Safety-Aware Strategy Synthesis for Autonomous
System of Systems with UPPAAL*

Nazakat Ali®», Muhammad Naeem®, Julieth Patricia Castellanos Ardila@®), and
Sasikumar Punnekkat

School of Innovation, Design and Engineering, Méalardalen University, Sweden
{nazakat.ali, muhammad.naeem, julieth.castellanos,
sasikumar.punnekkat}@mdu.se

Abstract. Systems of Systems (SoS) in critical domains like construc-
tion require the coordination of independent and heterogeneous Con-
stituent Systems (CS) to accomplish complex missions. To help with such
coordination, an architectural approach, called orchestration, has been
proposed. However, safety in such an approach remains unexplored. In
this paper, we present a safety-aware strategy synthesis framework to
fill this gap. It combines formal modeling of CS and shared resources
as timed automata, integration of safety contracts to capture assump-
tions and guarantees, and Q-learning strategy generation by using Up-
paal Stratego. As a result, the framework enables the synthesis of exe-
cution strategies that not only fulfill mission objectives but also ensure
safety constraints. We demonstrate our method through a case study in
autonomous construction operations, highlighting its ability to minimize
unsafe interactions and to reduce resource conflicts and waiting times.

Keywords: Safety Strategy Synthesis - SoS - UPPAAL - Formal Models

1 Introduction

Systems of Systems (SoS) are increasingly deployed in critical domains such as
construction, where multiple independent and heterogeneous Constituent Sys-
tems (CS) collaborate to achieve common goals [14]. To manage such coordina-
tion, an architectural strategy called orchestration has been proposed [16]. Orig-
inating from service-oriented computing, orchestration uses a centralized control
mechanism, called orchestrator, that governs the interactions among distributed
services |12]. Applied to SoS, this entity acts as a service hub enabling CS col-
laboration [6]. However, if not properly managed, the SoS may also experience
unsafe interactions, resource contention, and timing constraint violations [2].
The orchestration of autonomous CS within a SoS could benefit from using
formal modeling techniques as they can accurately represent functional behav-
ior and time-critical constraints to facilitate safety verification [2,/9]. While sev-
eral formal modeling tools exist [3], UPPAAL [17] distinguishes itself as a robust

* This Research is supported by the Vinnova-funded project SIMCON and SAILS, a
pre-study aimed at investigating safety assurance of artificial intelligence systems.

https://orcid.org/0000-0002-3875-812X
https://orcid.org/0000-0003-2345-6789
https://orcid.org/0000-0001-9970-7580
https://orcid.org/0000-0001-5269-3900

2 N. Ali et al.

model-checking tool for real-time systems [§], thanks to its ability to represent
timed automata and analyze behavior under strict temporal constraints. It also
allows synthesizing strategies that facilitate efficiency under variable and un-
certain execution conditions |1]. However, strategy synthesis approaches, which
often emphasize resource optimization, commonly fall short in addressing safety
awareness in dynamic and stochastic environments [13].

In this paper, we present a safety-aware strategy synthesis framework that
integrates formal modeling, safety contracts, and Q-learning, a model-free, off-
policy reinforcement learning algorithm that derives optimal actions by updat-
ing a Q-table iteratively [18]. In particular, we introduce a formal modeling
approach that captures the time-constrained behaviors and interactions of CS
and shared resources. By integrating safety contracts into both the individual CS
models and the overall SoS orchestrator, our method ensures that assumptions
and guarantees related to key operational parameters, such as battery levels,
task synchronization, charging, and task conflicts, are considered during mission
execution. Furthermore, we use UPPAAL STRATEGO’s inbuilt Q-learning-based
strategy synthesis to generate optimal execution strategies that satisfy mission
goals while ensuring safety. We validate our approach through a detailed case
study in the construction domain, demonstrating how safety-aware strategies
reduce waiting times and prevent unsafe behaviors during mission execution.

This paper is structured as follows. Section [2| introduces the necessary pre-
liminaries. Section [3] presents the proposed approach. Section [4] describes the
use case. Section [5] presents the System Model for SoS. Section [f] discusses the
simulation results. Finally, Section [7] concludes the paper.

2 Background

2.1 System of Systems

SoS [11] consists of multiple autonomous CS that collaborate toward shared goals
by forming coalitions known as constellations. These constellations are subsets of
CS that are interconnected to exchange data to provide specific capabilities [4].
What distinguishes an SoS from a traditional monolithic system is the emer-
gent behaviors, i.e., functionalities that arise from real-time collaboration, not
present in individual CS [10]. However, such emergent behavior can also lead
to unforeseen and possibly hazardous situations [5]. SoS types include directed
(central control), collaborative (decentralized), virtual (minimal control) [14],
and acknowledged, i.e., centrally guided while CS retain mission influence |7].

2.2 Strategy Synthesis using UPPAAL STRATEGO

UPPAAL STRATEGO is a powerful tool designed for modeling and strategy syn-
thesis in the context of stochastic hybrid games (SHGs) [8]. It models systems as
interconnected timed automata, where each location denotes a specific state, and
transitions govern how the system progresses between states. Transitions can in-
clude guards, i.e., logical conditions must be satisfied to enable a transition and

Strategy Synthesis for SoS in UPPAAL 3

invariants to limit how long the system can stay in a given location. Particularly,
UPPAAL STRATEGO has two types of transitions: controllable, which are governed
by the system’s decision logic, and uncontrollable, which reflect uncertain en-
vironmental dynamics and are depicted with dotted lines. UPPAAL STRATEGO
aims to synthesize optimal strategies toward a goal, accounting for uncertainty,
using queries like the one below to guide system actions.

strategy s = minE(cost), [< T|, ExpListl — ExpList2 :<> goal (1)

where minE (cost) instructs the tool to find a strategy s that minimizes a cost
metric within a bounded time T, or until the defined goal is achieved. ExpList1
comprises discrete state variables, whereas ExpList2 includes continuous ones.
During simulation, UPPAAL STRATEGO collects trace samples that reflect obser-
vations of the system’s behavior. These samples guide the Q-learning algorithm
to refine a policy for making controllable decisions toward the system’s goal.

3 Proposed Approach

In this section, we propose a strategy synthesis framework (Fig. (1)) that uses Up-
PAAL to model the time-sensitive behaviors of autonomous CS, safety contracts
containing domain-specific safety requirements, and synthesize optimal control
strategies for safe mission execution even dynamic and uncertain conditions.

oo _______Constituent Systems (CS) ________________
| Shared Résource \: "+~ Constellation_1 \ | Constellation_2 \:
1 y \ MRS : 1
AN EES = o - |
! ¥ 07O | omo mese =
+ Sharging Station, 1 _D_lgig—e—r o l_?a—d—e[__Transporter 1 Digger/Loader _T_ra_n§p_0|:te_r,'I g
o
=]
]
Safety Contract Modelling in UPPAAL 3
T Safely Contracts) SoS Orchestrator inLieeAa. | | 2
= > e S I
e ~ ¥ + ! ey =
:\ MOmracls Assumptions Guarantees 1
Controller_1
Strategy Synthesis
e
|

Fig. 1: Proposed Approach

4 N. Ali et al.

3.1 Formal Modeling

The proposed framework adopts a two-tiered modeling structure: system and a
SoS-level. At the system level, each CS (digger, loader, or transporter) is modeled
as a network of timed automata. These automata represent operational cycles in-
cluding task execution (e.g., excavation, loading, transporting), state transitions
(e.g., idle, active, charging), and energy-aware behavior (e.g., battery thresholds,
navigating to charging stations). Models include task-specific dynamics, such
as pile volume generation, load capacities, and temporal execution constraints,
along with synchronization channels to support inter-CS collaboration.

At the SoS level, the orchestrator is modeled as a supervisory control unit
that interprets mission goals and coordinates the collective behavior of the CS
constellation. It initiates task execution by dispatching commands to individual
CS, synchronizes their progress through global variables and synchronization
channels, and enforces global constraints on task sequencing, resource contention,
and mission termination. This layer captures emergent SoS behaviors such as dy-
namic task reallocation, constellation, and centralized safety monitoring. The CS
automata communicate with the orchestrator through channel synchronization
and shared state variables, allowing CS-level decisions to be shaped by SoS-level
reasoning and vice versa. This layered architecture preserves CS autonomy while
enabling SoS-level collaboration and mission alignment.

3.2 Safety Contract Modeling

Formal modeling and integration of safety contracts into both the system and
SoS-level automata is one of the main contributions of this paper. These con-
tracts encode critical safety assumptions and guarantees in the form of oper-
ational constraints that directly influence the progression of execution traces.
Unlike conventional techniques that treat safety verification as an external, post-
synthesis activity, we model safety contracts as intrinsic system properties that
are actively enforced throughout execution and learning. The significance of this
contract framework is in its bidirectional integration. The safety contracts set
rules for model behavior during execution and guide learning during strategy
synthesis. This dual role establishes a continuous feedback loop between safety
modeling and decision optimization.

3.3 Strategy Synthesis

Following the formal modeling of CS and integration of safety contracts, the
framework advances to the synthesis of an execution strategy that balances mis-
sion efficiency with safety compliance (Fig. @ The synthesis process is not a post
hoc optimization overlay but a core design activity that directly interacts with
the behavior models and embedded safety contracts. As illustrated in Fig[] the
strategy synthesis module receives formal automata models of the CS and or-
chestrator, along with the contract constraints, and iteratively learns an optimal
control policy through simulation-guided reinforcement learning.

Strategy Synthesis for SoS in UPPAAL 5

At its core, the strategy synthesis phase formulates the problem as a stochas-
tic hybrid game, in which the system and its environment take turns in making
decisions under partial observability and uncertainty. UPPAAL STRATEGO sup-
ports this interaction through the specification of controllable and uncontrol-
lable transitions that allows the explicit modeling of decision points (e.g., when
to dispatch a CS, when to initiate charging) as well as stochastic environmental
responses (e.g., charging station availability or battery replacement).

The learning process is initiated through a series of randomized simulations
that explore the state space of the composed SoS model. Each simulation run
generates a trace composed of state-action pairs, where the actions reflect specific
choices made at controllable transitions. These traces are then evaluated against
a user-defined cost function. For each trace, a cumulative reward is calculated,
which feeds into a Q-learning process that updates the expected utility of each
action in a given state context. The integration of safety contracts into the
model is important, as it ensures that unsafe trajectories are eliminated during
the learning process. Transitions that would violate these safety contracts are
blocked by guard conditions, and simulations that encounter such paths get
penalty costs or experience early termination. As a result, the developed strategy
is not only cost-optimal but also complies with formally specified safety policies
that allows safe mission execution under uncertainties.

4 Use Case Description

Autonomous operations within construction environments offer substantial op-
portunities; however,they also present considerable challenges such as collabo-
ration, safety, and efficiency. Tasks such as excavation, material transfer, and
dumping involve multiple autonomous machines, each operating with its own lo-
cal decision-making capabilities, but these machines must collaborate to achieve
a shared mission goal. Unlike tightly integrated systems, these CSs exhibit oper-
ational independence, variable levels of autonomy, and asynchronous behavior,
making safety and collaboration a complex challenge. Our industrial use case
focuses on a mass removal operation at a construction site, where the goal is to
transfer 2,000 tons of material from an excavation zone to a dump area. This
operation is carried out by a constellation of three key autonomous machines:
a digger, a loader, and a transporter. These machines must operate in a coor-
dinated but decentralized manner, where each CS makes local decisions while
collaborating with others to carry out its tasks safely and efficiently. The overall
mission is managed by a central orchestrator, which receives the mission goal
and determines the appropriate constellation of machines to execute it [16]. A
task execution controller (Executor) within the orchestrator coordinates indi-
vidual CS by assigning tasks and monitoring their progress. For example, the
digger excavates and forms a pile, the loader transfers the material from the pile
to the transporter, and the transporter delivers it to the dump site. This cycle
repeats until the mission is complete. However, this setup introduces several co-
ordination and safety challenges. Machines operate with limited energy, which

6 N. Ali et al.

requires them to interrupt their tasks and return to a shared charging station
when battery levels fall below a threshold. This introduces resource contention,
as multiple CS may request charging simultaneously. Even more critically, un-
synchronized task execution, such as the loader beginning to load while the
transporter is still en-route or the transporter leaving before being fully loaded,
can lead to operational hazards.

4.1 Safety Contracts

Embedding safety contracts at both levels of the model (i.e., system and SoS-
level), we ensure safety guarantees are not only verifiable but operationalized
during execution. The automata actively monitor contract compliance, and un-
safe transitions are blocked or redirected to safe fallback states. This mechanism
extends to the orchestrator, which interprets contract violation signals and dy-
namically adjusts task assignments, waits for preconditions to be restored, or
reconfigures system execution to maintain contract satisfaction. We categorize
the safety contracts into two groups: CS-Level Contracts (CS-C) and SoS-Level
Contracts (SoS-C). Each contract is formulated as a pair (A, G) |15], where A
represents the assumptions and G represents the guarantees. When multiple as-
sumptions or guarantees exist, conjunctions are used: A = \;A; and G = N\;G;.
For instance, a CS may only proceed if its battery level exceeds a safe op-
erational threshold. Another contract may enforce task execution order, e.g.,
loading does not begin until a sufficient pile is available, or transport is not initi-
ated until the loader has completed loading operations. Charging station access
is similarly governed by mutual exclusion policies encoded through shared vari-
ables. These constraints are realized through transition guards, synchronization
mechanisms, and conditional invariants within the timed automata models.

CS-C1:Battery-Aware Operational Safety: Sudden battery depletion dur-
ing operational phase can result in operational failures which can lead to unan-
ticipated hazards. Hence the orchestrator must monitor battery levels of each
CS and if the level drops below a specified threshold (say,20%), it must enter a
safe state and go to HomeSite.

A : CS.operational(t) = true A CS.battery(t) < 20 G : CS — SafeState(t)

CS-C2: Charging Conflict Resolution: This contract ensures that multiple
vehicles do not simultaneously wait for an occupied charging station, avoiding
resource contention and potential unsafe queuing scenarios.

A : = ChargingSlot G:VCS; € CS, ZCSZ-. Wait <1

SoS-C1: Loader—Transporter Synchronization

So0S-C1.1: Pre-Loading Synchronization: The Loader shall only begin load-
ing when the Transporter is correctly positioned and explicitly available (T_Avl
= true). This ensures synchronized coordination between the systems, prevent-
ing unsafe or premature loading operations. If the Loader attempts to load

Strategy Synthesis for SoS in UPPAAL 7

without transporter readiness, the system must detect this violation and trigger
Contract_Breached = true.

Ay : Ldr_Opr(t) = true G1: T Avl(t) = true
As : Ldr_Opr(t) = true A =T _Avl(t) G+ : Contract_Breached
Asz : Ldr_Opr(t) = false VT _Avl(t) = true G3 : =Contract _Breached

So0S-C1.2: Post-Loading Synchronization: Once the Loader has filled the
Transporter to capacity (Load_vol > Max_LV), it must trigger a full signal. The
Transporter is then required to exit the loading state within one time unit. If it
remains in the loading state beyond this time (Trns_Opr = true and ¢ > 1),
a contract breach is recorded by setting Contract_Breached = true.

A; : Load vol > Max LV ; Gy : Trns_ Opr(t 4 6) = false, 6 <1
Az : Load _vol > Max LV A Trns_Opr = true A ¢ > 1 ; G2 : Contract _Breached
Az : Load_vol < Max_LV V Trns_ Opr = false ; G3 : = Contract_Breached

SoS-C2: Exclusive Access to Pile: Simultaneous operation of the Digger
and Loader at the pile site must be avoided to prevent physical collisions or
interference during excavation and loading activities.

A : (Dgr_Access_PileVLdr_ Access_Pile)
G : —(Dgr_Access_Pile ALdr_Access_Pile)

So0S-C3: Safe Mission Termination: Upon mission success or contract
violation, a system-wide safe termination must then be initiated and all vehicles
return to HomeSite.

A1 : Goal Achieved(t) = true V Contract Breached(t) = true
G1 :VCS; : CS;.loc(t) = HomeSite

G2 : Safe_Termination(t) = true

5 System Model for SoS

5.1 Digger Model

The Digger (Fig model represents an autonomous excavation vehicle that
performs material digging and pile formation tasks at a designated excavation
site. This model captures key behaviors such as task execution, power consump-
tion, synchronization with other CSs, and dynamic charging strategies, using a
network of timed automata in UPPAAL STRATEGO. The Digger starts at the
HomeSite location, where all relevant variables such as Pile, Dgr_Battery, and
Dgr_cost are initialized.

Upon receiving an activation signal from the Executor via the Active! syn-
chronization channel, the Digger transitions to the Travel2Site location, rep-
resenting its movement to the excavation zone. During this transition, energy
consumption is modeled using a clock variable (Battery) that decreases at a

8 N. Ali et al.

ChargingSlot = false

Fig. 2: Digger Model in UPPAAL

rate corresponding to the travel power consumption (Battery’ = -PCT). Once
the Digger reaches the excavation area, it enters the Digging state, where it be-
gins the digging operation. The Pile clock accumulates at the rate of material
excavation (Pile’ = D_scoup) at Piling location and battery energy decreases
due to the digging power consumption rate (Battery’ = -PCD) both in Digging
and Piling states.

The model actively monitors the Digger’s battery level, and when it drops be-
low 20%, it initiates a transition to the charging station via the Travel2Station
location. If the charging station is occupied (i.e., ChargingSlot == false), the
Digger enters a waiting state (Wait2Charge) until the slot becomes available.
Charging is carried out in the Charging state until the battery level reaches
100%. To improve charging efficiency and reduce system idleness, the model
introduces controllable transitions that enable the Digger to either continue
operating at low battery or preemptively initiate charging to avoid contention.

Additionally, the Digger includes a choice-based charging strategy where,
depending on the availability of a fully charged spare battery (Extra_Battery
== true), it may opt for a fast battery replacement instead of going for charg-
ing. These choices are encoded as controllable transitions, which are learned
and optimized using RL during strategy synthesis. Upon completion of the as-
signed excavation goal (Goal_Achieved == true), the Digger transitions back
to Travel2Home, concluding its operational cycle. This model enables energy-
aware evaluation, CS coordination, and strategy optimization, central to the
SoS constellation.

5.2 Loader Model

The Loader model (Figl3) specifies the behavior of an autonomous machine
responsible for transferring material from the pile, formed by the Digger, into
the Transporter. It models task initiation, resource synchronization, battery-
aware decisions, and loading dynamics as a timed automaton.

The Loader begins at the HomeSite location, with initial values set for rele-
vant parameters such as battery and etc. Upon receiving the Active! synchro-

Strategy Synthesis for SoS in UPPAAL 9

ir_Battery > 10
ChargingSlot= tru

100 88
&

Fig. 3: Loader Model in UPPAAL

nization signal from the Executor, it transitions to the Travel2-Site location.
Once it reaches the excavation site, the Loader enters a Wait state. In this loca-
tion, the automaton checks for two preconditions: the availability of a sufficient
pile volume Pile > 2x L_scoup and the presence of an available Transporter
(T_Avl == true). Only when both conditions are satisfied does the Loader pro-
ceed to the Loading location. During the loading phase, the Loader transfers ma-
terial to the Transporter. The material transfer is modeled via an accumulation
variable (Load_Vol’) that increments at a fixed rate (L_scoup). Simultaneously,
the pile volume is decremented, and the battery clock is updated to reflect task-
related energy consumption. Loading continues until the Transporter reaches
its full capacity i.e., Load_Vol > Max_LV.

The Loader model incorporates a dynamic charging mechanism. When the
battery level falls below a predefined threshold, the Loader can initiate a tran-
sition to the Travel2Station location for recharging. If the charging station is
occupied, it waits in the Wait2Charge location until the ChargingSlot becomes
available. Once the slot is free, the Loader enters the Charging state and re-
mains there until fully recharged (Battery > 100). Similar to the Digger, the
Loader also supports a fast battery swap option governed by the availability of
an extra battery. This choice, along with the charging decisions are modeled as
controllable actions, allowing learning-based adaptation via UPPAAL STRATEGO.

The Loader concludes its cycle by returning to the Travel2Home location
upon satisfaction of the global mission condition.The model synchronizes with
both Digger and Transporter while optimizing energy and reducing idle time,
aiding efficient SoS-level strategy synthesis.

5.3 Transporter Model

The Transporter model (Fig governs the operation of an autonomous ve-
hicle that carries excavated material from the loading area to the designated
dumping site. It starts at HomeSite, awaiting the Executor’s Active! signal to

10 N. Ali et al.

Fig.4: Transporter Model in UPPAAL

begin its mission. Upon activation, it transitions to Travel2Site and reaches
the loading area. Then, the Transporter enters the Loading location, sets the
T_Av1 flag, and signals the Loader to start loading. While in the Loading state,
the Transporter receives material until it reaches full capacity (Load_Vol =
Max_LV). Then, it moves to the Travel2Dump location to transit to the dumping
area. The Dumping state models the material offloading process, which completes
within a bounded time (Dump_T). After dumping, it goes back to the loading zone
via Travel2Loading location, provided that the battery level supports another
cycle. If the battery level is insufficient, the Transporter is diverted to the
charging station by following the same charging logic as the Digger and Loader.

The Transporter model includes both waiting (Wait2Charge) and charging
(Charging) states. It supports battery replacement if a fully charged spare bat-
tery is available same as Digger and Loader. The Transporter concludes its
cycle by returning to the Travel2Home location upon satisfaction of the global
mission condition.

5.4 Executor Model

The Executor acts as the central task orchestrator for our SoS use case that en-
sures synchronized mission execution among autonomous CS such as the Digger,
Loader, and Transporter. The Executor model as shown in Figl§ begins
its operation in the Resource_Allocation location, a committed state where
the system activates each CS through dedicated guards and assignments (e.g.,
Dgr_Activate = true). Once activation is completed, the Executor moves to
the Evaluate location, where it continuously monitors mission parameters, such
as Transfer_Vol and Contract_Breached. If the mission objective is achieved
(i.e., Transfer_Vol > Target), the model transitions to the Goal location, and
Goal_Achieved is set to true that signals all CS to halt operations. Alter-
natively, if any of the safety contracts breach, the system transitions to the
Goal_Not_Achieved location that activates the Safe_Termination flag.

Strategy Synthesis for SoS in UPPAAL 11

Safe_Termination = true,
CB_cost= 1000,

RW = 0 Goal_Not_Achived
{Contract_Breached :.QO

P i
Initial Resource,Auocation;;aﬂs{emvm‘ < Target

. !Contract_Breached,

@ i @ TN e @
Dgr_Activate = true Transfer_Vol =Target Goal

Goal_Achieved = 1:r‘ue,c,iG

RW= RW+1000

1

!Trns_Activate
s& pite=500 | &N yr Activatestry cs1

Fig. 5: Executor Model in UPPAAL

5.5 Contract Models

CS-C1: This contract (Figl6] a) ensures that no CS (Digger, Loader, Transporter
continues operation below a minimum battery threshold. The model observes
flags like Dgr_Opr, Ldr_Opr, and Trns_Opr in conjunction with battery vari-
ables. If any active CS is operating while its battery level falls below 20%,
the model transitions from the Safe state to the Unsafe state and sets Con-
tract _Breached = true. This contract prevents mid-task failures by enforcing
energy-aware behavior across the SoS.

CS-C2: This contract enforces mutual exclusion at the charging station. The
shared ChargingSlot flag must only be accessed by one CS at a time. The model
((Figl6] b)) uses a helper function Check() to validate that no two of the CS
flags, Dgr_Wait, Ldr_Wait, or Trns_Wait, are simultaneously set while the slot
is unavailable.

S0S-C1.1: SoS-Cl1.1 as shown in Figlf| (c), guarantees that the Loader only
operates when the Transporter is present and available for loading. If Ldr_Opr
= true while T_Avl = false, the Loader is attempting to deposit material into
an unready Transporter. This condition may lead to Unsafe state.

So0S-C1.2: This contract (Fig[6](d)) ensures synchronization between the Loader
and Transporter. Once the Transporter reaches its maximum load (Load_vol
> Max_LV), it must depart from the loading zone within a bounded time. Si-
multaneously, the Loader should halt further loading. If either system fails to
comply, this contract triggers a transition to the Unsafe location.

SoS-C2: SoS-C2 ensures orderly access to the shared resource Pile by the
Digger and Loader. It ensures that only one of the Dgr_Access_Pile or
Ldr_Access_Pile flags is active at any given time. Simultaneous pile access re-
sults in unsafe transitions. This contract (Figlf] (e)) prevents physical collisions
and ensures operational exclusivity over the shared material zone.

S0S-C3: Upon mission completion or detecting a contract violation, the Executor
must initiate a safe termination process by setting Safe_Termination = true.
This contract (Figlf] (f)) ensures that termination signal is issued within a spec-
ified time window. The model enters a Delay state upon detecting mission com-
pletion or violation, and transitions to an Unsafe state if no response is triggered
in time. This enforces graceful shutdown policies across the SoS.

12 N. Ali et al.

(a) Uppaal Model for CS-C1 (b) Uppaal Model for CS-C2

CLar_opr 1| TAVDS Load_vol < Max

N T =0
ontractl Breache: S0S-C1.1= true

(¢) Uppaal Model for SoS-C1.1 (d) Uppaal Model for SoS-C1.2

(!Dgr_Access_Pile || !Ldr_Access_Pile)8&

s_Pile §& Ldr_Access_pite Unsafe

Contract_Breached = true,

T - =0

! Sos-C2= true ©
cs1 Contract_Breached N

: sars

|
6.

(e) Uppaal Model for SoS-C2 (f) Uppaal Model for SoS-C3

Fig. 6: Uppaal models for safety contracts

6 Simulation Results and Discussion

The simulation campaign begins with validation of mission completion under the
synthesized strategy. As illustrated in the Executor model, the system success-
fully achieved the predefined transfer target of 2000 units. This goal is reached
within approximately 600 time units, demonstrating that the synthesized strat-
egy is not only safety-compliant but also mission-efficient. The orchestrator en-
sures performance goals are met without compromising safety.

To quantitatively evaluate the effectiveness of the synthesized safe strategy in
ensuring safety-compliant execution of CS and SoS operations, statistical model
checking was performed using UPPAAL STRATEGO. The evaluation used proba-
bilistic queries of the following form:

Pr[<=3000] (<> CS-x/SoS-x.Unsafe) under Safe2

where CS-x/S0S-x.Unsafe denotes the violation location associated with a spe-
cific safety contracts in the model, and Safe2 represents the synthesized strategy
obtained through Q-learning-based strategy synthesis using Eq.. The query
estimates the probability that the system enters an unsafe state within a mis-
sion duration of 3000 time units while executing the Safe2 strategy. A 95%
confidence interval (CI) quantifies the estimate’s reliability.

All six contracts were evaluated under the synthesized strategy. The prob-
abilistic queries for each requirement consistently returned zero observed viola-
tions in 72 simulation runs per query. This result indicates that, with high sta-
tistical confidence, the probability of a contract violation under the synthesized
strategy is low. In practical terms, policy Safe2 ensured contract-level safety
across all CS and coordination scenarios. Such consistent satisfaction across di-
verse safety contracts affirms the effectiveness of reinforcement learning—based

Strategy Synthesis for SoS in UPPAAL 13

strategy synthesis in integrating contract logic into runtime behavior. The re-
sulting strategy is not only performance-oriented but also tightly coupled with
formal safety contracts that enables safe decision-making under shared-resource
contention, temporal dependencies, CS-level and SoS-level interactions.

As an example, we present two (CS-C1 and SoS-C2) contract with and with-
out safe strategy. CS-C1 enforces battery-aware operation, ensuring that CS
refrain from executing operational tasks when their battery levels fall below a
predefined safety threshold. Without the safe strategy, the query:

Pr[<=3000] (<> CS-C1.Unsafe)

result in a confidence interval of: Pr € [0.193363,0.288507] based on 78 ob-
served violations over 327 simulation runs. This indicates that, in the absence of
strategic guidance, approximately 19% to 29% of mission traces resulted in CS
operating unsafely with insufficient energy reserves. Such behavior risks mission
failure and unsafe states, but under Safe2, violations dropped to zero.

S0S-C2 ensures mutual exclusion over the shared resource pile, preventing
simultaneous access by the digger and loader, which could lead to physical col-
lisions or interference. In the uncontrolled setting, the query:

Pr[<=3000] (<> SoS-C2.Unsafe)

resulted in a violation probability of: Pr € [0.223363,0.298507] suggesting that
approximately one-quarter of mission traces failed to enforce exclusive access.
This level of non-compliance indicates a high risk of unsafe behavior in au-
tonomous operations where physical co-location must be carefully managed. Un-
der the synthesized Safe2 strategy, however, the probability of violation fell to 0
with no observed mutual access violations. This outcome demonstrates that the
strategy successfully enforced serialization of pile access, coordinating the digger
and loader to act in turn. The learning process incorporated safety constraints
into scheduling decisions, ensuring operational exclusivity over the material zone
throughout execution. The simulation results show that strategy synthesis in Up-
PAAL STRATEGO, guided by safety contract-based modeling yields safe, efficient
policies for complex, resource and time constrained SoS.

7 Conclusion

This paper presented a safety-aware strategy synthesis framework for orches-
trating autonomous SoS using UPPAAL STRATEGO. The proposed approach in-
tegrates formal modeling, safety contracts, and Q-learning-based synthesis to
ensure safe and efficient coordination of CS within SoS orchestrations. The
methodology avoids ad-hoc tuning or manual intervention by grounding deci-
sions in both structural correctness and operational data, paving the way for
scalable and certifiable deployment in safety-critical domains.

Future work includes integrating this framework with the SOSoS process
introduced in [6], to incorporate systematic hazard analysis and variability man-

14

N. Ali et al.

agement for more comprehensive safety assurance. In addition, we aim to eval-
uate larger and more complex SoS scenarios and explore alternative learning
techniques to improve synthesis efficiency and robustness.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Ali, N., Naeem, M., Castellanos-Ardila, J.P., Punnekkat, S.: Formal modeling and
strategy synthesis for resource optimization in system of systems. In: 20th Annual
System of Systems Engineering Conference (2025)

Ali, N., Punnekkat, S., Rauf, A.: Modeling and safety analysis for collaborative
safety-critical systems using hierarchical colored petri nets. Journal of Systems
and Software 210, 111958 (2024)

Armstrong, R.C., Punnoose, R.J., Wong, M.H., Mayo, J.R.: Survey of existing tools
for formal verification. Tech. rep., Sandia National Lab., Livermore, USA (2014)
Axelsson, J.: A refined terminology on system-of-systems substructure and con-
stituent system states. In: 14th Annual SoSE. pp. 31-36. IEEE (2019)

Beland, S.C., Miller, A.: Assuring a complex safety-critical systems of systems.
SAE Transactions pp. 974-988 (2007)

Castellanos-Ardila, J.P., Ali, N., Punnekkat, S., Axelsson, J.: Making systems of
systems orchestrations safer. In: European Safety and Reliability (ESREL) and
Society for Risk Analysis Europe (SRA-E) (2025)

Dahmann, J.S., Baldwin, K.J.: Understanding the current state of us defense sys-
tems of systems and the implications for systems engineering. In: 2nd Annual IEEE
Systems Conference (2008)

David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Uppaal
stratego. In: Tools and Algorithms for the Construction and Analysis of Systems:
21st International Conference, TACAS-ETAPS , London, UK. Springer (2015)
Eddine, C., Hameurlain, N., Belala, F.: A maude-based formal approach to control
and analyze time-resource aware missioned systems-of-systems. In: Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WETICE). IEEE (2023)
Inocéncio, T.J., Gonzales, G.R., Cavalcante, E., Horita, F.E.: Emergent behavior
in system-of-systems: A systematic mapping study. In: Proceedings of Brazilian
Symposium on Software Engineering. pp. 140-149 (2019)

ISO/IEC JTC 1/SC 7: ISO/IEC/IEEE 21841:2019. Systems and Software Engi-
neering — Taxonomy of System of Systems

Josuttis, N.M.: SOA in practice: the art of distributed system design. O’Reilly
Media, Inc. (2007)

Lahijanian, M., Almagor, S., Fried, D., Kavraki, L., Vardi, M.: This time the robot
settles for a cost: A quantitative approach to temporal logic planning with partial
satisfaction. In: AAAT Conference on Artificial Intelligence. vol. 29 (2015)

Maier, M.W.: Architecting Principles for Systems-of-Systems. The Journal of the
International Council on Systems Engineering 1(4) (1998)

Naeem, M., Seceleanu, C.: Contract-based verification of digital twins. In: Interna-
tional Conference on Engineering of Complex Computer Systems. No. 29th (2025)
Nordstrom, T., Sutfeld, L.R., Besker, T.: Exploring different actor roles in orches-
trations of system of systems. In: 19th System of Systems Engineering Conference.
pp. 190-196 (2024)

Uppaal Team: Uppaal: Model Checking and Validation Tool (2025), https://
uppaal .org/), accessed: 2025-03-12

Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8, 279-292 (1992)

https://uppaal.org/
https://uppaal.org/

	Safety-Aware Strategy Synthesis for Autonomous System of Systems with UPPAAL

