Learning to Transform: Evaluating LL.Ms on Model
Transformation by Example

Duy Dao*, Alessio Bucaionif, Antonio Cicchettif
* Mailardalen University (Sweden), khanh.duy.dao @mdu.se
T Milardalen University (Sweden), name.surname @mdu.se

Abstract—Large language models have shown promising po-
tential in reducing the accidental complexity of model-driven en-
gineering, particularly in automating model transformation tasks.
However, existing research has shown that large language models
often struggle with correctness, generalizability, and performance
in complex transformation scenarios. This paper investigates the
feasibility of applying large language models within the paradigm
of model transformation by example, an intuitive technique
that derives transformation logic from prototypical source-target
model pairs, thereby reducing cognitive load and bypassing the
need for formal transformation specifications.

We empirically benchmark five LLMs, ChatGPT-4.5,
DeepSeek V3, DeepHermes 3 LLaMA 3 8B, QwQ 32B, and
OlympicCoder 32B, across three transformation scenarios of
increasing complexity: RDBMS-to-UML, UML-to-Java, and
SysML-to-AAS. Each scenario is evaluated under three con-
figurations, varying the number of example pairs provided. In
each configuration, the LLMs are tasked with directly generating
target models given source models, example pairs, and initial
mapping rules. Model outputs are assessed using correctness and
weighted success metrics that account for structural and semantic
fidelity.

Our findings reveal that LLMs perform well in syntactically
regular transformations but struggle in semantically rich or com-
plex scenarios. Additional examples do not consistently enhance
performance and may even degrade it, highlighting the models’
limitations in abstraction and semantic grounding. GPT-4.5
delivers the highest peak performance but suffers from instability,
while smaller models like DeepSeek V3 and OlympicCoder 32B
offer more stable, scalable results.

Index Terms—Model Transformation By Example, Large Lan-
guage Models, Benchmarking.

I. INTRODUCTION

In recent years, several studies have investigated the use of
Large Language Models (LLMs) to reduce the accidental com-
plexity commonly associated with Model-Driven Engineering
(MDE), particularly in model transformation tasks [1], [2].
Accidental complexity refers to the non-essential difficulties
that stem not from the intrinsic nature of the task, but from
the limitations and intricacies of the tools, languages, and
techniques used to perform it [3]. While preliminary results
have shown the potential of LLMs in code generation [4] and
automating model transformations [1], substantial challenges

This work is supported by the Swedish Agency for Innovation Systems
through the project “iSecure: Developing Predictable and Secure IoT for
Autonomous Systems” (2023-01899), and by the Key Digital Technologies
Joint Undertaking through the project “MATISSE: Model-based engineering
of digital twins for early verification and validation of industrial systems”
(101140216).

persist, particularly when addressing less-explored transforma-
tion scenarios and ensuring the correctness and generalizability
of the generated transformations [1].

In this context, our research aims to address these limitations
by investigating the feasibility and effectiveness of leverag-
ing LLMs within the paradigm of Model Transformation by
Example (MTBE). In MDE, MTBE is an intuitive approach
that simplifies transformation tasks by allowing practitioners
to derive transformation rules from a prototypical set of
interrelated source and target models, specified in a purely
declarative manner [5]. Our central intuition is that, when
applied in the context of LLMs, MTBE can facilitate the
definition of transformations by feeding concrete example
pairs directly to the models. By alleviating cognitive load,
this paradigm has the potential to enhance the correctness and
reliability of transformations generated by LLMs.

In this research, we empirically benchmark five different
LLMs, ChatGPT-4.5, DeepSeek V3, DeepHermes 3 LLaMA
3 8B, QwQ 32B, and OlympicCoder 32B, to evaluate their
capability to autonomously perform MTBE. The evaluation
spans three representative transformation scenarios of increas-
ing complexity: Relational Database Schema to UML Class
Diagram (RDBMS-to-UML), UML Class Diagram to Java
(UML-to-Java), and System Modeling Language to Asset
Administration Shell (SysML-to-AAS). These scenarios were
selected to cover a range of transformation types, from struc-
tural to behavioral and cross-domain mappings. For each
scenario, we define three experimental configurations based
on the number of example pairs (i.e., source and target model
pairs) provided to the LLM: one-pair input, two-pair input, and
four-pair input. This design allows us to systematically assess
the impact of example quantity on the models’ transformation
accuracy and generalization ability. Each LLM was given a
single attempt to perform the MTBE task per configuration
and directly generate target models from the given source
models, example pairs, and initial mapping rules according to
the scenario and configuration. Success was evaluated using
two complementary metrics: the percentage of fully correct
transformations and a weighted success score that accounts for
partial correctness based on the structural and semantic fidelity
of the generated models. We have made a public replication
package available in Section VIIL.

Our evaluation reveals substantial performance variabil-
ity across tasks, closely tied to transformation complexity.
LLMs exhibit strong performance in structured scenarios like
RDBMS-to-UML, where mappings are relatively deterministic

and rule-based. However, their effectiveness diminishes in
semantically rich and syntax-intensive tasks, such as SysML-
to-AAS and UML-to-Java, where abstraction and interpre-
tation play a greater role. Notably, increasing the number
of example pairs does not consistently improve performance
and can, in some cases, degrade it, suggesting limitations in
semantic grounding and a risk of cognitive overload within
the models. GPT-4.5 stands out with superior yet volatile
scalability, while smaller, fine-tuned models like DeepSeek
V3 and OlympicCoder 32B demonstrate more stable results,
emphasizing the value of targeted prompt engineering and
task-specific adaptation.
In summary, this paper makes the following contributions:
o It provides early empirical evidence on the capability of
LLMs to autonomously perform MTBE.
o It benchmarks five different LLMs across 45 curated con-
figurations spanning three distinct model transformation
scenarios.

The remainder of this paper is organized as follows. In
Section II, we provide relevant knowledge for our paper and
review existing studies that are related to this work. In Section
III, we describe the methodology used to benchmark LLMs for
MTBE methodology and detail its implementation. In Section
IV, we present the results of our experiments. In Section V,
we discuss these results along with the potential threats to
validity. Finally, in Section VI, we conclude the paper and
outline possible future research avenues.

II. BACKGROUND

This section outlines the foundational concepts necessary
to understand the remainder of the paper and reviews relevant
related work

A. Model Transformation by Example

MTBE is an MDE technique that defines model transfor-
mations using concrete example models rather than traditional
metamodel-based transformation rules [5]. It supports the
(semi-)automatic generation of transformation rules from pro-
totypical pairs of source and target models, allowing essential
mapping cases to be specified without requiring in-depth ex-
pertise in transformation languages [6]. This approach lowers
the barrier for domain experts and modelers, who are typically
more familiar with the concrete syntax, enabling them to define
model transformations without needing extensive knowledge
of the underlying metamodels [6].

The MTBE process begins with the manual setup of pro-
totype mapping models, where designers create an initial set
of interrelated source and target model pairs. These serve as
concrete examples from which the system can learn. Fol-
lowing this, the system performs an automated derivation
of transformation rules by analyzing the relationships within
the prototype mappings. These initial rules are capable of
correctly transforming at least the provided source models
into their corresponding target models. Once generated, the
rules undergo a phase of manual refinement, during which
designers adjust them to introduce generalizations or impose

necessary constraints. Finally, the process concludes with the
automated execution of the transformation, where the refined
rules are applied to new source models to produce target
models. These new cases serve both to validate correctness
and to inform the creation of further prototype mappings,
thus continuing the iterative refinement cycle. Since the final
set of transformation rules is unlikely to be fully derived
from the initial set of prototype models, the MTBE approach
is inherently highly iterative and interactive [5]. Designers
can revise or refine the generated rules at any point, and
correctness is assessed continuously by treating each prototype
mapping model as a test case. In the MTBE studies [5],
[6], both the initial prototype mappings and derived rules are
based on specific assumptions, such as treating source and
target models as graph-like structures and enforcing one-to-
one mappings between source and target nodes.

The MTBE approach offers several advantages for model-
ers. Since it is model-centric, it presents a low entry barrier by
allowing designers to work with familiar modeling constructs
when specifying transformations. It also reduces the manual
effort typically required in traditional model transformation
methods, as many transformation rules can be synthesized
automatically. Being inherently iterative, MTBE supports in-
cremental refinement of mapping rules and offers flexibility for
designers to override or generalize rules as needed. However,
the approach also has notable limitations. It still depends
heavily on human intuition for defining the initial prototype
models and for generalizing transformation rules, which con-
strains its level of automation. Moreover, applying MTBE
at an industrial scale may prove challenging, as real-world
systems often involve complex, heterogeneous models with
numerous elements and types, potentially hindering validation
and scalability.

B. Large Language Model

LLMs are a type of artificial intelligence based on advanced
deep neural networks trained on massive volumes of textual
data, including books, source code, articles, and websites, to
learn complex language patterns and relationships [7]. These
models are capable of generating coherent and grammatically
correct human-like text or syntactically accurate code snippets.
However, their outputs are inherently probabilistic and may
still contain semantic errors [7]. Multiple versions of LLMs
have been released in recent years, including GPT, DeepSeek,
and LLaMA, each offering various improvements in capability
and efficiency. These advancements open up a wide range of
opportunities for applying LLMs in software engineering. For
instance, Ozkaya [8] highlights potential use cases such as
automated code generation and assistance, developer feedback,
automated testing, and natural language translation within
software systems.

This paper investigates the effectiveness of leveraging the
capabilities of LLMs for MTBE. To conduct this study, five
diverse LLMs were selected: ChatGPT-4.5, DeepSeek V3,
DeepHermes 3 LLaMA 3 8B, QwQ 32B, and OlympicCoder
32B. Each model exhibits unique architectural characteristics

and training configurations, offering a broad spectrum of
generative behaviors.

ChatGPT-4.5 is one of the strongest models for complex
reasoning, structured problem-solving, and detecting subtle
patterns, all of which are critical in model transformation tasks
that require fine-grained rules and mappings. Its superior few-
shot learning capabilities make it well-suited for in-context
learning scenarios'.

DeepSeek v3 is known for its excellence in structured
reasoning and generating programmatic outputs such as code,
data models, and structured transformations. Its quality is close
to that of GPT-4, offering flexibility for potential fine-tuning
on MTBE-specific tasks. DeepSeek’s abstraction and schema
reasoning capabilities are especially relevant, as MTBE often
involves interpreting instance models.

DeepHermes 3 (LLaMA 3 8B) is a smaller, more efficient
model that allows for faster experimentation cycles. It special-
izes in instruction-following and transformation tasks, making
it well-suited for converting example pairs into generalizable
transformation logic?.

QwQ 32B has been trained across a wide range of tasks,
including both code generation and complex text reasoning.
This broad tuning makes it a balanced model in terms of
quality and versatility, particularly strong in tasks involving
code transformation®.

OlympicCoder 32B is specifically optimized for code gen-
eration and logical reasoning, aligning closely with the re-
quirements of MTBE. It is well-suited for tasks that demand
interpretation of formal syntax, code rewriting, and transfor-
mation, making it a highly relevant model for this study’.

C. Related Work

Recent research has increasingly explored LLMs as tools
for automating and simplifying complex tasks within MDE,
particularly addressing the accidental complexity arising from
traditional model transformation methods. Kazai et al. pro-
vided early evidence of using LLMs such as ChatGPT-4 to
perform model transformations directly from UML diagrams
to Java code, achieving a cumulative success rate of 94% for
simpler models, but facing significant challenges with complex
transformations, where performance sharply decreased to 17%
[1]. This highlights both the potential and the limitations of
LLMs in handling domain-specific and structurally intricate
transformations.

Moezkarimi et al. explored the use of ChatGPT-4 to auto-
mate the transformation of UML state diagrams into Rebeca
models by using few-shot learning, where GPT-4 was provided
with example pairs of UML state diagrams and corresponding
Rebeca models [2]. The research showed GPT-4 achieving
up to 85% syntactic correctness and 69% weighted success

Uhttps://openai.com/chatgpt
Zhttps://deepseek.com/blog/deepseek-v2-and-v3
3https://huggingface.co/collections/Darkstorm225/
deephermes-1llama3-8b-664ef3bbddf1cb05f38d37cc
“https://huggingface.co/QwQ/QWen-32B
Shttps://huggingface.co/OpenBMB/OlympicCoder-32B

on select examples, but also revealed incorrect instantiation,
omitted semantics, or hallucinated constructs. Their findings
underscore the importance of metadata augmentation, prompt
design, and dataset structure in improving LLM-based trans-
formations and advocate for combining LLMs with model-
checking tools like Afra to achieve practical semi-automatic
verification pipelines, providing a blueprint for LLM-assisted
model transformations in formal domains and emphasizing the
need for structured prompts and tailored metadata.

Further relevant research by Chen et al. demonstrated the
feasibility of using LLMs for automated domain modeling
tasks, underscoring their potential in recognizing and generat-
ing domain-specific elements but also emphasizing challenges
in achieving full automation and accurate semantic understand-
ing [9]. Similarly, Arulmohan et al. explored the extraction
of domain models from textual requirements using GPT-
3.5, revealing that while LLMs can significantly streamline
model generation processes compared to traditional NLP-
based methods, they may still struggle with semantic precision
and generalization [10].

Efforts by Rajbhoj et al. illustrated systematic prompting
techniques for using ChatGPT to automate various tasks within
the software development lifecycle, showing that appropri-
ate prompt engineering could notably enhance the utility
of generative Al in reducing the barriers to using complex
transformation tools and methods [11]. Similarly, Clariso et
al. presented a domain-specific language aimed at improving
the adaptability and precision of prompts for LLMs in model-
driven scenarios, which could potentially mitigate some of the
inherent limitations observed in direct, zero-shot transforma-
tions [12].

These studies collectively underscore a growing interest
and potential in leveraging LLMs to reduce the complexity
associated with model transformation tasks in MDE. They
highlight the promise of these Al-driven methods in making
model transformations more accessible to users with limited
expertise, while also clearly identifying current limitations,
particularly in handling semantic complexity, structural in-
tricacies, and the need for precise and effective prompting
strategies.

III. RESEARCH METHOD

Our goal is to assess the feasibility and accuracy of LLMs
in learning transformation logic from a limited set of example
pairs and applying it to generate correct target models. To
this end, we employed a structured methodology across three
distinct transformation scenarios, each evaluated under three
different configurations that vary in the number of input exam-
ple pairs. The overall workflow consists of three main phases:
(i) preparing transformation prompts that include initial map-
ping rules, metamodels, and several example source-target
model pairs depending on the configuration; (ii) querying the
LLM with a new source model and requesting it to generate
the corresponding target model; (iii) validating the generated
output with expected output based on ground truth examples
using weighted evaluation framework [2].

A. Transformation Scenarios and Configurations

To evaluate the capabilities of LLMs in model
transformation tasks, we selected three distinct scenarios
of increasing complexity, encompassing a range of
transformation types, from structural and behavioral to
cross-domain mappings. Each scenario’s dataset consists of
four distinct model pairs as example pairs and one model
acting as the source model.

RDBMS-to-UML This task involves transforming structured
data representations into object-oriented models [5], [13].
It maps tables to UML classes, columns to attributes,
and primary/foreign key relationships to associations. The
datasets for this scenario were manually constructed based on
information provided in Varro et al. [5]. Each of the RDBMS
models is XML-based with varying complexity, ranging from
four to eight tables per model, with each table consisting
of three to eight columns. The UML class diagrams are
serialized in XMI format with an equivalent number of
classes, attributes, and associations. This transformation tests
the model’s ability to understand structural correspondences
and enforce integrity constraints in UML notation.

UML-to-Java In this scenario, the model translates object-
oriented design representations into executable code skeletons
[1], [2]. It converts UML classes, attributes, operations
(methods), visibility modifiers, and inheritance relationships
into Java class definitions. The datasets found in this scenario
were manually designed based on the research of Kzai et
al. [1], including object-oriented UML class diagrams paired
with equivalent Java code skeletons. The UML class diagram
is serialized in XMI format, with each containing two to
five classes with each consisting of a range from three to
six attributes and two to four associations between classes.
The corresponding Java code skeletons are provided in
standard Java source file format, organized in packages with
clearly defined class structure, attributes, getters and setters,
method signatures, and associations. This task evaluates the
LLM’s capacity to bridge design and implementation-level
abstractions, preserving both syntax and semantics.

SysML-to-AAS This transformation translates system-
level models into digital twin representations compliant
with the AAS meta-model. SysML constructs such as
blocks, parts, ports, states, and attributes are mapped to
AAS submodels, properties, and operations. The source and
target example model pairs are derived from the publicly
available dataset introduced by Enxhi Ferko et al. [14], which
provides representative SysML and their corresponding AAS
submodels. This dataset serves as a realistic benchmark for
digital twin integration tasks. [14]. Each source model is
defined using a textual SysML representation, each contains
five to ten top-level Definitions, representing general concepts
such as part, port, interface, and action [14]. These definitions
serve as building blocks comprising more complex Usage

elements. Each defined block contains a varying number of
components, ranging from one to eight per block, including
parts, subsets, redefinitions, interfaces, input/output ports, and
attributes. The corresponding target AAS model is serialized
using an XMI-based format, comprising entities, submodel
elements, relationships, qualifiers, and file references. This
scenario requires semantic interpretation of engineering
concepts and formal conformance to an industrial standard.

To systematically study LLM performance under varying
learning conditions, we defined three configurations for
each transformation scenario. Combined, these scenarios
and configurations provide a controlled experimental
framework to assess how effectively LLMs can perform
model transformations across different levels of supervision
and abstraction.

One Example Pair The LLM is provided with a single
example model pair (source and target) as a minimal input.
This configuration assesses the model’s ability to infer
transformation rules from a single instance.

Two Example Pairs The LLM is given two example
model pairs. This setup allows us to analyze whether limited
diversity in training samples improves rule induction and
generalization performance.

Four Example Pairs With four example model pairs,
the LLM has broader exposure to transformation patterns
and variations. This configuration serves as a measure
of how performance scales with additional examples and
provides insight into the model’s capacity to learn reusable
transformation logic.

B. Prompting and Model Generation via LLM-based MTBE

Our LLM-based MTBE process follows a structured, multi-
phase methodology comprising three main stages: preparation
and prompt engineering, providing example pairs and initial
transformation rules to the LLMs, and output validation with
conformance checking.

Each transformation scenario is initiated with a crafted
prompt designed to instruct the LLMs. These prompts are
tailored to leverage the linguistic capabilities of the models
by blending natural language with domain-specific syntax,
thereby facilitating a clearer understanding of the intended
transformation logic.

For each of the three transformation scenarios: SysML-to-
AAS, UML-to-Java, and RDBMS-to-UML, each configuration
(one, two, and four example pairs) was executed once
per scenario. This process was repeated across five different
LLMs, resulting in a total of 45 runs.

This systematic execution enabled a consistent and com-
parative evaluation across all models and configurations. We

formalize the prompt structure as follows:

Prompt = Mapping Rules 4+ Example Pairs + Metamodels
—_—————

M E, MM

(D
where M denotes a description of the transformation rules
(i.e., transformation logic), provided either as a textual ex-
planation or in a structured format; E, represents n (n €
{1,2,4}) example source-target model pairs that demonstrate
complete mappings; MM captures optional references to
metamodels or type definitions to ensure semantic alignment.
The LLM is then presented with a previously unseen source
model Syew and asked to generate the corresponding target
model T}y by analyzing information from (M + E,, + M M).

An example of the general prompt used to generate the
output model across all three transformation scenarios and
their respective example pair configurations is provided below.

In a model-driven engineering context, I am
transforming "Your source type" models into "Your
target type" models, and I want you to help by

doing the translation. I will give you in input the
following artefacts: a set of mapping rules ("Your
mapping rules file") telling you how to translate

a "Your source type" model into a "Your target

type" model, "Number of example pairs" example

pair of "Your source type" model and "Your target
type" models ("Your source example file" and "Your
target example file") translated from such "Your
source type" model, a "Your source type" metamodel
and a "Your target type" metamodel ("Your source
metamodel file", "Your target metamodel file")

and a new complete "Your source type" model ("Your
source file") that I want you to transform into
"Your target type" model. I want you to consider the
mapping rules and the example of "Your source type"
model elements already translated into "Your target
type" mode element, and based on them generate a new
"Your target type" model that is translated from the
new "Your source type" model that I provided you.

I want that the "Your target type”" model that you
will generate to be conformant to the "Your target
type" provided example and the "Your target type"”
metamodel If the new "Your source type" model that I
want you to translate contains elements not covered
by the mappings that I provided you, please alert
me, but try to still generate an "Your target type"
model compliant to the "Your target type" metamodel.

C. Validation Methodology

Each LLM is used to generate a single target model per
prompt. The resulting outputs are then manually reviewed and
benchmarked for comparative analysis.

Specifically, each target model undergoes a two-tier vali-
dation process: structural comparison, which verifies whether
the generated model matches the expected output based on
ground truth examples (e.g., compilable Java code, valid
JSON, or well-formed XMI), and semantic validation, which
assesses whether the output correctly preserves the structure,
constraints, and intent of the original source model.

In particular, we adopted a weighted evaluation framework
[2], which enables a nuanced and systematic analysis of the
generated outputs. This framework assigns differential weights
to various aspects of correctness, error, and completeness,
thereby reflecting their relative importance in the context of
model transformation quality and practical applicability.

e LOC (Lines of Code): The total number of lines in the
ground truth model, serving as the normalization base
for the metrics. These lines refer to individual elements
or statements in the serialized output models, e.g., XML
tags in XMI, Java source code lines, SysML textual
statements, etc.

¢ Cr (Correct Lines): Lines in the LLM-generated model
that exactly match the ground truth model; each such line
is awarded +1 point.

e InCr (Incorrect Lines): Lines in the LLM-generated

model that are syntactically or semantically incorrect with
respect to the ground truth model; each incurs a penalty
of -1 point. Syntactic errors include malformed syntax,
tags, and semantic errors involve incorrect mappings or
misrepresentation of model elements.
Ad (Additional Lines): Lines in the LLM-generated
model that are not present in the ground truth model.
If such lines are neutral, i.e., they do not affect the
correctness of the transformation, they receive 0 points.
However, if they are detrimental (e.g., misleading, seman-
tically invalid), they are penalized with -1 point.

e Miss (Missing Elements): Lines or elements that are
expected but absent in the LLM-generated model. Due
to their critical impact on completeness, each missing
element results in a -2 point penalty.

Based on the above framework, we derived two metrics
summarizing the overall transformation quality. Percentage of
Correctness (%Correct) captures the proportion of correct lines
relative to the total number of expected and missing lines,
offering a normalized measure of accuracy.

Cr
%Correct = TOC + Miss 2
Weighted Success Rate (%WSuccess) accounts for not only
correct and incorrect lines, but also evaluates the impact of ad-
ditions and omissions. It provides a comprehensive perspective

on the semantic and structural adequacy of the transformation.
Cr—InCr+Ad-(0or —1)—2- Miss
LocC
3)

%W Success =

IV. RESULT EVALUATION

This section presents a comparative summary of the perfor-
mance of all five LLMs (GPT-4.5, DeepSeek V3, DeepHermes
3 LLaMA 3 8B, QwQ 32B, and OlympicCoder 32B) across
three model transformation scenarios. Each task was evaluated
under three configurations, varying the number of provided
example pairs (1, 2, and 4), to assess the models’ effectiveness
under different levels of supervision. Table I summarizes the
results of our experiments. For each scenario and configura-
tion, it reports the percentage of correct transformations (%
Correct) and the weighted success score (% WSuccess), as
computed using the evaluation framework introduced earlier.

A. RDBMS-to-UML

This scenario evaluates the transformation from relational
database schemas to UML class diagrams, a task that is largely

TABLE I

PERFORMANCE EVALUATION OF LLMS IN MODEL TRANSFORMATION BY EXAMPLE

Scenario Configuration LLMs ‘ LoC ‘ Cr (+1) ‘ Incr (-1) ‘ Ad (0/-1) ‘ Miss (-2) ‘ % Correct | % WSuccess
RDBMS-to- 1 example pair GPT_4.5 75 75 010 0 100% 100%
UML
DeepHermes 3 Llama 3 91 83 0| 80 0 91% 91%
8B
DeepSeek V3 83 83 010 0 100% 100%
QwQ 32B 91 83 0 | 80 0 91% 91%
OlympicCoder 32B 75 75 010 0 100% 100 %
2 example pairs GPT_4.5 81 73 8 | 8/0 0 90% 80%
DeepHermes 3 Llama 3 111 103 0| 80 2 91% 89%
8B
DeepSeek V3 83 83 01]0 0 100% 100%
QwQ 32B 91 83 0 | 80 0 91% 91%
OlympicCoder 32B 83 83 0|0 0 100% 100%
4 example pairs GPT_4.5 82 74 0| 80 0 90% 90%
DeepHermes 3 Llama 3 93 82 1| 82 1 87% 82%
8B
DeepSeek V3 83 83 010 0 100% 100%
QwQ 32B 88 80 0 | 80 10 81% 68%
OlympicCoder 32B 82 74 0| 80 90% 90%
UML-to-Java 1 example pair GPT_4.5 114 114 010 100% 100%
DeepHermes 3 Llama 3 220 197 23 1 0 28 79% 53%
8B
DeepSeek V3 130 118 0| 012 0 90% 81%
QwQ 32B 130 118 0| 012 0 90% 81%
OlympicCoder 32B 134 119 0 | 0/15 0 88% 77%
2 example pairs GPT_4.5 96 62 34 |0 46 43% 0% (-66%)
DeepHermes 3 Llama 3 126 114 0| 0/12 3 88% 76%
8B
DeepSeek V3 130 118 0| 012 0 90% 81%
QwQ 32B 126 114 0| 0/12 3 88% 76%
OlympicCoder 32B 130 118 0| 012 0 90% 81%
4 example pairs GPT_4.5 83 65 9 | 0/9 31 57% 0% (-18%)
DeepHermes 3 Llama 3 98 98 0|0 12 89% 75%
8B
DeepSeek V3 132 120 0| 012 0 90% 81%
QwQ 32B 130 118 0| 012 0 90 % 81%
OlympicCoder 32B 130 118 0| 012 0 90% 81%
SysML-to- 1 example pair GPT_4.5 74 74 010 10 88% 73%
AAS
DeepHermes 3 Llama 3 165 73 3 | 29/60 2 43% 2%
8B
DeepSeek V3 144 104 0 | 40/0 0 72% 72%
QwQ 32B 85 54 31 |0 0 63% 27%
OlympicCoder 32B 95 95 010 7 93% 85%
2 example pairs GPT_4.5 58 57 0| 1/0 10 83% 63%
DeepHermes 3 Llama 3 74 44 0 | 0/30 25 44% 0%
8B
DeepSeek V3 41 40 110 22 63% 0% (-12%)
QwQ 32B 90 76 1410 0 84% 69 %
OlympicCoder 32B 92 23 30 | 39/0 5 23% 0% (-18%)
4 example pairs GPT_4.5 61 54 710 6 80% 57%
DeepHermes 3 Llama 3 64 47 12 | 2/3 13 61% 9%
8B
DeepSeek V3 40 24 0| 12/4 28 35% 0% (-90%)
QwQ 32B 88 51 0 | 0/37 13 50% 0% (-13%)
OlympicCoder 32B 92 37 16 | 39/0 8 37% 5%

syntactic and structurally consistent, making it more straight-
forward than the others. The transformation mappings (e.g.,
Table to Class, Column to Attribute) follow well-established,
rule-based patterns, allowing language models to effectively
generalize transformation logic from minimal training exam-
ples. Our results confirm that, even with only one example pair
provided, the models demonstrate remarkable accuracy, with
GPT-4.5, DeepSeek V3, and OlympicCoder 32B all achieving
100% in both correctness and weighted success. Among
the five models, DeepSeek V3 consistently outperforms the
others across all configurations, maintaining perfect scores.
GPT-4.5 and OlympicCoder 32B follow closely, though their
performance occasionally fluctuates due to the generation
of extraneous lines in the output. Conversely, DeepHermes
3 and QwQ 32B underperform across configurations, often
generating irrelevant or incomplete elements, which negatively
impact both correctness and weighted success.

a) One example pair : All models demonstrate near-
perfect performance, with GPT-4.5, DeepSeek V3, and
OlympicCoder 32B each achieving exactly 100% correctness
and 100% weighted success, while QwQ 32B and DeepHer-
mes 3 closely follow with 91% for both metrics but fail to
reach a perfect result due to additional lines. This indicates
a strong immediate performance from a single example, even
across different model architectures.

b) Two example pairs : The models continue to maintain
high accuracy. GPT-4.5 achieves 90% correctness, and 80% for
weighted success. This is lower than the previous configura-
tion because of additional and incorrect lines. OlympicCoder,
DeepSeek V3, and QwQ32B are all maintaining their high
performance, matching their previous results for both correct-
ness for weighted success. DeepHermes 3 also achieves the
same 91% correctness, but drops slightly in weighted success
at 89% by missing several features compared to the ground
truth model.

c) Four example pairs : DeepSeek V3 leads again
with 100% in both correctness and weighted success, while
other models fluctuate. GPT-4.5 shows consistency while
OlympicCoder drops a bit due to additional lines, with both
models achieving 90% in correctness and weighted success.
DeepHermes 3 performs slightly lower with its correctness
and weighted success are now at 87% and 82%. QwQ32B
experiences a noticeable decline in weighted success (down
to 68%) despite an acceptable correctness score at 81%, most
of these coming from the more missing features and lines of
the models within this configuration.

B. UML-to-Java

This scenario examines the transformation of UML class
models into Java, a transformation scenario that bridges high-
level design abstractions with executable representations. This
task introduces additional complexity related to language-
specific syntax, boilerplate generation, and preserving the se-
mantic integrity of the original model in a compilable format.
The results highlight the challenges LLMs face in generating

syntactically correct and semantically faithful code. GPT-
4.5 performs exceptionally well with a single example pair,
achieving 100% correctness and weighted success. However,
its performance significantly declines as more examples are
introduced, dropping to 0% weighted success in the four-
example configuration, primarily due to missing features and
semantic inconsistencies. In contrast, smaller models such as
DeepSeek V3, QwQ 32B, and OlympicCoder 32B demonstrate
more stable and scalable performance across configurations,
with only minor issues arising from unnecessary or extraneous
code lines.

a) One example pair : GPT-4.5 demonstrates excep-
tional performance with perfect results (100%) for both cor-
rectness and weighted success. DeepSeek v3 and QwQ32B
also perform strongly, with both scoring 90% for correctness
and 81% for weighted success; they fail to achieve a perfect
result due to additional lines. OlympicCoder follows closely
with 88% correctness and 77% weighted success due to the
same problem. DeepHermes dips slightly behind due to a huge
number of missing features and incorrectness in the output
model, resulting in the model only achieving 79% correctness
and 53% weighted success.

b) Two example pairs : GPT-4.5’s performance expe-
riences a significant drop (43% correctness, 0% WSuccess),
stemming from the incorrectness and additional lines of the
output model. Meanwhile, DeepHermes 3 shows a strong
recovery with correctness increases to 88% and 76% for
weighted success; the model no longer has any incorrectness,
but still has harmful additional and missing features. DeepSeek
V3 remains consistent, mirroring its previous scores (90% and
81%) while QwQ32B drops slightly to 88% correctness and
76% weighted success this time by having missing features.
OlympicCoder’s correctness and weighted success improve
marginally to 90% and 81% respectively, thanks to a lower
number of harmful additional lines compared to the previous
configuration.

c) Four example pairs : GPT-4.5 remains affected by
scalability issues, scoring only 57% correctness and 0% for
weighted success, this low number coming from the high
number of missing features, harmful additional lines, and
incorrectness. Conversely, the other models, DeepSeek V3 and
OlympicCoder 32B, exhibit remarkable consistency, and QwQ
32B also achieves the same result, this time with all of them re-
maining stable at 90% correctness and 81% weighted success.
DeepHermes 3 slightly improves 89% correctness and 75%
weighted success thanks to no longer having incorrectness and
additional features.

C. SysML-to-AAS

This scenario, which involves transforming SysML into
AAS models, is the most complex among those evaluated.
It requires a deep semantic understanding that goes beyond
simple syntactic mapping, posing a significant challenge for
LLMs. The results underscore the intrinsic difficulty of the
SysML-to-AAS scenario, as it demands robust structural
reasoning and semantic grounding capabilities that many

LLMs struggle to demonstrate consistently. OlympicCoder
32B achieves the highest performance in the single exam-
ple configuration, with 93% correctness and 85% weighted
success. However, GPT-4.5 stands out for its overall stability
and scalability across all configurations. In contrast, the other
models exhibit erratic behavior, particularly as the number of
example pairs increases, leading to higher rates of errors, ex-
traneous content, and omissions. DeepHermes 3, in particular,
consistently delivers the lowest performance across scenarios.

a) One example pair : GPT-4.5 and OlympicCoder 32B
lead in the performance, with each achieving 88% and 93%
correctness and 73% and 85% weighted success, respectively.
Both models generalize well with no incorrectness, but only
minimal missing lines. OlympicCoder 32B attains the highest
weighted success (85%), showing strong performance while
using only a single pair of examples. In contrast, DeepHermes
3 and QwQ32B have the lowest correctness and weighted
success, with only 43% and 2% for DeepHermes 3 and 63%
and 27% for QwQ32B. DeepHermes 3 suffers heavily from
a large number of harmful and non-harmful additional lines
and other problems, such as 3 incorrectness and 2 missing
features, while QwQ 32 B’s low performance results from a
large number of incorrectness. Meanwhile, DeepSeek V3 gets
72% in both correctness and weighted success due to non-
harmful additional lines.

b) Two example pairs : In this configuration, the
results are mixed. GPT-4.5 maintains a solid but slightly
degrading performance with 83% correctness and moderate
63% weighted success due to a non-harmful additional line.
QwQ 32B improves in correctness to 84% and reaches 69%
weighted success thanks to a lower number of incorrectness
compared to the previous scenario. On the other hand, Deep-
Hermes and OlympicCoder show steep declines (44% and 23%
in correctness, respectively, and 0% for both weighted suc-
cess), this coming from the rising number of missing features
for DeepHermes and the large number of incorrectness and
non-harmful additional lines for OlympicCoder. DeepSeek V3
also drops significantly, scoring only 63% correctness and 0%
weighted success due to a high number of missing features.

c) Four example pairs : Overall performance trends
downward. GPT-4.5 shows minor degradation (80% correct-
ness and 57% weighted success) due to incorrectness and
missing features, but still maintains robustness compared to
other models. Meanwhile, OlympicCoder sees a sharp drop at
37% correctness and 5% weighted success because of the high
number of incorrectness, additional lines, and missing features.
DeepSeek V3 and QwQ32B fall further with 35% correctness
and 0% weighted success for DeepSeek and 50% correctness
and 0% weighted success for QwQ32B. These two models
suffer from a large number of additional and missing lines.
DeepHermes 3 slightly improves compared to its previous
two configurations, scoring 61% correctness and 9% weighted
success, but these are still considered underperformed. Deep-
Hermes also suffers from incorrectness, additional lines, and
missing features.

V. DISCUSSION

In this work, we benchmarked five different LLMs across
three distinct transformation scenarios, each tested under
three configurations, to evaluate their capability in performing
MTBE. Our core intuition was that MTBE could serve as an
effective paradigm to improve the transformation performance
of LLMs, an area where traditional prompting techniques have
shown limitations [1], [2]. By leveraging concrete example
pairs instead of complex transformation rules, MTBE has
the potential to reduce the accidental complexity typically
associated with MDE, thus making model transformations
more accessible to domain experts who are familiar with
models but not with transformation languages. This, in turn,
can improve the overall effectiveness of the development
process by simplifying the transformation workflow.

Our collected results provide evidence that LLMs, particu-
larly GPT-4.5, DeepSeek V3, and OlympicCoder 32B, perform
well with only a single example pair, achieving results that
surpass the transformation methods using LLMs as reported by
previous works [1], [2]. Specifically, the structured scenarios
(RDBMS-to-UML and UML-to-Java) showed high initial ac-
curacy, demonstrating the LLMs’ capability for effective few-
shot learning in well-defined transformation tasks.

A critical insight from our study is that, contrary to expecta-
tions, providing more example pairs to LLMs does not always
result in improved performance. In fact, our data indicate a
notable performance degradation in complex semantic trans-
formations like SysML-to-AAS and in syntactically intricate
tasks such as UML-to-Java when multiple examples were used.
This decline in performance might be due to cognitive over-
load caused by conflicting transformation patterns or confusion
arising from variations in the prompt structure, challenging the
models’ ability to generalize effectively.

Specifically, in the SysML-to-AAS scenario, even sophisti-
cated models like GPT-4.5 exhibited considerable variability
and instability when scaling beyond a single example pair,
likely due to difficulties in semantic grounding and struc-
tured alignment. However, smaller or fine-tuned models like
DeepSeek V3 and OlympicCoder 32B demonstrated more
robust performance, especially in syntax-driven scenarios,
highlighting the effectiveness of targeted fine-tuning and ar-
chitectural optimization.

The observed drop in performance with additional examples
suggests that improving LLM-assisted model transformation
capabilities requires careful prompting rather than extensive
example sets. In general, LLMs demonstrate high potential
for MTBE, particularly in structured and syntactically regular
domains. However, their effectiveness diminishes in seman-
tically complex or multi-pattern scenarios, especially when
overloaded with examples. GPT-4.5 remains the most capable
model overall but shows signs of scaling instability. Smaller
models often exhibit more stable behavior, especially when
properly aligned with the task domain.

While our research setup may appear similar to few-shot
learning, we frame it as MTBE to emphasize the concep-

tual methodological differences. Few-shot learning involves
providing natural language tasks accompanied by labeled
input/output examples, often with explicit instructions or task
formulations [15], [16]. In contrast, our approach operates
more implicitly and is structurally similar to MTBE: the
LLM is presented with source-target model pairs, without
any explicit labeling or natural language explanation of trans-
formation rules, but initial abstract transformation rules in
machine-readable XML format, and lets the LLM infer the
rest. The goal is not to follow annotated examples, but to
induce transformation logic by recognizing and generalizing
from structural correspondences across the models. Moreover,
MTBE’s scope is more specialized as it assumes the presence
of metamodel-conformant source and target models, and the
task is framed within the semantics of MDE.

Our results provide an initial indication that LLM-based
MTBE may offer a better success rate compared to related
works. For instance, Kazai et al. [1] explored model UML
class diagrams to Java model transformation using a zero-shot
approach with ChatGPT-4, achieving 72% cumulative success
rate within the first iteration. However, their performance
sharply dropped to 17% for the high-complexity scenario.
In contrast, our structured MTBE setup, where representative
source-target model pairs are included as examples, appears
more robust. In the same UML-to-Java scenario, in our ex-
periments, DeepSeekV3 and OlympicCoder 32B maintained
consistent performance as complexity increased. While GPT-
4.5 initially performed strongly with one example pair, its
success rate declined with additional pairs. It is important to
note that these approaches are not directly comparable due to
methodological differences. Kazai et al. evaluate the model-
level success using a binary correctness metric aggregated
over multiple prompting iterations, while our study employs
a weighted evaluation framework that captures partial correct-
ness and penalizes missing or incorrect outputs in a single-shot
setting.

Similarly, a prior work by Zahra et al. [2] investigated the
use of LLMs for transformation scenarios involving domain-
specific languages, such as from UML state diagrams to Re-
beca models. Their few-shot prompting approach differs from
our MTBE-based approach, which relies on structured model
pairs to guide the transformation. Nonetheless, their results
provide a reference point showing the difficulty LLMs face in
less-known modeling languages. The best result achieved by
GPT-4 in that study was 85% Cr and 69%. In comparison, our
SysML-to-AAS transformation task, also involving domain-
specific languages, produced higher and more consistent per-
formance, particularly in early configurations, although some
models exhibit noticeable decline with increasing examples.

Based on our findings, LLM-based MTBE shows strong
promise in increasing the success rate of model transformation
tasks, even without fine-tuning or task-specific training. Its
ability to operate effectively in structured and syntactically
regular transformation scenarios demonstrates the potential of
LLMs as accessible, general-purpose assistants for MDE.

However, several challenges remain that currently prevent

LLMs from being used in isolation for transformation tasks.
These include reduced performance in underexplored or highly
domain-specific scenarios, limited reproducibility due to out-
put variability across identical prompts, and difficulties in
the pathway toward integrating LLMs into hybrid transfor-
mation workflows, where automation is augmented by human
oversight or formal validation, to enhance productivity while
preserving correctness and reliability.

A. Threats to Validity

We acknowledge several threats to the validity of our
findings, which we organize according to the widely adopted
framework of construct, internal, external, and conclusion
validity [17].

Regarding construct validity, our evaluation relies on cor-
rectness and weighted success metrics derived through manual
comparison of the generated models against reference models.
While efforts were made to ensure consistency, this inherently
subjective assessment introduces the possibility of evaluator
bias or interpretive variability. Moreover, our validation ap-
proach focuses on structural and semantic equivalence with
handcrafted reference models, which may reflect implicit
assumptions not necessarily aligned with broader industry
practices or community standards.

One threat to internal validity stems from the high sensitivity
of LLM outputs to prompt formulation, formatting, and the
structure of provided example pairs. Minor changes in prompt
phrasing or example configuration can lead to substantial vari-
ability in the generated outputs, thereby reducing the consis-
tency and reproducibility of results. This issue was particularly
evident with GPT-4.5, whose performance deteriorated signif-
icantly when additional example pairs were introduced, high-
lighting potential scalability and generalization limitations of
LLM-based MTBE as task complexity increases. Furthermore,
given that the evaluated LLMs were primarily pretrained on
general textual and programming corpora, rather than domain-
specific transformation datasets, their learned representations
may reflect biases toward generic programming constructs or
informal language patterns. Such biases could compromise the
internal validity of our findings by undermining the fidelity of
LLMs in capturing precise, formal transformation logic.

Regarding external validity, our experiments were confined
to three specific transformation scenarios, each characterized
by distinct data properties and domain-specific contexts. For
instance, the SysML-to-AAS dataset, adapted from the work of
Ferko et al. [14], is rooted in assumptions specific to digital
twin applications and may not generalize to other SysML-
based transformations or domains. Similarly, the manually
constructed UML-to-Java and RDBMS-to-UML datasets were
tailored for controlled evaluation and may not capture the
full complexity, heterogeneity, and variability found in real-
world industrial model transformation tasks. Consequently,
the performance outcomes observed for the evaluated LLMs
may not directly translate to broader transformation settings,
alternative modeling languages, or industry-scale use cases,
thereby limiting the generalizability of our findings.

Finally, with respect to conclusion validity, although the
MTBE process was executed systematically across 45 config-
urations (5 LLMs x 3 configurations X 3 transformation tasks),
the sample size may still be insufficient to support strong
statistical inferences or detect subtle performance differences
with high confidence. As such, conclusions about the relative
superiority or inferiority of specific models should be inter-
preted with caution, recognizing the influence of random vari-
ance and contextual factors. Moreover, our reliance on manual
evaluation introduces additional uncertainty, potentially affect-
ing the reproducibility and robustness of our findings. These
limitations underscore the need for broader experimentation
and objective evaluation frameworks in future work.

VI. CONCLUSION AND FUTURE WORK

To the best of our knowledge, this is the first comprehensive
benchmarking study evaluating LLMs for MTBE across three
structurally diverse transformation tasks. Our results confirm
that LLMs, particularly GPT-4.5 and OlympicCoder 32B, hold
substantial promise for automating model transformations with
minimal human effort. While structured transformations like
RDBMS-to-UML achieved near-perfect results, more semanti-
cally intensive tasks, such as SysML-to-AAS, revealed notable
performance inconsistencies and scaling challenges. These
findings illustrate the transformative potential of LLMs in
engineering MDE workflows, while also surfacing important
limitations related to prompt saturation, generalization bound-
aries, and syntactic fidelity.

Building on these findings, future work should explore
hybrid strategies to improve robustness. One promising di-
rection is the design of ensemble systems, where multiple
LLMs contribute through voting or consensus-based outputs,
dynamically prioritized based on context, model confidence,
or past accuracy. Additionally, structured pipelines could
orchestrate LLMs in a multi-stage transformation process,
e.g., parsing, reasoning, and generation, supported by feed-
back loops and validation layers. Co-operative processing
between models using chain-of-thought or inter-model com-
munication protocols may also enhance semantic grounding
and transformation consistency. Another research avenue in-
volves integrating retrieval-augmented generation techniques
and enriching prompts with domain-specific metadata. This
could improve translation accuracy, especially in semantically
rich domains. Fine-tuning LLMs on transformation-specific
datasets, especially those involving actor-based languages or
formal verification targets, may yield further improvements.

To advance toward scalable, intelligent transformation
agents, we envision LLM-based assistants that continuously
observe modeling activity, learn from transformation history,
and autonomously generate and refine models. Such agents
could enhance productivity, ensure compliance with domain-
specific constraints, and support real-time model validation.
Expanding this approach to accommodate various modeling
languages, e.g., BPMN, SysML v2, ArchiMate, would also
improve its generalizability and industrial applicability.

VII. DATA AVAILABILITY

We have made a public replication package available at the
following repository: https://zenodo.org/records/15703812

REFERENCES

[1] G. Kazai, R. A. Osei, A. Bucaioni, and A. Cicchetti, “Model
transformations using 1lms out-of-the-box: Can accidental complexity
be reduced?” in First Workshop on Large Language Models For
Generative Software Engineering, June 2025. [Online]. Available:
http://www.es.mdu.se/publications/7201-

[2] Z. Moezkarimi, K. Eriksson, A. A. Johansson, A. Bucaioni,

and M. Sirjani, “Harnessing chatgpt for model transformation in

software architecture: From uml state diagrams to rebeca models
for formal verification,” in 4th International Workshop of Model-

Driven Engineering for Software Architecture. [Online]. Available:

http://www.es.mdu.se/publications/7130-

P. Mohagheghi, W. Gilani, A. Stefanescu, M. A. Fernandez, B. Nord-

moen, and M. Fritzsche, “Where does model-driven engineering help?

experiences from three industrial cases,” Software & Systems Modeling,

vol. 12, pp. 619-639, 2013.

[4] A. Bucaioni, H. Ekedahl, V. Helander, and P. T. Nguyen, ‘“Programming
with chatgpt: How far can we go?” Machine Learning with
Applications, vol. 15, p. 100526, 2024. [Online]. Available: https:
/lwww.sciencedirect.com/science/article/pii/S2666827024000021

[5] D. Varr6, “Model transformation by example,” in Model Driven Engi-

neering Languages and Systems, O. Nierstrasz, J. Whittle, D. Harel, and

G. Reggio, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,

pp. 410-424.

G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and M. Wim-

mer, Model Transformation By-Example: A Survey of the First Wave.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 197-215.

[Online]. Available: https://doi.org/10.1007/978-3-642-28279-9{_}15

Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi,

C. Wang, Y. Wang, W. Ye, Y. Zhang, Y. Chang, P. S. Yu, Q. Yang,

and X. Xie, “A survey on evaluation of large language models,” 2023.

[Online]. Available: https://arxiv.org/abs/2307.03109

[8] 1. Ozkaya, “Application of large language models to software engi-

neering tasks: Opportunities, risks, and implications,” IEEE Software,

vol. 40, no. 3, pp. 4-8, 2023.

N. Gong, C. K. Reddy, W. Ying, H. Chen, and Y. Fu, “Evolutionary

large language model for automated feature transformation,” 2024.

[Online]. Available: https://arxiv.org/abs/2405.16203

[10] S. Arulmohan, M.-J. Meurs, and S. Mosser, “Extracting domain
models from textual requirements in the era of large language
models.” IEEE Press, 2023, p. 580-587. [Online]. Available:
https://doi.org/10.1109/MODELS-C59198.2023.00096

[11] A.Rajbhoj, T. Sant, A. Somase, and V. Kulkarni, “Leveraging generative
ai for accelerating enterprise application development: Insights from
chatgpt,” in 2024 31st Asia-Pacific Software Engineering Conference
(APSEC), 2024, pp. 412-421.

[12] R. Clarisé and J. Cabot, “Model-driven prompt engineering,” in 2023
ACM/IEEE 26th International Conference on Model Driven Engineering
Languages and Systems (MODELS), 2023, pp. 47-54.

[13] M. Chochlik, J. Kostolny, and P. Martincova, “Metamodel describing
a relational database schema,” Central European Researchers Journal,
vol. 1, no. 1, pp. 94-102, 2015.

[14] E. Ferko, L. Berardinelli, A. Bucaioni, M. Behnam, and M. Wimmer,
“Towards interoperable digital twins: Integrating sysml into aas with
higher order transformations,” in 3rd International Workshop on Digital
Twin Architecture (TwinArch) and Digital Twin Engineering (DTE), June
2024. [Online]. Available: http://www.ipr.mdu.se/publications/6929-

[15] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig,
“Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing,” 2021. [Online]. Available:
https://arxiv.org/abs/2107.13586

[16] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
2020. [Online]. Available: https://arxiv.org/abs/2005.14165

[17] D. Cruzes and L. Ben Othmane, Threats to Validity in Empirical
Software Security Research, 11 2017, pp. 275-300.

—_
W
[t

[6

=

[7

[9

—

