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Abstract— Collaborative human-robot teams enhance effi-
ciency and adaptability in manufacturing, but task scheduling
in mixed-agent systems remains challenging due to the uncer-
tainty of task execution times and the need for synchronization
of agent actions. Existing task allocation models often rely on
deterministic assumptions, limiting their effectiveness in dy-
namic environments. We propose a stochastic scheduling frame-
work that models uncertainty through probabilistic makespan
estimates, using convolutions and stochastic max operators for
realistic performance evaluation. Our approach employs meta-
heuristic optimization to generate executable schedules aligned
with human preferences and system constraints. It features a
novel deadlock detection and repair mechanism to manage
cross-schedule dependencies and prevent execution failures.
This framework offers a robust, scalable solution for real-
world human-robot scheduling in uncertain, interdependent
task environments.

I. INTRODUCTION

Collaborative robotics in manufacturing promises en-
hanced efficiency and adaptability by combining robotic pre-
cision with human dexterity [4]. While autonomous systems
are effective, their high cost and inflexibility in dynamic
settings have led to the rise of human-robot collaboration.
This paradigm introduces significant scheduling challenges
due to uncertainties in task durations and human preferences.
In modern production environments, scheduling is further
complicated by cross-schedule dependencies among multiple
robots and human operators. For example, a human may
need to complete an inspection before a robot proceeds with
packaging, or several agents might coordinate transport tasks
to avoid bottlenecks, or multi-agent tasks cannot start until
all assigned agents have arrived. Mismanagement of these
dependencies can lead to deadlocks and inefficient work-
flows. Additionally, uncertainties arise from robotic delays,
environmental obstacles, and human factors such as fatigue,
emphasizing the need for robust scheduling frameworks that
integrate ergonomic constraints and individual preferences.

This work tackles the Multi-Robot Task Allocation
(MRTA) [3] problem in a stochastic, human-in-the-loop con-
text. Differently from traditional deterministic approaches,
our method models task and routing durations as random
variables with probability distributions. By analytically de-
riving the makespan distribution using convolutions and
stochastic max operators, we obtain bounds that better reflect
real-world variability. By incorporating human preferences,
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our framework not only enhances worker engagement but
also achieves a more balanced workload distribution.

Prior work has explored similar challenges. Palmer et
al. [15] computed stochastic objective functions under Gaus-
sian assumptions, and our earlier work [6] extended planning
to single-robot systems with non-restrictive distributions.
Other studies, such as those using Probabilistic Simple
Temporal Networks [16] or adaptive scheduling based on
real-time human performance [19], address temporal con-
straints and reactive adaptation, yet they do not fully capture
the stochastic and interdependent nature of collaborative
manufacturing tasks. Markov Decision Processes models
uncertainties in the effects of task executions [1], while we
model uncertainties of task and routing durations, which may
encompass some relevant aspects of such uncertainties, e.g.,
retries after failure. While some research has focused on
individual agent performance [18], [9] or ergonomic risks [7],
these efforts often overlook global task dependencies and the
cross-schedule precedence constraints–namely, start-after-
completion, start-after-start, complete-after-completion, and
complete-after-start–as defined in [8].

Our primary contribution is a novel stochastic schedul-
ing framework for MRTA that explicitly accounts for ex-
ecution uncertainties and human-centric considerations. A
novel deadlock detection and repair mechanism is intro-
duced to manage the inherent cross-schedule dependen-
cies. Finally, a novel heuristic is presented for guiding the
search of a Greedy Randomized Adaptive Search Proce-
dure (GRASP) [2] able to find optimized solutions to the
scheduling problem in a limited time frame. We validate the
correctness and accuracy of the proposed framework using
Monte Carlo (MC) simulations, and a deterministic variant of
the framework is compared. Further, the GRASP algorithm
and a Genetic Algorithm (GA) [11] are evaluated across test
instances of varying complexity. A hybrid approach, where
GRASP is used to provide initial solutions for GA, is also
investigated.

II. MOTIVATING EXAMPLE

In discrete manufacturing processes [14], activities such
as assembly, inspection, and transport are orchestrated to
process parts efficiently. Each part or batch is handled
through a sequence of tasks–each assigned to an individual
or a team of agents–that collectively form the basis for a
multi-agent scheduling problem.



Manufacturing Process Model

A typical process model outlines the series of activities
needed to transform an order into a finished product. For
example, an order may progress through:

• Fetch: Retrieving parts from storage locations and de-
liver them to a workstation.

• Assemble: Combining parts to form a product.
• Inspect: Evaluating product quality.
• Transport: Moving products between workstations.
• Palletize: Grouping finished products for shipment.

Each activity is characterized by an input queue (holding
parts to be processed) and an output queue (storing processed
parts), where the output of one activity becomes the input
for the next. A task represents the execution of one such
activity, including subtasks such as loading, processing, and
unloading. The number of parts handled in a task depends on
the order specifications and activity constraints. Importantly,
aside from the initial order queue, all queues follow a
First-In, First-Out (FIFO) rule, and certain activities (e.g.,
Assemble) may require strictly sequential processing due to
limited space or resources.

Task Network: A Motivating Example

From the process model, a task network is constructed
by simulating the flow of parts through the queues and
activities. This network is modeled as a directed acyclic
graph (DAG) where each node represents a task, and edges
denote precedence constraints (PCs). Figure 1 illustrates a
typical task network for sequential activities. Key features
of this network include:

• The initial task τF , which marks the start of the process.
• A primary set of PCs enforcing FIFO access within the

same activity—ensuring that, in sequential operations, a
task cannot start until its predecessor completes (start-
after-completion), while in concurrent setups, it may
start once the preceding task has begun (start-after-
start) and complete once the preceding task has finished
(complete after completion). For the activity connected
to the order queue, the start of tasks are not restricted.

• A secondary set of PCs governing transitions between
consecutive activities; for instance, a task in the next
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Fig. 1: Task network for a manufacturing scenario.

activity cannot start until the previous activity has fully
populated the common queue (start-after-completion).

• A tertiary set of PCs arising from queue capacity limits,
where a task’s completion may depend on subsequent
activities removing parts to create the necessary space
(complete-after-start).

The process is considered complete when the final task
τL of the last activity is finished. This motivating exam-
ple highlights the complexity inherent in task scheduling
for manufacturing systems, where managing sequential and
interdependent tasks is critical to avoiding bottlenecks and
ensuring smooth operations.

III. DEFINING THE SCHEDULING PROBLEM

This paper formulates the scheduling problem as an op-
timization model that assigns tasks to agents in a feasible
and efficient manner. The model must respect PCs, handle
uncertainty in task and routing durations, avoid deadlocks,
and incorporate human preferences. The problem falls within
the MRTA taxonomy [3], [13], [12] as an XD [ST-MR-TA]
(Single-Task robots (ST), Multi-Robot tasks (MR), Time-
extended Assignment (TA) with cross-schedule dependencies
(XD) as defined in [5]). In the following, we introduce
the general assumptions and notation, describe the stochas-
tic modeling of durations and the computation of plan
makespans, and finally define the objective function.

General Assumptions and Notation: Let T be the set of
all tasks to be completed, and A be the set of all available
agents (robots and humans). Each task τ ∈ T can be executed
by a team of agents. For every task τ , a decision variable

fτ ∈ {1, . . . ,mτ}
selects one of the mτ predefined team formations. These
represent alternative ways to perform τ , specifying the
number and types of agents required and their given roles
in carrying out the task. For example, fτ = 1 requires a
robot and a human performer, while fτ = 2 requires a robot
and a human supervisor. The set of agents assigned to τ is
denoted by

Fτ ⊆ A,

which must satisfy the requirements of the chosen formation.
Agents execute tasks sequentially. For each agent a ∈ A, let

τai ∈ T, i = 0, . . . , na,

represent the i-th task in agent a’s sequence (with τa0
denoting the starting location or initial state). We define the
set of immediate predecessor tasks for task τ as

Papt
τ = {τai−1 | τai = τ, a ∈ Fτ}.

PCs are imposed by the edges of the process model, as
illustrated in Figure 1, categorized as follows:

• Pcps
τ : Tasks whose completions precede the start of τ .

• Psps
τ : Tasks whose starts precede the start of τ .

• Pcpc
τ : Tasks whose completions precede the completion

of τ .
• Pspc

τ : Tasks whose starts precede the completion of τ .



In addition, the overall plan must be free of deadlocks, which
can occur if the agents’ scheduled routes, in combination
with PCs, create cyclic dependencies between tasks.

A. Stochastic Modeling of Durations
Task execution and agent routing times are modeled as in-

dependent, nonnegative random variables with generic proba-
bilistic distributions. We define the routing duration for agent
a ∈ A moving from task t to task τ as Ra,t,τ . The duration
required to execute task τ under team formation fτ with
agents Fτ is defined as Aτ,fτ ,Fτ

. Initial distributions may be
set as uniform (based on expert estimates of minimum and
maximum values) and later refined with empirical data from
observations in simulation or reality. In the following, we
provide some stochastic definitions needed by the proposed
scheduling framework.

Definition 1 (Random Variable). A random variable X on
the probability space (Ω,F ,P) is a measurable function X :
Ω → R such that {ω ∈ Ω : X(ω) = x} ∈ F for all x ∈ R.

Definition 2 (Probability density function (PDF)). The PDF
fX(x) of a random variable X is defined as:

fX(x) = P[ω ∈ Ω | X(ω) = x]

Definition 3 (Cumulative distribution function (CDF)). The
CDF FX(x) of a random variable X is defined as:

FX(x) = P[ω ∈ Ω | X(ω) ≤ x]

Definition 4 (Percentile). The k-th percentile of a proba-
bilistic distribution fX(x) is defined as:

pk = inf{x : FX(x) ≥ k}, 0 < k < 1.

Definition 5 (First-Order Stochastic Dominance [17]). Con-
sider two random variables, X and Y , with CDFs FX and
FY . X has a first-order stochastic dominance over Y , if and
only if ∀x, FX(x) ≤ FY (x), and ∃x, FX(x) < FY (x). The
stochastic dominance is denoted as X ≥st Y .

Definition 6 (Independence). Two random variables X and
Y are independent if the pair of events {X = x} and {Y =
y} are independent for all x, y ∈ R. Formally,

P[X = x, Y = y] = P[X = x]P[Y = y], ∀ x, y ∈ R.

Definition 7 (Convolution or sum of random variables). If
X and Y are independent random variables on (Ω,F ,P),
then Z = X + Y has probability density function, when X
and Y are discrete random variables

P[Z = z] =

∞∑
x=−∞

fX(x)fY (z − x), ∀ z ∈ Z, (1)

and for continuous random variables:

P[Z = z] =

∫ ∞

−∞
fX(x)fY (z − x) dx. (2)

Definition 8 (Maximum between random variables [6]). If
X and Y are independent random variables on (Ω,F ,P),
then Z = max(X,Y ) has cumulative probability function

FZ(z) = FX(z)FY (z)

B. Plan Duration Computation

The completion time of a task has a probability distribution
which is determined by the durations along the critical
paths–ordered sequences of routing and task durations from
the start of the plan to that task. We denote this completion
time as K(τ) and define:

K(τ) = max
(
C(τ)

)
, (3)

where C(τ) is the set of computed completion durations
along all critical paths for task τ . To compute these durations,
we recursively define the start and completion duration
operators. The start duration operator S(τ) is given by:

S(τ) = M
(
F
( ⋃

t∈Papt
τ

(
C(t) + max

( ⋃
a∈Fτ∩Ft

Ra,t,τ

))

∪
⋃

t∈K(Pcps
τ )

C(t) ∪
⋃

t∈K(Psps
τ )

S(t)
))

,

(4)

and the completion duration operator C(τ) is defined as:

C(τ) = M
(
F
(
S(τ) +Aτ,fτ ,Fτ

∪
⋃

t∈K(Pcpc
τ )

C(t) ∪
⋃

t∈K(Pspc
τ )

S(t)
))

,

(5)

with initial durations, {S(τ), C(τ)|τ = τa0 } = 0 ∀a ∈
A, and where a sum of a set and a single element is
performed element-wise. M(·) is an operator that merges
durations from a set into a smaller representative set. F(·)
is an operator that prunes inferior durations from a set,
where X is inferior if ∃Y |max(X,Y ) = Y . The operator
K(·) selects the subset of preceding tasks that are critical
due to causality, e.g., a preceding task is not critical if
assigned to the same agent. The purpose of these operators
is to enhance the computational efficiency and accuracy
by reducing S(τ) and C(τ). Further efficiency is gained
by avoiding the recomputation of S(τ) and C(τ) with the
same τ . Table I provides examples illustrating the action of
the merge operator, M(·), where X and Y are composed
of independent durations. A merge of them occurs if their
combined duration, max(X,Y ), can be expressed with in-
dependent operands only.

C. Plan Duration Bounds

Exact analytical computation of K(τ) is challenging due
to the possibility of dependencies among completion dura-

TABLE I: Examples of the merge operator, M(·)

# X Y M({X,Y })

1 A+B A+ C {A+max(B,C)}
2 A A+B {Y }
3 B +D max(B,C) {max(B +D,C)}
4 B max(B + C,D) + E {Y }
5 B +D max(B,C) + E {X, Y }



tions, C(τ). Instead, the estimate Ke(τ) is computed as

Ke(τ) = max
(
C ind(τ)

)
, (6)

where C ind(τ) is the same set as C(τ) under the assumption
of independence. We define a lower bound Kl(τ) with CDF

FKl(τ) = min
x∈Cind(τ)

Fx, (7)

where Fx is the CDF of x. Note that the computed comple-
tion durations of all critical paths C(τ) may generally have
shared tasks that will make the duration of the individual
path dependent on the others. We show that considering
the duration of the different critical paths as independent
random variables, C ind(τ), provides safe bounds, in terms of
stochastic dominance, for the case of dependent variables.

Theorem 1. Assume that K(τ) from Eq. 3 represents the
exact task duration and Ke(τ) from Eq. 6 is its estimate.
Further, let Kl(τ) be defined as above. Then,

Kl(τ) ≤st K(τ) ≤st Ke(τ),

where ≤st denotes the stochastic order.

Proof. Since C(τ) is composed of nonnegative, continuous
random variables combined via + and max operators, the
resulting durations are exact and positively dependent (i.e.,
they are non-decreasing functions of any shared random
variable). Eq. (7) and Theorem 2 (in the Appendix) imply
that if C(τ)com denotes a comonotonic version of C(τ), then

max(C(τ)com) ≤st max(C(τ)) ≤st max(C ind(τ)).

Thus, Kl(τ) ≤st K(τ) ≤st Ke(τ).

D. Human Preferences and Ergonomic Constraints

For a human agent a, task allocation considers ergonomic
and motivational factors. An idle time quota, QI

a ∈ [0, 1],
can be specified, defining a guaranteed minimum level of free
time that can be spent on breaks or other (non-planned) tasks.
Preferred activities and roles are specified with indicator
La,τ,fτ to be 1 if task τ with team formation fτ is preferred,
and 0 otherwise. An activity time quota, QP

a ∈ [0, 1], defines
the desired proportion of the active time to be spent on
preferred activities and roles. The total activity time for an
agent, including planned tasks and routing, is given by

Ta =

na∑
i=1

(
Ra,τi−1,τi +Aτi,fτi ,Fτi

)
,

and the total preferred activity time is

Pa =

na∑
i=1

La,τi,fτi

(
Ra,τi−1,τi +Aτi,fτi ,Fτi

)
.

We require that the estimated median idle time quota for
human agent a, denoted by

QI∗
a =

p50(Kl(τL))− p50(Ta)

p50(Ke(τL))
, (8)

satisfies
QI∗

a ≥ QI
a, ∀ a ∈ H, (9)

where p50(·) returns the median and H ⊆ A is the set of
human agents. Similarly, the median preferred activity time
quota

QP∗
a =

p50(Pa)

p50(Ta)

should satisfy

QP∗
a ≥ QP

a , ∀ a ∈ H, (10)

Unlike constraint Eq. (9), this is considered a soft constraint.

E. Objective Function

The primary objective is to minimize the makespan, rep-
resented by Ke(τL)—the upper bound completion time of
the final task τL. Given a specified risk level k ∈ [0, 100],
we aim to minimize the k-th percentile of the makespan,
pk(Ke(τL)). A low k promotes plans with better chances to
reach lower makespans (higher risk) while a high k promotes
plans with better chances to avoid higher makespans (lower
risk). To account for human-centric constraints, penalty terms
are added when the estimated quotas in Eqs. (9) and (10) are
not met. The objective function to be minimized is:

J = pk(Ke(τL)) +
∑

a∈{H|na>0}

[[
QP

a −QP∗
a

]+
p50(Ke(τL))

+
[
QI

a −QI∗
a

]+
p50(Ta)

]
, (11)

where [x]
+
:= max(x, 0).

IV. SOLVING THE SCHEDULING PROBLEM

Due to the stochastic representation of the makespan, de-
veloping an exact solution algorithm for the scheduling prob-
lem is highly challenging. Consequently, we adopt variants
of two metaheuristic approaches to search for sub-optimal
solutions, namely a GRASP algorithm with a novel efficient
search heuristics and a GA approach inspired by [10]. These
approaches are designed to explore the solution space while
handling uncertainty, PCs, deadlocks and human preferences.

A. GRASP Algorithm

The GRASP algorithm builds a solution incrementally,
starting from an empty solution and in each step selecting
and scheduling a combination of one task, one related team
formation, and a matching agent set. A task is selectable if
unscheduled and all of the task’s predecessors are already
scheduled in the partially built solution. Selection is guided
by a heuristic function (see Eq. (12)) that for any selectable
combination estimates the impact of scheduling the related
task at the end of the sequences of the related agents in
the partial solution. From the best-ranked alternatives, a ran-
domized selection is made, with higher-ranked combinations
having higher selection probabilities. The selected task is
denoted by τi for step i ∈ {1, 2, . . . , |T |}. After the last
step |T |, the resulting solution is repaired for deadlocks (see
Section IV-C) and compared against the current best solution
using the objective function defined in Eq. (11).



GRASP Heuristic Function: In step i, the heuristic
function H(τi, fτi , Fτi) estimates the incremental cost of
scheduling a selectable combination for τi, fτi and Fτi . It
sums estimates of makespan increase and deviations from
preferred idle and activity times using (non-stochastic) me-
dian values of task and routing durations, defined as:

H(τi, fτi , Fτi) =

[
C(τi)− max

{τj |j<i}
C(τj)

]+
+∑

a∈Fτi
∩H

[[
Ta − C(τi)(1−QI

a)
]+

+
[
QP

a Ta − Pa

]+]
, (12)

where

C(τ) = max
{
S(τ) + p50(Aτ,fτ ,Fτ ), max

t∈Pcpc
τ

C(t), max
t∈Pspc

τ

S(t)
}
,

S(τ) = max

{
max
t∈Papt

τ

(
C(t) + max

a∈Fτ∩Ft

p50(Ra,t,τ )
)
,

max
t∈Pcps

τ

C(t), max
t∈Psps

τ

S(t)

}

and S(τa0 ) = C(τa0 ) = 0 ∀a ∈ A.

B. Genetic Algorithm (GA)

In the GA framework, an individual represents a feasible
solution and is encoded by a chromosome that includes
grounded decision variables, such as the sequence of tasks
for each agent (with multi-robot tasks appearing in multiple
agent sequences) and the selected team formation for each
task. The algorithm proceeds as follows:

1) Initialization: An initial generation, i.e., a first popu-
lation of individuals, is generated by assigning tasks in
a random order to randomly selected team formations
with corresponding agent sets. These assignments are
then adjusted to ensure that all intra-schedule PCs
are satisfied. Deadlocks are resolved as described in
Section IV-C.

2) Creating Next Generation: A set of mutation op-
erators is applied to randomly selected individuals
from the current generation. Although these mutations
preserve intra-schedule PCs, they may temporarily
introduce deadlocks, which are subsequently repaired.

3) Evaluation and Sorting: The new generation is eval-
uated using the objective function (see Eq. 11) and
sorted accordingly. An elitism strategy retains a small
fraction of the best-performing individuals from the
previous generation, replacing the least fit individuals.

Steps 2-3 are repeated until convergence is achieved. To
enhance diversity, four mutation operators are used. Task-
to-Idle moves a task from one agent to another with most
surplus idle time, inserting it at a valid position. Team For-
mation changes a task’s team formation—retaining current
agents if possible, otherwise reassigning them. Task Insert
transfers a task to a different agent compatible with the team
formation. Task Swap exchanges tasks between two agents
while potentially changing their team formations.

Algorithm 1: Detect and repair deadlocks
function DETECTANDREPAIRCYCLES
DOfound← false
while ¬DOfound do

for t ∈ T do Lt ← ∅ ▷ Reset lock sets
for t ∈ T do Dt ← false ▷ Reset DO flags
d← 0 ▷ Reset number of ordered tasks
SEARCHDO(τF ) ▷ Search from the first task
if ∃a, x, t|x = τa

i ∧ t = τa
j ∧ i < j ∧ x ∈ Lt ∧ x ̸≻≺ t then

if ∃ alternative such a, x, t combinations: a′, x′, t′ then
Select a, x, t|x ⊁ x′ for all combinations

SWAPTASKORDER(a,x,t) ▷ Remove cycle with agent a
for {a′, x′, t′|x′ = x ∧ a′ ̸= a ∧ (t ≺ t′ ∨ t = t′)} do

SWAPTASKORDER(a′,x,t′)▷ Avoid new cycle with a′

else DOfound← true ▷ Done. No cycles in schedule
function SEARCHDO(τ )

Dτ ← true ▷ DO for τ is decided
d← d+ 1
Dd = τ ▷ Store the dependency order of tasks
if ∃τo|τ ∈ Pcps

τo ∧¬SAMEACTIVITY(τo,τ ) then
χ = {t|t ∈ Papt

τo ∪P
cps
τo ∪P

sps
τo ∪P

cpc
τo ∪P

cps
τo ∧¬Dt}

for t ∈ χ do Lt ← Lt ∪ τo ▷ τo is locked by t

if χ = ∅ then SEARCHDO(τo) ▷ Search the unlocked τo
if ∃τs|τ ∈ Pcps

τs ∪P
sps
τs ∪P

cpc
τs ∧SAMEACTIVITY(τs,τ ) then

χ = {t|t ∈ Papt
τs ∪P

cps
τs ∪P

sps
τs ∪P

cpc
τs ∪P

cps
τs ∧¬Dt}

for t ∈ χ do Lt ← Lt ∪ τs ▷ τs is locked by t

if χ = ∅ then SEARCHDO(τs) ▷ Search the unlocked τs
for t ∈ Lτ do

Lτ ← Lτ \ t ▷ τ no longer locks t
if ∄x|t ∈ Lx then SEARCHDO(t) ▷ Search the unlocked t

C. Deadlock Search and Repair

Deadlocks occur when agent schedules introduce cyclic
dependencies that violate the acyclic structure of the task
network. To eliminate these deadlocks (see Algorithm 1 for
detailed procedure), we employ a two-stage procedure.

a) Dependency Order (DO) Search:: Starting from the
initial task τF , the algorithm recursively tries to determine a
valid dependency order for all tasks, from τF to τL, taking
into account both PCs and agent schedules. This process
identifies lock-sets Lt, which consist of tasks that cannot be
scheduled until task t’s dependency order is decided.

b) Detect and Repair Cycles:: Starts with a DO search.
If circular dependencies are detected (i.e., some lock-sets
remain unresolved), a repair step is invoked to identify a pair
of tasks t and x ∈ Lt that are assigned to the same agent
and lack a definitive ordering. Their order is swapped in the
agent’s schedule and if x is a multi-agent task, the order of
x with a corresponding task t′ in another agent’s schedule
may also be swapped to avoid creating a new cycle. The DO
search is reinitiated and the process is rerun iteratively, until
no lock-sets remain and a valid dependency order is found.

V. EVALUATION

This section evaluates the proposed stochastic computation
approach using Monte Carlo simulations and a deterministic
counterpart. It also compares GRASP with two variants of
the GA approach, for solving the scheduling problem. The



TABLE II: Use case settings.

Use case #T #R #H Use case #T #R #H
1A 11 2 1 1B 11 3 2
2A 22 2 1 2B 22 3 2
3A 33 2 1 3B 33 3 2
4A 44 2 1 4B 44 3 2
5A 55 2 1 5B 55 3 2

*(#T - no of tasks; #R - no of robots; #H - no of humans)

Python code used to obtain the results is available online1.

A. Numerical Results

Ten use cases, summarized in Table II, are set up with
different numbers of tasks and agents. Routing and task du-
rations are modeled as uniform distributions with randomized
intervals. While these data are simplified, the methodology
supports a real-world scenario with unrestricted distributions
modeled from empirical data. All use cases are based on a
process model exemplified in Section II. For use cases 2A
and 2B, each with 22 tasks, the constructed task network
is illustrated in Figure 1. For larger problem instances, the
increase of tasks is accomplished by an increased length of
the order list, which expands the task network vertically. All
tasks have 3 alternative team formations with different agent
combinations: a single robot, a single human, or a robot
with a human supervisor. Assemble tasks have a 4th team
formation with a collaborating robot-human pair. Desired
human idle time is 40%, and all humans prefer Assemble
activities in any team formation and the role of supervisor
for all activities except Fetch. In a real-world scenario, the
methodology enables different value selection strategies, e.g.,
from direct human input. The selected risk value, k = 50,
i.e., a medium risk in the objective Eq. (11).

MC simulations are used to validate the makespan com-
putation approach by representing the ground truth. An MC
distribution is generated from 100 thousands of deterministic
makespan computations, using Algorithm 2, where input task
and routing durations are randomized from their modeled
distributions. To account for PCs, Algorithm 2 accumulates
task and routing durations in the dependency order identified

1https://github.com/anders-lager/stochastic-scheduling

Algorithm 2: Deterministic makespan computation
function COMPUTEMAKESPAN
S0 ← 0; C0 ← 0; i← 0
while i ≤ |T | do
i← i+ 1
τ ← Di ▷ Visit tasks in dependency order
for a ∈ Fτ do

t←AGENTPREVIOUSTASK(a,τ )
Si = max(Ct +Ra,t,τ , Si)

for t ∈ Pcps
τ do Si = max(Ct, Si)

for t ∈ Psps
τ do Si = max(St, Si)

Ci = Si +Aτ,fτ ,Fτ

for t ∈ Pcpc
τ do Ci = max(Ct, Ci)

for t ∈ Pspc
τ do Ci = max(St, Ci)

return C|T |
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Fig. 2: Makespans of best schedules found.

by the deadlock Algorithm 1. Makespans for the best sched-
ules found (with any algorithm) are illustrated in Figure 2.
They include makespan bounds, completion durations for
critical paths, and MC distributions. The difference of the
makespan bounds, Kl(τL) and Ke(τL), is illustrated by
the gray area between their CDFs and by their Kullback-
Leibler Divergence (KLD). Additionally, the graphs indicate
the makepan of a deterministic approach computed with
Algorithm 2 using median values of the modeled input task
and routing durations.

The parameters of GRASP and GA were manually tuned
to limit the convergence time while providing good solutions.
GRASP randomly selects a combination from the 4 best



heuristically ranked alternatives, with selection probabilities
8/15, 4/15, 2/15, and 1/15 from the best to the fourth best.
GA uses a population of 200 with 5% elites, and each muta-
tion type occurs with a probability of 30%. The algorithms
are run 20 times for each use case with different seeds. Each
run is limited to 270 minutes. A comparative analysis of
algorithmic convergence over time is presented in Figure 3. It
includes a warm-started variant of GA, denoted GAW, whose
initial generation is created with GRASP solutions.

B. Evaluation discussion

The makespan graphs show the MC distribution being
wedged between Kl(τL) and Ke(τL) for all use cases,
as expected from Theorem 1. Consequently, the usage of
Ke(τL) in the objective, Eq 11, guarantees the makespan
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Fig. 3: Convergence of scheduling algorithms.

is never underestimated for a schedule. Additionally, the
usage of Kl(τL) for the estimate of idle time quota, Eq. 8,
guarantees human idle time never is overestimated. The
estimation accuracy, e.g., represented by the KLD value,
depends on the C(τF ) distributions and their degree of
mutual dependence. For these examples, the accuracy has
a variation among use cases without a clear correlation
with problem size. The deterministic approach tends to
underestimate the median makespan and generally suffers
from the missing representation of uncertainty. The fast
convergence of GRASP compared to GA demonstrates the
efficiency of the proposed GRASP heuristics. The capacity
of GRASP to find good solutions faster is demonstrated
in all use cases. The GAW approach clearly benefits from
the GRASP performance, with a convergence starting from
a more optimized population than GA. In general, GA is
outperformed by both GRASP and GAW. For the smallest
use cases 1A and 1B, all algorithms converge to the solutions
of equal cost, but the actual plans are not necessarily the
same. GAW finds the best solutions for intermediate use
cases 2A through 4B, while GRASP finds the best solutions
for 5A and 5B. On average, the difference between GRASP
and GAW is generally small without a clear advantage to
either of them unless a really fast solution is needed, which
would make GRASP the better alternative.

VI. CONCLUSION

In this paper, we presented a framework for scheduling
in human-robot collaborative manufacturing environments.
Our approach models the complex interplay between stochas-
tic task and routing durations, precedence constraints, and
human-centric factors such as ergonomic preferences and
idle time requirements. By formulating the scheduling prob-
lem as an optimization model that accounts for uncertainty
and potential deadlocks, we have established a robust basis
for effective multi-agent task allocation.

Our contributions demonstrate that the integration of
stochastic modeling with human-centric scheduling can sig-
nificantly enhance the reliability of scheduling strategies
in resilient manufacturing systems by producing realistic
plans. Future work will focus on extending the framework to
support real-time scheduling adjustments and incorporating
more detailed risk models, as well as validating the approach
in real-world industrial settings.

Overall, the proposed framework advances the state of
the art in collaborative robotics by providing a scalable,
adaptable solution to the challenges inherent in human-robot
manufacturing systems.
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[3] B. P. Gerkey and M. J. Matarić. A formal analysis and taxonomy of
task allocation in multi-robot systems. The Int. Journal of Robotics
Research, 23(9):939–954, 2004.



[4] L. Gualtieri, I. Palomba, E. J. Wehrle, and R. Vidoni. The oppor-
tunities and challenges of sme manufacturing automation: safety and
ergonomics in human–robot collaboration. Industry 4.0 for SMEs:
Challenges, opportunities and requirements, pages 105–144, 2020.

[5] G. A. Korsah, A. Stentz, and M. B. Dias. A comprehensive taxonomy
for multi-robot task allocation. The Int. Journal of Robotics Research,
32(12):1495–1512, 2013.
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APPENDIX

Definition 9 (Comonotonicity). Two random variables X
and Y are said to be comonotonic if there exists a com-
mon underlying random variable U and two non-decreasing
functions f and g such that:

X = f(U) and Y = g(U),

For comonotonicity, there are a few relevant properties,
including the following.
Joint Cumulative Distribution Function: The joint cumu-
lative distribution function of X and Y is given by:

FX,Y (x, y) = min(FX(x), FY (y)),

where FX(x) and FY (y) are the marginal cumulative distri-
bution functions of X and Y , respectively.

Copula: The copula of comonotonic random variables cor-
responds to the Fréchet–Hoeffding upper bound:

C(u, v) = min(u, v), for u, v ∈ [0, 1].

Maximum Positive Dependence: Comonotonicity repre-
sents the strongest form of positive dependence:

• The rank correlation (Spearman’s ρ) and linear correla-
tion (ρ) are maximal.

• The conditional distribution of Y given X = x is
deterministic.

Theorem 2 (Stochastic Dominance of Maxima). Let X and
Y be nonnegative random variables (not necessarily iden-
tically distributed) with continuous cumulative distribution
functions (CDFs) FX and FY , respectively. Consider three
random vectors (Xind, Yind), (Xcom, Ycom), and (Xdep, Ydep)
such that:

1) Xind ∼ X , Yind ∼ Y , and Xind and Yind are indepen-
dent.

2) (Xcom, Ycom) is a comonotone coupling of X and Y .
3) (Xdep, Ydep) is any other positively dependent coupling

of X and Y with copula Cdep satisfying ∀u, v ∈ [0, 1]:

Cind(u, v) = uv ≤ Cdep(u, v) ≤ min(u, v) = Ccom(u, v).

Let us define the maxima Zind := max(Xind, Yind), Zcom :=
max(Xcom, Ycom), and Zdep := max(Xdep, Ydep).

Then the following stochastic order holds:

Zcom ≤st Zdep ≤st Zind,

which means that for all z ≥ 0:

P (Zind > z) ≥ P (Zdep > z) ≥ P (Zcom > z).

Proof. Independent case:

P (Zind ≤ z) = P (Xind ≤ z, Yind ≤ z).

Since Xind and Yind are independent:

FZind(z) = FX(z)FY (z).

Comonotonic case:

P (Zcom ≤ z) = P (F−1
X (U) ≤ z, F−1

Y (U) ≤ z).

Since F−1
X (U) ≤ z ⇐⇒ U ≤ FX(z) and similarly for Y ,

it follows that:

FZcom(z) = min(FX(z), FY (z)).

Positively Dependent case: For any positively dependent
coupling:

FZdep(z) = Cdep(FX(z), FY (z)).

Given the bounds on the copula:

FX(z)FY (z) ≤ Cdep(FX(z), FY (z)) ≤ min(FX(z), FY (z)).

Therefore, we conclude that:

FZind(z) ≤ FZdep(z) ≤ FZcom(z),

which implies:

P (Zind > z) ≥ P (Zdep > z) ≥ P (Zcom > z),∀z ≥ 0.


