
Low-level Anomaly Detection in Embedded
Systems Using Machine Learning

1st Carlo Vitucci*
Technology Management

Ericsson AB
Stockholm, Sweden

carlo.vitucci@ericsson.com
*Corresponding author

2nd Daniel Sundmark
Computer Science and Software Enigineering

Mälardalen University
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Abstract—Let us consider an embedded system as a specific
combination of hardware and software that is capable of consis-
tently providing a certain service. Depending on the boundary
conditions of the system, such as the working environment and
the number of users served, we can say that the statistical
distribution of resource usage is a characterization of the
embedded system itself and its footprint. The consequence of
this distinguishable footprint for embedded systems is that it
becomes possible to use the statistical deviation of the resource
usage distribution to identify anomalies. In this paper, we will
analyze which Performance Metric Unit counters (e.g., CPU
usage, memory usage) and resource profiles (e.g., system logs,
performance metrics) are most characteristic for detecting a low-
level anomaly: an alteration of the firmware working cycle or
the propagation of a hardware error in the system. We will do
this by using baseband products for radio access networks. We
will demonstrate that using a machine learning model makes it
possible to distinguish both the firmware cycle alteration and the
hardware error reporting with an accuracy of more than 99%
on unseen and new dataset.

Index Terms—Anomaly Detection, Machine Learning, Embed-
ded System, Fault Detection

I. INTRODUCTION

An embedded system is a specific combination of hardware
and software designed to perform a certain function or provide
a certain service [1]. Although updating the software running
on the system is always possible, an embedded system operates
under fixed principles, consistently reacting to external stimuli
based on predetermined design rules. This consistency allows
the system to exhibit deterministic behaviour (hard real-time)
or quasi-deterministic behaviour (soft real-time). As a result,
an embedded system displays an execution profile that, based
on input and working conditions, shows a statistically constant
hardware resource usage distribution over time. Akin to what
might be considered the system’s ”fingerprint.” In the Radio

Fig. 1: Interrupt-driven path

Access Network (RAN) domain, the Baseband Unit (BBU) is
a crucial embedded system dedicated to performing encoding,
decoding, modulation, demodulation, and other digital oper-
ations required to handle signals to and from the radio units
(Remote Radio Heads, or RRH) for wireless transmission [2].
The most common mechanism for signalling between the
central processor and devices in the system is the interrupt.
The propagation of interrupts follows a three-level process
(see Figure 1): a hardware device either signals information or
detects a possible malfunction and generates an interrupt —
a trigger asynchronous to the software execution — which is
sent to the CPU. The firmware, microcode hosted into BIOS,
UEFI or low-level software, processes the interrupt, translating
it into an exception recognized by the operating system. The
OS then suspends the current software execution, calls a ded-
icated routine to interpret the specific hardware trigger, and,
based on the result, determines which task to execute next [3].
The impact of interrupts on software execution becomes clear
from this description: to process devices information, the
system undergoes a ”suspension.” If the device is conveying
useful data, this suspension becomes part of the system’s
execution profile, ensuring the service’s delivery. However,
if the interrupt signals an error, the suspension reflects the
overhead of error handling rather than contributing to the



Fig. 2: Research Method

service, thus temporarily limiting system availability. In other
words, error management introduces statistical deviations in
the embedded system’s fingerprint. In embedded systems,
memory devices can report both Corrected Errors (CE), when
hardware knows how to fix the issue, and UnCorrected Errors
(UCE), when hardware cannot resolve the fault using ECC
algorithm [4], [5].

This paper examines the impact of CE propagation on an
embedded system’s fingerprint. It applies machine learning
techniques to perform the inverse process, detecting CE events
solely through statistical variations in the system’s fingerprint.
We will validate this approach through two use cases. First,
we use error injection to induce a functional anomaly in the
system and demonstrate how our method identifies firmware-
level anomalies. Second, we use a board with a corrupted
memory device that periodically generates CEs for a specific
address and demonstrate that our approach can also identify
anomalies caused by error propagation within the operating
system.

II. RESEARCH METHOD
Research Question: Can machine learning algorithms de-

tect anomalies in embedded systems by analysing statistical
deviations in resource usage?

The paper is a quantitative empirical study [6] that aims
to examine the relationships between anomalies and resource
usage using a machine learning approach. The research uses an
industrial baseband board system hosting a Linux distribution
based on the 6.6.23 kernel version to evaluate the anomaly
detection algorithms. We will use only a limited amount of
operating system features and files:

• Linux features [7]
– Top: the program provides a dynamic real-time view

of a running system. We use Top for a system
summary information recall.

– free: the program provides the total amount of free
and used physical and swap memory in the system,
as well as the buffers and caches used by the kernel.

• Linux files [7]
– /proc/slabinfo: the file collects statistics on objects

used by the kernel.
– /proc/stat: the file collects kernel statistics.
– /proc/interrupts the file collects the number of in-

terrupts per CPU and IO device.

The data refer exclusively to industrial baseband boards, and
this paper uses them in respect of a confidential agreement.
The baseband unit runs in stand-alone, without actual traffic
and Radio Access Technology (RAT) applications. The pro-
gram ”stress” simulates load and resource overload conditions.
”stress” is a simple yet powerful tool designed to impose
a configurable amount of CPU, memory, I/O, or disk stress
on a Linux system. By simulating heavy workloads, allows
administrators to observe how the system responds under
pressure. The research method has three phases (see Figure 2):

• Data Handling: Understand what, how and when moni-
toring data.

• Data Engineering: Data inspection and cleaning, dataset
scaling, preparing data for the model.

• ML Modeling: compare model’s performance using train-
ing and testing dataset and verify the model with unseen
data.

III. RELATED WORKS

The problem of detecting an operating anomaly for an
embedded system has recently captured research attention,
especially with the increasing data availability. The potential
for further research in this area is vast, especially consid-
ering the increasing data availability. Employing algorithms
and machine learning techniques is the most natural and
logical approach for automatically analysing vast amounts of
information that would otherwise be impossible to process.
When analysing anomaly detection in embedded systems, the
research unanimously considers the system’s tendency to have
a statistically traceable behaviour as an advantage. Restrepo-
calle et al. [8], for example, used sampling with and without
error injection and statistical variation to classify the system
impacts. The study prefers relative sampling for the meters,
that is, sampling the gap in the counters from the last sample.
Unfortunately, the work focuses exclusively on the statistical
distribution of the error and does not apply the same concept to
the characterization of the system fingerprint. Also Tahmasebi
et al. [9] used embedded system profiles to identify anomaly
using error and error behaviour models. Another example is
the work of Yoon et al. [10]. This study presents a new
mechanism for identifying abnormal behaviour at the system
level using the predictable nature of embedded applications
in real-time. It is interesting work, but the result is limited
to the detection of software anomalies without considering
the validation in case of hardware anomalies. The recognition
of the statistical fingerprint of embedded systems, on the
other hand, is the starting point of Ezeme et al. [11]. The
interesting aspect of their work is that they have recognized
a deep relationship between kernel and user space with the
Linux operating system. Based on this consideration, they
sampled the statistical variation of the kernel to characterize
the entire system. They identified anomalies through a new
HAbAD model (Hierarchical Attention-based Anomaly De-
tection) based on Long Short-Term Memory neural networks
(LSTM) [12] and with attention mechanisms [13]. Ott et
al. [14] preferred to use application-related samples instead.



They use perf [15] counters to characterize the application
under analysis and two methods for detecting anomalies: the
Hidden Markov Model (HMM) [16] and Long Short Term
Memory (LSTM) neural networks, which are trained on the
data of the program’s performance counters to enable classifi-
cation of the program. Work that has a specific impact on the
system, although quantified at less than 5%, focuses exclu-
sively on the software anomaly. It must be clear which kernel
objects are most important for system characterization or what
sampling dynamics they have used. As for the algorithms
used to detect anomalies in an embedded system, one of the
most common methods is the K-means for clustering, which
is associated with some metrics for distance determination.
For example, Abbasi et al. [17] used temperature sampling
and processor energy consumption as indicators of the system
fingerprint. The statistical correlation of sample distribution is
also a recurring algorithm. Abbas et al. [18] used it to detect
anomalies in the energy consumption statistics.

IV. FIRMWARE-LEVEL ANOMALY DETECTION

The scope of this use case is to create a disturbance on
the firmware layer and verify if it is possible to classify
the anomaly caused by a firmware layer ”intrusion” using
a machine learning algorithm. We use an Error injection
mechanism to add activities to the firmware layer. Using
error injection means acting on a command register read by
low-level software and translated into a Memory Reference
Code (MRC) processor microcode action. The MRC will then
generate an interrupt, following the same Signal flow (see
Figure 1) as an actual Corrected Error (CE) detected by the
memory controller device.

TABLE I: List of Attributes for Firmware-layer Anomaly
Detection (jiffy is the Linux kernel system clock time unit.
10ms in our system)

Name Source Meaning
CPU
cpu load Top command CPU Load, average
CPU sys /proc/stat file per core ”jiffies” time

in kernel execution
CPU iow /proc/stat file ”jiffies” time waiting

for I/O completion
CPU sof /proc/stat file the amount of ”jiffies”

servicing softirq
CTX /proc/stat file total number of context

switches across all CPUs
MEMORY
mem u free Command Memory used in MB
mem c free Command Memory available per

process memory in MB
KERNEL OBJECTS
kmalloc 32 /proc/slabinfo Memory buffer

for kernel 32bytes
kmalloc 64 /proc/slabinfo Memory buffer

for kernel 64bytes
signal cache /proc/slabinfo Memory used

for kernel signalling

A. Data Sourcing

Since higher data quality is mandatory for a high quality of
the wanted model, we start to verify the correlation between
collected counters and the CE event. Source in Table I shows
the preliminary Linux features and files selection done. The
CE correlation analysis reduced the number of attributes
significant for the dataset. The sampling interval is set to
1 second, a frequency that ensures the data collected is
meaningful: instead of recording the absolute values of the
attributes, the dataset will reflect the differences from the
most recent reading. Due to the testing conditions, a stand-
alone board running a resource-stressing program, the network
object counters are not significant for the fingerprint. Similarly,
the constant environment temperature condition in the lab
environment renders the temperature sensors insignificant for
the fingerprint. The data collection is done using a bash script.
Table I shows the attributes for the dataset after correlation
analysis. For training the model in supervision mode, the
dataset contains CE attribute that could be:
- CE = 0 if there was no CE event in the latest second
- CE = x if there were x CE events in the latest second
and it is collected using /proc/interrupts file, because the
number of CE Signalling to OS is collected in THR counter
(Threshold counter). The bash file is executing at a pace of 1
second. Every three sampling, an error injection is generating
a CE.

B. Data Engineering

To ensure high data quality, we collected a statistically
significant number of samples for each attribute to have a
representative distribution. This mechanism covered all the
attributes of the whole process. However, in this section, we
report the results of the attributes we used to model machine
learning. We filter the dataset to have only numeric values for
the attributes and remove samples with CE not equal to 0 or 1,
if any. The statistics population has 180713 samples with CE
= 1. The data are balanced, by means of random selection of
majority class population (CE = 0) that ends up in a 180713
+ 180713 samples for the whole dataset.

Figure 3 shows the Correlation between the attributes. The
system fingerprint as a function of CE shows helpful statistics
distribution variation for CPU Kernel usage, average CPU
load, context switch and memory for signalling. For ML
modelling, we also considered a dataset transformation by

TABLE II: Data Engineering summary

Description Value
Original Data Shape 361426
Transformed Data Shape 346969
Transformed Train Set Shape 274683 (80%)
Transformed Test Set Shape 72286 (20%)
Numeric Features 10
Outliers Threshold 0.05
Normalize method zscore
Random seed 223



Fig. 3: Attributes correlation index

normalizing the attribute values using the zscore method [19],
[20], since it will improve the accuracy of the model [21],
[22]. We also remove 5% of the outliers for all attributes.
Table II shows the summary of the Data Engineering phase.
The setting of the random seed allows the ML model design
reproducibility.

C. ML modeling

For comparing machine learning models and validating
the chosen model, we used the pycaret 3.0 [23] library, an
open-source, low-code machine learning library in Python that
automates machine learning workflows.

1) ML model Analysis:: many researchers use clustering
algorithms to determine anomalies. Our approach is to find
a supervised classification mechanism. The objective of the
model is not just to identify a statistical deviation, but to
distinguish the anomaly’s cause. In this section, we focus
on the anomaly due to an alteration of the system low-level
software (low-level - anomaly).

Our comparison between mathematical models of super-
vised classification shows that the Random Forest model yields
the best result with its thorough approach (see Figure 4).

Fig. 4: ML models’ quality parameters comparison

(a) Confusion Matrix

(b) Feature Importance

Fig. 5: Random forest classifier model results

Supervised classification with a Random Forest model is a

Fig. 6: ML models result using a new dataset



type of machine learning in which the objective is to predict
the class (the supervised attribute) based on the other attributes
(features) in the dataset. The precision (accuracy) of 99%
indicates that the model correctly predicts the outcome in
about 99% of the cases. Mathematically, the accuracy is:

Accuracy =
True Positives + True Negatives

Total Samples

In our case, an accuracy of 99% means that the model makes
errors only in 1% of the predictions. This value reflects the
ability of the model to capture the relationships between the
attributes and the target class, proving our initial hypothesis
that it is possible to predict an anomaly in terms of statistical
variation of the system fingerprint.

From a physical point of view, the result (see Figure 5.(b))
reflects that the main attributes such as CPU sys, CPU load,
CTX, signal cache and K64 are the ones that the model consid-
ers most relevant. In practice, these variables mainly determine
the system’s behaviour, suggesting that the supervised anomaly
exclusively impacts these few system metrics. Conversely, we
could say that the anomaly has minimal but still meaningful
impacts on the load (CPU load), on the system performance
(CPU sys), and on the kernel objects (system memory (K64),
signalling memory (signal cache) and context switch (CTX)).

The confusion matrix (see Figure 5.(a)) shows how the
model’s predictions compare to the actual values. The model
missed 5% of the time when it should have predicted positively
and misclassified 1% of the samples as positive when they
were not. An accuracy of 99% is an excellent result and sug-
gests that the Random Forest model is accurate. However, the
5% false negatives indicate a margin of risk in missing some
anomalies, while the 1% false positives are less worrying but
may indicate unnecessary alarms. The most critical attributes
(such as CPU sys and CPU load) are the ones that play the
most significant role in the correct classification, and the model
relies mainly on them to distinguish the classes. Eventually,
we verify the quality of the model using a new dataset batch.
Attributes data are collected and clean using the same methods
as described above. Figure 6 shows the result: accuracy is still
higher than 99%.

V. HW FAULT AS ANOMALY DETECTION

The purpose of this second use case is to measure the cost
of propagating an error generated by hardware to the operating
system. It is, therefore, essential to avoid intrusive techniques,
such as error injection, to avoid falling into precisely the same
mode as the first use case. In other words, this test requires a
baseband that contains an actual hardware fault. The operating
system should not see the expectation as a fatal condition.
Otherwise, it invokes a restart. For this purpose, we used a
memory device affected by a single-bit flip. We have activated
a policy of background patrol scrubbing [24] in the board
firmware so that, periodically, the memory controller performs
ECC checks over the whole memory. The result is a board that
produces 5-7 CE interrupts in one hour. Of course, the CE = 1

Fig. 7: Attributes correlation index, after balancing method

class will be highly unbalanced, and we must face this problem
during data engineering.

A. Data Sourcing

The data sourcing with this use case is following the method
as described in Section IV, but with two essential differences:

1) The sampling is done using a faulty board, where the
memory device contains a single-bit flip error.

2) The sampling pace is 1 second, and we must under no
circumstances use error injection.

B. Data Engineering

For the statistical analysis of resource usage distribution,
we collected more than 738000 samples in different data
batches, of which only 4200 reported a fault condition from the
memory controller — something a bit more than 0.5 % of the
total. The impressive imbalance for the minority class needs
action or the machine learning model will be of low quality,
suffering from the problem of bias towards the majority class
and misleading accuracy. We know that the SMOTE balancing
technique [25] alters the statistical distribution of attribute val-
ues since the mechanism generates completely new synthetic
samples [26]. Instead, we preferred the random oversampling
technique that does not alter the statistical distribution of
the attributes [27]. We included multiple data batches up to
fifty times until generating 95193 samples of class CE =
1. Therefore, considering CE = 1 as the minority class, we
selected the same number of samples for the majority class
in a completely random way, obtaining the balance of the
classes. With the balanced dataset, we applied the same data
engineering technique as described in Section IV.

Figure 7 shows the correlation between the attributes after
balancing method. The result has similar correlation values



TABLE III: Data Engineering summary, Faulty board

Description Value
Original Data Shape 190386
Transformed Data Shape 182799
Transformed Train Set Shape 144721 (80%)
Transformed Test Set Shape 38078 (20%)
Numeric Features 7
Outliers Threshold 0.05
Normalize method zscore
Random seed 223

of the original dataset, proving the quality of the balancing
method. The interesting outcome from the correlation graph
is that even the fault board use case has the CE fingerprint
as a function of CPU Kernel usage, average CPU load,
context switch and memory for signalling. Table III shows
the summary of the Data Engineering phase.

C. ML modelling

Section IV-C describes the ML model accuracy, comparison
methodology and the reason behind the decision to use classi-
fication and not clustering mechanism for anomaly detection.
Those concepts also remain valid in the actual faulty board
use case.

1) ML model Analysis:: the random forest classifier model
performs better than the others, even in the faulty board case
(see Fig. 8). The precision (accuracy) of 99% indicates that
the model correctly predicts the outcome in about 99% of the
cases. Fig. 9.(a) shows that the model is working efficiently
with the false positive and generates more false negative.
Fig. 9.(c) shows the measure of quality when we make the
model work on a new dataset, that is, a new batch of data
distinct from those used for training and testing the model.
The verification shows that the false positive rate is about
11%, while the false negative rate is well below 1%. Fig. 9.(b)
shows the most importance features. In a physical point of
view, they match those used by the model in Section IV-C.

Fig. 8: ML models quality parameters comparison, faulty
board

(a) Confusion Matrix

(b) Feature Importance

(c) Quality parameter with new dataset

Fig. 9: Random forest classifier model results, faulty board

Analysing the different weights of the features in the two cases
allows a better understanding of what happens in the system.
In the case of low-level software anomaly, the kernel’s load
is necessarily higher (average value is 168.13 jiffies). Instead,
in the case of faulty boards, there is only the last part of
the interrupt flow (kernel load average value for CE=1 event



is 54.159 jiffies), the signalling to the operating system. So
CPU sys loses weight, and CTX raises weight since the need
to handle an exception will inevitably cause an increase in the
number of context switches. Eventually, Fig. 9.(c) shows the
high model performance with a new dataset batch.

VI. CONCLUSIONS AND FUTURE WORKS

The statistically constant behaviour over time for the embed-
ded system translates into a resource usage whose statistical
distribution becomes the system’s fingerprint. We considered
two use cases: the ability to detect a firmware anomaly and the
ability to intercept a hardware error condition in the system
memory. We used a baseband product for the radio access
network. We tried to find a supervised machine learning model
to identify the statistical variation in resource usage due to
low-level anomaly (firmware or hardware). The random forest
classifier is the best model for both cases, with excellent
performance: 99% accuracy for the test data. As a future
development of this project, it will be interesting to include
metrics for actors known to have a weight in determining the
system fingerprint: the number of users and the environmental
conditions. The number of users and managed Ethernet traffic
are clearly connected. In a separate study [28], we demon-
strated the direct relationship between ambient conditions and
the temperature sensors available in the hardware architecture.
We can enhance the model by incorporating temperature
sensors along with Ethernet traffic data—both incoming and
outgoing—before proceeding to a new round of training.
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