIFAR-10 results: Figure 6 shows the accuracy of the

CIFAR-10 test set obtained by the baselines and by the

proposed FedSecure during the training process with n =
10. Specifically, FedAvg is reported in blue, the proposed

FedSecure in orange, and NbAFL with ǫ = 100 and

ǫ = 50 in green and red, respectively. Note that given

that the classification task is inherently more challenging

with the CIFAR-10 dataset than with the MNIST dataset,

it is expected that the accuracy values are generally lower

compared to MNIST. In particular, at the end of the training

process, FedAvg reaches accuracy equal to 0.73, followed

by FedSecure achieving 0.59 and by NbAFL obtaining 0.41
and 0.17 for ǫ = 100 and ǫ = 50, respectively. Also, in this

case study, FedSecure outperforms other methods in terms



of convergence speed.

In summary, the results on MNIST and CIFAR-10 datasets

show that FedSecure offers a good balance between accuracy

and privacy protection, avoiding disclosing primal data, such

as wi or ∇fi(wi).

V. CONCLUSION

In this paper, the FedSecure algorithm was proposed,

representing an FL approach designed to preserve the privacy

of the agents’ datasets. Unlike state-of-the-art approaches,

we did not assume any sharing of the weight vectors,

which may disclose information regarding the local (private)

datasets. This was achieved by reformulating the FL dis-

tributed optimization problem in a constrained form with

inequality constraints and applying a dual decomposition

method. We validated FedSecure on the MNIST and CIFAR-

10 datasets and compared their performance with respect to

state-of-the-art FL baselines, namely FedAvg and NbAFL.

In future work, we aim to extend the algorithm to provide

resiliency features against model and data poisoning attacks

and extend FedSecure to a fully distributed setting. In this

scenario, the server unit is omitted, and direct communication

among neighboring agents is enabled, thereby enhancing the

approach’s scalability and circumventing the presence of a

critical single point of failure in the server.
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