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Abstract—This paper presents DCGUARD, a unified security
approach for detecting and isolating misbehaving computing and
forwarding nodes in multi-tenant virtualized cloud data centers.
DCGUARD employs technological advancements in Virtual Ma-
chine Introspection (VMI), Software-Defined Networking (SDN),
and secure probabilistic sketching to detect and isolate parts of
the Virtual Machines (VMs) and network switches experiencing
malicious behavior dynamically. The main contribution lies in
designing a divide-and-conquer strategy that utilizes VMI and
network programmability to apply focused distributed task and
packet probing mechanisms on portions of the data center
network rather than focusing the security functions on the entire
physical network. The processing VMs and network switches
are recursively partitioned into independent logical groups in-
spected individually to localize abnormal/malicious computing
and switching nodes incrementally. This remarkably enhances the
efficiency of the detection mechanisms, which opportunistically
approaches a logarithmic time complexity in the number of
protocol steps towards convergence (compared to a linear time
complexity in traditional intrusion detection systems) when a
relatively low number of hostile VMs and switches are present.
Real experiments are evaluated, and a test-bed blueprint of the
proposed design is emulated in a virtualized cloud environment
using the Mininet emulator. The performance, convergence, and
accuracy benchmarks corroborate the analytical advantage of
the proposed security approach.

Index Terms—Cloud computing, Data center, Security, Virtual
machine introspection, VMI, Software-Defined Networking, SDN.

I. INTRODUCTION

Cloud computing architectures have expanded rapidly in the
past decade due to its flexible pay-as-you-go service model and
the “elastic” features of the advertised storage and processing
services. Today, cloud computing offers software, infrastruc-
ture, and platform services, among others, that allow customers
to scale their computing and storage resources up and down
on demand to achieve cost-effective, minimal administrative
service development, deployment, and operation [1]. The cloud
computing advantage is mainly attributed to the virtualization
technologies employed in the modern cloud computing data
center. In this model, the VM is the main interface with
customer services and the key computing unit responsible
for service management and execution. The high reliance
on VM nodes in the cloud computing model makes those
nodes a natural attack target by malicious users and scripts,
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including the various malware types that may impose various
modifications and delay attacks that surpass the Service Level
Agreement (SLA) tolerance. In addition, VMs administratively
belong to different tenant networks with diverse trust levels
and security enforcement mechanisms. On the same front,
the great advancements in network virtualization technologies
enabled the creation of softwarized tenant networks consisting
of virtual switching and forwarding nodes on top of the
actual physical network. As in the case of VM computing
nodes, network forwarding nodes carry out critical routing
and switching functionalities in the cloud network and can
also belong to different tenants administratively. Add to this
the fact that virtualized forwarding nodes should be capable
of handling large amounts of network traffic, some of which
might be maliciously targeting specific strategic points in the
network to cause disruption, denial of service, or man-in-the-
middle attacks, to name a few.

This necessitates the development of a comprehensive se-
curity model to safeguard against VM vulnerabilities and ma-
licious activities in network switching and forwarding. More-
over, the desired security model should be capable of han-
dling benign misconfiguration vulnerabilities whose adverse
effects are often not less catastrophic than the ramifications
of intentional malicious attacks. The intended security model
should scale to large multi-tenant cloud data centers, target
diverse and extensive attack vectors, and operate efficiently to
detect and isolate sources of maliciousness/misconfiguration
in the computing and networking infrastructures. The great
advancements in virtualization monitoring technologies, such
as Virtual Machine Introspection (VMI), Software-Defined
Networking (SDN), and network virtualization, have paved the
way for an unprecedented set of tools that can be utilized
to detect malicious activity in computing and networking
operations. VMI is a technique for monitoring the runtime
state of VMs and can be employed for several security
objectives, such as malware and intrusion detection. SDN
and network virtualization and some intelligent probabilistic
sketching techniques can support the design of intelligent
probing and intrusion detection techniques that can efficiently
operate in sizable cloud data center networks and mitigate
diverse and large-scale attacks. In this paper, we present
DCGUARD, a unified security model that leverages the latest
advancements in VMI, SDN, Network programmability, and
secure probabilistic sketching to detect and isolate sources
of maliciousness in the processing and networking nodes in
multi-tenant virtualized cloud data centers.

The DCGUARD approach includes two main algorithms that
work in parallel but independently to improve the system’s
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performance: The first algorithm, called PDCGUARD, detects
malfunctioning virtual processing nodes by initiating a set
of recursive probing mechanisms. It detects processing flaws
in the computation of distributed tasks assigned to tenants’
VMs. Processing flaws can be induced by malicious user
processes running on the VMs, including the various types of
malware that may impose a modification attack on the result of
computation. Any modification on the input-processing-output
pipeline would result in a processing flaw detected by the
PDCGUARD algorithm and is considered a malicious attempt to
disrupt the computation of the distributed task. The second al-
gorithm, called FDCGUARD, reveals sources of maliciousness
in the network. It identifies malicious forwarding nodes in the
SDN data plane by applying a graph partitioning algorithm
to create two halves of the network with minimal connecting
edges and using OpenFlow controller messages to isolate the
two partitions. The SDN controller forks a probe transmitter
and receptor daemon processes with each half to respectively
send and receive the probing packets to detect any suspicious
activity in the forwarding nodes.

It is worth mentioning that DCGUARD does not assume the
defense against a specific malware category or signature. In-
stead, it follows a generalized intrusion detection approach that
relies on behavioral rather than signature-based techniques to
detect malicious/misbehaving activities in the VM processing
or network forwarding operations. Moreover, DCGUARD does
not assume the ability to detect stealthy malware activities that
do not stipulate the intrusion detection response specified in
the DCGUARD algorithms presented later in this paper. For
instance, the DCGUARD algorithms do not claim the ability
to safeguard the VM network against malware that does not
induce processing corruption or delays or modify the network
traffic patterns and timely forwarding operations. A valuable
resource on this topic can be found in [2].

In many contexts in this paper, we use the terms “malicious”
and “misbehaving” to respectively denote the capability of
the DCGUARD algorithms to detect intentional attacks on the
network processing and forwarding resources as well as benign
sub-optimal misconfigurations leading to vulnerabilities.

A. Contribution

The main contributions of this work are the following:
• Designing a divide-and-conquer strategy that utilizes

VMI and network programmability to apply focused
distributed task and packet probing mechanisms on por-
tions of the data center network rather than focusing the
security functions on the entire physical network.

• Recursively partitioning the set of processing VMs and
network switches into independent logical groups in-
spected individually to localize abnormal/malicious com-
puting and switching nodes incrementally. This remark-
ably enhances the efficiency of the detection mecha-
nisms, which opportunistically approaches a logarithmic
complexity in the number of protocol steps towards
convergence (compared to a linear time complexity in
traditional intrusion detection systems) when a relatively
low number of hostile VMs and switches are present.

The computational complexity and network traffic size
are comparable to the traditional approach (linear time
complexity) but with a major security advantage and
better compliance with the modern cloud service model.

• Presenting a comprehensive mathematical and empirical
performance analysis of the proposed security approach
in its various stages when operating on the VM comput-
ing nodes and the network switches.

• Testing real experiments and developing a test-bed
blueprint of the proposed design in a virtualized cloud
environment using Mininet network emulator. The perfor-
mance and accuracy benchmarks executed corroborate the
analytical advantage of the proposed security approach.

Our previous work [3] inspires the computation security
approach we present in this work. In [3], we presented the
basic idea of designing a security approach using the VMI
APIs to isolate misbehaving computational VMs in virtualized
data centers. The main contribution provided by DCGUARD
over [3] is summarized in designing a dedicated network secu-
rity protocol to detect sources of maliciousness in forwarding
nodes using the programmability and network virtualization
capabilities of SDN and the efficient packet summarization
features of probabilistic sketching. The newly added network
security protocol complements the computational security pro-
tocol to provide a unified system for detecting misbehav-
ing/malicious nodes in modern cloud networks.

B. Organization of the paper

The rest of this paper is organized as follows: Section III
overviews the related work. Section IV presents two threat
models: one for the adversary that may corrupt the processing
logic executing on VMs and the other for the attacker that can
execute active attacks on the network traffic. The proposed
solution system design and performance evaluation are pre-
sented in Section V and Section VI, respectively. Conclusions
are presented in Section VII.

II. BACKGROUND

A. Virtual Machine Introspection (VMI)

Virtualization technology is the foundation of cloud com-
puting [4]. It is enabled by a hypervisor, also known as
Virtual Machine Manager (VMM), a software that virtualizes
all hardware resources, allowing multiple VMs to multiplex
the Physical Machine’s (PM) resources transparently. VMM
is the mechanism that facilitates the construction of VMI.
As stated in [5], VMI can leverage three main properties of
VMMs: Isolation: to ensure that any software running inside
a VM cannot access software running inside another VM or in
the VMM, Inspection: meaning that the VMMs can access a
VM’s state, including the CPU state (e.g., registers), memory,
and I/O device state (e.g., the contents of storage devices and
register state of I/O controllers), and Interposition: meaning
that the VMM can interpose on certain VM operations (e.g.,
executing privileged instructions). Leveraging these properties
is essential for the proposed algorithms. The original VMI ar-
chitecture was presented in [5] for Intrusion Detection. In that
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architecture, VMM can provide an interface for communica-
tion with the VMI Intrusion Detection System (VMI IDS). The
VMI IDS communicates with the VMM via commands over
this interface. There are three types of commands: Inspection
commands to examine VM state, Monitor commands to know
when certain events occur and request notification through an
event delivery mechanism, and Administrative commands to
control the VM execution.

In PDCGUARD, VMI interposition APIs are employed to
execute remote distributed probing tasks on tenant VMs to
stand on the correct and timely processing capabilities of
these VMs. The VMI inspection APIs are used to assess and
verify the validity of the computation results and their timely
availability by inspecting specialized hashing and timestamp
data structures on the tenant VMs. It should be noted here
that reference implementations for VMI modules are available,
such as the popular LibVMI library [6], which provides a
C-based engine with Python bindings to support the VMI
mentioned above commands. LibVMI has a wide platform
support. It is compatible with the Xen, KVM, and Qemu
virtualization platforms and supports both Linux and Windows
VMs. Regarding architectural support, LibVMI is designed to
run on 32-bit, PAE, and 64-bit x86 and ARM Cortex-A15
architectures. LibVMI provides efficient, near-native speed,
VMI command performance using low-level and high-level
API calls. In other words, VMI command calls performed
outside the VM induce roughly the same execution times
compared to commands running inside the guest VM. Both
inspection and interposition VMI calls run in the order of
a few µsecs using low-level API calls and a few 10’s of
µsecs using high-level API calls (in exception to the initial
VMI initialization operation, which runs in the order of a few
msecs) [7]. This makes VMI modules highly portable and
efficient for modern cloud data center service implementations.

B. Software-Defined Networking (SDN)
SDN is a network approach that uses software controllers

to communicate with hardware infrastructure, aiming to direct
network traffic efficiently. It makes networks programmable
and more flexible regarding configuration, monitoring, and
performance [8]. To detect malicious forwarding nodes in
the network, we utilize network programming to partition the
SDN data plane recursively. The SDN controller is respon-
sible for specifying routing and forwarding rules network-
wide through OpenFlow messages to the forwarding network
switches. This network-wide control by the SDN controller
allows for the creation of isolated network partitions, which
would recursively map to a possible set of malicious switches
in the network. To localize maliciously behaving switches, a
graph-theoretic partitioning algorithm recursively divides the
network into two equal-cardinality partitions with minimal
interconnecting edges. A probing module on top of the SDN
controller dynamically generates focused packets that probe
each partition.

C. Sketching algorithms
Sketching algorithms, also called probabilistic sketching

algorithms, are a set of mechanisms that allow the efficient

processing of massive data sets using the compact space
requirements of the underlying data structures. Sketching al-
gorithms were the main design choice in this work due to their
compact data summarization capabilities. These algorithms aid
in efficiently detecting data value deviation in real time. This
design choice of using probabilistic sketching data structures
is related to the nature of the intrusion detection problem,
which utilizes sizeable network data streams and timestamps
to ensure the accurate detection of misbehaving switches
along the recursively generated network partitions. Probabilis-
tic sketching in such a framework results in a substantial
reduction in computational run-time complexity, better storage
utilization, and hence, a resource-efficient real-time detection
of malicious forwarding nodes.

The probing mechanism employs two probabilistic sketch-
ing data structures: The Tug-of-War Sketch [9] and the Times-
tamp Accumulator [10].

III. RELATED WORK

A. Computation security approaches

As the VMI approach has high overhead [11], [6], many
works are proposed to minimize such overhead. The work
in [12] tried to reduce the performance overhead by integrat-
ing some VMI operations into the hypervisor. The authors
in [13] leveraged the most commonly used VMI techniques
to monitor the VM’s status by executing VMI analysis scripts
in the hypervisor domain. In [5], the authors presented the
VMI approach that utilizes the host-based IDS and expands
it outside the host to maximize attacks’ resistance. VMI
mainly depended on the VMM capabilities and endeavored to
leverage these capabilities to completely mediate interactions
between the host software and the underlying hardware. The
work in [14] employed VMI and Machine Learning tech-
niques at the VMM to present a security architecture, called
VMGuard, aiming to detect hidden malware by performing
memory introspection. The work in [15] trained a machine
learning-based classification approach for detecting malware
in a cloud computing environment. The approach optimized
a balance between the performance of malware detection and
the overhead of the VMI-based system. In [16], an integrated
security architecture was presented. The architecture utilized
some features from the VMs, such as the resources dedicated
to VMs, types of applications, and policies associated with
groups of VMs corresponding to a distributed application, to
secure VMs themselves. In addition to VMs’ features, the
architecture relied on exchanging information among various
security components, such as policy-based access control and
intrusion detection techniques to detect changing attacks. The
work in [17] presented a VMI monitor approach, called T-
VMI, to ensure the security of a specific VM in a certain
host. The authors in [18] utilized VMI in proposing an
approach to protect VMs by monitoring them and recording
their events. The approach defined a policy engine that works
in two phases: an offline training phase to collect the accepted
processes from trusted VMs and an online runtime phase to
decide on the valid actions. In [19], a VMI-based security
framework architecture was presented. It models the behavior
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of processes running on VMs and uses multi-threading to
analyze VMs’ activities and control their events. The work in
[20] proposed a model for detecting container malware. It ex-
ports memory snapshots via VMI in the containers running in
VMs, reconstructs container semantics from these snapshots,
and analyzes the binary execution information of container
runtime.

The works mentioned above focus on securing the com-
putation, not enhancing the time complexity while detecting
intrusions. Generally, the main performance parameters that
govern the design of efficient intrusion detection schemes are
(1) the time needed by the protocol to detect and isolate the
malicious/misbehaving nodes in the network (protocol conver-
gence time) and (2) the number of protocol iteration/recursion
steps needed to achieve the detection and isolation mecha-
nisms. Those performance parameters mainly depend on the
number of VMs in the cloud network, which is considered
the dominant input variant influencing the time complexity
of the intrusion detection protocols. Regarding the accuracy
of the detection and isolation mechanism, two central metrics
are generally analyzed: (1) the true positives probability and
(2) the false positives probability. Receiver Operating Charac-
teristics (ROC) curves provide an extrapolation of the balance
between the successful attack detection of the intrusion detec-
tion algorithm and the false positive alarms generated.

Several works utilize the hypervisors to enhance the Per-
formance of VMI. In [12], the authors explained how the
performance could be improved by integrating some minor
extensions for VMI operations into the hypervisor. The work
in [21] incorporated VMI and Xen hypervisor for dynamic
Windows malware analysis. However, such works require
changes to the hypervisors, which is not a trivial task.

B. Networking security approaches

Recently, there has been a significant shift in security
solutions, with a growing focus on SDN-based security for
virtual networks. This shift is driven by the fact that SDN
provides centralized control, dynamic network configuration,
network traffic control, and network programmability, all of
which contribute to creating more secure networks.

In [22], the authors introduced a novel security approach for
SDN. This approach is designed to detect a range of attack sit-
uations, including network scanning attacks, OpenFlow flood-
ing attacks, switch compromised attacks, and ARP attacks. The
approach operates in both the data plane and control plane, and
it leverages multiple observations of a Hidden Markov Model
(HMM) to assess the security situation of the network. In [23],
the authors presented an approach, called CLOUDWATCHER,
that can direct network packets to be automatically inspected
using pre-installed network security devices. The authors in
[24] presented the NetTSecVisor approach that utilizes SDN
for network management, aiming at enabling network security
protection. The work in [25] proposed a scalable mechanism,
called NetFuse, to protect against traffic overload in data center
networks, with minimum measurement overhead. In [26], the
authors proposed an anti-DoS approach based on SDN, called
DCPortalsNg, to isolate virtual network traffic, direct network

packets, and thus control which VM can be reached by specific
packet(s). Some works used Neural Networks [27] and deep
learning [28] for intrusion detection in SDN networks. In
our previous works [29], [30], we presented an approach to
detect malicious nodes in the SDN data plane and categorizing
any present attacks by utilizing network programming and
probabilistic sketching. However, these works are not designed
to secure data processing in VMs. The work in [31] proposed
an approach to synchronize VMs with a discrete-event network
simulator. The approach ensures that packets transmitted by
the VMs are received by their intended destination at the exact
time calculated by the simulator, with network-based timings
remaining unaffected by any possible VMI pause.

A promising research field worth mentioning here is the
reliance on multi-domain SDN settings using collaborative
controllers for securing networks supporting programmable
components [32]. This research mainly focuses on manag-
ing large-scale DDoS attacks on programmable SDN-based
networks [33]. A comprehensive survey on this research
field is presented in [34]. Note that the FDCGUARD network
security protocols can contribute to the security of multi-
domain programmable SDN networks and benefit from the
collaborative controller model due to three main reasons: (1)
FDCGUARD is designed to operate in expansive multi-tenant
cloud networks supporting programmable SDN components.
Employing multi-domain controller settings would provide
better resource management and efficiency in targeting the net-
work slices that require more security inspection and analysis.
(2) By design, the FDCGUARD protocol engine is aimed at
targeting large-scale security attacks, which is corroborated by
the divide-and-conquer strategies employed and the reliance
on efficient probabilistic sketching schemes to manage high
network traffic rates. Hence, multi-domain SDN settings can
play a major role in enhancing the detection efficiency of large-
scale attack scenarios and decreasing the protocol convergence
time. (3) The main focus in today’s security research in multi-
domain collaborative SDN architectures is handling large-
scale DoS attacks. Extending the FDCGUARD to operate in
multi-domain SDN settings using collaborative controllers can
contribute to the detection of a wide array of attack vectors as
specified in the network forwarding attacker model presented
in Section IV-B. We leave porting the presented network
security protocols to multi-domain SDN architectures for a
future extension.

IV. THREAT MODEL

The threat model we assume in this work targets two main
functions in the cloud data center: (1) the VM processing
attacker model and (2) the network forwarding attacker model.
Both attacker models assume a generalized intrusion detection
approach that relies on behavioral rather than signature-based
techniques to detect misbehavior in the network.

A. The VM Processing Attacker Model

The threat model is represented by an attacker model that
can initiate modification attacks on the tenants’ VMs in the
data center and corrupt any processing logic executing on
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these VMs. The attack vector could target the application
services, shared libraries, and APIs running on the VM or
the guest VM OS. In such a scenario, the attack could
leverage the malicious services of a virus, trojan horse, or
any malware that can disrupt the normal operation of the
processing software, the supporting libraries, interfaces, or the
underlying OS. Moreover, the attacker can execute controlled
Denial of Service (DoS) attacks on the tenants’ VMs, which
may result in unacceptable processing delays beyond what
is tolerated by the specifications of the SLA. The probing
logic and the interpretation of the probing output reside in
the VMI module, which is assumed safe and isolated from the
cloud’s physical hosts and, hence, from attacker tampering.
The VMI code space is technically very minimal compared
to the code size of the VM guest OS. This fact supports
the feasibility of ensuring the safety of the VMI module
and its invulnerability to malicious code and software bugs,
which we believe justifies the above assumption. The model
is designed to periodically initiate a set of well-specified pro-
cessing probing tasks on the tenants’ VMs and leverage VMI
introspection and interposition to ensure the correct operation
of the VM services. This ensures the detection of an attacker
tampering with the state of the VM, its OS, or its running
services. Moreover, the model can detect any irrational VM
processing time beyond an acceptable threshold specified by
the SLA. The main property that allows the proposed security
algorithm to succeed in detecting malicious/misbehaving VMs
is represented in the design and utilization of indistinguishable
probing mechanisms that are viewed as any normal processing
tasks to the tenant VMs. This is why, as will be shown later
in Section V, the task selection is done randomly from a
deliberate pool of distributed algorithms with pre-configured
input and output parameters. Once any source of misbehavior
is detected and isolated among the processing VMs, the VMI
system deeply inspects the respective nodes to determine
whether it is benign due to a misconfiguration in the system
software/services or malicious due to an intentional external
attack.

B. The Network Forwarding Attacker Model

The network forwarding model we employ is based on the
SDN architecture. This model consists of a set of forwarding
switches in the data plane controlled, managed, and configured
by one or more central controllers in the control plane. This is
achieved by the controller sending a collection of flow rules to
populate the switches flow tables based on the specifications of
the OpenFlow protocol [35]. The attacker model we assume in
the SDN forwarding architecture consists of several switches
in the data plane that can execute active attacks on the network
traffic and flow rules. The threats imposed by the switches
mainly result from an attacker taking full or partial control of
the operation of the switches and capable of executing:

Man-In-The-Middle (MITM): and flow poisoning attacks
by modifying the flow rules and disrupting the routing opera-
tions. This attack jeopardizes the confidentiality and integrity
of the network traffic by having the malicious switch(es) pass
packets to an attacker-controlled destination switch before

forwarding the traffic (which can be maliciously modified)
to the legitimate destination. MITM attacks can be detected
by inspecting the inbound and outbound traffic flows of
the malicious switch(es) to detect any inconsistency in the
source and destination packet addresses or by identifying a
particular unique address to which the packets are forwarded.
A less sophisticated version of the MITM attack is the packet
modification attack in which the malicious switch carries
out the malicious modification on the network traffic before
forwarding it towards the ultimate destination. More details on
MITM attacks in SDN contexts can be found in [36].

Denial of Service (DoS) attacks: by injecting illegitimate
network traffic. One or more malicious switches can initiate
this attack and be coordinated to realize the Distributed DoS
(DDoS) attack. Denial of service attacks can be detected
by analyzing the outbound flow from the detected malicious
switch(es) to inspect large network flows forwarded to a
particular victim’s destination. More on DoS and DDoS attacks
in programmable SDN networks is presented in [37].

Quality of Service (QoS) throttling attacks: by delaying
particular network flows. Throttling attacks are a toned-down
version of DoS and DDoS attacks and are considered the
main cause of malicious SLA violations in cloud systems.
QoS throttling attacks can be detected by applying timestamp
sketching techniques as proposed in the network security
protocol presented in this work or using machine learning
classification approaches [38].

Focused or random packet-dropping attacks: to suppress
network flows. In these attacks, the malicious switch ran-
domly drops packets to induce a disruption to the forwarding
service or selects to drop the packets belonging to a partic-
ular source/destination network flow. Probabilistic sketching
techniques employed in this work can effectively detect these
attacks and isolate the respective malicious switch(es) inducing
them. A good reference on these attacks is presented in [39].

Network traffic padding attacks: to cover up malicious
traffic dropping [40]. These attacks maliciously conceal the
traffic size drop caused by packet-dropping attacks to fool
detection mechanisms that operate by comparing the traffic
size at the source and destination. A more effective way to
mitigate and detect those attacks is by applying content-based
comparison schemes provided by probabilistic sketching.

We assume the SDN controller is trustworthy and managed
by reliable administration processes. This circle of trust in-
cludes all the code modules running on the controller and the
flow rules communicated with the data plane. The network
forwarding security algorithms are designed to function in
the presence of many malicious switches in the data plane.
This is considered crucial for ensuring the scalability of the
security mechanisms in highly malicious data plane environ-
ments, although this comes at the expense of increasing the
runtime of the attack localization processes. More details on
achieving secure and trustworthy control plane administration
and processing in SDN can be found in [41].

V. SYSTEM MODEL

The system model is a virtualized cloud data center running
a collection of VMs leased by a set of k tenants (Figure 1). The
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Figure 1: DCGUARD system model.

DCGUARD approach includes two main algorithms to detect
malfunctioning nodes that process/forward data by initiating a
set of recursive probing mechanisms on the individual tenant
VMs and the networking nodes in the data centers. The
algorithms are PDCGUARD and FDCGUARD.

A. PDCGUARD algorithm
The algorithm verifies the integrity and timeliness of the

data processing. The domain of this algorithm is the VMs.
The notation used in PDCGUARD is summarized in Table I.

1) Algorithm description: The complete algorithm specifi-
cation is presented in Algorithm 1. The algorithm represents
a function that takes three parameters as input: The tenant to
be currently inspected (Ctenant), the VM set of the current
tenant (VMCtenant(a, . . . , r)), and the type of misbehaving
inspection required which can be either “processing” or “de-
lay” (type). Accordingly, as an output, it results in the VM
nodes misbehaving in processing or timely delivery of results.

The main qualities verified by the algorithm are (i) the
accuracy and validity of the processing operations executed
by the VMs and (ii) the rationality of the processing delay
incurred when the Ctenant VMs execute a particular dis-
tributed task. In other words, the algorithm detects and locates
any VM that produces invalid computation results or incurs
irrational or unacceptable processing delays. It should be
mentioned here that the VMs probed are considered untrusted,
and the main purpose of the PDCGUARD algorithm is to detect
and locate any VM tampering with the processing results or
inducing computation delays. The detection process is realized
irrespective of the number of misbehaving/malicious VMs
or the degree of tampering/delay they are causing above a
predefined threshold. The specification of the quality to be
tested by the algorithm is indicated using the type argument
that can take a “processing” or “delay” value. Note that the
assigned probing tasks are computational procedures based on
preconfigured distributed algorithms that require coordination
among the VMs to execute and produce a deterministic output.
This can range from simple distributed polynomial arithmetic
and two-phase commit algorithms to more sophisticated and
specialized algorithms such as MapReduce and distributed
minimum spanning trees. Without loss of generality, we adopt
the distributed matrix multiplication problem based on the
divide-and-conquer scheme to apply in the sample testbed
implementation. Although this distributed task does not heav-
ily rely on VM coordination, it has well-defined boundaries

of the division of labour among the processing VMs, which
renders it a viable proof of concept that can be extrapolated
to other classes of distributed tasks. The probing system starts
by randomly selecting a certain type (Class) of distributed
algorithms that comprises several subtasks (Degree) that map
to the number of VMs in the probed group (Figure 2 - Step 1).
As discussed earlier, the random selection of the distributed
class aids in picking a different class in each protocol run, thus
decreasing the probability of the monitored VMs detecting the
probing nature of the task. The algorithm follows a recursive
divide-and-conquer design that inspects the VMs of each
tenant separately, starting with the tenant leasing the largest
number of VMs. Selecting the Ctenant to start the probing
process is a design choice that needs to be determined. The
algorithm can choose a tenant at random to inspect or select
one based on a predefined criterion. Without loss of generality,
we chose to start with the tenant Ctenant having the largest
number of VMs (Figure 2 - Step 2). We believe this decision
can statistically ensure the timely detection of misbehaving
VMs since such tenants are probabilistically more prone to
including misconfigured VMs due to their large VM base.

The algorithm to inspect the VM set of the tenants is
achieved using a simple for loop that iterates over the
various tenant networks and applies the PDCGUARD func-
tion on each tenant VM set respectively, as PDCGUARD
(T [i], V MCtenant(1, . . . , r), “processing”), ∀i = 1, . . . , k
and such that Checked(T [i]) is false.

As stated in Algorithm 1, the PDCGUARD is a recursive
function. It accepts as inputs: (1) the tenant to be currently
inspected (Ctenant), (2) the VM set of the Ctenant, and the
type of inspection required, which can be either “processing”
or “delay”. The base case of the PDCGUARD function is
reached when the probed network consists of N remaining
VM nodes (N = 1 by default), and the algorithm converges
to locate the VM node (or set of nodes), resulting in the misbe-
having processing or delay of the assigned tasks. (lines 3–5).

In lines 6–10, we select the Ctenant having the maximum
number of VMs.

Line 11 saves the probing start time, which aids in calcu-
lating the delay in the later phases of the algorithm.

The distributed tasks to be executed on the VMs of the
Ctenant under inspection are selected randomly from the pool
of distributed tasks and assigned to the VMs in VMCtenant.
Each VM in the set VMCtenant computes the assigned task
through VMI interposition (Figure 2 - Step 3). Note that the
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Table I: Notations used in the PDCGUARD algorithm.

Symbol Explanation
T = {t1, . . . , tk} The set of k tenants renting VMs in the data center ordered by decreasing number of VMs.

Tmax The tenant with the maximum number of VM nodes.
VM i =
{vi1, . . . , vir}

The set of r VMs belonging to tenant i.

n The total number of VMs in the data center.

Class =
{c1, . . . , cp}

The set of classes of distributed algorithms that can be used for probing the integrity of VM processing. An example distributed algorithm
class used in the implementation part is the matrix multiplication distributed algorithm based on the standard divide-and-conquer
technique. It is worth mentioning here that the number of distributed algorithm classes is an implementation-dependent configuration
property that has a major impact on the security of the intrusion detection system. As the number of distributed algorithm classes
increases, the probability of the monitored VMs detecting the probing mechanisms decreases. The confusion introduced by selecting a
different probing task in each protocol run enhances the indistinguishability of the probing algorithm to be perceived as a normal
processing task in the data center.

D = {1, . . . , d} A strictly increasing ordered set of the available size of subtasks comprising the distributed algorithms.

Ψx,s

A 2-dimensional vector referring to the distributed algorithm corresponding to the class x ∈ Class with degree s ∈ D in the pool of all
available distributed probing algorithms.

Ψx,s(1, . . . , s)

The set of s subtasks comprising Ψx,s. Ψx,s contains a reference (I(Ψx,s), H(F (Ψx,s)), τmin ≤ τ ≤ τmax) tuple complying with the
subtask implementation. I(Ψx,s) is the input parameters to the distributed task Ψx,s, H(·) is a one-way collision-resistant hash function,
F (Ψx,s) is the output resulting from the execution of Ψx,s, and τmin ≤ τ ≤ τmax is the acceptable range of execution times needed to
complete the processing of Ψx,s. More details about the one-way collision-resistant hash function can be found in [42].

MD An array of length k − 1 for storing the hashes (digests) of the output.
TS An array of length k − 1 for storing the digest timestamps.
tstart The timestamp indicating the start of task execution on the probed VMs.

Checked(i) A boolean function that returns true if the tenant i ∈ T is checked for malicious behavior in a probing period.

N
The parameter representing the base case size to stop the recursion. It indicates the number of VMs the algorithm converges to raise a
misbehaving output signal. By default, N = 1, but the value could be increased to enhance the convergence time to the algorithm at the
expense of a less precise misbehaving VM localization.

result The variable that represents the result of the distributed task by aggregating the output of the subtasks from the various tenant VMs.
VMI

Interposition
The VMI primitive that allows the VMI to execute specific tasks on a particular VM in the data center.

Conquer
The function that accumulates the processing subtask output of the distributed task from the tenant VMs and aggregates it into a result
variable.

Output The function that computes the result of a subtask execution on a particular tenant VM.
load The function that loads a variable from the VM memory.
store The function that stores a variable in the VM memory.

operation “(task, input)←→ VM” indicates that a task with
its corresponding input set will be executed on the VM using
VMI interposition. (lines 12–15).

The subtask processing results are sent to all other tenants
in the data center. More precisely, one randomly selected VM
in each tenant group other than the Ctenant. (lines 16–17).

Each node in the set VMCtenant: (i) receives the subtask
processing result from each VM in the set VMCtenant (ii)
accumulates the final result using the particularities of the
probing distributed algorithm, and (iii) hashes the final result
to produce the resulting digest. (refer to lines 18–19, and to
Figure 2 Steps 4 and 5).

The digest from each other tenant, along with the digest
generation timestamp, are respectively stored in the MD and
TS vectors at index t. (lines 20–25 and Figure 2 Step 6).

The resulting (k− 1)-element MD is inspected with respect
to the expected digest value H(F (Ψx,s)) (Figure 2 Step 7).
Suppose H(F (Ψx,s)) does not match any entry in the MD
vector. In that case, this corroborates, with a high confidence
level, the fact that the probed Ctenant comprises malicious
VM nodes contributing to invalid processing results in the final
Ψx,s output. In the latter case, the algorithm recursively splits
the Ctenant VM network into two equal logical domains and
probes each half separately using the same logic as described
above but with different distributed algorithm class and degree
and using the “processing” type argument to the recursive
function. (refer to lines 26–28 and Figure 2 Step 8).

On the other hand, if there is a match of at least one entry
in MD with H(F (Ψx,s)), then this indicates that the Ctenant

VMs are correctly behaving. Other tenants corresponding to
the entries with the non-matching values in the MD vector are
assigned next in a row for probing using the “processing” type
argument to the recursive function. (lines 30–31).

Analogously, the algorithm checks any Ctenant misbehav-
ior represented in excessive processing delay by inspecting
the TS algorithm and subtracting the start time of the Ψx,s

execution from all the TS k − 1 entries. Note that only the
tenant TS indexes mapping to correct digest result calculation
in the MD vector are probed for the time delay. If the time
delays represented by all the TS vector entries checked are out-
side the range of acceptable times τ , then this indicates, with
a high confidence level, that Ctenant is causing this delay.
Accordingly, the algorithm recursively splits VMCtenant into
two equal logical domains and applies the probing operations
on each part using the “delay” type argument. (lines 32–35).

If at least one timestamp entry in TS is producing time
delays within the range τ , then this indicates that the probed
Ctenant is most probably complying with the acceptable time
delay range and thus all non-checked tenants mapping to out
of range delay entries in TS are probed using the “delay” type
argument. (lines 37–39).

Regarding the baseline for misbehavior as far as the com-
putational delay is concerned, this is mainly governed by the
SLA QoS terms whose existence in the core specifications of
the cloud computing platform is considered a major advantage
that we can leverage in designing malicious VM detection
algorithms. Employing the SLA terms to establish a baseline
of misbehavior renders the malicious detection independent
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Figure 2: PDCGUARD operations on VMs.

of the individual sources of delay on the individual VMs. No
matter what factors produce the delay on the tenant VMs, the
detection algorithm will raise an alarm if the delay exceeds
the SLA baseline. Any VM domain probed producing an
invalid result or an excessive processing delay undergoes the
same division process until the recursive base case is reached
(Figure 2 Step 9).

2) Algorithmic run-time complexity: In this section, we
study the complexity of the PDCGUARD algorithm and focus
on three main aspects that are mainly considered in the design
of intrusion detection systems: (1) the number of protocol
steps to achieve convergence, (2) the computation complexity
for executing the distributed probing subtasks on the tenant
VMs, and (3) the network traffic size exchanged to achieve
the protocol convergence. We compare the complexity of
the above 3 aspects to the traditional intrusion detection
mechanism that checks each VM independently to detect
malicious behavior. A highly significant note that is worth
mentioning here is that the PDCGUARD algorithm does not
adopt any concurrent inspection on the tenants’ VMs when
sending the distributed probing subtasks. The main motivation
for this design choice is instigated by the nature of task pro-
cessing in modern virtualized cloud computing architectures
where a VM service needs to interact and collaborate with
other VM services to achieve a designated computing task.
Complying with this computational model has a major impact
on the detection capability of the security protocol since many
modification/delay attacks are insinuated when a VM interacts
with other VMs in the network and may not emanate when
the VM is processing the tasks in isolation. For this reason,
the distributed PDCGUARD tasks are sent sequentially to and
are chosen to spur collaboration between the probed VM and
a set of other VMs in the tenant network. Moreover, this
gives the intrusion detection module in PDCGUARD major

security advantages in detection capacity and accuracy over
the traditional detection approach that individually checks each
VM in isolation of its virtual operating environment. The
dominant input size contributing to the main complexity of the
algorithm is represented in n, the total number of VMs in the
data center. We assume that n is significantly higher than the
number of tenants k. As discussed previously, the PDCGUARD
algorithm recursively operates on the VM set of each tenant
in a divide-and-conquer fashion to locate the VM node or
set of nodes exhibiting a misbehaving execution or producing
unreasonable delay in providing the requested services.

Number of recursive protocol steps to achieve conver-
gence: Let T (n) represent the total number of protocol
execution steps to achieve convergence in the PDCGUARD
algorithm. Then,

T (n) =

{
k∑

i=1

O(f(|VMk|)), n =

k∑
i=1

|VMk|

}
(1)

where O is the asymptotic worst-case run-time classification
function, |VMk| is the number of VMs belonging to the k-th
cloud tenant, and f is the function representing the number
of protocol recursive steps on the k-th cloud tenant. When the
number of misbehaving VM nodes at a particular tenant k is
low, this number is considered of order O(n), i.e. a constant
in algorithmic complexity terms, compared to the total number
of VMs |VMk|, and as a result in the order of n, f(|VMk|)
asymptotically approaches log2(|VMk|). This can be easily
proved by representing f(|VMk|) in its recursive form and
solving the resulting difference relation to find its closed form
as a function of |VMk|. The difference relations for f(|VMk|)
is presented as follows:

f(|VMk|) =

{
f( |VMk|

2 ), |VMk| > 1

1, |VMk| = 1

⇒ f(|VMk|) ∈ O(log2(|VMk|)) (2)

On the other hand, when the misbehaving rate at tenant
k is relatively high, say in the order of |VMk|, and as a
result, n, which in the worst-case scenario indicates that the
number of misbehaving VM nodes asymptotically approaches
the total number of VMs |VMk| in the tenant k jurisdiction,
then the number of protocol steps of the PDCGUARD algorithm
asymptotically approaches O(|VMk|). In such a case, the two
halves of the tenant VM network signal a malicious operation,
which designates the scenario when the recursive divide-and-
conquer technique is required to probe both halves in all the
recursive steps of the algorithm. This results in the following
recurrence relation for f(|VMk|):

f(|VMk|) =

{
2 f( |VMk|

2 ) +O(1), |VMk| > 1

1, |VMk| = 1

⇒ f(|VMk|) ∈ O(|VMk|)
(3)

It should be noted that this scenario, of having all the
VMs in the set |VMk| malicious, is assumed uncommon in
conventional cloud environments, and the O(|VMk|) com-
plexity is exactly the number of protocol steps in the traditional
VMI algorithm that inspects each VM individually to detect
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Algorithm 1: PDCGUARD algorithm
1 Function PDCGUARD (Ctenant, VMCtenant(a, . . . , r), type):
2 Set Ctenant as Checked
3 N = 1
4 if a− r + 1 = N then
5 return VM [a], V M [a+ 1], . . . , V M [a+ r] as a “type” maliciously detected node(s)

6 Select random Ψx,s , s.t.: x = random(1, . . . , p) AND s = 1
7 for i = 1 to d do
8 if Degree[i] ≥ Tmax then
9 s = i

10 break

11 set tstart
12 for i← 1 to s do
13 j ← (i− 1) mod (|VMCtenant|) + 1
14 Interposition @ VMCtenant[j]
15 (Ψx,s[i], (I(Ψx,s))←→ VMCtenant[j]
16 for t in T (1, . . . , k) AND t ̸= Ctenant do
17 send Output(Ψx,s)[i], VMCtenant[j]) to any running VM in VMt

18 Interposition @ VMt

19 Conquer(result, Output(Ψx,s[i]), V MCtenant[j])

20 for t in T (1, . . . , k) AND t ̸= Ctenant do
21 Interposition @ VMt

22 digest = H(result)
23 Load(digest)
24 Store(MD[t], digest)
25 Store(TS[t], digesttimestamp)

26 if H(F (Ψx,s)) /∈MD then
27 PDCGUARD (Ctenant, V MCtenant(a, . . . , r/2), “processing”)
28 PDCGUARD (Ctenant, V MCtenant((r/2) + 1, . . . , r), “processing”)

29 else
30 for all t where MD[t] ̸= H(F (Ψx,s) AND !Checked(T [t]) do
31 PDCGUARD (t, V Mt(1, . . . , r), “processing”)

32 for all t where MD[t] = H(F (Ψx,s) do
33 if all TS[t]− tstart /∈ τ then
34 PDCGUARD (Ctenant, V MCtenant(a, . . . , r/2), “delay”)
35 PDCGUARD (Ctenant, V MCtenant((r/2) + 1, . . . , r), “delay”)

36 else
37 for all t where MD[t] = H(F (Ψx,s) AND !Checked(T [t]) do
38 if TS[t]− tstart /∈ τ then
39 PDCGUARD (t, V Mt(1, . . . , r), “delay”)

malicious VM behavior. The O(log2(|VMk|)) complexity
results in a total complexity T (n) as follows:

T (n) =
{ k∑

i=1

O(log2(|VMk|)), n =

k∑
i=1

(|VMk|)
}

=

{
O(log2({ max

i=1,...,k
(|VM i|)}), n =

k∑
i=1

(|VM i|)

}
⇒ T (n) ∈ O(log2(n)) (4)

The logarithmic complexity in the number of protocol steps
in PDCGUARD is considered a major improvement over the
linear complexity in the traditional inspection approach for
large cloud network sizes. A similar analysis for the distrustful
scenario of having all VM nodes in the tenant networks
exhibiting misbehaving processing or delay patterns results in
T (n) ∈ O(n) which is the same number of protocol steps
complexity realized in the traditional VMI intrusion detection
algorithm inspecting the VMs in the data center one at a time.

Computation complexity: Let C(n) be the computational
runtime complexity for executing the distributed probing sub-
tasks on the tenants’ VMs. We assume that the cost of subtask
execution is a constant g compared to the number of VMs
in the network. Without loss of generality, we derive C(n)
on one cloud tenant with |VMk| asymptotically approaching
the total number of VMs in the network n. The keen reader
should be able to extrapolate the analysis to the set of k
cloud tenants analogously to what was demonstrated in the
previous section on calculating the number of protocol steps
T (n). Moreover, we assume the logical cloud scenario where
we have a relatively low number of malicious VMs, which
results in T (n) ∈ O(log2(n)) as indicated in the previous
section. The number of VMs probed in each protocol step
starts at n in the first and second steps. Afterward, the number
of VMs probed is divided in half till reaching the base case
after log2(n) iterations. Accordingly:

C(n) = g × (n+ n× (

(T (n))−1∑
i=0

(
1

2

)i

) (5)
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Solving for the geometric progression in (5) and replacing
T (n) with its asymptotic complexity limit log2(n) we get:

C(n) = g × (3n− 2) ∈ O(n) (6)

This is analogous to the complexity of the traditional VMI
inspection approach but with a slightly higher constant term.
This is justified considering the major security advantage
provided by PDCGUARD, which inspects the VM by probing
subtasks designed to execute in collaboration with other VMs
in the tenant network. This approach complies with the modern
cloud services model and provides better detection accuracy
than the traditional approach that inspects VMs individually
in isolation from their operating environment.

Network Traffic Size: Let N(n) be the complexity func-
tion representing the network traffic exchanged to achieve pro-
tocol convergence. Deriving N(n) follows a similar procedure
as that leveraged in finding C(n) since the VMs probed with
the distributed subtasks are those receiving the input signal
to execute the subtasks. This results in a linear relationship
between C(n) and N(n) having the following form:

N(n) = C(n)× s× y (7)

where s is the input network traffic per VM probe and y is
the network traffic exchanged between the probed VM and the
other VMs in the tenant network as required by the distributed
probing subtask. Both s and y are constants in the size of the
network n. From (5) and (7) we get:

N(n) = g × s× y × (3n− 2) ∈ O(n) (8)

Again, compared to the network traffic generated by the
traditional VMI approach, PDCGUARD has the same linear
complexity but with a larger constant term. This is justified
considering the security advantage the PDCGUARD protocol
provides and its compliance with the cloud service model
when performing the probing mechanism.

B. FDCGUARD algorithm

To detect malicious forwarding nodes in the SDN data
plane, we leverage the network programming SDN model to
divide the network into two equal-degree partitions recursively.
This is done by the following mechanisms:

• Apply a graph-theoretic partitioning algorithm to recur-
sively specify two network halves having a minimum
number of connecting edges (links).

• Rely on OpenFlow controller messages to isolate the two
network partitions specified above.

The network partitions are individually probed with a set of
dynamically crafted network packets generated by the SDN
controller. More specifically, the SDN controller forks a probe
transmitter and receptor daemon processes to send and receive
the probing packets respectively. To detect any suspicious
activity in the forwarding nodes:

• We apply the Tug-of-War sketching algorithm on the
sender and receiver ends to measure the deviation be-
tween the sketch generated by the transmitted and re-
ceived probe packets.

• We employ a Timestamp Summary (TSS) data struc-
ture to compute the average delay of the probe packet
exchange between the sender and receiver controller
processes. The average delay is analyzed to detect any
malicious delay induced by misbehaving switching nodes.

Using the above two criteria, the network intrusion detection
system can determine the probability of threat instigated by
the existence of a misbehaving forwarding unit in the probed
network partitions. Using sketching algorithms in the system
design dramatically reduces computational complexity when
probing the network partitions with a relatively large number
of network packets. This aids in improving the accuracy of
the intrusion detection mechanisms and enhances the overall
system’s performance efficiency.

The algorithm verifies the integrity and timeliness of the
network transfer. The domain of this algorithm is the network
nodes. The FDCGUARD notation is summarized in Table II.

1) Algorithm description: The complete algorithm specifi-
cation is presented in Algorithm 2.

In lines 1–13, the FDCGUARD algorithm is called on the
whole network GN and operates recursively by calling itself
on two subset partitions of the network G1 and G2 with
minimum interconnecting link edges. The algorithm base
case is reached when the network partition size |G| is less
than or equal to the granularity of misbehaving forwarding
nodes M. In such a case, the algorithm returns the partition
containing one or more malicious forwarding nodes. If no
malicious partition is detected, then FDCGUARD returns a
“valid network” signal.

In lines 15–39, the CHECK-PARTITION procedure gener-
ates Tug-of-War sketch summaries of the probing data at the
transmit and receive controller daemon processes dT and dR,
respectively. The probing packet stream (D : (P1 → Pk)) is
sent from dT to dR by traversing all the switches in a given
network partition. This is done by the SDN controller dissem-
inating the necessary action rules to ensure that the probing
packets traverse each switch in the corresponding network
partition. At dT and dR, the probing stream D : (P1 → Pk)
is input to a Tug-of-War sketching algorithm to generate
a compact hash-based representation T (DT ) that is sent to
the SDN controller for inspection. This is done as follows:
For each probing packet P , a four-wise independent hashing
function 4wHash is employed, which uniformly maps to a
pair of values: an index i in the sketch array and a value
result in [−1,+1]; the result is added to T (D) at index i.
The Tug-of-War sketch of D : (P1 → Pk) is produced as the
summation of the dot product of the hashed values and the
individual probing packets based on the following equations:

(i, result)← 4wHash(P ) (9)
T (DT )[i]← T (DT )[i] + result (10)

Based on the linearity property of the Tug-of-War sketch
[9], the second norm difference between the two received
sketches reflects any variation between the sent and received
data streams up to an error e:

δToW = |T (DT )− T (DR)|2 (11)
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Figure 3: FDCGUARD operations on network nodes.

Table II: Notations used in the FDCGUARD algorithm.

Symbol Explanation
GN The graph representing the SDN network.
V The number of forwarding nodes in the SDN data plane.
E The number of links in the network.
G The network partition to be checked for any misbehaving forwarding nodes.

M
The parameter representing the base case size to stop the recursion. It indicates the number of forwarding nodes the algorithm converges
to raise a misbehaving output signal. By default, M = 1, but the value could be increased to enhance the convergence time to the
algorithm at the expense of a less precise misbehaving switch localization. (M is similar to N in the PDCGUARD algorithm).

dT and dR
These are, respectively, the transmitting and receiving controller daemon processes responsible for calculating the Tug-of-War sketches
and the timestamp summaries.

4wHash A four-wise independent hash function.
Hash A standard collision-resistant cryptographic hash function.
T (DT ) The Tug-of-War sketch of the probing packet stream (DT (P1, . . . , Pk)) at the controller transmit daemon process.
T (DR) The Tug-of-War sketch of the probing packet stream (DR(P1, . . . , Pk)) at the controller receive daemon process.
δTSS The summation of all the timestamps accumulated between the transmitting and receiving ends.
δToW The second norm difference between the sent and received Tug-of-War sketches subject to an error e.
θTSS The average timestamp per probing packet.

τToW
A preset threshold above which the deviation in the second norm difference between the transmitted and received Tug-of-War sketches is
considered malicious.

τTSS
A preset threshold above which the difference between the timestamp summary (the average timestamp calculated over all the transmitted
and received probe packets) is considered malicious.

The second norm difference calculation follows an efficient
linear runtime complexity in the size of the Tug-of-War
probabilistic sketches in bytes. This is due to the fact that the
second norm operation is realized by summing the squares of
the differences between the individual byte elements of the
transmitting and receiving sketches on the SDN controller. A
more detailed realization of the second norm calculation is
demonstrated in the following equation:

δToW =

s∑
i=1

|T (DT [i])− T (DR[i])|2 (12)

where s is the size of the transmitting and receiving Tug-of-
War sketches in bytes. This calculation requires s iterations,
rendering its runtime complexity in the order of O(s). In the
sample implementation presented in Section VI-B, we utilized
Tug-of-war sketch sizes of 12 × 103 bits = 1500 bytes. The
empirical runtime performance of the second norm difference
operation on the 2.6 GHz 6-core Intel Core i7 processor was
in the order of 380 ms. Tuning δToW up to an error e we get:

δToW = (1± e)×
s∑

i=1

|T (DT [i])− T (DR[i])|2 (13)

If δToW is greater than an empirically set threshold τToW , this
designates a malicious activity. This probing and sketching
procedure is repeated every preset time period t to detect mis-
behaving switch activity in real time. The Tug-of-War sketches
T (DT ) and T (DR) represent a compact hash representation
of the probing data streams, which imposes minimal overhead
in the network traffic and storage requirements. Moreover,
this allows for an efficient set of mechanisms for detecting a
deviation in the relatively large probing packet streams. Like
the Tug-of-War sketch generation and computation, the TSS
data structures are generated and computed at the dT and dR
daemon processes concurrently to detect any malicious delay
in the forwarding operations. The TSS generation is described
as follows: each probe packet P is hashed using a standard
collision-resistant hash function to a value j, which is utilized
as an index in the TSST and TSSR arrays. These arrays
represent the summation of the timestamps of the probing
packets that map to the hash value j. The main objective is
calculating the average timestamp per probing packet θTSS .
This is done by dividing the summation of all the timestamps
between the transmitting and receiving ends, δTSS , by the
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total number of packets, V ALTSS , received correctly on the
receiving end. Figures 4 and 5 demonstrate the operation of
the Tug-of-War sketch and timestamp summary on the probing
data stream.

The CHECK-PARTITION function finally sends T (DT ),
TSST , and PCT to the SDN controller for inspection. Anal-
ogously, at the receiving probing process, dR, T (DR), TSSR,
and PCR are generated and sent to the SDN controller for
comparison with T (DT ), TSST , and PCT for the aim of
detecting any malicious activity in the forwarding operation.
The SDN controller evaluates the second norm difference
δToW of the transmit and receiving sketches T (DT ) and
T (DR). If δToW is bigger than the threshold τToW , the
network is reported as malicious in terms of the correctness
of the forwarding operations. Similarly, the average transmit
and receive packet timestamps difference is evaluated on the
probing packet stream (D : (P1 → Pk)). This is achieved by
checking that the vectors PCT and PCR at each index j are
equal; this indicates that the corresponding probing packets are
correctly received and the timestamp counters at that index
j are valid. The timestamp difference TSST [j] − TSSR[j]
is evaluated and added to the δTSS , which represents the
summation of all the timestamps accumulated between the
transmitting and receiving ends, and the average timestamp per
probing packet θTSS is calculated using the following formula:
θTSS = δTSS/V ALTSS

If θTSS is greater than an empirically set threshold τTSS ,

the network is marked as malicious with respect to the timely
delivery of packets. This is mainly caused by a malicious
forwarding unit producing unreasonable delays.

2) Algorithmic run-time complexity: The average runtime
complexity of the FDCGUARD algorithm is realized when a
malicious behavior is depicted in one of the network partitions
inspected by the intrusion detection system. The algorithmic
complexity consists of three main components:

• A recursive cost function represents half the problem size
since the algorithm focuses on one of the two network
partitions in the current call to the FDCGUARD functions.

• The cost of dividing the network into two subset parti-
tions G1 and G2 with minimum interconnecting links.
We employ Karger’s graph cut algorithm to imple-
ment this process, which runs in a time complexity of
O(V 2E log(V )) on a network G(V,E) [43].

• The cost of the CHECK-PARTITION function, which
consists of the probing and sketching mechanism. Since
the cost here relies mainly on the Tug-of-War sketch size
and not on the number of the forwarding nodes V, this
contributes a constant time, say C, to the complexity.

Adding the above-listed cost components, we get the fol-
lowing run-time complexity recursive function:

T (V ) = T (V/2) +O(V 2E log(V )) + C (14)

Solving the recurrence relation in Equation (14) results in
an average case run-time complexity:

T (V ) = O(V 2E(log V )2) (15)

The time complexity presented in (15) is polylogarithmic
in the number of forwarding nodes V and the number of
network links E. Suppose the intrusion detection was done
using the deterministic approach without relying on pro-
grammable SDN virtualization functions. In that case, every
path of every possible number of forwarding nodes from the
probing source to the probing destination has to be checked
for malicious/misbehaving forwarding switches. Assuming no
forwarding loops in the networks (the application of Spanning
Tree protocols can enforce this), the number of paths of size r
is the combination

(
V

r

)
. Accordingly, the total possible paths

of sizes 1 to V is the summation of the combinations:(
V

1

)
+
(
V

2

)
+ . . .+

(
V

V − 1

)
+

(
V

V

)
(16)

The runtime complexity to check the above number of paths
for malicious/misbehaving switches is an exponential runtime
of O(2V ) since (16) evaluates to 2V . Achieving a polyloga-
rithmic time complexity using the FDCGUARD approach com-
pared to an exponential runtime with the traditional intrusion
detection approach corroborates the efficiency of FDCGUARD
and, as a result, its scalability in large-scale SDN networks.

VI. PERFORMANCE EVALUATION

This section presents the performance evaluation for the
DCGUARD approach. The main two algorithms of DCGUARD
were evaluated separately. The PDCGUARD algorithm was
evaluated in two directions: (1) We deployed a stripped-down
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Algorithm 2: FDCGUARD algorithm
1 Function FDCGUARD (GN , dT , dR):
2 FDCGUARD (G, dT , dR);
3 if CHECK-PARTITION(G, dT , dR)= “misbehaving” then
4 if |G| ≤M then
5 return G (G is the network partition containing the malicious forwarding unit)

6 else
7 Divide network into two subset partitions G1 and G2, with minimum interconnecting links
8 FDCGUARD (G1, dT , dR)
9 FDCGUARD (G2, dT , dR)

10 else
11 return “valid network”

12 CHECK-PARTITION(G, dT , dR)
13 - Generate random probing packet stream DT (P1, . . . , Pk) at dT and transmit to dT over the network.
14 - Create the Tug-of-War sketch T (DT ) and the timestamp summary TSST at dT as follows:
15 for each packet P ∈ S1 do
16 (i, result)← 4wHash(P )
17 T (DT )[i] ← T (DT )[i] + result
18 j ← Hash(P )
19 TSST [j] ← TSST [j] + packettimestamp
20 PCT [j] ← PCT [j] + 1

21 - Transmit T (DT ), TSST , and PCT to SDN controller for inspection
22 - Analogously compute steps 2 and 3 on dR to generate T (DR), TSSR, and PCR. Send T (DR), TSSR, and PCR to the SDN controller for

inspection, where at the controller:
23 δToW = |T (DT )− T (DR)|2
24 for i from 1 to k do
25 if PCT [i] = PCR[i] then
26 δTSS = δTSS + TSSR[i]− TSST [i]
27 V ALTSS = V ALTSS + PCT [i]

28 θTSS = δTSS/V ALTSS

29 if δToW ≥ τToW OR θTSS ≥ τTSS then
30 return “misbehaving”

31 else
32 return “valid”

implementation of the PDCGUARD algorithm on a Microsoft
Azure cloud. (2) We implemented a proof-of-concept testbed
emulation of the system design on the Mininet network
emulator. For the PDCGUARD algorithm, we also evaluated
using a proof-of-concept testbed emulation on the Mininet
network emulator. Mininet [44] enables the creation of a large-
scale virtual network composed of a central controller and a
set of hosts and switches running actual Linux kernel on a
single computer. Mininet emulates an actual cloud environ-
ment with virtualized SDN modules. The main motivation
behind the use of Mininet in emulating the VMI security
system is instigated by 3 main aspects: (1) Mininet leverages
process-based lightweight virtualization supported by network
namespaces where VMs can run real Linux-based OSes with
near-native processing speeds on the actual hardware pro-
cessors. This is corroborated by the realistic figures of the
PDCGUARD performance evaluation and the consistent results
achieved in the real-world testbed on the Microsoft Azure
cloud infrastructure. (2) Mininet supports a seamless ability to
simulate the introspection primitives provided by a standard
VMI platform. This is done by leveraging the centralized
control modules realized in the SDN controller to access the
underlying processing nodes in the virtualized hosts. This is
because Mininet’s SDN controller is deployed on the local
host system running the network virtualization hypervisor with
direct access to the VM runtime and memory resources. (3)

Mininet innately implements the OpenFlow and simulates
SDN controllers and switches supporting this protocol. This
was a significant advantage for simulating the FDCGUARD
protocol on top of it as well. The VM misbehavior is simulated
in Mininet by inducing explicit modification on one or more
units in the input-processing-output pipeline. For instance,
changing the input fed to the distributed task, the result of
an intermediate computation, or the final output result of the
distributed task would result in a processing flaw detected
by the PDCGUARD algorithm and is considered a malicious
attempt to disrupt the computation of the distributed task. We
employed a VMware Linux VM to run the Mininet network
emulator. The VM is hosted on VMware Fusion Professional
Version 12.1.0 and runs on a MacBook Pro, Intel Core i9 @
2.4GHz, with 64GB of main memory. The guest system was
assigned 4 cores and 33.5GB of memory, and it was running
on Ubuntu 14.04 (64-bit) using Floodlight v1.2.

A. PDCGUARD

Two ways are used for the performance evaluation:
1) Emulation: The system configuration we followed is

comprised of 8 cloud tenants (T1 to T8) leasing several
VMs, r, as indicated by Table III. This implies a network
size of n = 3875 VMs, the largest number of virtual hosts
we could boot on a single emulation laptop with the above-
listed configuration. To emulate the malicious behavior in the
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Table III: Samples of VM configurations.

Tenant T1 T2 T3 T4 T5 T6 T7 T8
No. of
VMs r 1250 1000 750 500 200 100 50 25

network, we induced intentional processing flaws in a set of
VMs at each tenant configuration. We formalized the degree
of malicious behavior in the network by the parameter ρ,
which indicates the percent maliciousness in the network. ρ is
defined as the percent of VM nodes exhibiting misbehaving
or malicious behavior to the total number of VM nodes at a
particular tenant configuration. The misbehaving pattern could
be designated by an invalid processing result when executing a
corresponding probing task or an intolerable processing delay
in generating the result. In the testbed implementation, we
selected 12 ρ malicious rates, starting with 0% maliciousness,
indicating an error-free network, to 100%, where all the VM
nodes in the network demonstrate malicious behavior. The
PDCGUARD algorithm convergence time for each network
malicious rate is computed and compared to that of the tradi-
tional VMI intrusion detection methodology. Without loss of
generality, we utilized a set of matrix multiplication distributed
tasks to probe the different tenant VMs. The traditional VMI
technique sets the input matrix sizes to 100×100 elements of
random values in the [1, 500000] range. In the PDCGUARD
algorithm, to ensure a fair comparison with the traditional
technique, we selected the parent problem size to ensure
that each subtask consists of multiplying input matrices of
100 × 100 elements. We applied the standard divide-and-
conquer matrix multiplication algorithm to subdivide the large
matrix multiplication problem into a set of smaller subtasks to
respectively execute at each tenant VM as designated by the
PDCGUARD algorithm specifications. The PDCGUARD probing
mechanisms are periodically replicated every 10 minutes over
7 days. We selected a random malicious rate ρ from the set
{0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The average run-
time for completing a PDCGUARD probing step is calculated
for the 12 different malicious rates ρ, and this is respectively
compared to the run-time of executing the standard VMI
intrusion detection algorithm that checks each VM individually
for correct processing and reasonable delay.

The results in Figure 6a remarkably comply with the theo-
retical analysis presented in the previous section. As expected,
when the malicious rate is relatively low, the PDCGUARD
algorithm exhibits a protocol step complexity in the order
of log2(n). As the malicious rate increases above the 50%
- 60% mark, the protocol step complexity incrementally ap-
proaches a linear function and gets closer to the performance
of the traditional VMI intrusion detection technique. Due
to the time limitation for presenting this work, the probing
runtime measurements are carried out on idle VMs without any
accompanying processing workload. Future extensions will
consider the effect of various probabilistic workloads on the
performance of the probing mechanisms on the tenants’ VMs.
The range of reasonable processing times τmin ≤ τ ≤ τmax

is incrementally determined from one probing period to the
next based on the execution time of the distributed task on the

tenant with the maximum number of VMs (this determines
τmax) and the tenant with the minimum number of VMs (this
determines τmin) in each probing period. Since the values
of τmin and τmax depend on the overall processing time of
each distributed task TS[t] − tstart on a particular VM tenant
network t (which can change from one probing period to the
other (even within an individual probing period), the values
of tmin and tmax dynamically change based on this variation
in the execution time. To sustain a smooth disparity in the
values of tmin and tmax, we followed an algorithm analogous
to the retransmission timer derivation algorithm maintained
in TCP [45]. The details of the tmin and tmax calculations
are provided in the subsequent smoothing equations using the
estimators mτ and vτ , respectively, representing the mean and
variance of the execution time of the distributed task in the
kth probing period.

We start with τmax, let tmax represent the tenant with the
maximum number of leased VMs, and tmin represent the
tenant with the minimum number of leased VMs:

mτk+1 = α (TS[tmax]− tstart) + (1− α)mτk

vτk+1 = β (|TS[tmax]− tstart −mτk|) + (1− β) vτk+1

τmax = mτk + 4 vτk+1

In the first probing period, the mean and variance estimators
are set as follows:

mτ1 = TS[tmax]− tstart, vτ1 =
TS[tmax]− tstart

2

Analogously, τmin is derived using the above equations but by
replacing tmax by tmin and τmax by τmin.
The gains α and β are set to 1

4 and 1
8 respectively [45].

2) Real cloud testbed: We deployed a stripped-down imple-
mentation of the PDCGUARD algorithm on a Microsoft Azure
virtual network of 16 VMs. We employed the AV2 Series VM
profile using the Standard − A4 − v2 size configured with
a 4-core Intel Xeon E5-2673 v3 2.4 GHz processor and 8
GiB RAM. We assume that the 16 VMs on the Microsoft
Azure network belong to one cloud tenant, T1. We followed
an analogous approach to that in the simulation by inducing
intentional processing flaws in a set of VMs, resulting in a
malicious rate ρ. We selected the same malicious rate, 12ρ,
which we employed in the simulation to determine the number
of malicious/non-malicious VMs as indicated in Table IV.

The PDCGUARD algorithm convergence time for each net-
work malicious rate is computed and compared to that of the
traditional VMI intrusion detection methodology. Similarly, we
employed a set of matrix multiplication distributed tasks to
probe the Azure VMs. To get more sensible convergence times
on the relatively small number of probed VMs, we utilized
matrix multiplication problems comprising input matrix sizes
of 1000x1000 elements of random values in the [1, 500000]
range. In the PDCGUARD algorithm, we ensured that each
subtask consists of probing problems of size 1000x1000 to
comply with the problem sizes used in the traditional VMI
approach. The probing experiments on the Azure VMs are
periodically replicated every 20 minutes over 3 days. We
selected a random malicious rate ρ discretely from the set
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Table IV: The malicious rate ρ and the corresponding number of malicious nodes.

ρ 0 5 10 20 30 40 50 60 70 80 90 100
Number of

non-malicious VMs 16 15 14 13 11 10 8 6 5 3 2 0
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Figure 6: Convergence time in seconds vs. the malicious rate
ρ using emulation (a) and a real testbed (b) for PDCGUARD.

[0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]. The average con-
vergence time for each of the 12 malicious rates ρ is com-
pared to the runtime of executing the standard VMI intrusion
detection algorithm, as indicated previously in the simulation
section. The convergence time results for each malicious
rate ρ are presented in Figure 6b. The results in Figure 6b
corroborate the simulation results, which comply with the
theoretical performance analysis. The same convergence time
pattern is realized in the real cloud implementation, which
increases as the malicious rate ρ increases. The convergence
time starts from the order of O(log2(n)) runtime complexity
for low malicious rates and then gradually increases to asymp-
totically approach O(n) for large malicious rates. Again, as
demonstrated in the simulation results, the turning point after
which the convergence time exhibits the increase above the
logarithmic runtime complexity is realized at the 50% - 60% ρ
values. After this point, the runtime complexity incrementally
approaches the performance of the traditional VMI approach.

B. FDCGUARD

We emulated the FDCGUARD system model on a virtualized
network using Mininet. The SDN controller employed is
FloodLight 1.2 [46]. The network topology is based on the
FatTree architecture. The FatTree topology is chosen due to
its popularity in modern data center deployments. The virtual
networks selected in the implementation consist of 250 to
2000 forwarding nodes in increments of 250. We realized the
Mininet deployment on a MacBook Pro 16” 2019 2.6 GHz
6-core Intel Core i7, 64 GB of 2666 MHz DDR4.

The dT and dR probing daemons are implemented as
modules on the FloodLight SDN controller. The main role
of these modules is to: (1) exchange the probing packet

Table V: Parameters used in the FDCGUARD Implementation.

Parameter Value(s)
Network Size 250, 500, 750, 1000, 1250, 1500, and 2000

τToW 0.0928
τTSS 41.428 ms

k 106 packets
|T (DT )|, |T (DR)| 12× 103 bits
|TSST |, |TSSR| 12× 103 bits

Recursion base case M 3

(PA, PD) (5%, 2%), (5%, 5%), (2%, 10%), (5%,
10%), (10%, 2%), (10%, 5%), (10%, 10%)

stream (P1, . . . , Pk), (2) generate T (DT ), TSST , PCT and
T (DR), TSSR, PCR on the transmitting and receiving ends
respectively and (3) calculate the deviation between the sent
and received sketches and timestamp accumulators and decide,
based on the threshold values, if a malicious behavior exists in
the probed network partition or not. Any malicious behavior
detected results in a recursive execution of the algorithm on
the currently probed network partition.

We introduce an attack vector consisting of two main
parameters: (1) PA: the percentage of malicious forwarding
nodes inducing an active modification attack on the network
traffic (packet dropping, packet interception, packet injection,
and packet alteration), and (2) PD: the percentage of mali-
cious forwarding nodes imposing unacceptable delays in the
packet forwarding process. The malicious forwarding nodes
executing modification and delay attacks are chosen randomly
throughout the experiments. Table V presents the parameters
used in the implementation, including the threshold values
for detecting active modification and delay attacks. For each
network size V and (PA, PD) pair, we executed 10 replicated
experiments to calculate the average number of recursive
steps and the average protocol convergence time needed to
detect the malicious forwarding nodes. Figure 7 shows the
results realized. Apparently, the number of recursive steps
and the time needed for the FDCGUARD protocol conver-
gence is directly proportional to the network size and the
percentage of malicious switches imposing packet alteration
and delay attacks represented in the malicious percentage pair
(PA,PD). Based on the results above, an interesting obser-
vation is that the FDCGUARD algorithm demonstrates a close
number of recursive steps for relatively small network sizes
per (PA,PD) pair. The difference in the number of recursive
steps increases for network sizes above 750 forwarding nodes.
The number of recursive steps is in the order of 30 steps for
a 250 forwarding switches network and respectively increases
to the order of 50 and 70 steps for 500 and 750 forwarding
nodes’ networks. For network sizes above 750 switches, the
FDCGUARD algorithm starts exhibiting an increase in the
number of recursive steps with the network size and the
percentage of misbehaving switches represented in the pair
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Figure 7: Number of recursive steps (a) and convergence time
(b) for various (PA,PD) malicious pairs in FDCGUARD.

(PA,PD). The difference in the number of recursive steps
between the highest malicious pair (PA,PD) = (10, 10) and
the smallest (PA,PD) = (5, 2) increases from 20 steps in
network sizes of 1000 forwarding nodes to almost 40 recursive
steps when increasing the network size to 2000 forwarding
nodes (∼= 30 steps for 1250 and 1500 network sizes).

The convergence time is highly sensitive to the rate of
misbehavior in the network and is even more highly sensitive
to the increase in the number of forwarding nodes in the
network. The convergence time increases from 49.32 sec for
(PA,PD) = (5, 2) to 147.84 sec for (PA,PD) = (10, 10)
(∼= 66% increase) for the smallest network size of 250 for-
warding nodes. For the largest network size of 2000 forward-
ing nodes, the convergence time increases from 581.76 sec for
(PA,PD) = (5, 2) to 994.92 sec for (PA,PD) = (10, 10)
(∼= 42% increase). The rate of increase of the convergence
time from the smallest network size of 250 switches to the
largest network size of 2000 switches exceeds 82% for all
the (PA,PD) pairs with the (2, 10) pair touching the 93%
increase in convergence time. This can be justified by the
relatively high malicious delay (PD), which is the main source
contributing to the increase in the convergence time.

Modern intrusion detection is based on threshold analysis
and configuration. The Threshold τToW is tested against the
second norm difference δToW between the sent and received
Tug-of-War sketches subject to an error e. δToW values greater
than τToW indicates a malicious activity since this is an indi-
cation that the sent and received traffic differs in unacceptable
values with respect to the threshold τToW . A very important
step in analyzing the performance and effectiveness of an
intrusion detection protocol is tuning the threshold parameters
to satisfy the security requirements of the protocol with a high
confidence level. We relied on the ROC analysis to achieve
this. ROC analysis provides a better estimation of the protocol

Table VI: The τToW and τTSS threshold values.

TCA τToW τTSS

1 6.4 57.5
2 3.2 55
3 1.6 52.5
4 0.8 50
5 0.4 47.5
6 0.2 45
7 0.1 42.5
8 0.05 40
9 0.025 37.5
10 0.0125 35
11 0.00625 32.5
12 0.003125 30

Table VII: Optimal threshold values based on ROC analysis.

Network Size (TCA, TCD) τToW τTSS

250 (7, 8) 0.1 40
500 (8, 8) 0.05 40
750 (8, 7) 0.05 42.5
1000 (7, 7) 0.1 42.5
1250 (6, 7) 0.2 42.5
1500 (7, 7) 0.1 42.5
2000 (8, 8) 0.05 40

threshold values to realize a balance between the successful
attack detection of the intrusion detection algorithm and the
false positive alarms generated. For this purpose, we created
two threshold configurations: (1) The Active Modification
Attack Threshold Configuration (TCA) which is responsible
for tuning the τToW threshold, and (2) the Delay Threshold
Configuration (TCD) which is responsible for tuning the τTSS

threshold. For each configuration, we indexed 12 values of
the respective thresholds as indicated in Table VI. In TCA,
τToW starts with 6.4 at index 1 to reach 0.003125 at index 12
(0.5 multiples). Analogously, in TCD, τTSS starts with 57.5
at index 1 to reach 30 at index 12 (2.5 ms increments).

For finding the optimal τToW and τTSS threshold values,
we simulated 300 active modification and delay attacks on
the network sizes indicated in Table V. For each network
size, we plot the ROC curves to find the optimum TCA and
TCD indices providing an acceptable balance between the
false positives and true positives probabilities when running
the FDCGUARD algorithm. The TCA/TCD ROC curves for
each respective network size are presented in Figure 8.

Analyzing the ROC results, we collected the optimal point
for each network size that best balances the false positives and
true positives generated. The optimal (TCA, TCD) points and
their respective τToW and τTSS threshold values are recorded
in Table VII. We took the average of the optimal τToW

threshold and τTSS threshold values in the implementation.

VII. CONCLUSION

This work presents DCGUARD, a security approach for
securing processing and forwarding operations in virtualized
cloud data centers. The main contribution of this work is rep-
resented in employing the VMI interposition and introspection
functions to detect and isolate any source of maliciousness in
the tenants’ VMs. SDN virtualization functions and Proba-
bilistic sketching techniques are adopted to detect malicious
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Figure 8: ROC curves for the TCA and TCD configurations
for different network sizes.

forwarding operations among networking nodes. DCGUARD
follows a divide-and-conquer strategy, resulting in improved
protocol efficiency, more accurate detection security, and better
compliance with the modern cloud service model. The com-
putational complexity and network traffic size are comparable
to the traditional approach (linear time complexity) but with
a major security advantage and better compliance with the
modern cloud service model. The system is implemented in a
virtualized cloud environment using the Microsoft Azure cloud
and the Mininet network emulator. Experimental performance
measurements corroborate the advantage of DCGUARD over
the traditional VMI intrusion detection strategy.
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