A Field-based Approach for Runtime Replanning in
Swarm Robotics Missions

Gianluca Aguzzi*, Martina Baiardi*, Angela Cortecchia*, Branko Miloradovic’, Alessandro PapadopoulosT,
Danilo Pianini*, Mirko Viroli*
*Department of Computer Science and Engineering, University of Bologna, Cesena, Italy
{gianluca.aguzzi, m.baiardi, angela.cortecchia, danilo.pianini, mirko.viroli} @unibo.it

TDepaItment of Electrical and Computer Engineering, Milardalen University, Milardalen, Sweden
{branko.miloradovic, alessandro.papadopoulos} @mdu.se

Abstract—Ensuring mission success for multi-robot systems
operating in unpredictable environments requires robust mech-
anisms to react to unpredictable events, such as robot failures,
by adapting plans in real-time. Adaptive mechanisms are espe-
cially needed for large teams deployed in areas with unreliable
network infrastructure, for which centralized control is imprac-
tical and where network segmentation is frequent. This paper
advances the state of the art by proposing a field-based runtime
task replanning approach grounded in aggregate programming.
Through this paradigm, the mission and the environment are
represented by continuously evolving fields, enabling robots to
make decentralized decisions and collectively adapt the ongoing
plan. We compare our approach with a simple late-stage replan-
ning strategy and an oracle centralized continuous replanner.
We provide experimental evidence that the proposed approach
achieves performance close to the oracle if the communication
range is sufficient, while significantly outperforming the baseline
even under sparse communication. Additionally, we show that
the approach can scale well with the number of robots.

Index Terms—multi-robot coordination, runtime adaptation,
self-organization, runtime replanning,

I. INTRODUCTION

Coordinating teams of autonomous robots to execute com-
plex missions, such as environmental monitoring, search-and-
rescue, and warehouse logistics, hinges on solving Multi-
Robot Task Allocation (MRTA) and path-planning problems
under spatial, temporal, and resource constraints [1], [2].
Classical MRTA methods compute task assignments and tra-
jectories offline, assuming a static environment and perfect
robot reliability; in practice, however, hardware malfunctions,
energy depletion, and communication blackouts frequently
invalidate precomputed plans when the mission runs [3]. To
maintain mission performance in face of such disturbances,
online planners must integrate fresh sensor data and updated
robot states to trigger replanning whenever required. Two
primary categories of runtime events demand this capability:

e Robot failures. Unexpected breakdowns or depleted bat-

teries leave tasks uncompleted and disrupt planned
routes [4].

This work is funded by: The Knowledge Foundation (KKS), MARC
project No. #20240011, The Swedish Research Council (VR), PSI project No.
#2020-05094, “WOOD4.0 - Woodworking Machines for Industry 4.0”, (CUP
E69J22007520009) Emilia-Romagna regional project, call 2022, art. 6 L.R. N.
14/2014, and the Italian PRIN project “CommonWears” (2020 HCWWLP).

e Mission modifications. Newly discovered obstacles,
added tasks, or shifting priorities require rapid realloca-
tion of robot efforts [5].

Absent timely replanning, these disturbances cascade, causing
severe inefficiencies or outright mission failure. This type of
event can lead to two main outcomes, which may also occur
together: fask replanning (reassigning tasks to different robots
and consequently recomputing the path) and path replanning
(recalculating a robot’s route to a task, usually because the
environment has changed). In this paper, we use the term
replanning specifically to refer to task replanning.

Centralized replanning architectures leverage global infor-
mation to compute high-quality plans, but exhibit single points
of failure and suffer superlinear growth in computational
and communication load as team size increases [5]. Semi-
centralized schemes, such as rotating leaders or intermit-
tent coordinators, mitigate some vulnerabilities but remain
susceptible to network partitions and overload under sparse
connectivity.

Distributed planning frameworks promise resilience and
near-linear scalability by delegating decision-making across
the robot team [6]. Existing distributed heuristics, however,
typically separate replanning triggers from plan synthesis and
degrade in solution quality as the number of robots or tasks
grows, leading to brittle behavior under high failure rates and
dynamic mission requirements.

This paper introduces a fully runtime-based, field-guided
replanning approach grounded in Aggregate Computing
(AC) [7], a functional macro-programming paradigm in which
mission objectives and the environmental state are represented
as continuously evolving computational fields over space and
time [8], [7], [9]. In this approach, each robot executes the
same aggregate program asynchronously and exchanges only
local field values with its neighbors. Through this representa-
tion, fields continuously encode the distributed system state,
enabling both replanning decisions and plan construction to
determine:

o« When to trigger replanning by monitoring fields that
represent the global view of active robots and their
positions—changes in these fields (e.g., due to robot

failures or new arrivals) automatically initiate distributed
consensus on the need for replanning;

« How to construct new task assignments and path plans
using fields that maintain collective knowledge of task
completion status and robot capabilities across the net-
work.

By unifying replanning triggers and plan synthesis within
a single field-based abstraction, this mechanism eliminates
centralized bottlenecks while ensuring that runtime complexity
scales linearly with team size, because they leverage only the
messages sent from their neighbors.

This paper makes three key contributions:

1) A novel runtime replanning mechanism based on compu-
tational fields.

2) An extensive simulation study demonstrating that the
field-guided approach maintains near-optimal mission
completion times under moderate communication ranges
and high failure rates, outperforming late-stage and semi-
centralized baselines.

3) A comparative evaluation against an oracle-supported
centralized replanner that quantifies the trade-off between
communication range and performance degradation.

By embedding both replanning triggers and plan generation
within a single aggregate program, this field-guided strategy
delivers robust, fully distributed coordination suitable for
large-scale, unpredictable environments.

II. BACKGROUND

A. Planning and Replanning in Multi-Robot Systems

Planning and task allocation are central challenges in multi-
robot systems, where teams of robots must efficiently dis-
tribute and complete tasks despite communication, compu-
tation, and energy constraints. Early formulations modeled
planning as a Travelling Salesman Problem (TSP), where a
single robot visits a set of locations at minimal cost [10]. The
problem was later extended to multiple agents through the
Multiple Travelling Salesman Problem (mTSP) [11], capturing
the need to partition and sequence tasks across several robots.
In this work, our problem can be mapped into mTSP.

Solving the mTSP is considerably more complex than the
single-agent case and has motivated a variety of approaches,
including Genetic Algorithms (GAs) [12], [13], [14], auction-
based methods [3], and consensus-based bundling algorithms
for limited replanning [15]. However, many of these strate-
gies assume perfect communication among agents, an as-
sumption often violated in field deployments where network
segmentation, delays, or losses are common. In certain scenar-
ios, handling communication constraints is critical. Auction-
based planners [3] typically require frequent exchanges, while
rendezvous-based approaches [16] mitigate prolonged dis-
connections at the cost of detours and delays. Some recent
methods [17] consider failures explicitly, but often assume
disruptions can be rapidly detected and shared among agents—
a nontrivial requirement in sparse or degraded networks.

In practical settings (such as search and rescue [18] and au-
tonomous environmental monitoring [19]) task requirements,
robot availability, and environmental conditions can change
unpredictably during mission execution. Thus, initial plans
must often be revised or rebuilt dynamically, motivating the
development of robust runtime replanning strategies.

Runtime replanning enables multi-robot systems to adapt
dynamically to failures, new tasks, and environmental changes
during mission execution. In contrast to static offline planning,
runtime replanning maintains mission effectiveness in non-
stationary, unpredictable settings. While centralized replan-
ning can achieve globally optimal plans in fully connected
networks [20], [14], it becomes impractical in scenarios with
limited bandwidth, mobile agents, or high failure rates. Thus,
decentralized self-adaptive replanning, often inspired by aggre-
gate computing [7] and gossip-based consensus protocols [21],
offers a promising alternative for resilient multi-robot mission
management.

Recent research has further explored the challenges of
runtime replanning under uncertainty. Bramblett et al. [22]
proposed an online epistemic replanning framework that en-
ables multi-robot teams to adapt their plans based on evolving
knowledge and beliefs about the environment and system state,
improving resilience to information delays and failures. Simi-
larly, Frasheri et al. [23] introduced GLocal, a hybrid approach
that combines global and local planning strategies to reallocate
tasks during mission execution dynamically, balancing the
benefits of centralized optimization and distributed adaptation.

Multi-Agent Planning (MAP) frameworks [24] further struc-
ture the replanning process by distinguishing between cooper-
ative distributed planning, where agents collectively synthesize
a global plan, and negotiated distributed planning, where
agents pursue individual goals while coordinating interac-
tions [25]. Recent surveys [26], [27] classify MAP approaches
based on agent autonomy, communication mechanisms, pri-
vacy preservation, and plan synthesis models.

In these settings, replanning must trade off between re-
sponsiveness, computational efficiency, and communication
overhead, while maintaining a consistent and convergent view
of the mission among participating robots.

B. Aggregate Computing in a nutshell

In this section, we will provide a brief introduction to AC
and its execution model, covering the concepts necessary to
understand the proposed approach.

AC [7] is a functional macro-programming approach for
developing self-adaptive systems. It is based on the notion
of computational field [8]: a distributed data structure that
maps points in space and time to values. Building on the
concept of computational fields, the Field Calculus (FC) [28],
introduces higher-order functional programming abstractions
that enable manipulation and composition of fields, relying on
local observations of the fields’ values. This paradigm has been
successfully applied in the past in several domains, including
crowd management [7], disaster detection and response [29],
and multi-drone coordination [30].

a) Execution model: In AC, all agents share the same
program, which is executed in asynchronous' rounds by every
agent indefinitely?. Each iteration of the loop consists of three
phases: sense, compute, and share. In the sense phase, the
agent collects information from its local environment (includ-
ing its previous state, if any) and from neighboring agents (by
processing any received messages). During the compute phase,
the agent executes the aggregate program using the collected
information, producing a local value, an updated state, and
messages to be sent to neighbors. Finally, in the share phase,
the agent transmits these messages to its neighbors.

b) Evolution in time and space: To evolve a field in
time and space, AC uses the share function [32], modeling
a stateful communication among neighboring agents. share
accepts a local value and a function that computes over a field
of values of the same type, producing a new value which is
returned and shared with neighbors:

fun <T> share(initial: T, op: (FieldkT>) —> T): T

Share can be used, for instance, to build a self-healing version
of the Bellman-Ford algorithm [33] to estimate the hop
distance from the closest device where a condition holds [34]:

import Double.POSITIVE INFINITY as infinity
fun bellmanFord(cond: Boolean) : Double =
share (infinity) { d —>
val minDistance = (d + 1.0) .minValue(infinity)
if (cond) 0 else minDistance

}

c) Computing distances: 1f we can estimate distances
from each neighbor, we can extend the previous algo-
rithm to estimate the physical distance between two situated
agents. Given a gps () function (returning coordinates) and
a haversine () function (computing great-circle distance),
we can estimate distances as:

fun distanceTo(cond: Boolean) = share(gps() to inf) {
val dists = it.first.mapValues {
haversine(gps(), it.value)
}
val minDist = (dists + it.second) .minValue (inf)
if (cond) 0 else minDist

d) Gossiping values: The previous example is self-
stabilizing—that is, they guarantee that after any transient fault
or change in the system, the computed values will eventually
converge to a correct and stable state [35]. Self-stabilization
is a crucial property for distributed algorithms, especially
in dynamic environments, as it ensures resilience to failures
and network changes. However, in some scenarios, we may
need to propagate information that does not self-correct if the
underlying data changes or disappears—for example, when we
want to quickly spread a value throughout the network, but do
not require the system to retract or update that value if it
becomes obsolete. In these cases, we use non-self-stabilizing

'Though not strictly required, devices generally operate at similar frequen-
cies.

2Reactive formulations of the execution model exist [31], which, albeit
increasing efficiency, leave the foundations of the execution model unchanged.

gossip protocols that can be implemented as follows:

fun gossip<T> (local: T, combine: (T, T) —> T) =
share(local) { it.foldValues(local, combine) }

Where local is the initial value contributed
by each node, For example, collecting all device
identifiers in the system can be achieved as follows:

val allIlds = gossip(setOf (localld), Set::plus)

Being the gossip function non-self-stabilizing, it does not
adapt to devices leaving the system or retracting their previous
information. For instance, if the temperature suddenly drops,
the system will keep reporting the previous maximum value.
This limitation of non-self-stabilizing gossip protocols is
well-known; self-stabilizing variants have been proposed [36].

e) Self-stabilizing building blocks: Since self-
stabilization is such an important property for distributed
systems, in the context of AC a library of fundamental
building blocks has been identified [34]. It includes functions
to propagate information (gradientCast, a family
of algorithms which includes the adaptive Bellman-Ford
algorithm introduced before); to accumulate information
(convergeCast), and to break the network symmetry
(sparseChoice, typically used to elect leaders). Notably,
the functional composition of these self-stabilizing blocks is
in turn guaranteed to be self-stabilizing. As a consequence,
versions of the gossip protocol built upon composition of
gradientCast and convergeCast are self-stabilizing.

f) Network partitioning and leader election: Self-
stabilizing leader election and network partitioning can
be performed in a distributed fashion in AC using
boundedElection [37]. Provided a measure of “strength”
for each candidate device and a maximum diameter,
boundedElection splits the network into partitions large
at most as the diameter, automatically electing new leaders
in case of failures or topology changes, with no central
coordination.

III. PROBLEM FORMULATION

The mission planning problem can be described as follows.
A team of m robots R = {ry,...,r,} must collectively
service a set of n tasks 7 = {¢1,...,t,}, each task being
visited exactly once by exactly one robot. Every robot r
departs from one of the designated source depots ¢ € X and
must finish at one of the designated destination depots § € A.

The superset containing all of the tasks 7 and depots is
defined as 7 := T U {X, A}. For simplicity, a superset con-
taining all source depot and tasks is defined as 7> := T U X.
Similarly, a superset containing all elements of the destination
depot and cities is defined as 72 := TUA. Traveling between
any two locations ¢ and j (whether tasks or depots) by robot r
incurs a nonnegative cost w;;,, and performing a task 4 requires
a robot-specific service time &;,..

The decision variable z;;, € {0, 1} defines if a robot 7 € R
performs task j € T immediately after task i € 7 and in that
case x;j, = 1, otherwise x;;, = 0.

The objective is to assign to each robot an ordered route,
i.e., a Hamiltonian path (a path that visits each task exactly
once) through its assigned tasks, to minimize the total sum of
travel and service costs across all robots, while ensuring that

1) each robot’s route starts and ends at a depot,

2) no robot revisits the same location, and

3) no subtours disconnected from a depot occur.

This can be formally written as an optimization problem that
minimizes the following cost function:

Jzz Z Z (wWijr + &ir)Tijr, (N
reRI€TE jeTA

which represents the total sum of durations of the plans of all
robots, and by the following constraints:

D wmye=1, VjeT, 2)
reERieT=

>N wge=1, VieT, (3)
reER jeTA

Z Z Tijr =].7 Vr € R, (4)
i€T=EjEA

Z Z Tijr = 1, Vr € R, (5
i€ jeTA

S wigp= > @ik, VYjET,VreR, (6)
ieT> keTA

ui7Uj+|T‘$Z'jT§‘T|71, VTGR,Vi,jET,?;#j. (7)
T =0, VieT,VreRr, (8)

Only one robot r € R can start (Eq. 2), and end (Eq. 3) each
task, and it can do it exactly once. The final destination of a
robot r must always be one of the destination depots (Eq. 4),
while the starting location must always be at one of the source
depots (Eq. 5). It is necessary to ensure that the same robot
that starts a task is the one that finishes it. This constraint
is given by (Eq. 6). We eliminate possible sub-tours with the
Miller-Tucker-Zemlin (MTZ) formulation (Eq. 7), where the
domain of variable wu; is defined as 1 < w; < n. Finally, it is
forbidden for robot r to travel from a task ¢ to the same task
1 (Eq. 8).

In real-time operation, robot failures and other runtime
disturbances invalidate portions of this plan, triggering the
field-based replanning mechanisms presented in this paper.

IV. FIELD-BASED REPLANNING

The challenge of runtime replanning in multi-robot systems
can be divided into two main parts: the distributed construction
of a new plan, and the distributed agreement on whether a new
plan is necessary.

The latter operation is critical when robotic swarms are
operating with uncertainties. In fact, distributed replanning is
an expensive operation that should be performed solely when
necessary, for instance, when the information upon which the
previous plan was based is no longer valid.

Leveraging the principles of aggregate computing, we pro-
pose to model the collective system state in the form of

fields, in such a way that its observation can be continually
performed. Changes in the observed collective state trigger
the distributed replanning. In short, the idea is to achieve dis-
tributed consensus, either implicitly or explicitly, on whether
there is need to replan and on which plan to perform. Of these,
deciding when to replan is the most challenging task, and the
main focus of this paper. We explore two primary strategies
grounded in aggregate programming: a gossip-based approach
and a leader-based approach.

A. Replanning Algorithm

While our primary contribution focuses on distributed coor-
dination mechanisms for triggering the replanning, we provide
a formal description of the task allocation algorithm used when
replanning.

Given the current state comprising active robots R, C R
and remaining tasks 7, C 7, we employ a greedy assignment
algorithm that iteratively allocates tasks to robots by minimiz-
ing marginal costs.

For each robot r; € R, and each unassigned task t; € 7,
we compute the assignment cost:

C(ti7 rj) = wcurrent(rj),i,rj + girj + wi,next(rj),rj (9)

where current(r;) denotes the location of robot ; at replan-
ning time (or its last assigned task), and next(r;) represents
the robot’s next destination (either its next assigned task or
destination depot 0).

The replanning procedure, formalized in Algorithm 1, main-
tains individual robot paths while minimizing the global mis-
sion completion time. The algorithm iteratively:

1) Identifies the robot-task pair (r*,¢*) with minimum
marginal cost;

2) Updates the robot’s path by inserting task t*;

3) Removes t* from the set of remaining tasks.

This process continues until either all tasks are assigned or no
feasible assignments remain.

Algorithm 1 Task Allocation for Replanning
Require: R, (active robots), 7, (remaining tasks)
Ensure: Assignment matrix X = [z;;,]
I X+0 > Initialize assignment matrix

2: while 7, # () do

3: (r*,t*) <= argmin,, er, t,e7, C(ti,75)

4: if C(t*,r*) < oo then > Feasible assignment exists
5: Update path of robot r* to include task ¢*

6: Teurrent(r),¢=,r+ <— 1 > Update assignment matrix
7: T+~ T, \ {t*}

8: else

9: break > No feasible assignments remain
10: end if

11: end while

12: return X

B. Distributed Consensus via Gossiping

In the gossip based approach (summarized in Algorithm 2),
each robot participates in a continuous gossiping protocol that
maintains a collective view of the system state. The approach
leverages the two distinct types of gossip mechanisms for
different purposes:

o Stabilizing gossip (gossip) collects and maintains con-
sistent information about the active nodes in the system
(their positions and identifiers). This view should only
change when the network topology changes, when robots
fail, or when new robots join the system.

o Non-self-stabilizing gossip (gossipNonStab) tracks
the completion status of tasks throughout the network
(tasksDone). This mechanism ensures that robots
maintain awareness of which tasks have already been
completed, preventing redundant work even when the sys-
tem topology changes. In this case, for each evaluation,
the robots will share their local view of the tasks they
have completed (tasksState).

In Algorithm 2, replanning is triggered whenever a robot
detects a significant change in the stabilized global view.
This global view represents the collective state of the system
(namely the active robots and their positions), as gathered
by the gossip protocol. Stabilization occurs when no changes
are perceived for a certain number of rounds. Typically,
replanning is needed when the set of active robots changes,
such as when robots fail or new robots join the system.
When hasChanged(nodelnfo) returns true, each node in-
dependently executes the replan algorithm based on their
shared understanding of: the current set of active robots
and their positions (nodelnfo); and the status (completed
or remaining) of all tasks in the mission (tasksDone). This
distributed computation effectively acts as a distributed state
machine, with nodes implicitly converging towards a shared
understanding of the new plan driven by the convergence of
the underlying fields representing the system state. When a
new plan is computed, each device checks if it is consistent
with the current system state via isConsistent(plan).
A plan is considered consistent if:

1) Each robot’s belief about the paths of all robots matches
what those robots have computed for themselves (i.e., if
robot A believes robot B will follow path P, then robot
B has indeed computed P as its own path).

2) Each robot’s belief about task assignments matches what
other robots believe (i.e., if robot A believes it is assigned
task 7', then all other robots also believe robot A is
assigned task 7).

If the plan is consistent, the robot begins following this
new plan via followPlan(plan). Otherwise, it waits until
the system state stabilizes. Through this process, each robot
obtains the plan segments relevant to its role in the mission
while maintaining coordination with the entire swarm.

Pros: This method offers high resilience. The failure of
any single node (barring catastrophic network partitions) does

not halt the replanning capability of the remaining system, as
the logic is fully replicated.

Cons: Significant computational overhead arises from
multiple nodes redundantly computing large parts of the global
plan (or even the entire one). Reaching consensus on the
system state and converging on the resulting plan execution
can also introduce latency, particularly in large or highly
dynamic environments where the fields take time to stabilize.

Algorithm 2 Distributed Gossip-based Runtime Replanning

Require: localld, localPosition, tasksState
1: nodelnfo < gossip(localld — localPosition)
tasksDone < gossipNonStab(tasksState)
if hasChanged(nodelnfo) then
plan + replan(nodelnfo, tasksDone)
if isConsistent(plan) then
followPlan(plan) else wait()
end if
else
followPlan(currentPlan)
end if

R I RN

—
4

C. Leader-Based Coordination

To reduce the computational effort required by the system,
a strategy could involve the dynamic designation of a robot as
leader. The leader is then responsible for initiating and com-
puting the replan. This approach leverages standard aggregate
computing patterns for robust leader election, network par-
titioning, and bidirectional communication within a partition
(cf. Section II-B).

As shown in Algorithm 3, each robot maintains its own
identifier (‘localld’) and position (‘localPosition’), while the
‘networkDiameter’ parameter defines the maximum number of
hops within the communication network. The algorithm uses
‘nodelnfo’ to track information about nodes in the network
through gossiping or converge-casting, and ‘tasksDone’ to
maintain the status of completed tasks as in the previous
algorithm. The ‘leader’ variable identifies the currently elected
leader node, while ‘plan’ represents the computed replanning
result when a change in network state is detected.

The replanning process typically unfolds as follows:

@ Leader election: A self-stabilizing distributed leader elec-
tion algorithm (boundedElection) ensures that a
unique leader is elected for the entire network (the
maximum distance is unbounded). In case of network
segmentation, every network partition will have an elected
leader.

@) State collection: The elected leader gathers the neces-
sary system state information. Data collection can be
implemented using convergeCast (cf. Section II-B)
directly, or any other self-stabilizing gossiping mecha-
nism. In this discussion, without loss of generality, we
call this self-stabilizing collection operation gossip.

@ Replanning trigger: The leader monitors the aggregated
state. Similar to the gossip approach, replanning is trig-

gered when the leader detects a significant change in the
collective state, most commonly, a modification in the
set of active robot IDs it perceives through the collection
process, indicating that either a robot malfunctioned or
left the system.

@ Plan computation: Upon triggering, the leader executes
the computationally intensive replanning algorithm to
generate the new global or partial plan.

@ Plan dissemination: The leader disseminates the newly
computed plan (or relevant assignments/directives) to all
other robots using gradientCast (cf. Section II-B).

Pros: This approach significantly reduces the overall
computational load on the system, as the replanning task is
performed centrally by only one robot per network partition.

Cons: This approach introduces a dynamic centralization
point, namely the leader. Although robust leader election
can quickly replace failed leaders, transient periods without
coordination may occur. Latency is a key drawback: informa-
tion must traverse the network diameter to reach the leader,
causing the leader to operate on potentially outdated data and
resulting in suboptimal plans. Plan dissemination also incurs a
diameter-length delay. Thus, the effectiveness of this approach
depends on network topology, its dynamics, and the rate of
environmental or system changes.

Algorithm 3 Leader-based Runtime Replanning

Require: localld, localPosition, networkDiameter, tasksState
1: tasksDone < gossipNonStab(tasksState)

leader + boundedElect ion(networkDiameter) > (1)

nodelnfo < gossip(localld — localPosition) > @

isLeader < leader = localld

if isLeader and hasChanged(nodelnfo) then > @
plan + replan(nodelnfo, tasksDone) > @
gradientCast(isLeader, plan) > @

end if

followPlan(getLatestPlan())

R A A R o

V. EVALUATION

In this section, we describe the experimental evaluation
conducted to validate the field-based runtime replanning ap-
proaches discussed previously. The code developed for this
evaluation is based on the Alchemist simulator [38] and the
experimental Collektive aggregate computing framework?. The
full implementation, experimental data, reproduction scripts,
and chart generation code have been open sourced with
a permissive license * and archived on Zenodo for future

reference’.

A. Goals
The primary goals of this evaluation are:
3https://github.com/Collektive/collektive

“https://github.com/angelacorte/experiments-2025-acsos-robots
Shttps://doi.org/10.5281/zenodo. 16578273

o Resilience Assessment: verify whether the proposed field-
based replanning approaches adapt to robot failures, en-
suring mission completion despite unforeseen disruptions.

o Scalability Analysis: investigate how the number of robots
and tasks affect the system performance.

B. Baseline Approaches

To benchmark the performance of our proposed field-based
replanning strategies, we compare them against two baseline
approaches, Oracle-based Centralized Replanning and Late-
Stage Replanning.

The foster assumes a centralized controller with perfect,
real-time view of the entire system state (robot locations,
status, and task completion). Upon detecting any robot failure,
the oracle immediately recomputes the optimal plan for the
remaining active robots and tasks using the same underlying
planning algorithm employed by the field-based approaches,
but with complete information. This represents an ideal upper
bound on performance achievable with immediate, informed
replanning.

In Late-Stage Replanning, robots execute their initially
assigned task sequence without adaptation during runtime.
Only after a robot completes its assigned sequence (or reaches
its final destination) it checks for any remaining uncompleted
tasks in the mission. If any task is pending, the robots col-
lectively replan to address it. This strategy minimizes runtime
overhead but is expected to be inefficient in handling mid-
mission failures.

Note that both strategies are immune to network segmenta-
tion, the former because we let the replanner know the state
of the world without restrictions, and the latter because it
performs no communication but at the late stage.

C. Experimental Parameters

Each simulation experiment involves a set of robots R and
tasks 7 deployed in a square environment. Key parameters are
summarized in Table I and detailed below:

Robots are initially placed randomly within a small starting
area, representing the source depot (o). The tasks are randomly
distributed throughout the environment. The target destination
() is fixed. A task is considered completed when a robot

TABLE I
SIMULATION PARAMETERS

Parameter Value(s)

Number of Robots (m) {5, 10, 20, 40}
Task-to-Robot Ratio (/m) {05, 1, 2, 4}
Resulting Task Counts (n) Computed as mn/m
Environment Size [200 x 200]m

Constant 0.5ms~1
{20, 50, 100, oo} m
[5 x 5]m, center (-95, -95)

Robot Speed

Communication Range (R)
Initial Robot Deployment Area
Target Destination Area (§) Point (100, 100)

Mean time between failures (A~1) {1000, 2000, 5000, 50 000} s
Random Seeds 32

Simulation Termination Condition Task completion stable for 1200 s

https://github.com/Collektive/collektive
https://github.com/angelacorte/experiments-2025-acsos-robots
https://doi.org/10.5281/zenodo.16578273

. ° _° °
lo o %0 o '

.l.'
ol

PO

Fig. 1.

Simulation snapshots. Tasks are represented by red dots, which turn green when completed. Pink lines show robot trajectories, gray boxes mark

inactive/failed robots. Gray lines show direct communication lines between robots.

to remain within ¢ = 10cm of a task location for at least
7 = 605s. Robots move at a constant speed of 0.5ms!.

Robots can communicate directly with neighbors within
their radio range R, simulating technologies like Bluetooth or
Wi-Fi in ad-hoc mode. Multi-hop communication is implicitly
handled by aggregate computing. We test sparse (20m) and
medium (50 m, 100 m) ranges and complete connection (co).

Robot failures are modeled as a Poisson process, where
each robot fails independently according to an exponential
distribution. For each robot r € R, the time to failure 7,
is a random variable:

P(T, >t)=e*, t>0 (10)

where)\ > 0 is the failure rate parameter, and A~! is the mean
time between failures.

We repeat each experiment multiple times (32) using differ-
ent random seeds. Different seeds change the initial placement
of robots and tasks, the failing robots and failure times, and
the scheduling of the aggregate computing rounds.

Figure 1 shows snapshots from a simulation run with n =40,
n/m=4, and R =50.

D. Metrics

We evaluate the performance of the different replanning
strategies using two key metrics:

o Mission Stable Time (Ts): the elapsed simulation time
until all possible tasks are completed and the system
reaches a steady state with no further robot movement.
This metric captures the overall mission efficiency. Lower
T, values indicate superior performance, as it is a proxy
for quicker mission completion despite disruptions.

o Replanning Count (C'): the number of replanning events
throughout the simulation, calculating the average num-
ber of replans triggered per robot. This metric quantifies
the computational overhead of each strategy and its
responsiveness to changing conditions.

E. Experimental Results

This section compares the proposed field-based runtime
replanning approaches with the baselines from Section V-B.
Figure 2 shows the Mission Stable Time (T}). Figure 3 shows
the average Replanning Count per robot.

a) Communication Range Impact on Performance: Data
shows that the communication range is critical for both de-
centralized approaches. With extensive communication ranges,
both approaches achieve performance comparable to the cen-
tralized Oracle, indicating that the replanning time detection
is essentially correct. However, performance degrades as the
communication range decreases. At R = 100m, both ap-
proaches still significantly outperform the baseline, while at
R = 20m performance deteriorates substantially: continuous
network segmentation leads to frequent wrong assumptions
of robot failures, causing a non-needed replanning, which
results in tasks being assigned to multiple robots due to
inconsistent views of the system state. With large teams and
high task loads (bottom right corner of Figure 2 and Figure 3),
performance degrades to the point where executing a late-stage
replanning performs better than the field-based approaches.
Sufficient connectivity is thus a fundamental requirement for
decentralized field-based MRTA.

b) Resilience to failure: Data shows that the gossip-
based approach (top in Figure 2) is significantly more re-
silient to robot failures compared to the leader-based (bottom
in Figure 2) approach. Even with very high failure rates
(A~! = 1000s), it consistently outperforms the Baseline when
connectivity is sufficient. Performance scales reasonably with
increasing node count and task load, showing no signs of
catastrophic degradation. The Leader-based approach performs
well until failure rates rise (for each plot, the failure rate
increases from left to right), then performance degrades sig-
nificantly. This vulnerability stems from coordination gaps
during leader failure and re-election periods. At lower failure
rates (A\~! > 5000s), both approaches deliver comparable
performance at the same communication ranges.

¢) Scalability: Increasing m or n/m increases T across
all approaches (as n increases). Both field-based methods scale
better than the baseline in for moderate failure rates (A~ >
5000s) and reasonable communication range (R > 50m). In
the extreme case (m = 40, »/m = 4 = n = 160, right bottom
corner of Figure 2), both gossip- and leader-based approaches
complete their mission in about 1400s, while the baseline
takes longer than 2000 s.

d) Replanning Overhead: The Gossip approach consis-
tently generates significantly more replanning events compared
to the leader-based approach, often by an order of magnitude.

Stable time with different times between failures - Gossip

Node 5, Task Factor 0.5 1500 Node 5, Task Factor 1.0 Node 5, Task Factor 2.0 Node 5, Task Factor 4.0
2000
1000 2500
E 8 1000 1500 2000
=
o 600 1000 1500
E 400 500 1000
w0
200 500 500
0 0 0 0
Node 10, Task Factor 0.5 Node 10, Task Factor 1.0 Node 10, Task Factor 2.0 4000 Node 10, Task Factor 4.0
1500
. 1250 2000 2000
£ 1000
S 1000 1500
@ 750 2000
Qo
2 500 w0 1000
’ = ” - IIII IIII I
0 0 0 0
Node 20, Task Factor 0.5 Node 20, Task Factor 1.0 Node 20, Task Factor 2.0 Node 20, Task Factor 4.0
3000 5000
1500 2000
2 4000
£ 1500 2000
i~ 1000
S oo 3000
Q
E 500 1000 2000
Tlif1 U AT
0 0 0 0
Node 40, Task Factor 0.5 Node 40, Task Factor 1.0 Node 40, Task Factor 2.0 Node 40, Task Factor 4.0
8000
2000 2500
° 3000
E 1500 2000 6000
2 1000 1500 2000 1000
8 1000
S |11 001 10T 1T 1 1 P
’ . . . ol anlil ol
1000 2000 5000 50000 1000 2000 5000 50000 1000 2000 5000 50000 1000 2000 5000 50000
Mean Failure Time Mean Failure Time Mean Failure Time Mean Failure Time
Stable time with different times between failures - Leader
Node 5, Task Factor 0.5 Node 5, Task Factor 1.0 Node 5, Task Factor 2.0 Node 5, Task Factor 4.0
2000
o 1000
E 750 1000 1500 2000
k) 1000
500
s 500 1000
n 250 500
0 0 0 0
Node 10, Task Factor 0.5 Node 10, Task Factor 1.0 Node 10, Task Factor 2.0 Node 10, Task Factor 4.0
1500 2000 4000
2000
g 1500 3000
£ 1000 1500
k) 1000) 2000
B 500 000
’ 11111 - 11— HE i
0 0 0 0
Node 20, Task Factor 0.5 Node 20, Task Factor 1.0 Node 20, Task Factor 2.0 Node 20, Task Factor 4.0
1500 2000 3000
g 4000
= 1000 1500 2000
(]
= 1000
-(3 - I I| | IIII | IIII I ” I I' | IIII | IIII I - I II' I'IlI N
’ 5 11 LT A ol i
0 0 0 0
Node 40, Task Factor 0.5 Node 40, Task Factor 1.0 Node 40, Task Factor 2.0 Node 40, Task Factor 4.0
2000 6000
g 2000 3000
€ 1500
P 1000 2000 o
a 1
= [l 1 I“I 11 11T “ Illl 111/ I I“"]
: : i . L R L T
1000 2000 5000 50000 1000 2000 5000 50000 1000 2000 5000 50000 1000 2000 5000 50000
Mean Failure Time Mean Failure Time Mean Failure Time Mean Failure Time

mmm Oracle wmmw R=100.0 w== R=20.0 === Baseline
— R=w = R=50.0

Fig. 2. Mission completion time T over mean time between failures A\—! For the gossip-based approach (top) and the leader-based approach (bottom).
Differently colored bars represent different values of R (the baseline and the oracle ignore R). Each subplot frames a specific configuration of the robot
count m and the task-to-robot ratio 7/m. With sufficient communication range (R > 50 m), both field-based methods outperform the baseline and approach
Oracle performance. gossip-based offers greater resilience under frequent failures, while leader-based is more efficient but less robust to leader transitions.
Thus, gossip-based trades higher overhead for robustness; leader-based trades resilience for efficiency.

Replanning Count time with different times between failures

Node 5, Task Factor 0.5

|
MMMM

Node 10, Task Factor 0.5

1

Node 20, Task Factor 0.5

Node 5, Task Factor 1.0

MMMM

Node 10, Task Factor 1.0

Iml I‘Illl I‘llll I‘JJ

Node 20, Task Factor 1.0

-
o

Replanning Count
=
A

10t

Replanning Count
S

2
10° 102

Bl Dkl Mt b, il Bl i -.J

40, Task

Replanning Count

Node 40, Task Factor 0.5 Node

1000 2000 5000 50000
Mean Failure Time

Factor 1.0

10t

Replanning Count

1000 2000 5000 50000
Mean Failure Time

(L) R=50.0
= (G) R=50.0

== (L) R=100.0

== (G) R=100.0

Node 5, Task Factor 2.0

Node 10, Task Factor 2.0

|III| |‘|||| |‘|||| I‘JJ

Node 20, Task Factor 2.0

Node 5, Task Factor 4.0

I‘IIII I‘Ill' |‘I|I| |‘iLI

Node 10, Task Factor 4.0

=
o

-

o

10?
102

1

Node 20, Task Factor 4.0

I ||I‘I| II|||| III‘Il l‘.

=
o

) ‘ ‘ ‘ ‘ ‘ : I
Bl ik ahabid . I
Node 40, Task Factor 2.0 Node 40, Task Factor 4.0
10? . 10? .
) ‘ ‘ ‘ | I ’ ‘ ‘ ‘ ‘ I
Hakid Dkl okl L1, Hikil Dk Hatal WL
1000 2000 5000 50000 1000 2000 5000 50000
Mean Failure Time Mean Failure Time
= ()R= w= (G)R=w

Fig. 3. Replanning events C' over mean time between failures A~ comparing the gossip-based approach (G) and the leader-based approach (L) for a selected
set of communication ranges R (50 m, 100 m, and fully connected). Each subplot frames a specific configuration of the robot count m and the task-to-robot

ratio m/m.

In the Gossip approach, every robot independently monitors
the collective state and may trigger replanning upon detecting
changes, whereas the Leader approach centralizes the replan-
ning management in a single elected node. The replication
induced by the gossip-based approach contributes to its re-
silience, but also leads to higher computational overhead.

e) Corner Cases: Data reveals interesting corner cases
where the field-based approaches underperform compared to
the baseline. In scenarios with few tasks per robot (7/m = 0.5)
and long robot mean failure times (A~ = 50000 s), where few
tasks exist relative to robots and failures are rare, the gossip-
based approach sometimes performs worse than the Baseline,
even for long communication ranges. This counterintuitive
result stems from unnecessary replanning overhead (see Fig-
ure 3): when robots rarely fail, the Baseline’s single initial plan
remains effective, while the Gossip approach continuously
monitors for changes and occasionally triggers replanning
due to transient field perturbations (e.g., temporary disconnec-
tions). Even in fully connected networks, the Gossip approach
sometimes underperforms the baseline when failures are rare
because achieving distributed consensus introduces latency as
field values propagate and stabilize. During this consensus-
building period, robots may temporarily follow inconsistent
plans, creating inefficiencies that the simpler baseline approach
avoids. Fundamentally, the baseline is optimized for failure-

free scenarios, while field-based approaches are designed for
early replanning upon failures. When failures are rare, contin-
ual monitoring leads to unnecessary computational overhead.
f) Trade offs: Data shows that both field-based replan-
ning approaches effectively handle runtime robot failures,
outperforming the late-stage replanning baseline under most
conditions. The Gossip approach offers superior resilience,
particularly under high failure rates, at the price of a sub-
stantial replanning overhead. Conversely, the Leader-based
approach is computationally more efficient but exhibits greater
sensitivity to leader failures and short communication ranges.
Selecting between these approaches is a matter of balancing
resilience against computational efficiency. Specific mission
profiles and anticipated environmental conditions could steer
the choice of approach. Both methods demonstrate the poten-
tial of AC for the design of robust and efficient decentralized
multi-robot coordination in unpredictable environments.

VI. CONCLUSION

This paper presented a novel approach to runtime replanning
for multi-robot systems based on Aggregate Computing. We
introduced two alternative field-based coordination mecha-
nisms, based respectively on gossip and distributed leader
election, that enable decentralized adaptation to robot failures
and mission changes with no central control.

Our experimental results demonstrate that both field-based
approaches significantly outperform a late-stage replanning
baseline when the communication range is sufficiently large
and failures are a realistic concern. The gossip-based approach
shows superior resilience under high failure rates, maintaining
performance close to an oracle-supported centralized replan-
ner when communication connectivity is adequate, while the
leader-based approach is more computationally efficient but
vulnerable during leader transitions.

The primary limitation of our approach is its dependency
on sufficient communication connectivity. With sparse com-
munication (20m range in our experiments), performance de-
teriorates substantially, sometimes falling below the baseline.

Future work will investigate hybrid approaches that adap-
tively switch between gossip and leader-based coordination
based on network conditions and perceived failure rates. We
also plan to investigate hierarchical coordination structures that
could better balance computational efficiency and resilience.
In particular, it would be worth exploring variants of the leader
strategy with multiple leaders, rather than a single leader,
to better handle network segmentation and leader failures.
Finally, we plan to address the “reality gap” by validating our
approaches on real robotic platforms, ensuring their robustness
and effectiveness beyond simulation.

REFERENCES

[1] B. P. Gerkey and M. J. Matari¢, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” International Journal of Robotics
Research, vol. 23, no. 9, pp. 939-954, 2004.

[2] G. A. T. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxon-
omy for multi-robot task allocation,” International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495-1512, 2013.

[3] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257-1270, 2006.

[4] J. Yu and S. M. LaValle, “Planning optimal paths for multiple robots
on graphs,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2015, pp. 3612-3617.

[5] L. E. Parker, “Distributed intelligence: Overview of the field and
its application in multi-robot systems,” in AAAI Fall Symposium on
Regarding the Intelligence in Distributed Intelligent Systems, 2007.

[6] Y. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile robotics:
Antecedents and directions,” Autonomous Robots, vol. 4, no. 1, pp. 7-27,
1997.

[7]1 J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
internet of things,” Computer, vol. 48, no. 9, pp. 22-30, 2015.

[8] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The TOTA approach,” ACM Trans. Softw. Eng.
Methodol., vol. 18, no. 4, pp. 15:1-15:56, 2009.

[9] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and D. Pianini,

“From distributed coordination to field calculus and aggregate comput-

ing,” Journal of Logical and Algebraic Methods in Programming, vol.

100, p. 100429, 2019.

E. L. Lawler, “The traveling salesman problem: a guided tour of

combinatorial optimization,” Wiley-Interscience Series in Discrete Math-

ematics, 1985.

T. Bektas, “The multiple traveling salesman problem: an overview of

formulations and solution procedures,” Omega, vol. 34, no. 3, pp. 209—

219, 2006.

M. Gendreau, A. Hertz, and G. Laporte, “Parallel tabu search for the

vehicle routing problem with time windows,” Transportation Science,

vol. 33, no. 1, pp. 107-122, 1999.

J.-Y. Potvin, “Vehicle routing: a review of the problem and solution

techniques,” in European Journal of Operational Research, 1996.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

(34]

[35]

B. Miloradovi¢, B. Ciiriiklii, M. Ekstrom, and A. V. Papadopoulos,
“GMP: A genetic mission planner for heterogeneous multirobot system
applications,” IEEE Transactions on Cybernetics, vol. 52, no. 10, pp.
10627-10638, 2021.

L. Bertuccelli and J. How, “A decentralized auction algorithm for
multi-UAV task allocation,” in AIAA Guidance, Navigation and Control
Conference, 2009.

S. L. Smith and D. Rus, “Multi-robot monitoring in dynamic envi-
ronments with guaranteed currency of observations,” in 49th IEEE
conference on decision and control (CDC). IEEE, 2010, pp. 514-521.
C. Zhang, J. Lee, and P. Tsiotras, “Multi-agent path planning with
failure probabilities,” in Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2020.

N. Michael, J. Fink, and V. Kumar, “Distributed multi-robot task
assignment and formation control,” Proceedings of Robotics: Science
and Systems (RSS), 2008.

G. A. Hollinger, A. Pereira, J. Binney, and G. S. Sukhatme, “Au-
tonomous data collection from underwater sensor networks using acous-
tic communication,” IEEE Journal of Oceanic Engineering, vol. 38,
no. 3, pp. 632-644, 2013.

C. Ramirez-Atencia, J. Garcia-Nieto, and E. Alba, “A multi-objective
evolutionary algorithm for multi-uav mission planning,” Applied Soft
Computing, vol. 61, pp. 1071-1088, 2017.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp- 2508-2530, 2006.

L. Bramblett, B. Miloradovi¢, P. Sherman, A. V. Papadopoulos, and
N. Bezzo, “Robust online epistemic replanning of multi-robot missions,”
in 2024 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2024, pp. 13229-13236.

M. Frasheri, B. Miloradovi¢, L. Esterle, and A. V. Papadopoulos, “GLo-
cal: A hybrid approach to the multi-agent mission re-planning problem,”
in 2023 IEEE Symposium Series on Computational Intelligence (SSCI).
IEEE, 2023, pp. 1696-1703.

M. Crosby, M. Rovatsos, and R. Petrick, “Automated agent decomposi-
tion for classical planning,” in International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2013.

D. Rotondi, F. Viti, and M. Gendreau, “Distributed negotiated multi-
agent planning: A literature review,” Transportation Research Part C:
Emerging Technologies, vol. 57, pp. 142-160, 2015.

J. Benton, A. Coles, and A. Coles, “Temporal planning with preferences
and time-dependent continuous costs,” Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS), pp. 2-10,
2012.

A. Torreno, E. Onaindia, and O. Sapena, “Cooperative multi-agent
planning: A survey,” ACM Computing Surveys (CSUR), vol. 50, no. 6,
pp- 1-32, 2017.

G. Audrito, M. Viroli, F. Damiani, D. Pianini, and J. Beal, “A higher-
order calculus of computational fields,” ACM Trans. Comput. Log.,
vol. 20, no. 1, pp. 5:1-5:55, 2019.

G. Aguzzi, R. Casadei, D. Pianini, and M. Viroli, “Dynamic decen-
tralization domains for the internet of things,” IEEE Internet Comput.,
vol. 26, no. 6, pp. 16-23, 2022.

D. Grushchak, J. Kline, D. Pianini, N. Farabegoli, G. Aguzzi, M. Baiardi,
and C. Stewart, “Decentralized multi-drone coordination for wildlife
video acquisition,” in International Conference on Autonomic Comput-
ing and Self-Organizing Systems, ACSOS. 1EEE, 2024, pp. 31-40.

R. Casadei, F. Dente, G. Aguzzi, D. Pianini, and M. Viroli, “Self-
organisation programming: A functional reactive macro approach,” in
International Conference on Autonomic Computing and Self-Organizing
Systems, ACSOS. 1EEE, 2023, pp. 87-96.

G. Audrito, J. Beal, F. Damiani, D. Pianini, and M. Viroli, “The
share operator for field-based coordination,” in 21st IFIP WG 6.1
International Conference on Coordination Models and Languages (CO-
ORDINATION), ser. Lecture Notes in Computer Science, vol. 11533.
Springer, 2019, pp. 54-71.

R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics,
vol. 16, no. 1, pp. 87-90, 1958.

M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, “Engineering
resilient collective adaptive systems by self-stabilisation,” ACM Trans.
Model. Comput. Simul., vol. 28, no. 2, pp. 16:1-16:28, 2018.

E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,”
Commun. ACM, vol. 17, no. 11, pp. 643-644, 1974.

[36]

[37]

(38]

D. Pianini, J. Beal, and M. Viroli, “Improving gossip dynamics through
overlapping replicates,” in /8th IFIP WG 6.1 International Conference
on Coordination Models and Languages (COORDINATION), vol. 9686.
Springer, 2016, pp. 192-207.

D. Pianini, R. Casadei, and M. Viroli, “Self-stabilising priority-based
multi-leader election and network partitioning,” in International Con-

ference on Autonomic Computing and Self-Organizing Systems, ACSOS.

IEEE, 2022, pp. 81-90.

D. Pianini, S. Montagna, and M. Viroli, “Chemical-oriented simulation
of computational systems with alchemist,” Journal of Simulation, vol. 7,
no. 3, p. 202-215, Aug. 2013.

	Introduction
	Background
	Planning and Replanning in Multi-Robot Systems
	Aggregate Computing in a nutshell

	Problem Formulation
	Field-based Replanning
	Replanning Algorithm
	Distributed Consensus via Gossiping
	Leader-Based Coordination

	Evaluation
	Goals
	Baseline Approaches
	Experimental Parameters
	Metrics
	Experimental Results

	Conclusion
	References

