
A Formal Definition of the Multi-Robot Multi-Task Time-extended
Assignment Problem Configuration

Branko Miloradović1, Alessandro V. Papadopoulos1

Abstract— Multi-Robot Systems (MRSs) play a crucial role
in several fields, including industrial automation, precision
agriculture, and urban search and rescue, by enhancing ef-
ficiency and operational capabilities. One of the main chal-
lenges in these systems is the efficient allocation of tasks,
known as Multi-Robot Task Allocation (MRTA). This paper
focuses on a particularly complex configuration of MRTA
that involves Multi-Task (MT) Robots capable of performing
multiple tasks simultaneously, Multi-Robot (MR) Tasks that
require coordinated efforts from several robots, and Time-
extended Assignments (TA) that demand extended duration
scheduling. Despite notable advancements in this area, the MT-
MR-TA configuration remains underexplored. Existing research
often fails to address the specific challenges associated with
coordinating and scheduling these complex tasks. This paper
aims to fill this gap by introducing new computational models
based on Integer Linear Programming (ILP) and Constraint
Programming (CP). These models are purposefully designed
to formalize and tackle the intricate dynamics of MT-MR-TA,
offering a structured approach to solve this multidimensional
optimization problem. We rigorously evaluate these models
for their effectiveness using advanced, general-purpose solvers
across various instances, with a focus on model scalability,
solver efficiency, and overall solution quality.

I. INTRODUCTION

Multi-Robot Systems (MRSs) have become essential in
advancing various sectors, including industrial automation,
precision agriculture, and urban search and rescue. By coor-
dinating multiple robots, these systems can tackle tasks that
single robots cannot manage, which enhances both opera-
tional efficiency and effectiveness. As the complexity and
quantity of tasks increase, effective task allocation among
robots, known as Multi-Robot Task Allocation (MRTA),
becomes critical [4]. MRTA aims to optimize the distribution
of tasks among robots to maximize efficiency and resource
utilization while adhering to the operational constraints of
each mission. Gerkey and Matarić [8] provide foundational
analysis and taxonomy of MRTA, offering insights into its
various forms and challenges. This complexity has grown
as robots have become capable of more sophisticated and
diverse tasks. This paper addresses a particularly challenging
aspect of MRTA: the Multi-Task (MT) Multi-Robot (MR)
Time-extended Assignment (TA) Problem Configuration with
Cross-Schedule Dependencies and Precedence Constraints.

Research on MRTA has been extensive, leading to the de-
velopment of various taxonomies and frameworks to catego-

This work is funded by The Knowledge Foundation (KKS), MARC
project No. #20240011

1Division of Intelligent Future Technologies, Mälardalen
University, Västerås, Sweden. Email: {branko.miloradovic,
alessandro.papadopoulos}@mdu.se

rize its challenges and configurations. Korsah et al. [11] pro-
vide a comprehensive taxonomy that serves as a framework
for understanding the complex nature of MRTA configura-
tions, with a focus on the interplay between robot capabilities
and task requirements. Nunes et al. [18] explore the temporal
and ordering constraints inherent in task allocation, which
are critical for planning and executing time-sensitive tasks
in multi-robot operations. Despite significant advances in
MRTA research, the specific challenges of scheduling tasks
that require concurrent action by multiple robots over ex-
tended periods have not been thoroughly examined. Existing
research often overlooks the integrated challenge of MT-MR-
TA, which calls for innovative problem-solving approaches.
This paper aims to fill this gap by focusing on the MT-MR-
TA configuration within MRTA.

Our contribution is threefold: (1) we introduce novel com-
putational models: Integer Linear Programming (ILP) and
Constraint Programming (CP). These models are specifically
designed to address the unique challenges of the MT-MR-
TA configuration, providing a formal framework for defining
and solving these complex multi-dimensional optimization
problems; (2) we perform a rigorous evaluation of these
models using advanced, general-purpose solvers to assess
their scalability, efficiency, and the quality of the solutions
they produce. This evaluation provides new insights into the
applicability and performance of ILP and CP in complex
MRTA scenarios; and (3) we enhance the current theoreti-
cal and practical understanding of MRTA by detailing the
implementation and validation of our models in a variety
of real-world settings, thereby contributing to both academic
research and practical applications in the field. By addressing
these key aspects, our study not only enhances the theoretical
framework of MRTA but also provides practical solutions to
significant gaps in existing research. We expect our findings
to facilitate more sophisticated implementations of MRTA in
practice, paving the way for future advancements in the field
of multi-robot systems [1], [7], [2].

II. BACKGROUND AND MOTIVATION

In the pioneering MRTA taxonomy proposed by Gerkey
and Matarić [8], three key dimensions were identified, lead-
ing to a classification of 8 distinct problem configurations.
This classification system includes (i) Single-Task (ST) versus
Multi-Task (MT) robots, distinguishing between scenarios
where robots can handle only one task concurrently versus
those where robots manage multiple tasks simultaneously;
(ii) Single-Robot (SR) versus Multi-Robot (MR) tasks, dis-
cerning tasks that can be accomplished by either a single

robot or require multiple robots for completion; (iii) Instan-
taneous Assignment (IA) versus Time-extended Assignment
(TA), contrasting situations where robots have information
about only the next task versus those where they are provided
with a complete schedule of tasks. Within this taxonomy,
the MT-MR-TA problem configuration serves as a subset
of the problem investigated in this study. In addition, we
augment this problem configuration by incorporating addi-
tional dimensions from other taxonomies. Nevertheless, it is
essential to highlight that our problem can be reduced to the
MT-MR-TA problem configuration. This simplification forms
a reasonable basis for explaining the problem addressed in
this paper. Moreover, the interrelatedness of the tasks has not
been addressed in [8], which makes the definition of MT or
MR configurations incomplete.

The subsequent advancement in the MRTA taxonomy, in-
troduced by Korsah et al. [11], presented the framework iTax.
This framework addressed task interdependencies, a crucial
aspect absent in the original MRTA taxonomy. According to
iTax, when tasks demonstrate interrelations within the sched-
ule of the same robot, the problem falls in the Intra-schedule
Dependencies (ID) group, resembling ordering constraints.
Conversely, if tasks scheduled for execution by different
robots display interrelations, such as Precedence Constraints
(PCs), it indicates dependencies between those schedules,
termed Cross-schedule Dependencies (XD). Although iTax
covers additional task dependencies, these aspects lie beyond
the scope of this paper. This work also offers a survey encom-
passing various problem configurations. Notably, the MT-
MR-TA configuration lacked a formal problem definition.
Moreover, in tables summarizing the literature from surveyed
papers on previously addressed problem configurations, the
MT-MR-TA entry remained empty.

Following the taxonomy extension by Nunes et al. [18],
we add the last missing piece to describe the problem config-
uration addressed in this paper. In [18], two new dimensions
were introduced: Synchronization and Precedence (SP) and
Time Windows (TW). SP signifies either synchronization
between two tasks (e.g., two tasks have to start at the same
time) or precedence constraints (e.g., one task precedes the
other). Conversely, TW represents a constraint mandating a
specific task to occur within a predefined time slot. This
study concentrates primarily on exploring the SP dimension.
Additionally, [18] extensively reviewed the literature encom-

MT-MR-TA

[XD]:MT-MR-TA-(SP)

ST-SR-IA

Concurrency

ST-MR-IA MT-MR-IA

MT-SR-IA

MT-SR-TAST-SR-TA

ST-MR-TA

Allocation

Colla
bo

rat
ion

MT-MR-TA

Sync. & Prec.

Time-Window

[XD]

SP

[XD]:TW [XD]:SP-TW

TW SP-TW

Dep
en

de
nc

y

Fig. 1: [XD]:MT-MR-TA-(SP) problem configuration defined
through MRTA taxonomies.

passing various other MRTA problem types. Regarding the
[XD]:MT-MR-TA problem configuration, their investigation
highlighted that this particular aspect of the MRTA problem
domain remained unexplored. As SP helps to extend the
definition of XD dependencies, we can finally formulate
our problem configuration as [XD]:MT-MR-TA-(SP). A
visual representation of this problem configuration is given
in Fig. 1. Even in the most recent extension of the MRTA
taxonomy named TAMER [16], there has yet to be further
exploration of the MT-MR-TA segment; instead, it remains
unchanged from previous MRTA taxonomies. Similarly, in
a recent survey paper on MRTA [5], the authors could not
find any paper in the literature addressing the MR-MT-TA
problem configuration.

Upon examining the surveys conducted in the most influ-
ential MRTA taxonomies, it is apparent that MT-MR-TA has
received scant attention as a viable research direction, both
theoretically and practically. This neglect persists to this day.
However, the underlying reasons have yet to be addressed.
We discuss two primary factors contributing to this oversight.
Firstly, the perceived issues revolve around the cost and
complexity of implementing such systems, making them
seemingly impractical for real-world applications. However,
there has been a notable increase in affordable, sophisticated
robotic systems on the market, hinting at a potential future
where widely accessible hardware can handle the demanding
tasks posed by the MT-MR-TA problem. Secondly, the
complexity of this problem configuration is a considerable
deterrent. It stands as one of the most intricate problem
configurations within MRTA taxonomies. No known solver
is specifically tailored for this optimization problem [5].
Moreover, the inherent complexity might confine the ac-
quisition of feasible, satisfactory solutions solely to smaller
instances of the problem. The only related work we could
find on MT-MR-TA problem configuration [20], [19], [6] is
not truly MT-MR-TA, mostly due to the lack of MT part of
the problem, as defined in the original MRTA taxonomy. We
expanded our investigation into problems similar to this one
beyond the area of robotics, specifically exploring the domain
of Operations Research (OR). While most dimensions of
the Multi-Robot Task Allocation (MRTA) problem can be
mapped to existing OR problems, the [XD]:MT-MR-TA-
(SP) dimension appears to lack a direct counterpart in OR.
The closest match we found is the Multi-Skilled Resource-
Constrained Project Scheduling Problem (MSRCPSP) [10],
[22], where tasks correspond to activities, robots to resources,
and skills to task/robot capabilities. What MSRCPSP is
lacking is the ability to handle parallelism on the robot’s
level, which ultimately makes it analogous to MRTA’s ST-
MR-TA dimension. In addition, in MSRCPSP there is no
travel time between activities.

We aim to advance the theoretical understanding of the
problem. Our effort intends to spotlight the [XD]:MT-MR-
TA-(SP) (we will refer to it simply as MT-MR-TA) configura-
tion by employing various problem models and utilizing pub-
licly available solvers to tackle different problem instances.
This will help us gain insight into the problem’s difficulty

and the capability of currently available general-purpose
solvers to handle this complex problem. Hopefully, this work
will inspire researchers to develop problem-specific heuristic
solvers to tackle larger problem instances successfully.

III. TASK TYPES

We separate tasks into virtual and physical. Virtual tasks
lack spatial constraints during execution, allowing them to
be carried out in any physical location and leveraging the
computing platform’s parallelism capabilities. Examples of
virtual tasks encompass activities such as communication,
sending proprioceptive data, data analysis, etc. These tasks
can be executed independently or concurrently with other
tasks. In contrast, physical tasks are confined to specific
locations for execution and cannot be performed during tran-
sitions between tasks. From a modeling perspective, if two or
more physical tasks can run in parallel at the same location,
they should be represented as a single task associated with
that location. The duration of this task can be determined
either by taking the maximum duration of the individual
tasks (if they can all run in parallel) or by solving a local
scheduling problem to minimize the makespan of the physi-
cal tasks. For instance, a robot with two arms manipulating
two different objects can be seen as executing two separate,
independent tasks in parallel. Therefore, multiple physical
tasks can be modeled as one monolithic task. These tasks
involve physical interactions such as object manipulation,
environmental sensing (e.g., scanning the seabed, capturing
images of specific objects), or utilizing tools (e.g., drilling,
welding). Notably, in contrast to the proposition by [18],
capturing images of objects is considered a physical task in
our context due to its location-bound nature. However, using
a camera or taking photos can also be classified as virtual
tasks, especially for robot localization. These tasks can be
executed independently or concurrently with other virtual
tasks [17]. For the aforementioned reasons, we exclude
parallelism between physical tasks, and in this work, we
address the parallelism between one physical and one or
more virtual tasks.

A. Multi-Robot Tasks

The concept of MR Tasks has been briefly described as
tasks that demand the involvement of multiple robots for their
execution [8]. However, the original MRTA taxonomy does
not encompass the requisite task interdependencies inherent
in MR tasks. Cross-Schedule or Complex Dependencies are
deemed necessary when considering MR tasks [11]. We
further elaborate on this definition by distinguishing between

MR

Fig. 2: An example of a plan including an MR Task (depicted as
cube) requiring 3 robots. Different colors denote different agents.

two types of MR tasks based on location and timing require-
ments. Firstly, there are tasks necessitating multiple robots
to be present at the same location concurrently, referred to
as MRLC tasks, for their successful execution. An example
of an MRLC task is one requiring the collective effort of
multiple robots to push a heavy object, which makes it
infeasible for a single robot to move alone. An illustration is
given in Fig. 2, where the MRLC task (t10) can only begin
when all 3 robots arrive at the task’s location. The nature
of interrelatedness in MRLC tasks can vary, depending upon
the task’s abstraction level [11].

Secondly, there are tasks mandating multiple robots to be
present at the same location but not necessarily concurrently,
and we refer to them as MRL tasks. An example of an
MRL task is unlocking a locked door, where one robot is
assigned to unlock the door, and another robot is tasked to
open that door. Despite their complexity, such tasks can be
modeled through a series of SR tasks, each with specific
equipment requirements. Additionally, these tasks necessitate
a precedence constraint between them, i.e., first, unlock the
door, and only then can the door be opened. Generally, MRL
tasks entail XD dependencies.

We can further categorize MR tasks based on equipment
requirements into two categories. In MR Single-Equipment
(MRSE) tasks, all robots involved require the same equip-
ment to complete the task. For instance, when pushing a
heavy box, as previously mentioned, all robots must pos-
sess the same capability to push the box. Conversely, in
MR Multiple-Equipment (MRME) tasks, such as the door
example mentioned earlier, robots are required to possess
distinct capabilities. However, this work focuses solely on
MRSE tasks, excluding MRME tasks from its scope. Thus,
the primary focus of this work remains on MRLC and MRSE
task categories, which we will simply refer to as MR for
clarity. Generally, when discussing MR tasks, the assumption
is that they are physical tasks, as the practical viability of
virtual MR tasks is uncertain.

B. Mission Example

We present Fig. 3, which depicts a solution to a simple
scenario involving 2 robots and 7 tasks (5 physical and 2
virtual). Only Task 2 requires multiple robots. Different task
types are distinguished by color: physical tasks are orange,
virtual tasks are blue, and MR tasks are pink. Transitions
between physical task locations are shown in green at the
bottom, with destination depots colored gray. In the figure,
the start time of a task is marked with an s superscript and
the end time with an e superscript. In this example, Task 6
is scheduled to run in parallel with Tasks 3 and 7, which is
leveraged by the solver. Task 2 begins concurrently on both
Robots 1 and 2. Upon completing Task 2, the robots proceed
to the final depot δ.

IV. PROBLEM FORMULATION

Consider an individual robot s belonging to a set of robots
denoted as S. The set S := {s1, s2, . . . , sm} comprises of
m robots, each performing a set of tasks. These tasks are

0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

ts1=279 te1=299

ts2=500 te2=599

ts4=51 te4=233

ts5=303 te5=448

δ=6040 51
233 279

299 303
471 500

Ta
sk

s

Robot 1

ts0=43 te0=78

ts2=500 te2=599ts3=119 te3=311

ts6=233 te6=411
ts7=311 te7=500

δ=604
0 43

78 119
423 500

Time [s]

Ta
sk

s

Robot 2

Physical Task Virtual Task MR Task Transit

Fig. 3: Depiction of an optimal solution for a problem consisting of
2 robots and 7 tasks, out of which 4 are physical, 2 virtual, and 1
task is an MR task (task t2). MR task is scheduled to be executed
at the same time (500) on both robots 1 and 2.

part of the set T := {t1, t2, . . . , tn}, which encompasses
both physical and virtual tasks. Additionally, a collection of
equipment types exists, expressed as C := {c1, c2, . . . , cl},
consisting of l distinct equipment types. Each robot s is
equipped with one or more of these equipment types c1.
In this context, let σ represent a source depot from the set
Σ := {σ1, σ2, . . . , σq}, and δ a destination depot from the set
∆ := {δ1, δ2, . . . , δw}. The sets Σ and ∆ contain q source
depots and w destination depots. Each robot, denoted as s,
commences its mission from a source depot in the set Σ
and concludes its tour at a destination depot in the set ∆.
Superset T̃ encompasses all the tasks as well as the source
and destination depots, i.e., T̃ := T ∪ Σ ∪ ∆. The number
of elements in T̃ is denoted as p = (q + n+w). A superset
consisting of all the source depots and task elements is
defined as TΣ := T∪Σ. Similarly, a superset comprising all
the destination depots and tasks is defined as T∆ := T∪∆.

Tasks are divided into virtual and physical tasks. We can
define a set H = {h1, . . . , hn}, where hi = 1 if task i
is virtual, and 0 otherwise. To define which tasks can be
performed in parallel, we define symmetrical matrix R =
[rijs]p×p×m, where i, j ∈ T̃ and s ∈ S. If tasks i and j
can be done in parallel and hi + hj ≥ 1, then rijs = 1.
In this way, we also disallow the option of executing two
physical tasks in parallel in any scenario. In addition, if either
of i or j is in Σ or ∆, rijs = 0. We introduce set K :=
{k1, k2, . . . , kn}, representing the number of robots required
to complete each task in set T. Each task i may require the

1To simplify the problem, we assumed that each task requires only one
piece of equipment. Tasks requiring multiple equipment would not impact
the optimization process, as composite equipment types can be defined to
preserve the one-equipment-per-task model.

number of robots in the range of ki ∈ {1, . . . ,m}. In some
cases, tasks i and j must be executed by the same robot s. To
do this, we first define a (symmetric) matrix U = [uij][n×n],
whose elements are defined as uij = 1 if the same robot
must do tasks i and j, and 0 otherwise. This entails that if
uij = 1 =⇒ ϕc(i) = ϕc(j).

It is important to recognize that both source and desti-
nation depots, in addition to tasks, are considered as nodes
in the graph G(T̃,E), with E being the set of edges in the
graph. Each edge eij connecting two nodes, i and j, in T̃
that is being traversed by robot s has a cost ωijs. When at
least one of the nodes is virtual, regardless of the assigned
robot, ωijs = 0. We define cost matrix Ω = [ωijs]p×p×m as
symmetrical, i.e., ωijs = ωjis.

Source depots function exclusively as root nodes in the
graph, signifying that no edges can come from any other
node to connect to a source depot. In contrast, destination de-
pot nodes act solely as terminal nodes in the graph, implying
that they do not have outgoing edges. Thus, upon reaching a
destination depot, a robot’s path concludes. Multiple robots
may terminate their missions at the same destination depot,
or a destination depot may remain unvisited. Notably, source
and destination nodes are instantaneous, meaning they have
no duration and cannot be virtual. On the other hand, each
task i within T has a duration ξis ∈ Z≥0, representing the
time required for robot s to complete task i. As mentioned,
nodes i ∈ Σ ∪∆ have their duration ξis set to 0 since they
are associated with source or destination depots.

To maintain precision in the definitions, when a set in-
cludes elements beyond those belonging to the set of tasks
denoted as T, all elements in those sets are called nodes.
However, if the elements solely represent a subset of T, they
will be referred to as tasks. Precedence relations among tasks
are described by the adjacency matrix Π = [πij]n×n, where
i, j ∈ T, and πij = 1 if task i has to end before task j starts,
if there is no such requirement πij = 0. Precedence relations
are global and not robot-specific.

It is assumed that matrices Ω,Π,R,As, and U, as well as
sets T̃,S,C,H, and K are problem dependent and are known
a priori.

A. Integer Linear Programming Model

The model has three decision variables xijs, τi, zijs. The
binary decision variable xijs ∈ {0, 1} defines if robot s
travels from node i immediately to node j. In that case,
xijs = 1; otherwise, it is equal to 0. The decision variable
τi ∈ Z≥0 represents the starting time of a node i. The starting
time of source depots is always 0, i.e., if i ∈ Σ =⇒ τi = 0.
The starting time of a destination depot is defined as the
time at which the last robot arrives at that depot. Lastly,
zijs ∈ {0, 1} is a binary variable indicating if node i starts
before node j on robot s. If this is true, i.e., τi < τj then
zijs = 1, and 0 otherwise. In case τi = τj ∧ xijs = 1 =⇒
zijs = 1, and it is 0 otherwise. Furthermore, every task
i ∈ T requires certain equipment ϕc(i) for its successful
completion, with ϕc : T 7→ C. Each robot s ∈ S has a set
of available equipment Cs ⊆ C. An equipment matrix As

defines which tasks can be performed by robot s ∈ S, and
its elements are

aijs =


1, (i ∈ Σ, j ∈ ∆) ∨ (i ∈ Σ, j ∈ T ∧ ϕc(j) ∈ Cs) ∨

(i ∈ T ∧ ϕc(i) ∈ Cs, j ∈ ∆) ∨
(ϕc(i), ϕc(j) ∈ Cs ∧ i, j ∈ T),

0, (i, j ∈ Σ) ∨ (i, j ∈ ∆).

Equipment constraints do not affect source and destination
depot nodes. We are now set to present the problem con-
straints.

xiis = 0, ∀i ∈ T̃, ∀s ∈ S, (1)

xijs ≤ aijs, ∀i ∈ TΣ,∀j ∈ T∆,∀s ∈ S, (2)

xijs ≤ zijs, ∀i ∈ TΣ,∀j ∈ T∆,∀s ∈ S, (3)∑
s∈S

∑
i∈TΣ

xijs = kj , ∀j ∈ T, (4)∑
s∈S

∑
j∈T∆

xijs = ki, ∀i ∈ T, (5)

∑
i∈TΣ

xijs =
∑
k∈T∆

xjks, ∀j ∈ T,∀s ∈ S, (6)∑
i∈Σ

∑
j∈T∆

xijs = 1, ∀s ∈ S, (7)

∑
i∈TΣ

∑
j∈∆

xijs = 1, ∀s ∈ S, (8)∑
s∈S

(zijs + zjis) ≤ ki, ∀i, j ∈ T, (9)∑
s∈S

(zijs + zjis) = ki, ∀i, j ∈ T, uij = 1, (10)

ziks + zkjs − zijs ≤ 1,

∀i ∈ TΣ,∀j ∈ T∆,∀k ∈ T,∀s ∈ S, (11)
τi + ξis + ωijs · zijs ≤ τj , ∀i, j ∈ T,∀s ∈ S, ti ≺ tj , (12)
τi + Pijs ≤ τj +M · (1− zijs),

∀i ∈ TΣ,∀j ∈ T∆, s ∈ S, (13)
Pijs = zijs · (ωijs + ξis) · (1− rijs),

∀i ∈ TΣ,∀j ∈ T∆, s ∈ S. (14)

First, Eq. (1) removes self-loops on the nodes. We prevent
robots from visiting tasks with incorrect equipment Eq. (2)
that is defined in the equipment matrix (As). The relation
between xijs and zijs is expressed by Eq. (3), meaning that
if a robot s visits a node i right before a node j (xijs = 1),
then zijs = 1. If this is not the case, i.e., if node i is not
visited before node j, then zijs = 0 and also xijs = 0.
The case when xijs = 0 and zijs = 1 indicates that task j
is done after task i, but not immediately after, by robot s.
The number of robots that need to start (Eq. (4)) and finish
(Eq. (5)) each task is defined by set K. Forcing the robot that
started a task to finish it is expressed by Eq. (6). The start
of every tour has to be at a source depot (Eq. (7)), while the
end must always be at one of the destination depots (Eq. (8)).
Some robots can go directly from a source to a destination
depot without performing tasks, i.e., xijs = 1, i ∈ Σ, j ∈ ∆.
This means that the robot is not used in the final plan. We

introduce Eq. (9) to prevent possible cycles in variable z,
i.e., if task i is performed before task j, then it can never be
that task j is also performed before task i thus removing
possible cycles. In some cases, tasks may require to be
executed by the same robot, e.g., they may need to use the
results produced by other tasks, like sending the previously
collected data. Eq. (10) constrains allocating tasks i and j to
one single robot if uij = 1. Note that Eq. (9) does not force
two tasks to be executed by the same robot. To maintain the
transitive property of variable zijs, Eq. (11) is introduced.
It ensures that if a node i is visited before a node k, and
node k is visited before node j, then node i must be visited
before a node j. In the model, we include also precedence
constraints between tasks Eq. (12), i.e., a task i must be
completed before task j, ti ≺ tj . Specifically, for every robot
s such that zijs = 1, the earliest scheduled time for a task j
(τj) is the sum of (i) the starting time of task i (τi), (ii) the
duration of task i performed by robot s (ξis), and (iii) the
cost of moving from node i to node j (ωijs). If zijs = 0, the
travel distance ωijs is eliminated from the equation, allowing
task j to begin immediately after task i is completed, which
is equal to τi + ξis. In contrast, when zijs = 1, it indicates
that robot s performs both tasks i and j. The disjunctive
constraint defined by Eq. (13), in conjunction with Eq. (9),
ensures that no two tasks can overlap on the same robot
unless it is allowed by task parallelism, expressed by matrix
R. In Eq. (13), M is a big integer number [21]. In case tasks
i and j are not performed by the same robot, i.e., zijs = 0,
or if either task i, task j, or both are virtual, and parallel
execution is allowed (where rijs = 1), Pijs becomes 0. With
this definition of Eq. (14), a wide range of task relations can
be covered. To solve the described problem, it is necessary to
allocate all tasks in T to a set of available robots S, avoiding
task repetition while respecting equipment and precedence
requirements and minimizing the mission time. The resulting
optimization problem is

minimize
x,z,τ

max
i∈∆

(τi)

subject to Constraints (1)–(14),

where i is one of the depot nodes. We opted to minimize the
mission’s makespan (minMax). However, various objective
functions can be used [9].

B. CP Model

The formulation of the model is adapted to the syntax of
IBM CP Optimizer [14]. The handling of MR tasks involves
partitioning them into specific individual SR tasks. These
tasks are synchronized to start simultaneously from the same
location. The original task set T := {t1, t2, . . . , tn} consists
of n tasks, where the number of robots required per task is
not shown. In the definition of the CP model, we will extend
task set T into T = {t(1)1 , . . . , t

(k1)
1 , . . . , t

(1)
n , . . . , t

(kn)
n }. It

consists of v = |T| elements, where each ki denotes the
number of robots required to complete task ti. Decision
Interval Variables (DIVs) related to source depots are fixed
to allow the mission to start at time 0.

Now we can define allocation matrix A[v×m] with the
rows representing tasks and columns representing robots.
Each element aij is a DIV for allocating task i to robot
j. Another matrix that we need to define is the allocation
matrix AD[m×w], where each element adij is a DIV for
the allocation of the robot i to the destination depot j. A
robot can be allocated to only one destination depot; hence,
all adij are set to optional. Optional means that it is up
to the solver to decide if the variable should be present or
absent. Transition distances between physical tasks, source,
and destination depot are expressed with the matrix M,
which is equivalent to Ω defined in Sect. IV, where ωijs

is the cost of transitioning from node i to node j with
robot s. The transition matrix M must satisfy the triangular
inequality. Virtual tasks are not part of the transition matrix
since no transition is necessary for their execution. The
indices of the matrix M are numbered according to the
sequence {1, . . . , q+ |PT|+w}, where the first q indices are
associated with the source depots, |PT| is the cardinality of
the set of physical tasks. The last w indices are associated
with the destination depots. Based on the transition matrix
M, we can define a set of state functions fi ∈ F, where
each element fi represents a state function of robot i. A state
function consists of a set of non-overlapping intervals within
which the function maintains a defined non-negative integer
state. Between these intervals, the state of the function is
undefined, typically due to transitions occurring between
different states. For a more detailed description of modeling
using constraint programming and ILOG CP Optimizer,
please refer to [3], [12], [13].

Example: Let us assume T = {t(1)1 , t
(2)
1 , t

(1)
2 , t

(1)
3 , t

(2)
3 },

K = {2, 1, 2}, and S = {1, 2, 3, 4}. If, for the moment,
we ignore task/robot equipment requirements, then Fig. 4
represents a feasible allocation of tasks t1, t2, and t3, out of
which t1 and t3 require 2 robots for their execution, to robots
s1, s2, s3, and s4. The allocation is visually represented with
green squares, showing that the DIVs a1,2, a2,1, a3,3, a4,2,
and a5,4 are set to present. This means that the MR task t1
is allocated to robots s2 and s1 (t(1)1 to s2 and t

(2)
1 to s1), SR

task t
(1)
2 to s3, and MR task t3 to robots s2 and s5 (t(1)3 to

s2 and t
(2)
3 to s5). The allocation in matrix A is constrained

by Eq. (15), which in conjunction with Eq. (17) prevents
double allocation (e.g., t(2)1 to robot s2). In the case of robot

Fig. 4: The graphical representation of matrix A. The green color
marks present DIVs, and the pink absent DIVs.

sj not having the necessary equipment to perform task t
(l)
i ,

the decision interval of that element is set to absent. For the
sake of notation, let us introduce the following subsets of
indices, Ps := {1, . . . , q}, Ppt := {q+1, . . . , q+ |PT|}, and
finally Pd := {q + |PT|+1, . . . , q + |PT|+w}.

Alternative(Ti,Ai), ∀i ∈ {1, . . . , v}, (15)
Alternative(∆i,ADi), ∀i ∈ {1, . . . , w}, (16)
NoOverlap(aik, ajk),

∀i, j ∈ {1, . . . , v},∀k ∈ {1, . . . ,m}, rij ̸= 1,
(17)

EndBeforeStart(Ti, adjk),

∀i ∈ {1, . . . , v},∀j ∈ {1, . . . ,m},∀k ∈ {1, . . . , w},
(18)

EndBeforeStart(Ti,Tj), ∀i, j ∈ {1, . . . , v}, πij = 1. (19)
AlwaysEqual(fi, σi,Ps

i), ∀i ∈ {1, . . . ,m}, (20)

AlwaysEqual(fi, adij ,Pd
i),

∀i ∈ {1, . . . ,m},∀j ∈ {1, . . . , w},
(21)

AlwaysEqual(fi, aji,Ppt
j),

∀i ∈ {∀s ∈ S | ϕc(j) ∈ Cs},∀j ∈ Ppt,
(22)

PresenceOf(aik) = PresenceOf(ajk),

∀i, j ∈ {1, . . . , v},∀k ∈ {1, . . . ,m}, uij = 1,
(23)

StartOf(t(j)i) = StartOf(t(l)i),

∀i ∈ {1, . . . , v},∀j, l ∈ {1, . . . , ki}.
(24)

The constraint denoted by (15) ensures that each task in
the set T is exclusively assigned to only one robot from
the available set Ai, which represents i-th row of matrix
A. In other words, for every task in T, a single decision
variable aij is chosen from the robot set Ai, indicating the
specific assignment of task Ti to a robot sj . For instance,
when the solver sets the decision variable a1,3 to the value
present, it indicates the allocation of task 1 to robot 3.
Constraint (16) states that every robot ends its tour at one of
the destination depots. For example, suppose the solver sets
the decision interval variable ad2,2 to present. In that case,
it means that robot 2 is ending its tour in destination depot
2. Constraint (17) states that neither SR nor MR tasks can
run in parallel on individual robots except when it is allowed
by matrix R, i.e., task i and task j can run in parallel only
if rijs = 1. All tasks assigned to a robot must be done by
that robot before the destination depot is reached (Eq. (18)).
Precedence constraints are defined on the task set T instead
of T because it is assumed that MR tasks have the same
precedence rules for every instance (ki) in the expanded T.
These constraints are imposed with Eq. (19), where Ti must
end before Tj starts, and in conjunction with Eq. (24) all
MR tasks will respect the imposed precedence constraint.
To enforce the robots’ position at the source depot at the
start of their mission, we introduce Eq. (20). To ensure that
the robots are positioned at one of the destination depots
upon completing their missions, we introduce Eq. (21).
Constraint (22) uses a state function to model the positions
of robots with respect to physical SR or MR tasks, where
the set {∀s ∈ S|ϕc(j) ∈ Cs} is the set of robots that can
execute the task j that requires the equipment ϕc(j), as they

have the correct equipment Cs. In case the same robot is
required to perform both tasks i and j, constraint (23) can
be used. Constraint (24) forces all robots assigned to the
same MR task to start executing that task simultaneously.
The optimization objective is the same as in the ILP model,
and it is the minimization of the mission’s makespan.

V. EVALUATION

The assessment involves evaluating a collection of test
instances using two distinct solvers: the CPLEX solver and
the CP Optimizer (CPO). The experimental infrastructure
comprises an i9-9980XE @4.1GHz CPU with 18 cores and
128GB of DDR4 RAM. The solvers are configured with a
timeout limit of 1 hour (3600 seconds). We aim to analyze
and discern the differences among the solutions these two
solvers generate. The benchmark consists of 30 problem
instances with different levels of complexity regarding the
number of robots, tasks, and constraints. We limit the number
of different equipment required by tasks to 4. The number
of precedence constraints depends on the number of virtual
tasks in the problem instance. Specifically, all virtual tasks
are set to succeed some physical tasks to avoid having virtual
tasks executed at the beginning of the mission. In practice,
virtual tasks commonly rely on the completion of physical
tasks, e.g., performing data analysis virtually requires data
acquisition during some physical tasks.

The task duration is set to range from 10 to 200 seconds.
The test instances are created randomly, where tasks and
robots are placed in a confined space of 200 × 200 meters.
The likelihood of a task being a virtual task is set to 15%.
The probability of tasks running in parallel is set to 50%,
where we allow mixed parallelism between one physical
and possibly multiple virtual tasks. A coin flip is used to
assign each task as either SR or MR, ensuring that every
test instance contains at least one MR task and no more than
(n− 1) MR tasks. The number of robots a task may require
is between 1 and 3. Virtual tasks cannot be MR tasks. For
simplicity, matrix R is the same for all robots.

A. Results

The benchmark results are presented in Table I. Presented
results include the makespan of the best solution found, the
gap between the best solution and the best lower bound
found, the time taken to find the first feasible solution (t-
first), the best solution (t-best), and the time taken to prove
optimality (t-total). The gap is defined as gap = ((bs −
bb)/bs) · 100%, where bs is the best solution found, and bb
is the best bound on the optimal solution [15]. For the first
4 instances, which include only 2 robots, both solvers have
found optimal solutions in a comparable amount of time.
CPO starts to take the lead in the following instances, as it
can find solutions faster. In the first 10 instances, both solvers
could find optimal solutions; however, CPLEX took much
more time. CP optimizer dominated in all three time metrics.
After the initial 10 instances, CPLEX matched the solution
quality of the CP method only in instance 14. However,
CPLEX required substantially more computational time to

achieve this result. In every other instance, CPO was able to
outperform CPLEX in terms of solution quality. Moreover,
CPLEX could not find any feasible solution for instances 17
and 20–30 within the given time limit of 1 hour.

Each task set is repeated with varying parameters to
demonstrate that even with the same number of tasks and
robots, the problem’s complexity can increase for the solvers
due to differing constraints. For instance, this is evident
in instances 7 and 8. Instance 7 is solved relatively easily
compared to instance 8, which took almost 100x longer for
the CPLEX solver. For the CPO solver, this difference is
smaller, with instance 8 taking approximately 9x longer to
solve. This difference is primarily due to the number of MR
tasks: instance 7 has 2 MR tasks, whereas instance 8 has 4.

When it comes to proving optimality, neither of the solvers
performed well on the harder instances, with CPO having a
gap between 47-82% and CPLEX either proved a solution is
optimal or had a gap of 79-96% However, this is somewhat
expected as the solvers were given a fairly limited amount
of time for the search (3600 seconds), which proved not to
be enough to perform an exhaustive search. We limited the
size of our test instances to a maximum of 6 robots and 18
tasks in the presented results. For this particular problem,
given the presented ILP and CP models in this paper, CPO
is a clear winner, as it is able to find equally good or better
solutions than CPLEX for every instance. The time column t-
best shows the time a solver takes to reach the best makespan.
The rest of the time was spent by the solvers trying to
prove the optimality of the found solution. If the gap is
0%, it means the found solution is proven to be optimal.
Additionally, the CPO found a feasible solution for each
instance in under 1 second, demonstrating its ability to find
feasible solutions rapidly. This capability could be highly
beneficial in scenarios requiring quick mission replanning
due to unexpected events during execution.

VI. CONCLUSION

Recent technological advancements have created oppor-
tunities for employing Multi-Robot Systems across vari-
ous scenarios, particularly those involving Multi-Task (MT)
robots and Multi-Robot (MR) tasks. This study aimed to
address a gap in the existing literature by formally defining
the challenges associated with Multi-Task Robots, Multi-
Robot Tasks, and Time-extended Assignment (MT-MR-TA),
which have not been adequately explored in current surveys
of Multi-Robot Task Allocation (MRTA) problems.

We approached this problem using Integer Linear Pro-
gramming (ILP) and Constraint Programming (CP). Both
models were implemented in commercially available solvers,
CPLEX and CPO. Our evaluation indicates that the CP
Optimizer is generally more effective for this type of problem
configuration, as it outperformed CPLEX in most of the
benchmark test instances. Moreover, CP formulation proves
to be more appropriate for MT-MR-TA problems, which are
highly constrained, due to its greater flexibility in managing
combinatorial constraints, including task precedence, syn-
chronization, and logical constraints.

TABLE I: CPLEX and CPO benchmark results. Better solutions are in bold. t-total is the solver’s time to find a guaranteed optimal solution
(the time limit is set to 3600). t-first is the solver’s time to find the first feasible solution. t-best is the solver’s time to find the best solution.
Instances and code are available online: https://github.com/mdh-planner/MT-MR-TA-Problem-Configuration

CPLEX CPO

Inst. Makespan Gap t-total t-first t-best Makespan Gap t-total t-first t-best
(1) 2R, 6T 332 0% 0.44 0.07 0.36 332 0% 2.9 0.09 0.48
(2) 2R, 6T 360 0% 1.23 0.07 0.48 360 0% 6.9 0.09 0.1
(3) 2R, 7T 282 0% 1.56 0.07 1.21 282 0% 1.3 0.09 0.11
(4) 2R, 7T 474 0% 0.72 0.06 0.72 474 0% 9.7 0.1 0.11
(5) 2R, 8T 301 0% 12 0.08 11.5 301 0% 1.1 0.1 0.24
(6) 2R, 8T 448 0% 274 0.12 11.3 448 0% 72 0.13 0.44
(7) 3R, 8T 242 0% 33 0.15 7.8 242 0% 12.6 0.12 0.14
(8) 3R, 8T 356 0% 2874 7 219 356 0% 111 0.19 0.21
(9) 3R, 10T 377 0% 817 0.28 2.4 377 0% 16.7 0.12 0.14
(10) 3R, 10T 305 0% 88.6 0.28 6.1 305 0% 16.9 0.12 0.19
(11) 3R, 12T 394 91% 3600 0.6 1768 368 67% 3600 0.17 0.75
(12) 3R, 12T 469 94% 3600 12.3 2892 381 59% 3600 0.22 2.8
(13) 4R, 10T 366 85% 3600 11.7 1088 334 60% 3600 0.24 0.36
(14) 4R, 10T 271 79% 3600 25 3353 271 53% 3600 0.16 14.5
(15) 4R, 12T 671 96% 3600 19.5 917 418 82% 3600 0.4 9.9
(16) 4R, 12T 462 92% 3600 3223 3549 320 65% 3600 0.27 4
(17) 4R, 14T / / 3600 / / 339 67% 3600 0.37 36.6
(18) 4R, 14T 787 96% 3600 17.5 1445 605 79% 3600 0.65 9.9
(19) 5R, 12T 432 95% 3600 1281 3138 262 47% 3600 0.43 1651
(20) 5R, 12T / / 3600 / / 302 56% 3600 0.35 64.3
(21) 5R, 14T / / 3600 / / 266 60% 3600 0.36 10.7
(22) 5R, 14T / / 3600 / / 426 67% 3600 0.6 2.7
(23) 5R, 16T / / 3600 / / 395 71% 3600 0.7 14.7
(24) 5R, 16T / / 3600 / / 468 78% 3600 0.91 41.9
(25) 6R, 14T / / 3600 / / 321 66% 3600 0.8 952
(26) 6R, 14T / / 3600 / / 291 60% 3600 0.63 42.4
(27) 6R, 16T / / 3600 / / 303 60% 3600 0.7 22.1
(28) 6R, 16T / / 3600 / / 356 69% 3600 0.96 225
(29) 6R, 18T / / 3600 / / 331 57% 3600 0.99 54.8
(30) 6R, 18T / / 3600 / / 548 69% 3600 0.66 11.3

REFERENCES

[1] E. A. Ameri, B. Cürüklü, B. Miloradović, and M. Ektröm. Planning
and supervising autonomous underwater vehicles through the mission
management tool. In Global Oceans 2020: Singapore – U.S. Gulf
Coast, pages 1–7, 2020.

[2] H. Aziz, H. Chan, Á. Cseh, B. Li, F. Ramezani, and C. Wang. Multi-
robot task allocation-complexity and approximation. In Proceedings of
the 20th International Conference on Autonomous Agents and Multi-
Agent Systems, pages 133–141, 2021.

[3] R. Barták. Constraint programming: In pursuit of the holy grail. In
Proceedings of the Week of Doctoral Students (WDS99), volume 4,
pages 555–564. MatFyzPress Prague, 1999.

[4] E. Bischoff, F. Meyer, J. Inga, and S. Hohmann. Multi-robot task al-
location and scheduling considering cooperative tasks and precedence
constraints. In 2020 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pages 3949–3956. IEEE, 2020.

[5] H. Chakraa, F. Guérin, E. Leclercq, and D. Lefebvre. Optimization
techniques for multi-robot task allocation problems: Review on the
state-of-the-art. Robotics and Autonomous Systems, 2023.

[6] M. Dadvar, S. Moazami, H. R. Myler, and H. Zargarzadeh. Exploration
and coordination of complementary multirobot teams in a hunter-and-
gatherer scenario. Complexity, 2021(1):9087250, 2021.

[7] A. Dorri, S. S. Kanhere, and R. Jurdak. Multi-agent systems: A survey.
IEEE ACCESS, 6:28573–28593, 2018.

[8] B. P. Gerkey and M. J. Matarić. A formal analysis and taxonomy of
task allocation in multi-robot systems. The International Journal of
Robotics Research, 23(9):939–954, 2004.

[9] M. Gini. Multi-Robot Allocation of Tasks with Temporal and Ordering
Constraints. In Thirty-First AAAI Conference on Artificial Intelligence
(AAAI-17), 2017.

[10] S. Hartmann and D. Briskorn. An updated survey of variants and
extensions of the resource-constrained project scheduling problem.
European Journal of OR, 297(1):1–14, 2022.

[11] G. A. Korsah, A. Stentz, and M. B. Dias. A comprehensive taxonomy

for multi-robot task allocation. The International Journal of Robotics
Research, 32(12):1495–1512, 2013.

[12] P. Laborie and J. Rogerie. Reasoning with conditional time-intervals.
In 21st International FLAIRS Conference, pages 555–560, 2008.

[13] P. Laborie, J. Rogerie, P. Shaw, and P. Vilı́m. Reasoning with
conditional time-intervals. part II: An algebraical model for resources.
In 22nd International FLAIRS Conference, 2009.

[14] P. Laborie, J. Rogerie, P. Shaw, and P. Vilı́m. IBM ILOG CP optimizer
for scheduling: 20+ years of scheduling with constraints at IBM/ILOG.
Constraints, 23:210–250, 2018.

[15] G. Laporte and P. Toth. A gap in scientific reporting. 4OR, 20(1):169–
171, 2022.

[16] B. Miloradović, B. Curuklu, M. Ekström, and A. V. Papadopoulos.
Tamer: Task allocation in multi-robot systems through an entity-
relationship model. In International Conference on Principles and
Practice of Multi-Agent Systems. Springer, 2019.

[17] B. Miloradović, B. Çürüklü, M. Ekström, and A. V. Papadopoulos.
Optimizing parallel task execution for multi-agent mission planning.
IEEE Access, 11:24367–24381, 2023.

[18] E. Nunes, M. Manner, H. Mitiche, and M. Gini. A taxonomy for task
allocation problems with temporal and ordering constraints. Robotics
and Autonomous Systems, 90:55–70, 2017.

[19] E. Raboin, P. Švec, D. S. Nau, and S. K. Gupta. Model-predictive asset
guarding by team of autonomous surface vehicles in environment with
civilian boats. Autonomous Robots, 38:261–282, 2015.

[20] E. Raboin, P. Švec, D. Nau, and S. K. Gupta. Model-predictive target
defense by team of unmanned surface vehicles operating in uncertain
environments. In 2013 IEEE International Conference on Robotics
and Automation, pages 3517–3522, 2013.

[21] P. A. Rubin. Heuristic solution procedures for a mixed-integer pro-
gramming discriminant model. Managerial and Decision Economics,
11(4):255–266, 1990.

[22] J. Snauwaert and M. Vanhoucke. A classification and new benchmark
instances for the multi-skilled resource-constrained project scheduling
problem. European Journal of Operational Research, 307:1–19, 2023.

https://github.com/mdh-planner/MT-MR-TA-Problem-Configuration

	Introduction
	Background and Motivation
	Task Types
	Multi-Robot Tasks
	Mission Example

	Problem Formulation
	Integer Linear Programming Model
	CP Model

	Evaluation
	Results

	Conclusion
	References

