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Abstract

Machine learning is revolutionizing various fields, but its implementation in real-time soft environ-
ments often faces challenges due to limited computational and storage resources. In this work, we
have successfully developed a highly accurate Random Forest regression model to predict the work-
ing ambient temperature for an embedded Radio Access Network system, particularly within the
Baseband application domain. Our model achieves minimal prediction error and maintains a vari-
ance well-aligned with the onboard sensors’ measurement accuracy. Remarkably, the outcomes of our
research respect the stringent real-time processing and storage constraints, making it a significant
advancement in real-time machine learning applications.
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1 Introduction

The number of publications in the Artificial Intel-
ligence and Machine Learning (AI/ML) domain
has tripled in the last ten years (see Figure 1).
Attention to the research field knows no respite,
and the growth in AI patents is exponential (see
Figure 2). It could not be otherwise: one of the
discriminants for using AI/ML effectively is the
availability of data, an event that the continu-
ous shift of the network towards a cloud-oriented
architecture has made possible.

The availability of large amounts of data has
made the use of AI/ML increasingly attractive
and essential, as well as the means to analyze
this enormous amount of data and identify help-
ful information patterns. Consequently, machine

Fig. 1 AI number of publications trend 2010-2022 [1]

learning dominates the number of AI publications
without rivals. Another fundamental pillar for
efficiently applying machine learning is the appli-
cation domain knowledge (see Figure 3). Publica-
tions spread through many domains, from medical
to networking, automotive, and manufacturers.
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Each domain has its characterization and lim-
its that are discriminant in implementing machine
learning. The Radio Access Network (RAN) is no
exception and is the domain of our interest. The
RAN characterizations that influence the develop-
ment of machine learning are limited availability
of resources, computational, memory, or network-
ing, and a ”temporal” limitation, in the sense
that the system is sensitive to disturbances typical
of soft real-time that can lead to adverse effects
on performance and, in the most extreme cases,
malfunction.

The development of fifth-generation telecom-
munications, the so-called 5G, was not driven by
technological evolution but by a commercial neces-
sity. In fact, with the advent of smartphones, the
value of the network has progressively shifted from
connectivity to the data. 5G represents the oppor-
tunity for the operators to enter the rich market of
services, making their business model and invest-
ment in network infrastructure sustainable. The
core business shifts from connectivity to service
deployment, and operators can generate profits by
hosting a broad set of services in their infrastruc-
ture, close to the end user. However, 5G has led
to increased infrastructure complexity due to:

• increased throughput and delay
requirements [2],

• widespread computing capacity deployment
(especially for dense urban areas) [3], and

• intelligent self-monitoring and easily-
maintained configuration system to decrease
Capital Expenditures (CAPEX) and
Operational Expenditures (OPEX) [4].

Once the value of the network move to ser-
vices, the network needs a high resiliency level
to guarantee high quality of experience from end
user to be a sustainable new business case. If the
resilience is the ability to the system to react to a

Fig. 2 AI number of patents trend 2010-2022 [1]

Fig. 3 The weight of the AI subset functions in the total
number of publications [1].

disturbance and recover the requested functional
ratio condition, the fault management is the sys-
tem function to achieve the resilience goal [5].
Consequently, the need for a fault management
framework that is strongly oriented towards the
centrality of the recovery action has also grown
in tandem with the complexity of the infrastruc-
ture: the fault management now aims to detect,
locate, recover and predict a fault condition [6]
because fault prediction [7, 8] and predictive main-
tenance [9] derive from the need of increasing the
infrastructure sustainability.

1.1 Context Description

Our research focuses on the ability to do predic-
tive maintenance for products in the Radio Access
Network (RAN) domain. The ”cloudification” of
the network suggests a technological convergence
with data center hardware products, but the envi-
ronmental conditions are very different. A RAN
solution, for example, must rely on something
other than the cooling systems available for data
centers due to cost, space, and noise constraints.
Furthermore, RAN products should work under
very different circumstances, e.g., their operating
temperature spans a more demanding range than
the typical temperature for data center products.

The aforementioned scenario highlights that
the validity of research findings concerning the
correlation between environmental parameters
and system reliability is confined to the specific
domain of reference. Another characteristic of
RAN products is that they poorly tolerate distur-
bances and interruptions.

The data acquisition process must be unique
regarding environmental and work parameters,
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Fig. 4 The data analysis and pattern finding in baseband
boards.

i.e., the use of system resources. Furthermore,
data collection is crucial for network access sys-
tems since they are often called for hosting soft
real-time systems. The latter exhibit stringent
requirements in terms of the reaction time and
execution of a particular task such as the recep-
tion and decoding of traffic packets. The collection
of data must therefore be as least intrusive as pos-
sible so as not to compromise the functionality of
the node and the availability of bandwidth when
transmitting the collected data.

Figure 4 shows the machine learning usage in
the baseband board. Resource usage and envi-
ronmental conditions are the data flow feeding
the machine learning algorithms. Based on the
model, fault management can use fault prediction
to enrich the fault location, improve fault detec-
tion, and reduce the recovery time. It is possible
to identify three main outocomes:

• Detect malicious or malfunction condition in
the environment setting: the environment tem-
perature prediction.

• Detect malicious or malfunction condition in
execution flow: the system anomaly detection.

• Detect malicious or malfunction condition in
the baseband components: the fault prediction.

The more distributed computing and high
data traffic capacity also involve a considerable
workload. The evolution of hardware design on
the nanoscale has been the response to this
growth in data processing for both the latest gen-
eration processors and memory devices (DDR5).
The reliability of hardware components has
indeed increased in recent years [10], but it is
equally valid that the complexity of the design
has also increased. And, with the nanoscale
hardware design, the probability of temporary or
permanent fault conditions is higher due to power

fluctuations, excessive operating temperatures, or
cosmic radiation. Eventually, the hardware will
end its life due to aging issues, and the system
reliability will enter a critical phase where the
failure rate will increase exponentially.

The hardware repair process is costly: main-
tenance activities on-site, packaging, transporta-
tion, board troubleshooting, and test to confirm
the failure condition diagnosis for the compo-
nent, and faulty hardware replacement, if appli-
cable. In telecommunication networks, multi-chip
packages, robotics, automotive, and, more gen-
erally speaking, in an increasingly widespread
distributed system, the hardware devices must
work and inter-work properly, react to external
disturbances promptly, and operate as long as pos-
sible. However, it must use an appropriate error
prediction action by analyzing the data available
from the system. Without this fundamental pre-
diction action, the maintenance costs could be
relatively high. Thus, it is essential to know how
to identify a possible failure condition before it
happens. Understanding how the state and use
of resources affect their life cycle allows planning
appropriate recovery actions in time, whether an
actual replacement of the component or preventive
isolation to enable an operational state in full or
degraded function mode. Predicting the hardware
fault is, therefore, fundamental for the sustain-
ability of the future network. Without it, the
unsustainable maintenance cost would compro-
mise developing innovative services for industry
5.0 [11]. Machine learning and Artificial Intelli-
gence can be the technology enabler for a fault
prediction based on system data [12].

1.2 Problem Statement

The probability of device failure, and thus its
lifecycle, is significantly influenced by the ambi-
ent temperature [13]. Clear indications of ambient
temperature enable the implementation of optimal
preventive measures, such as controlled activity
cooling (thermal throttling), dynamic control of
the cooling system, and continuous reassessment
of the product’s lifecycle to support a planned
maintenance strategy. However, in RAN envi-
ronments, baseband boards can operate under
widely varying ambient conditions depending on
the installation site. Accurately predicting the
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ambient temperature becomes essential to signal
critical conditions. For instance, an anomaly in
ambient temperature might indicate an issue with
the cooling system or an unexpected board tem-
perature, which could suggest suspicious heating
of one or more hardware components on the board.

1.3 Research Objective

The paper assumption is that the likelihood of
a system error depends on the environmental
parameters, like temperature and humidity. Those
environment parameters drive the entire life cycle
of the hardware devices: board working continu-
ously under stressful environment condition will
have a shorter lifetime. Our research objective is to
devise a model capable of predicting the ambient
temperature of the board, i.e., the temperature of
the immediate surroundings of the board. The lat-
ter has a direct impact on the board’s operating
temperature so an accurate ambient temperature
model will allow for:

• implementing operations e.g., thermal throt-
tling, that maintain the temperature of the
device below a critical threshold, and

• forecasting the component’s life cycle accord-
ing to the ambient temperature for optimal
maintenance planning.

1.4 Research Methodology

The paper is a quantitative empirical stud-
ies [14] that aims to examine the relationships
between environment parameters and resource
usage through a machine learning approach. For
the evaluation of temperature prediction algo-
rithms, the research used two types of data:
environmental (i.e.: temperature and humidity)
and resource use (number of cores used and their
load). The data refer exclusively to industrial
baseband boards, and this paper used them in
respect of a confidential agreement. We have also
used a thermal chamber to simulate different tem-
perature working environments. We have verified
the temperature prediction algorithms’ validity by
comparing them with other solutions proposed
in the literature. Baseband board designers have
reviewed the research outcomes and evaluated
implementation feasibility and sustainability in
the RAN domain. With this approach, the advan-
tage for the industrial partner is the possibility of

reducing OPEX and the maintenance cost in the
next generation of telecommunications systems.

Building upon the consolidated results pre-
sented in [15], our research methodology involved
a comparative analysis of machine learning algo-
rithms. Specifically, we focused on evaluating the
performance of the Random Forest algorithm and
XGBoost across various experimental scenarios,
with an emphasis on optimizing the Random For-
est approach because Random Forest algorithm
outperforms XGBoost in all experimental cases in
[15].

We paid close attention to the error margin
of temperature sensors (+/- one degree), which
was crucial for our analysis. To make our tem-
perature measurements easier to work with, we
converted the continuous range of real numbers
to a discrete set of integers by using a round-
ing approximation mechanism (see 3.1 for more
details). We also improved the quality of our
dataset by implementing a procedure to check and
clean any missing values. Both of these steps sig-
nificantly contributed to the accuracy of the model
we developed.

In the baseband environment, resource avail-
ability is minimal. The use of local storage
resources, computational resources, and band-
width, both internal bus and system backhaul,
is conditioned by the need not to affect opera-
tion. To limit the performance impacts, we have
reviewed and corrected the number of attributes
and the maximum operating range for tempera-
ture with careful consideration. This decision is
aimed at limiting data streaming and collection
time, ensuring the efficiency of our operations.

The listed improvements allow us to focus on
efficient analysis of the temperature prediction
algorithms and their potential impact on indus-
trial baseband board design. The refined data
handling and streamlined methodology contribute
to a more targeted and expedited research pro-
cess. These adjustments enhance the credibility
and relevance of the study’s findings, offering valu-
able insights for optimizing resource usage in the
context of evolving telecommunications systems.

This paper must comply with NDA regulations
and restrictions. The dataset and the implemented
algorithm cannot be published.
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2 Related Work

The ability to have a thermal model for any sys-
tem is a well-known need because it is clear that,
as the operating temperature increases, the relia-
bility of the CMOS-based ICs decreases exponen-
tially [13]. Yang et al. [16], for example, provides
an interesting analysis of all those factors that
negatively influence both the aging and the relia-
bility of electronic components, such as the effects
of voltage (Hot carrier injection) and temperature
(Bias Temperature instability). Even considering
the system as a non-divisible entity, the system’s
failure rate doubles for every ten Celsius degrees
increase above twenty-one Celsius degrees [17].
Research on the thermal model mainly focuses on
two types of algorithms [18]: those based on the
thermodynamic laws and the physical character-
istics of the components to find a thermodynamic
model of the device [19–21] and those which,
recognizing the limited capacity of a thermody-
namic physical model to be representative for
different types of installations, prefer algorithms
that have data-driven solutions [22, 23]. The lat-
ter has received more attention from researchers
recently, especially concerning the progress of
AI/ML as a mechanism for evaluating predic-
tive models. AI/ML methods have stood the
test of time concerning temperature prediction
by providing very accurate models for applica-
tions such as weather forecasting and temperature
control in industrial environments, among oth-
ers. For example, Ma et al. study demonstrates
a spatiotemporal correlation for fault prediction
algorithms using graph convolutional recurrent
neural networks (GCRNN), which seems promis-
ing to replicate beyond the meteorological domain.
In the networking domain, only a few researchers
have dealt with temperature prediction in the
RAN domain. On the contrary, most research
works considered temperature prediction in data
centers and High-Performance Computers (HPC).
Therein, temperature prediction allows the intel-
ligent implementation of energy saving utilizing
workload management [24, 25], effective heat dis-
sipation [26], and improved cooling efficiency [27].
Previous works considered the operational data
of the board, such as the number of cycles per
CPU or the cache metrics, and the physical char-
acteristics of the system, such as the number

of CPUs, the size and type of memory or traf-
fic devices [23, 28]. One of the used algorithms
is the long short-term memory-based tempera-
ture prediction (LSTM), an improved version of
the more traditional recurrent neural network
(RNN), more suitable for solving time series pre-
diction problems. In the most significant works
that have used LSTM, we point out the work of
Cheng et al. [29] in the multicore and Network
on Chip (NoC) domain. Neural networks are com-
putationally demanding, and our research focuses
on temperature prediction through less complex
algorithms and less costly solutions to meet the
requirements described in the context description
section. There is an inevitable divergence in the
research results we have considered. XGBoost is
the algorithm frequently used in applied machine
learning for structured data due to its fast speed
compared with other gradient-boosting implemen-
tations [30].

3 Temperature Prediction
Process

3.1 Design description

This chapter presents the design description of
a machine-learning model that predicts ambient
temperature, i.e., the target value based on lab
measurements. We train the model using board
temperature, rail, and board power sensors as
independent variables while controlling comput-
ing load, environment humidity, and fan speed
to simulate different board operating conditions.
We evaluated XGBoost Regressor (XGB) [30] and
Random Forest Regressor (RF) [31] (with and
without cross-validation [32]) models to determine
the most suitable for the RAN domain. We per-
formed hyperparameter optimization for both the
tree-based models to fine-tune their performance
and promote better generalization. By search-
ing for the optimal hyperparameter values, our
approach is to effectively regularize the models to
mitigate the risk of overfitting and enhance their
ability to generalize to unseen data. We placed
the RAN boards inside a climate chamber in the
lab. The climate chamber allows the simulation
of all possible humidities and temperature lev-
els that the baseband is likely to encounter in
the field. We collected data for different com-
puting loads by simulating no network traffic,
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minimal activity, or peak traffic conditions. Since
the baseband board is a multiprocessor system, we
have modified the active processing units’ number
and computing load to simulate different working
conditions. Additionally, to simulate the environ-
mental conditions of the installation site on the
baseband board, we varied the fan speed of the
cooling system. Following the well-established ML
principles, we split the data into two distinct data
sets:

• the training set that is used to train the ML
model. The input features include temperature
sensors, watts and power levels measured at dif-
ferent points of the baseband board, the relative
humidity and the ambient temperature of the
climate chamber, among others, and

• the test set that is used to assess the model’s
performance.

The training set is assigned a splitting ratio
of 80%, while the test set receives 20%. Conse-
quently, the collected data sets encompass the
distinctive patterns that characterize the base-
band board in various environmental and radio
traffic conditions. We trained the ML model using
the training data set to create an accurate and
scalable model, making it possible to use the
model for future versions of RAN boards without
compromising its validity. Our evaluation metric
regarding which ML model to use for environmen-
tal temperature prediction is based on the mean
absolute error (MAE) i.e., the absolute value of
the difference between the predictions and the
targets, and R-squared (R2). Residual analysis
between the predicted and the measured ambient
temperatures is considered as well.

After following the research methodology out-
lined in section 1.4, we enhanced the data handling
by discretizing the temperature (rounding values
to the nearest integer) and removing measure-
ments with missing values for specific features.
These improvements have enhanced the dataset,
making the machine-learning model more robust
and reliable.

The new data handling allowed us to focus on
improving machine learning accuracy. However,
baseband products are susceptible to resource
usage in runtime and require particular attention
during machine learning model deployment and
implementation. The cost of the coding language

to the resource usage is well-known [33], encourag-
ing us to check the coding language for the model
in the baseband product. This strategic approach
aims to optimize the compatibility and integration
of the machine-learning model with the opera-
tional environment of the basebands, ultimately
enhancing its effectiveness and practical applica-
bility within real-world settings. By aligning the
model’s coding language with the language used
by the basebands, seamless integration and effi-
cient performance can be achieved, paving the way
for increased utility and impact within the RAN
domain.

3.2 Execution

Table 1 The distribution of the dataset, for each setting
of the controlled variables

Variable Value Distribution [X/Total]

DSP Low 9/18
Mid 7/18
High 2/18

CPU load [%] 0 1/18
20 1/18
30 8/18
100 8/18

Fan speed [%] 30 2/18
40 1/18
50 1/18
70 4/18
100 10/18

Relative Humidity [%] 0 8/18
20-80 2/18
30-80 8/18

Temperature Ranges [°C] 0-35 8/18
20-55 8/18
50-60 2/18

As described in the previous section, we contin-
uously test the baseband in the climate chamber.
Thus, the training runs with a new data set after
each successful run. The current training for the
ML models contains 18 datasets, each collected
from their respective laboratory tests. Table 1
shows the data distribution of the various com-
binations of the controlled variables (DSP, fan
speed, CPU load, relative humidity, and ambi-
ent temperature). For example, out of eighteen
datasets, nine have DSP set to ”Low”, seven have
DSP set to ”Mid”, and two have DSP set to
”High”, etc.
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The data collected is then explored and han-
dled appropriately for the models to process.

For the training of the models, we randomly
divided the whole dataset into a training and
testing set using the train-test split-function in
Python (train test split()1) by specifying the
splitting ratio to be 80 − 20% respectively. The
purpose of the testing set is to assess and evaluate
the performance of the trained model by compar-
ing the model’s predictions with the actual values
from the testing set. The performance evaluation
described above allows us to measure metrics such
as accuracy and residuals, which provide insights
into how well the model generalizes to unseen
data and, thus, performs in real-world scenar-
ios. For the sake of presentation and to provide
an efficient way to compare the predicted with
the measured ambient temperature values side by
side, we decided to introduce a data set referred
to as unseen data. The unseen dataset contains a
continuous baseband run in the climate chamber
i.e. with the temperatures increasing with every
measurement and it is completely excluded from
the training and testing phase of the ML models.
The data from the features (all variables except
the target variable) is then used as an input to the
models to acquire their predictions. This allows us
to further evaluate the models’ predictive ability
of new and unseen data.

In the next stages of this project, the vari-
able ”relative humidity” has been disregarded as
a driving parameter, leaving the temperature sen-
sors as the drivers. The handling of missing values
was also changed from linear interpolation to dele-
tion of all missing values of relevant features, in
other words the entire row of the dataset where
there were missing values, of the features that are
of interest - Power and voltage missing values were
disregarded since the parameter themselves were
excluded, as previously mentioned. Furthermore,
the numerical values were rounded up to the near-
est digit. We might have a few more test runs to
add in the dataset

Data handling optimization process

We have contextualized resource usage in the spe-
cific application domain of RAN. The maximum

1sklearn.model selection.train test split,
https://scikit-learn.org/stable/modules/generated/
sklearn.model selection.train test split.html

number of resources evaluated under extreme use
conditions depends on the number of end users
managed by the product. Considering the distri-
bution of traffic capacity by nodes, we have defined
new limits for the dataset attribute ranges. Note
that the new approach means sampling attributes
in the actual use of the final product, and the
dataset becomes representative of realistic use
cases, even in extreme environmental conditions.
This change reassures us that our data accurately
reflects real-world scenarios, instilling confidence
in our work.

3.3 Results

Our previous work [15] tested the baseband unit
under evaluation by setting the CPU and fan
speed to their maximum value (100%). Fig. 5
and Fig. 6 show the resulting prediction out-
comes for this unseen data. Fig. 7 and Fig. 8
show the residual, showcasing the performance
of the Random Forest Regressor (with and with-
out cross-validation) and the XGBoost Regressor,
respectively. The blue graph in the prediction
figures represents the measured ambient tem-
perature values obtained from a sensor during
laboratory tests, which serves as the model’s tar-
get value for accurate prediction. We opted not
to apply cross-validation for the XGBoost regres-
sor due to its generally strong performance with
smaller datasets while recognizing that Random
Forest could benefit from cross-validation. It is
worth noting, however, that the Random For-
est regressor with and without cross-validation
yielded similar results, indicating that the appli-
cation of cross-validation did not significantly
impact its performance. In addition, it is essen-
tial to recall that in our previous study [15], the
conclusion drawn remains relevant to the current
research. The permutation and feature importance
analyses indicated that our choice of features was
adequate. The figures from the previous study
showed that the temperature sensors were the pri-
mary contributors to the model’s performance and
prediction accuracy. At the same time, it is pos-
sible to exclude the power and voltage readings
without any loss of prediction accuracy. The result
shows we do not need further investigation into the
XGBoost Regressor as the Random Forest model
performs well enough with lower overall residuals,
even with a few more kinks in the predictions.
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Fig. 5 Ambient Temperature Predictions, CPU=100%
and fan=100%, RF Prediction

Fig. 6 Ambient Temperature Predictions, CPU=100%
and fan=100%, XGB Prediction

A well-performing model should exhibit resid-
uals, i.e., the difference between the measured
(actual) value and the predicted value, scattered
randomly around the horizontal line at zero on
the y-axis, with no apparent patterns or trends.
The absence of patterns or trends indicate that
the model effectively captures the relationship
between the features and the target variable and
that there is no further information that it could
employ to enhance its predictions. On the other
hand, if the residual plot displays patterns or
trends, such as a U-shape or a curve, the model
fails to satisfactorily capture the underlying rela-
tionships between the features and the target
variable.

Including additional information could
improve the models’ predictions avoiding under-
fitting or overfitting. Underfitting occurs when a
model or algorithm fails to capture the underlying
trend of the data, resulting in poor performance
on training and testing data. Underfitting occurs
when the training dataset is too small, the model
needs to be more complex, or the data needs

Fig. 7 Scatter plot of residuals between predictions and
the measured value for a baseband with CPU=100%,
fan=100%, and ±1◦C threshold displayed, RF

Fig. 8 Scatter plot of residuals between predictions and
the measured value for a baseband with CPU=100%,
fan=100%, and ±1◦C threshold displayed, XGB

to be more precise. Overfitting happens when
a model is too complex and learns from noise
or inaccurate data entries in the training set,
leading to poor performance on testing data. An
over-fitted model indicates the need to explore
the reduction of the model complexity, use early
stopping during training, or implement regular-
ization, among others. Upon observing the graphs
in Fig. 7 and Fig. 8 along with the graphs in Fig.
5 and Fig. 6, it is evident that the Random Forest
and XGBoost regressors are capable of making
predictions with a high degree of accuracy, with-
out under- or overfitting and exhibiting errors
between the range of ±1◦C.

To further evaluate the accuracy of the predic-
tions, we calculated and compared the mean abso-
lute error (MAE) and R-squared (R2) between
the model’s prediction and the measured ambient
temperature of either the testing or the unseen set.
These metrics provide insight into how well the
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model is performing and how much of the varia-
tion in the data can be explained by the model.
For instance, a low MAE suggests that the average
difference between the predicted and actual values
is small. In contrast, a high R2 value indicates that
the model explains a large proportion of the vari-
ance in the target variable - and vice versa. Table 2
shows the result. The models are trained success-
fully with relatively low error and high accuracy
based on the metrics’ values for the testing data,
suggesting that the model fits the test data well
and can make reliable predictions. Moving on to
the metrics for the unseen data, it suggests that
the model can generalize well and make accurate
predictions on data that it has not seen before.
The fact that the MAE value is lower for the
unseen data than the test data suggests that the
model has not overfitted to the testing data and
is not capturing noise or irrelevant information.
In general, these metrics indicate that the model
has high accuracy and can be considered a reliable
model for predicting ambient temperature.

3.4 Predictions after updated data
handling

In the figures below, the ambient temperature pre-
dictions using the Random Forest model are pre-
sented, the test case CPU=100% and Fan=100%
and only the temperature range 20-55 degrees to
exclude the sharp decrease, when the tempera-
tures have been rounded to the nearest integer and
no rounding along with the respective residuals.

Fig. 9 Temperatures are rounded to nearest integer

In Table 2, we present the calculated mean
absolute error and the value R2 for the two cases

Fig. 10 Scatter plot of residuals when temperatures are
rounded to nearest integer.

Fig. 11 Temperatures presented in non integer values

above, together with the resulting metrics from
the previous study (”Prev.”).

It is important to note that ”New” indi-
cates no rounding up, but the new data handling
is implemented. While ”Pred. Int.” means only
the answers, i.e., the predictions are discretized.
Finally, ”Int.” refers to the training and unseen
data, as well as the predictions, being rounded up
to the nearest integer.

Table 2 MAE and R2 values for different models when
predicting baseband ambient temperature at
CPU=100% and Fan=100%

Metric RF RF RF RF
Prev. New Pred. Int. Int.

Test MAE 0.795 0.916 1.033 1.054
Test R2 0.984 0.982 0.981 0.981
Unseen MAE 0.654 0.556 0.717 0.770
Unseen R2 0.987 0.986 0.986 0.987
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Fig. 12 Scatter plot of residuals when temperatures are
not rounded to nearest integer.

Although the rounding up to integer approach
yields slightly inferior results, which can be
observed when comparing the Figures 9 and 10
with 11 and 12, it is deemed preferable to present
temperatures as integer values because of their
intuitive interpretation. In addition, using integer
values simplifies the data handling process, ensur-
ing consistency in the number of decimals across
all data points.

Our research indicates that the discretization
process should follow the completion of all calcu-
lations, even though the resulting MAE and R2

values seen in Table 2 fall within runtime vari-
ance. The input data should remain original, and
the process should round only the resulting pre-
dictions to integers. It is important to note that
rounding input data to integers can decrease per-
formance metrics due to error propagation each
time a rounding up occurs. While this may be self-
explanatory, it was necessary to investigate as our
goal is to present predictions in integer format.

3.5 Predictions on
under-represented training data

To assess the performance of our trained model
on data that is under-represented we tested our
models’ predictions on a dataset for which the
unseen data are: CPU load = 30%, fan speed =
70%, DSP = Low, ambient temperature range =
0− 35◦C and relative humidity range = 0%. The
predictions can be seen in Figures. 13, 14 and 15.
Insufficient dataset refers to a situation where the
prediction test case lacks adequate representation
in the training dataset concerning the parameter
settings. It was also interesting to investigate the

Fig. 13 Ambient Temperature Predictions, CPU=30%
and Fan=70%, interpolation of MV

effect of the updated data handling on insufficient
data. Figures 14 and 15 show the effect of delet-
ing missing values from the data set and rounding
them to the nearest integer, respectively.

Fig. 14 Ambient Temperature Predictions, CPU=30%
and Fan=70%, deletion of MV and Non-integer
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Fig. 15 Ambient Temperature Predictions, CPU=30%
and Fan=70%, deletion of MV and Integer

Note that the increased number of ”triangles”
in the Figures only indicates consecutive test exe-
cution at the same temperature. Figure 13, 14,
and 15 clearly show a case of overfitting. Possible
reasons for overfitting could be:

• Insufficient training data: When the training
dataset is small, the model may learn the noise
or specific patterns present in the limited data.
Increasing the amount of training data can help
alleviate this issue.

• Feature overfitting: When the model has access
to irrelevant or noisy features with no predictive
power for the target variable, it may overfit by
learning patterns specific to the training data.
Feature selection or dimensionality reduction
techniques can help address this issue.

• Complex model architecture: Models with high
complexity, such as those with a large number
of parameters, have a higher tendency to over-
fit. Simplifying the model architecture, reducing
the number of parameters, or using regulariza-
tion techniques can mitigate overfitting.

Table 3 shows how the value of MAE in the
case of prediction based on an insufficient training
dataset is higher than that obtained with an ade-
quate number of variables in the training dataset
(compare with Table 2) for both test and unseen
data. An MAE greater than two indicates that,
on average, the model’s predictions deviate from
the actual temperature by more than two degrees
Celsius. This level is unacceptable; the goal is to
keep the error below one degree Celsius. An R2

of 0.94 indicates that the model is still explain-
ing 94% of the variance in the data, which is still
relatively high, but not as high as the previous

value of 0.98. We calculate the updated data and
prediction handling metrics, which we reported as
”New” and ”Int.”.

Table 3 MAE and R2 values for
different models when predicting
baseband ambient temperature at
CPU=30% and Fan=70%

Metric RF RF RF
Prev. New Int.

Test MAE 0.897 0.893 1.032
Test R2 0.985 0.982 0.980
Unseen MAE 2.144 1.899 2.053
Unseen R2 0.947 0.963 0.956

4 Conclusion and Future
Work

Our research used Random Forest and XGBoost
Regressors to predict a baseband board’s ambi-
ent temperature accurately. We exceeded previous
approaches in precision, marking a significant
advancement in the field. We used hyperparam-
eters to optimize tree-based models, which are
known for their suitability in regression activities,
and cross-validation to evaluate the performance
of the Random Forest regressor. The XGBoost
Regressor and cross-validation of the Random
Forest Regressor didn’t show significant improve-
ment in model performance with further data
handling optimization. However, our meticulous
approach to data handling optimization instils
confidence in the robustness of our research, and
we focused on the Random Forest Regressor only.
The well-trained Random Forest model exhibited
impressive accuracy, achieving a mean absolute
error (MAE) of 0.654 or less and R-squared values
nearing 0.987 on previously unseen data. Impor-
tantly, the model’s robustness was confirmed by its
improved MAE and R-squared values, signifying
high confidence levels. Furthermore, permutation
and feature importance analyses highlighted the
key drivers of the model’s performance, revealing
that temperature sensors significantly influenced
the predictions. Conversely, it was determined
that power and voltage readings could be safely
excluded from the model’s attributes as they do
not significantly impact temperature prediction.
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Further investigation into data handling and
presentation of the ambient temperature predic-
tions was done. We could conclude from the anal-
ysis that deletion of missing values did not greatly
affect the accuracy of the predictions. Looking
at how the metrics changed with what data was
rounded up, we can see that the MAE increased
both when only input data was rounded up and
when input data along the resulting predictions
were converted to nearest integer but the R2-value
remained approximately the same. Thus rounding
up to the nearest integer is best to perform only
on the resulting predictions and not on the input
data which is used for training the model, as this
can result in unforseen error propagation, which
will be done for better presentation of the tem-
peratures. Any sort of rounding up in the case of
insufficient data did not help the case, the MAE
grew and the R2-value increased.

Finally, predicting the ambient temperature is
the first step to putting into practice those thermal
throttling and preventive maintenance policies
that we have indicated as the primary objective
of our research (compare with Section 1.3). Pur-
suing the research’s goals requires future study in
two different but parallel domains:

• Use the ambient temperature prediction along
with system resources (computer, networking,
and memory) to obtain a hardware fault predic-
tion.

• Use the prediction of ambient temperature as
a critical variable in the runtime product’s life
cycle evaluation as a function of the environ-
mental parameters.
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