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Abstract—In this paper, we present the Rubus tool suite, with
a focus on its static (offline) real-time scheduler. The schedules
generated by the scheduler are executed by a real-time operating
system certified according to the ISO 26262 safety standard.
The Rubus tool suite and its scheduler have been utilized in
the vehicle industry for model- and component-based software
development of resource-constrained embedded systems for over
25 years. Since its introduction in 1998, the scheduler has evolved
significantly, transitioning from pure Earliest Deadline First
(EDF) heuristics to incorporating priorities, data dependencies,
and the ability to distribute the schedule over the entire hyper-
period of the software application, among other heuristics. We
provide an in-depth discussion on the mechanisms and algorithms
that constitute the Rubus offline scheduler. Moreover, we provide
an example of its application in generating an offline schedule
for a part of software architecture in an industrial setting.

I. INTRODUCTION

In modern vehicles, a significant portion of innovation and
customer value is derived from advanced computer-controlled
functionalities. As the volume of these functionalities in-
creases, the complexity and size of vehicle software have
grown substantially [1]. The size of vehicle software has al-
ready reached 100 million lines of code [2]. A study by Jaguar
Land Rover projects that this figure will soon escalate to 1
billion lines of code [3]. Ensuring the safety of the vehicle’s
critical functions such as braking and engine control neces-
sitates an approach that guarantees reliable operation. At the
same time, there are numerous vehicle functions that are less
critical, posing a challenge for manufacturers to provide both
types of functions economically and reliably. Furthermore,
the safety-critical nature of several vehicle functions imposes
real-time requirements on them, demanding predictability in
their execution. Developers must ensure that these functions
behave in a timely manner when executed. To manage the
software complexity, the vehicle industry often employs the
principles of model-based development and component-based
software engineering [4], [5]. Timing predictability can be ver-
ified through real-time schedulability analysis [6], [7], which
ensures that timing requirements are met without the need for
exhaustive testing before deploying vehicle software to target
platforms. Examples of industrial modeling languages and
tool chains include AUTOSAR standard [8], [9], Fraunhofer
ESK [10], Infineon’s Symtavision [11], and Rubus [12].

To address the aforementioned challenges, Arcticus Sys-
tems!, in collaboration with academia and several industrial
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partners such as Volvo Construction Equipment and BAE
Systems, has developed the theory, concepts, models, and
a tool suite for model- and component-based development
of vehicle software [12]. This tool suite, known as Rubus,
has been in industrial use for over twenty-five years and is
complemented by a real-time operating system (RTOS) for
execution, certified according to the ISO 26262 - ASIL D
safety standard [13]. The Rubus tool suite aims to be resource-
efficient and provides means for developing timing-predictable
and analyzable control functions in resource-constrained em-
bedded systems.

This paper focuses on the Rubus tool suite, particularly the
static (off-line) scheduler, which is central to the suite and
possesses unique characteristics. Offline or static scheduling
is a continuously evolving research field [14], [15], mainly
because there is no optimal method for efficiently scheduling
complex tasks with deadlines in a time frame suitable for
software development of real-time systems in the industry.
Generating offline schedules through optimization methods,
such as constrained programming, can take a considerable
amount of time to provide a feasible schedule. This is due
to the complexity of the constraints and the need to explore a
vast solution space to find an optimal or near-optimal sched-
ule. Consequently, scheduler implementation in the industry
necessitates trade-offs. In the case of Rubus, the focus is
on balancing short run-time with the objective of finding
a feasible schedule, even if it requires multiple attempts.
Heuristic algorithms, like those used in the Rubus scheduler,
are often preferred as they offer a balance between run-time
efficiency and the ability to find valid schedules within a
reasonable time frame.

Since its introduction to the industry in 1998, the Rubus
scheduler has evolved significantly. Initially based on pure
Earliest Deadline First (EDF) heuristics, it has become more
intricate, incorporating priorities, data dependencies, and the
ability to distribute the schedule over the entire hyper-period
of time-triggered software functions to avoid front-heavy
scheduling, benefiting lower-priority dynamic event-triggered
software functions running in the background.

In this paper, we present the Rubus offline scheduler, de-
tailing the mechanisms and algorithms behind it. The schedule
generated by the scheduler is executed by the Rubus RTOS.
We also provide an example of a part of software architecture
in an industrial application where offline schedule is generated
by the presented scheduler.



II. THE RUBUS MODELING AND EXECUTION FRAMEWORK

Rubus [16] is an integrated suite of methods, theories, and
tools designed for model- and component-based development
of predictable, timing-analyzable, and synthesizable control
functions in resource-constrained embedded systems. Devel-
oped by Arcticus Systems in close collaboration with academia
[12], Rubus is utilized by several international vehicle man-
ufacturers in the development of control functionalities such
as Volvo Construction Equipmentz, Mecel®, Knorr-Bremse?,
Hoerbiger’, and BAE Systems Higglunds®, to mention a few.

The Rubus tool suite focuses on defining a system ar-
chitecture for software functions, essentially creating an ex-
ecution environment for these functions. It considers three
different viewpoints when addressing system architecture, as
illustrated in Fig. 1. These viewpoints often highlight different
and sometimes conflicting requirements during development.
However, in practice, these viewpoints are interdependent and
should not be considered in isolation, which is a common
approach in traditional software engineering and real-time
communities [17].
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Fig. 1: Three viewpoints to the system architecture.

A. Rubus Component Model — Viewpoint of the Developer

The Rubus graphical designer tool is used to interactively
describe applications developed using the Rubus Component
Model (RCM). Developers design the system in a platform-
independent manner, focusing on the application itself. Timing
and resource constraints are specified through attributes of
various modeling objects.

RCM defines the infrastructure of software functions in
terms of software circuits (SWCs), which represent the in-
teraction of software functions through data and control flow.
Data flow and control flow are separated, meaning control flow
does not necessarily involve data transmission. Control flow is

Zhttps://www.volvoce.com
3https://kvaser.com/company/mecel/
“https://www.knorr-bremse.com/en/
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expressed through triggering objects such as internal periodic
clocks, interrupts, and internal and external events.

The execution semantics of an SWC follow the read-
execute-write semantics. Upon triggering the SWC:

1) read data on its data in-ports;
2) executes the function;

3) write data on data out-ports;
4) and activate the output trigger.

An example SWC with three input data ports and two output
data ports is shown in Fig. 2. The small triangles represent
input and output triggers. An example of software architecture
with three SWCs and other elements is depicted in Fig.3. This
example depicts part of the software architecture in one of
the Electronic Control Units (ECUs) in the autonomous cruise
control system.
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Fig. 2: An example SWC.
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Fig. 3: An example software architecture modeled in RCM.

B. Analysis Model — Viewpoint of the Analysis Framework

The formal design resulting from RCM facilitates static
analysis, which is mapped to the actual run-time platform.
In this viewpoint, the Rubus Analyzer analyses the type
checking, execution order, and real-time requirements. This
analysis helps to reduce late, costly, and time-consuming test-
ing efforts. Furthermore, mathematical models and supporting
tools provide formal evidence of fulfillment of the timing
requirements [18].

The Rubus Analyzer supports pre-runtime timing analysis
of the system at various levels. For instance, it analyzes a
single node by calculating tasks’ response times and compar-
ing them with corresponding deadlines. The Rubus Analyzer
implements Response Time Analysis (RTA) for tasks with
offsets [19], [20], RTA for Controller Area Network (CAN)
and its higher-level protocols [21], RTA of Time Sensitive
Networking (TSN) [22], [23], analysis of multiple networks,
and end-to-end timing analysis [18], [24], to calculate data age
and reaction time delays.

C. Run-time Model — Viewpoint of the Run-time System

The code for the actual run-time platform is synthesized
from the system architecture, ensuring automated synthesis



that prevents error-prone and costly integration errors. The
Rubus RTOS supports RCM in achieving an optimized real-
time software system. It has been utilized in a wide range
of industrial real-time applications, including wheel loaders,
articulated haulers, excavators, and various four-wheel drive
vehicles. Key features of the RTOS include support for the exe-
cution and communication among time-, event-, and interrupt-
triggered tasks, static allocation of resources, scalability, and
portability. The combination of dynamic and static scheduling
supported by the Rubus RTOS enables the design of optimized
real-time software systems.

In the Rubus platform, all SWCs triggered by a time-
triggered (TT) clock are scheduled offline (pre-run-time).
The scheduler generates an SWC schedule based on time
settings and execution relations, taking interrupt interference
into account to ensure that schedules remain feasible under
the worst-case specified interrupt load [25]. Additionally, it
is possible to distribute the execution evenly over the entire
schedule length, thereby reducing response times and the jitter
of dynamic (event-triggered) task execution.

Furthermore, it should be noted that the resulting schedule is
non-preemptive. Time-triggered tasks can only be preempted
by interrupts, not other time-triggered tasks.

Consider an example task set with interrupt arrivals, a static
schedule, and dynamic task arrivals, as shown in Fig. 4. The
Rubus RTOS prioritizes interrupts first, followed by the static
schedule and finally the dynamic (event-triggered) tasks, as
illustrated in the resulting execution pattern.
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Fig. 4: Execution scenario with interrupts, TT- and ET-tasks

D. Related Works

Offline scheduling has been a fundamental approach to
schedule time-triggered tasks and messages in real-time sys-
tems and networks respectively for decades [26], [27]. Histor-
ically, it has been used to ensure timing predictability of the
systems by pre-determining the execution order of tasks and
messages before runtime. Two notable comprehensive surveys
on time-triggered scheduling of periodic hard real-time tasks
are presented in [14], [15].

There are several works that target offline scheduling of
tasks and network messages together. For instance, the work

in [28] performs offline scheduling of tasks and communi-
cations by employing a mixed integer programming model
focusing on Ethernet-based networks. Similarly, the work
in [29] develops concurrent co-synthesis of switched time-
triggered network’s schedule and application schedules for
preemptive time-triggered tasks. A search-space pruning tech-
nique is presented in [30] that uses response times to efficiently
generate schedules for large systems, and extend the modular
scheduler design to support TTEthernet networks. The work
in [31] presents time-triggered co-scheduling scheduling of
computation and communication. In comparison, the work pre-
sented in this paper primarily focuses on offline scheduling of
time-triggered periodic tasks, which operate alongside event-
triggered and interrupt-triggered tasks in single-core real-time
systems.

Slot shifting [32] is a method for combining time- and
event-triggered scheduling. It analyzes offline constructed
schedules for the amount and location of unused resources,
called spare capacities, which are used to accommodate event-
triggered activities, such as aperiodic tasks. Spare capaci-
ties are represented to indicate available resources and the
flexibility to shift offline scheduled tasks while maintaining
their feasibility. Slot shifting, as opposed to Rubus, has a
flexible static schedule where time-triggered tasks are shifted,
to accommodate event-triggered tasks, as long as they do not
violate the deadline of time-triggered tasks. Rubus, on the
other hand, has a fixed schedule in which event-triggered tasks
run in the background. Slot shifting is therefore more flexible,
whereas Rubus focuses more on the predictability of time-
triggered tasks.

There are several works that use simulated annealing to
schedule time-triggered tasks, e.g., the work by Tindell [33].
The work in [34] focuses on scheduling real-time tasks in
distributed systems with the goal of minimizing the tasks’
jitter. The schedule proposed in our paper minimizes the tasks’
jitter based on the techniques described in the above works.
A simulated annealing algorithm adjusts the release times of
time-triggered tasks to reduce the gap between their release
times and deadlines, while adhering to jitter constraints during
the creation of offline schedules.

MAST’ is an open-source suite of tools for performing
schedulability analysis of real-time distributed systems. MAST
has an event-driven model, i.e., tasks are considered activated
through independent events from outside as well as inside the
system [35]. In addition, it has a UML profile, UML-MAST,
used to model the system. MAST and Rubus response time
analysis of event-driven tasks (not covered in this paper), use
the same system model; task model with offsets [19], [20].
MAST does not have an offline scheduler and therefore no
off-line schedule can be generated. All tasks are considered
priority-based, either EDF or fixed priority. Rubus scheduler,
on the other hand, has three different levels of execution;
interrupts, offline schedule, and event-triggered tasks.

7https://mast.unican.es



III. SYSTEM MODEL

This section introduces the system model utilized by the
Rubus scheduler, which will also be used to describe the
offline scheduler and the heuristics implemented within it.
The schedule is generated independently for each node in the
system. The system, denoted by &£, consists of one or more
nodes. A node i is denoted by &;. Each node is considered
to be a uniprocessor system. The total number of nodes in
the system is represented by |E|. Hence, the system can be
formally represented as follows.

System := {&1,...,E g} (1)

A node contains three types of task sets as shown by Eq. 2.
For example, node & may contain (1) a task set I'77 that
contains all time-triggered (TT) tasks, (2) a task set F{T that
contains all interrupt-triggered (IT) tasks, and (3) a task set
I'ET comprising all event-triggered (ET) tasks in the node.

& = (/7. I]T,TFT) @)
Each type of task set consists of one or more tasks as shown
in Eq. 3, Eq. 4 and Eq. 5 for I'7, T'/T and TF7T respectively.

For instance, in Eq. 3, 7.7 denotes the time-triggered task
with ID z that belongs to node &;.
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We consider a one-to-one mapping between an SWC in the
software architecture and a task at runtime. For instance,
the three SWCs in the software architecture depicted in Fig. 3
correspond to three tasks in the system model at runtime. If an
SWC is activated by a periodic clock, an interrupt source, or
an event source, the corresponding task in the system model
will be classified as TT, IT or ET, respectively.

A time-triggered task is represented as T%T, where the
subscript 7 indicates the node ID to which the task belongs, and
the subscript j denotes the task’s ID. This task is characterized
by the following tuple.

= (ct, BCET T PET RLT DT (6)
Where C;" and BC;" represent the worst-case execution
time (WCET) and the best-case execution time (BCET) of the
task respectively. The period of the task, denoted by TgT,
corresponds to the period of the time-triggered clock that
triggers the software circuit in the software architecture. For
instance, two TT tasks correspond to two software circuits,
Logger and ACC, which are triggered by TT clocks with
periods of 50ms and 20ms, respectively, as illustrated in Fig. 3.
The priority and deadline of the TT task are represented by
PgT and D;‘FjT respectively. Furthermore, the response time
of the TT task is denoted by RZ-TJ-T.

Similarly, Eq. 7 and Eq. 8 provide parameters of interrupt-
and event-triggered tasks respectively.

h=(ctr, Boll, Tl" P R DT (7)
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Note that in node &;, the priority level of all tasks in I'/7 is
higher than that of all tasks in I'7 7. Similarly, the priority level
of all tasks in I'77 is higher than that of all tasks in 7. In
other words, the lowest-priority task in T'/7" will have a higher
priority than the highest-priority task in T'77. Likewise, the
lowest-priority task in ' 7" will have a higher priority than the
highest-priority task in I'”7. This implies that the generated
time-triggered schedule will not be affected by any ET task.
Therefore, ET tasks will not be used in any of the presented
algorithms for schedule generation. They are included in the
system model for completeness.

The total utilization of all TT tasks in node &; is repre-
sented by:

n T
UrT = “i
i TTT
j=1 "1J

where C’Z-T is the worst-case execution time of task j, TgT
is the period of task j, and n is the total number of TT tasks.
Similarly, the total utilization of all IT tasks in node &; is
represented by U™

The hyper-period of all TT tasks in I'77 within node &;
is denoted by HPZTT. Note that the hyper-period of a task set
is equal to the Least Common Multiple (LCM) of the periods
of all tasks in the task set.

HP]T .= LOM(TET, TET, ..., TET) 9)

The set of release times of all TT task instances in HP} ©
is represented by RT7] . For example, RT] ' [1], RT} (2]
and RTI7[3] represent the first, second and third release
times in HPiTT respectively. All release times are precomputed
based on the periods of the TT tasks within HP?”. Note that
multiple tasks may have instances that are ready to execute
simultaneously at a release time in RTZ-TT, however only one
task instance is executed at a time in the uni-processor system.
The set of all TT tasks’ instances that are ready to execute on
a release time R7T' is denoted by FZ%T.

The task model also supports conditionally-triggered
tasks, which correspond to software circuits (SWCs) in the
software architecture that are triggered for execution by condi-
tionally triggering objects. For instance, the task corresponding
to SWC_C in Fig. 5 is a conditionally-triggered task that
is triggered by a Trig_Sync object. The Trig_Sync object
receives input triggers from two TT SWCs, namely SWC_A
and SWC_B, with different periods. It triggers SWC_C when
it has received both input triggers. Users can specify the
deadline for a conditionally-triggered task. If a deadline is
not specified, it defaults to the least common multiple of the
periods of its predecessor tasks.

The time-triggered schedule of all tasks in , generated
by the scheduler, is denoted by S;. Basically, S; consists of
an ordered set of pairs, each containing a task instance and its
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corresponding release time, for every release time in RTiTT.
The schedule is formally presented as follows.

S = {(T;T,tk) | VT%T occurring at ty,Vt, € RTT1} (10)

Fig. 5: Example of a conditionally time-triggered SWC and
corresponding task.

IV. RUBUS OFFLINE SCHEDULER

This section presents features, algorithms and heuristics that
form the foundation of the Rubus offline scheduler.

A. Main Features of the Scheduler

1) Established Scheduling Algorithms: Rubus employs
heuristic algorithms that integrate established scheduling algo-
rithms such as Earliest Deadline First (EDF), Rate Monotonic
(RM), and Bin Packing. The algorithms prioritize the most
promising combinations, dedicating significant effort to opti-
mizing them. The resulting schedule is characterized as proof-
by-construction, meaning that if a schedule is successfully
generated, it serves as evidence of its validity.

2) Control Dependencies: The scheduler takes into account
control dependencies among the SWCs (tasks) and resolves
them using precedence relations [36]. For instance, the HMI
SWC is dependent on the Logger SWC, as illustrated in Fig. 3.
This means that the HMI SWC can only be triggered for
execution once the Logger SWC has completed its execution
and produced an output trigger. Consequently, the scheduler
will schedule the task corresponding to the HMI SWC after the
task corresponding to the Logger SWC has been scheduled.

3) Data Dependencies: The software architecture distinctly
defines control-flow and data-flow relations between SWCs.
This implies that a triggering event does not inherently carry
data. When data dependencies are specified within the soft-
ware architecture, the scheduler takes these dependencies into
account when scheduling the corresponding tasks. This tries
to ensure that tasks consuming data are not scheduled before
their respective data-producing tasks.

4) Conditionally Triggered Tasks: The scheduler also
supports conditionally-triggered tasks. The Trig_Sync object
in the modeling framework introduces tasks that cannot be
handled as ordinary time-triggered tasks because they do not
have a period. This Trig_Sync object triggers its successor task
when all of its predecessor tasks have been scheduled. Since all
predecessor tasks can have different periods, the conditionally-
triggered task does not have any period as it depends on when
the predecessor tasks are scheduled/executed. Instead, the

conditionally-triggered task becomes eligible for scheduling
on the fly when all predecessor tasks have been scheduled.

5) Distribute Schedule: The scheduler allows the user to
optionally select the distribute schedule feature. If this feature
is not enabled, the scheduler attempts to maximize execution
of time-triggered tasks at each release time by scheduling them
as early as possible. This results in “front-heavy” schedules,
leaving little slack at the beginning. To address this, the
distribute schedule option is introduced, which spreads the
schedule more evenly. This improves the responsiveness of
background tasks (event-triggered tasks) by creating evenly
distributed gaps in the schedule. When the distribute schedule
option is enabled, the scheduler uses the combined utilization
of time-triggered and interrupt tasks as a scheduling threshold.
During the scheduling of time-triggered tasks at a release
time, it assesses the remaining execution supply between the
current and subsequent release times. If this supply exceeds
the scheduling threshold, the scheduler shifts the current task
and any unscheduled tasks from the current release time to the
next, rather than fully utilizing the execution supply from the
current to the next release time.

6) Postpone Release Times: The scheduler supports an op-
tional feature that allows postponing release times, which can
be specified by the user. This feature serves as a performance
enhancement, increasing schedulability.

If this feature is not enabled, when scheduling at the current
release time, any time-triggered task that cannot be completed
before the start of the next release time is moved to the next
release time. All remaining unscheduled tasks are also moved
to the next release time. Scheduling then continues from there.

When the postpone release times feature is enabled, if
a time-triggered task scheduled at the current release time
cannot finish before the next release time, the release time is
postponed to the finishing time of that task. Instead of moving
the task to the next release time, the task is scheduled, and the
start of the next release time is adjusted to accommodate the
scheduled task. Thus, the finishing time of the task becomes
the start of the next release time.

Note that the postpone-release-time and the distribute-
schedule features are mutually exclusive and should not be
used together.

7) Scheduling Task with Minimizing Jitter: The user can
specify jitter requirements for SWCs corresponding to time-
triggered tasks. The scheduler aims to minimize jitter based
on the technique described in [34]. A simulated annealing
algorithm randomizes the release time of a time-triggered task
to create a tighter gap between its release time and deadline.
The entire schedule is then evaluated for schedulability. If the
system is schedulable, the next release time is selected and
the process repeats; otherwise, the release time is discarded.

B. Offline Scheduler Algorithm

The algorithm “Creation of offline schedule”, depicted in
Algorithm 1, is designed to generate a feasible schedule
for time-triggered (TT) tasks within their hyper-period. The



inputs to this algorithm include the set of all TT tasks I'/ T
and interrupt-triggered (IT) tasks I'/7 in the given node &i.
Furthermore, it requires the parameters of all TT tasks 747~
and IT tasks TZ-IjT.

The algorithm first calculates the hyper-period HP;TFT of
all TT tasks in I'7T. Following this, it calculates the release
times RT?T of all TT task instances within the hyper-period
(lines 6-7). Note that all task instances are assigned a release
time, which is the earliest point in time when a task instance
can be scheduled.

The core of the algorithm involves iterating through each
release time in the set RT: ©. For each task released at that
release time, the algorithm selects a TT task TijTT (line 11)
based on basic heuristics that are presented in Algorithm 2. If
Advanced heuristics are enabled then the TT task is selected
using Algorithm 3. If none of the task selection algorithms can
identify a task based on the heuristics, it indicates that the time
interval between the current release time and the next release
time lacks sufficient supply to execute any of the remaining
unscheduled tasks. Consequently, all unscheduled tasks at the
current release time are deferred to the next release time for
scheduling (lines 12-14).

Once a TT task (say 7ij77) is selected, the algorithm cal-
culates the task’s response time RiTjT (line 15). The response
time of the task is calculated considering interference from
all previously scheduled tasks at the current release time, as
well as the interference from all IT tasks released at the current
release time, following the analysis for tasks with offsets [19],
[20]. If the response time exceeds the task’s deadline D}.T,
the algorithm returns “Unschedulable” (line 17).

If the response time of TE;T exceeds the next release time,
it indicates that the execution supply between the current and
next release times has been exhausted. Hence, if RZZ;T falls
between the next two release times (line 19), the algorithm
checks if postponing the release time is enabled (line 20). If so,
it moves the start of next release time to the response time of
the task (line 21). Otherwise, it moves T};T and any remaining
unscheduled tasks to the next release time (lines 23-24).

If the distribute schedule feature is enabled and the execu-
tion supply between the current and the next release times is
less than the combined utilization of TT tasks, UiT T and IT
tasks, U™, (line 27), the scheduler will move T%T to the next
release time. Additionally, all remaining unscheduled tasks
will also be moved to the next release time for scheduling
(lines 28-29).

If T%T is schedulable, the algorithm saves the order of
the task and release-time pair in the schedule (line 31). If
TE;T is conditionally triggered, the scheduler generates its new
instance, updates its precedence details, and releases it for
scheduling (lines 32-33). This allows the task to be considered
for scheduling in the next loop iteration, provided it has
become eligible for execution, meaning all its predecessors
have been scheduled. If the user does not specify a deadline
for a conditionally triggered task, it is calculated from the
time it becomes eligible for execution plus the least common
multiple of the periods of all its predecessor tasks. Note that
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: function CREATEOFFLINESCHEDULE(E;)
: Input: Task sets 77 and T'/7 in &
Input: Parameters of all 7.7 tasks according to Eq. 6
Input: Parameters of all 7; jT tasks according to Eq. 7
Output: Feasible schedule of '/ 7" in its hyper-period
Calculate HP ZTT(F?T) > hyper-period of all tasks in I‘ZTT.
Calculate RTZTT(Fer) > Release times of all TT tasks’
instances in HPZTT.
for n:1to |[RT'7| do
for each task released at RTZTT[n] do > Multiple
tasks may have instances released at a release time simultaneously.
RT = RT}"[n]
75T« TaskSelectionHeuristics(I'} ) & w27
selected according to heuristics in Algorithms 2 and 3. FEgT contains
all TT tasks’ instances at release time RT.
if (7;;7 = 0) then
Move(RemUnschedTasks, RT; * [n+1]) ©
If the returned task is empty then move remaining unscheduled tasks
from the current release time to the next release time for scheduling.
end if
CalculateResponseTime(R;;"
if RT." > D" then
return Unschedulable
else
it RT] " [n+1]<RIT<RT]"[n+2] then
if PostponeReleaseTimeEnabled then
Move(RT{ "[n+11, RET) > Move
the beginning of the next release time to the response time of T%T.
else
Move(r;T, RT] " [n+1])
Move(RemUnschedTasks, RT?T [n+1])
> Move TE;T and remaining unscheduled tasks from the current release
time to the next release time for scheduling.
end if
else
if DistributeScheduleEnabled
(UciTT+Uch < UiTT+UiIT) then
Move(r;T, RT{ " [n+1])
Move(RemUnschedTasks, R TZTT [n+1])
else
Si« ET RTT I o 27 s
schedulable. Save the order of TZ.TT and RT pair in the schedule.
if TijTiS ConditionalTriggered then
ReleaseNeWInstance(TgT)
end if
end if
end if
end if
end for
end for
return Schedule (S;)
end function
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multiple instances of a conditionally triggered task cannot be
active simultaneously, as a new instance is created only when
the previous one has been scheduled.

Finally, the algorithm returns the generated schedule S;
(line 40).

C. Basic Heuristics Algorithm

The algorithm “Basic heuristics for task selection”, pre-
sented in Algorithm 2, is designed to select and provide a
unique time-triggered task instance to schedule at a given
release time. The process begins by taking as input the set
of all time-triggered task instances at the specified release
time (lines 2-3). To achieve this, the algorithm employs several
heuristics in sequence to narrow down the selection.

First, the algorithm uses the Earliest Deadline First (EDF)
heuristic to select all task instances at the given RT that
have the same deadline. This results in a subset Q7 £ of the
original task set T’} L (line 4). Next, the algorithm selects
all highest-priority task instances from the subset QTRT and
updates the subset accordingly (line 5). Following this, the
algorithm applies the best-fit heuristic (the task with largest
WCET that fits within remaining supply of the current release
time) to select task instances from the updated subset Q7% RT
(line 6). It then uses the Rate Monotonic Algorithm to further
refine the selection of task instances from the subset QfﬁT
(line 7). After that, the algorithm employs the Earliest Release
Time heuristic to select task instances from the subset QZ BT
(line 8).

Finally, the algorithm selects one task instance from the
subset Q7L rr alphabetically based on its unique ID (line 9).
After applymg these heuristics, the algorithm returns the
unique time-triggered task instance, if it can be found, to
schedule at the current release time (line 10). Note that if any
of the heuristics on lines 4-8 result in a unique task instance in
the subset QZ}’ZT’ the function returns this instance to schedule
at the current release time. These multiple checks are omitted
in Algorithm 2 for better readability.

D. Advanced Heuristics Algorithm

The user can choose to use advanced heuristics, which is
a performance enhancement over the basic one. The basic
heuristic is a simple one that makes it easy to understand the
resulting schedules, whereas the advanced heuristic is more
intricate and may result in schedules that are less obvious.
However, with advanced heuristics, there is an increase in
schedulability.

The algorithm “Advanced heuristics for task selection”,
shown in Algorithm 3, is designed to select a unique time-
triggered task instance to schedule at a given release time.
The algorithm begins by taking as input the set of all TT task
instances I'7 J, g at the specified release time. The output of the
algorithm is a unique time-triggered task instance to schedule
at the release time. The algorithm uses several advanced
heuristics in sequence to narrow down the selection. The
primary distinction from the basic heuristics algorithm is the
consideration of data dependencies among tasks. Additionally,

Algorithm 2 Basic heuristics for task selection

1: function TASKSELECTIONHEURISTICS_BASIC

2: Input: Fl BT
Release Time.

3: Output Unique TT task to schedule at RT

: Qi pr < SelectTasks EarhestDeadhneFlrst(I‘ Tr) o
Use EDF to select all tasks’ instances at the given RT that have the same
deadline. QTTT is a subset of FT

50 QL + SelectTasks nghestPrlorlty(Q L) > Select
all highest-priority tasks’ instances from Q7 RT’ update QTT

6:  QIf; « SelectTasks_BestFit({
instances from QTTT using the best-fit heurlstlc update QT

7: QTRT < SelectTasks_RateMonotonic(f2 RT)

Rate Monotonic Algorithm to select all tasks’ instances from

D> Set of all TT tasks’ instances at a given

RT) > Select all tasks’

I> Use

TT
91 RT”

update QZ BT

8: QTRT + SelectTasks_EarliestReleaseTime({2 RT) >
Use Earliest Release Time algorithm to select all tasks’ instances from
QZ BT update QT

9: O SelectTasks _Alphabetically(Q] %) > Select
one task from QTT alphabetically based on its ID, update Q?%T'

10:  return (Task € Ok

11: end function

if a task is not found to be the best fit after applying EDF and
priority, both EDF and priority-based selection are ignored,
and the best fit is performed on all tasks.

The basic scheduler focuses on control flow, maintaining
precedence relations between tasks, which may result in data
consumer tasks being scheduled before their producer tasks.
When the data-dependency feature is enabled, heuristics priori-
tize scheduling tasks with no incoming data dependencies first,
as long as schedulability is not affected (lines 4- 5). This results
in a subset Qz pr of the original task set FZ np- If the data-
dependency feature is not selected, heuristics proceed without
considering data dependencies. Enabling the data-dependency
feature does not impact schedulability.

Next, the algorithm selects tasks with the shortest deadline
for data to propagate to successor tasks and updates the
subset accordingly (line 6). Following this, the algorithm uses
the Earliest Deadline First (EDF) heuristic to select all task
instances at the given release time that have the same deadline,
further refining the subset QTRT (line 8). It then selects all
highest-priority task instances from the updated subset Qz BT
(line 9). The algorithm then applies the best-fit heuristic to
select task instances from the subset Q £, (line 10).

If the subset QTTT becomes empty, the algorithm fetches
the original set of all TT tasks’ instances at the given release
time, ignores the EDF and highest-priority selection steps, and
proceeds to the best-fist heuristic (lines 11-13) and then rate-
monotonic heuristic (line 14) to select task instances from the
subset. It then employs the Earliest Release Time heuristic to
further refine the selection of task instances from the subset
(line 15).

Finally, the algorithm selects one task from the subset QZ BT



Algorithm 3 Advanced heuristics for task selection

1: function TASKSELECTIONHEURISTICS_ADVANCED

2 Imput: IV %,
Release Time.

3: Output: Unique TT task to schedule at RT
: if (DataDependenciesConsidered) then

> Set of all TT tasks’ instances at a given

5: QTRT < SelectTasks NoDataInDependency(]." )

> Select tasks with no incoming data-dependencies if schedu]ablllty of
other tasks is not affected. QTTT is a subset of I'7’ i RT
6: QI'k + SelectTasks_ShortestDataDeadline(2

> Select tasks with shortest deadline for data to propagate to the
successor tasks, update QZ}T

end if

QF'Rp < SelectTasks_EarliestDeadlineFirst(Q] ) >
Use EDF to select all tasks’ instances at the given RT that have the same

; TT
deadline, update €2; i RT

9: QTRT — SelectTasks nghestPrlorlty(QZ RT) D> Select
all highest-priority tasks’ instances from QT T» update QT
10: QT]ET < SelectTasks_BestFit({2 RT) > Select all tasks’

instances from QTRT using the best-fit heuristic, update
1 if (JQFF k| = = ()) then
12: QZ rr < SelectTasks_BestFit(I" RT) D> Task
selection from the original set of input TT tasks’ instances at the given

TT
Qi,R

Release Time
13: end if
T
14: Qi rr ¢ SelectTasks_RateMonotonic(§2 RT) > Use
Rate Monotonic Algorithm to select all tasks’ instances from QZ RT

update QZ RT-

15: QTRT + SelectTasks_EarliestReleaseTime({2 RT) >
Use Earliest Release Time algorithm to select all tasks’ instances from
QZ &> update QT

16: QIR SelectTasks _Alphabetically(2
one task from QTgT alphabetically based on its ID, update Qf

17 return (Task € Q%)

18: end function

RT) > Select

alphabetically based on its unique ID (line 16). Note that if
any of the heuristics on lines 4-18 result in a unique task
instance in the subset QzT}TzT, the function returns this instance
to schedule at the current release time. These multiple checks
are omitted in Algorithm 3 for better readability.

After applying these advanced heuristics, the algorithm
returns the unique time-triggered task instance, if it can be
found, to schedule at the release time (line 17).

V. EVALUATION

We demonstrate the proof of concept for the offline sched-
uler by modeling a segment of the software architecture of an
industrial application using the Rubus Component Model and
generating a feasible offline schedule with the scheduler. To
ensure clarity and illustrate the step-by-step schedule genera-
tion, we focus on only four SWCs in the software architecture,
as depicted in Fig. 6. Furthermore, we have replaced the actual
names of the SWCs with more generic names for IP protection,
while keeping the rest of the parameters in the software

RT)

architecture unchanged. Towards the end of this section, we
will show a real schedule generated by the Rubus scheduler
for time-triggered tasks within a proprietary Electronic Control
Unit (ECU) in a contemporary vehicle.
The part of the application in Fig. 6 consists of 4 SWCs:
e One SWC triggered by a 20 ms TT clock: Sensor with a
WCET of 3 ms.
e One SWC triggered by a 30 ms TT clock: Control with
a WCET of 7 ms.
e One SWC triggered by Control SWC: Actuate with a
WCET of 4 ms.
« One SWC triggered by an interrupt with a minimum inter-
arrival time of 5 ms: Interrupt with a WCET of 1 ms.

L) el
30 msl>— LT 0 bb T e [2
O opd Qo ooQ
Contral Actuate
A
Interrupt

Fig. 6: Partial software architecture of an industrial application
modeled with Rubus.

Furthermore, data flows from Sensor to Control to Actuate
SWCs, with all time-triggered SWCs having the same priority.
Note that we consider a one-to-one mapping between an SWC
and a task. Hence, there are four tasks in the system with the
corresponding names. The hyper-period of the task set, and
thus the schedule length, is 60 ms (with time-triggered task
periods of 20 ms and 30 ms), and the release times are 0 ms,
20 ms, 30 ms, and 40 ms. Table I shows the tasks assigned
to each release time. This table, along with interrupts, serves
as input to Algorithm 1, where the scheduling starts at release
time 0 ms. The heuristics can choose either the Sensor or
Control task since they have no predecessors. However, due
to the data dependency of Control task on the Sensor task, the
Sensor task is selected first.

The Sensor task is scheduled with a finishing time of 4 ms
(preempted by a 1 ms interrupt). The heuristics are called
again, and this time the Control task is selected due to its
triggering of the Actuate task. The Control task is scheduled
with a finishing time of 13 ms (considering interference from
the Sensor task and three instances of the interrupt, each 3 ms).
Finally, the Actuate task is scheduled with a finishing time of
18 ms. Next, we schedule the release time at 20 ms, which
contains only the Sensor task, which is scheduled and gets a
finishing time of 24 ms.

At the 30 ms release time, there are two tasks to schedule.
The Control task is scheduled first, finishing at 39 ms. When



attempting to schedule the Actuate task, it is found to be
unschedulable at the current release time due to the next
release time at 40 ms. Thus, the Actuate task is moved to the
40 ms release time. At 40 ms, we schedule the Sensor task
first, finishing at 44 ms, followed by the Actuate task, finishing
at 49 ms. With no more release times or tasks to schedule,
the final schedule and schedulable result are returned. The
schedule generated from the Rubus offline scheduler is shown
in Fig. 7. The first column shows various instances of the tasks
that are scheduled at the four release times. The second and
third columns provide the best-case and worst-case execution
times of the tasks respectively. The fourth and fifth columns
show the deadlines and finishing times of all task instances.
The sixth column lists the utilization of time-triggered tasks,
whereas the seventh column provides the combined utilization
of both time-triggered and interrupt-triggered tasks of the
corresponding release time.

Release Time Tasks Assigned

0 ms Sensor Control Actuate

20 ms Sensor

30 ms Control Actuate

40 ms Sensor

TABLE 1
) Finishing TT TT+IT
Name BCET WOCET Deadline _. . .
Time Util  Util

Releasetime 0 3us 14 ms 70% 90 %
Sensor lus 3ms 20ms 4 ms 15% 20%
Contro lus 7ms 30ms 13 ms 50% 65%
Actuate lus 4ms 30ms 18 ms 70% 90 %
Releasetime 20 ms lus 3ms 30% 40 %
Sensor lus 3ms 40ms 24 ms 30% 40%
Releasetime 30 ms lus 7ms 70% 90 %
Contro lus 7ms 60ms 39 ms 70% 90 %
Releasetime 40 ms 2us 7 ms 35% 45 %
Sensor lus 3ms 60ms 44 ms 15% 20%
Actuate lus 4ms 60ms 49 ms 35% 45%

Fig. 7: Schedule generated by the Rubus scheduler for the
application in Fig. 6.

We also demonstrate that the Rubus scheduler can construct
schedules for a large number of tasks in just a few seconds.
Fig. 8 displays a Gantt chart of an actual schedule generated
by the Rubus scheduler for approximately 700 time-triggered
software circuits (TT tasks) within a proprietary ECU in a
contemporary vehicle. The schedule length is 100 ms, which
corresponds to the hyper-period of all tasks in the schedule.
There are 10 release times, starting at O and occurring every
10 ms. Each task is uniquely colored in the schedule, with the
remaining information abstracted for IP protection.

VI. CONCLUSION

In this paper, we presented the features, mechanisms and
algorithms that form the core of the Rubus offline real-
time scheduler, which is central to the Rubus tool suite. We
validated the offline scheduler by modeling a segment of the
software architecture of an industrial application using the
Rubus Component Model and generating a feasible offline
schedule with the scheduler.

The schedules generated by the presented scheduler are
executed by the Rubus real-time operating system certified
according to the ISO 26262 safety standard. The Rubus tool
suite and its scheduler have been utilized in the vehicle indus-
try for model- and component-based software development of
resource-constrained embedded systems for over 25 years.

Since its introduction in 1998, the scheduler has evolved
significantly, transitioning from pure Earliest Deadline First
heuristics to incorporating various other heuristics and intricate
features such as priorities, data dependencies, and the ability
to distribute the schedule over the entire hyper-period of the
software application. These enhancements help avoid front-
heavy scheduling, benefiting lower-priority dynamic event-
triggered software functions running in the background. These
enhancements ensure that both critical and non-critical vehicle
functions are executed reliably and economically. In conclu-
sion, the Rubus tool suite, with its static real-time scheduler,
has proven to be a robust solution for the vehicle industry,
addressing the complexities of modern vehicle software.
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