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Abstract

The Internet of Things (IoT) is increasingly being adopted in diverse domains,
many of which require strict timing constraints and predictable behavior. De-
spite the growing importance of timing characteristics in IoT applications, cur-
rent approaches to address timing requirements are often fragmented, context-
specific, and lack a unified understanding. Consequently, addressing timing as-
pects in IoT remains largely ad hoc and dependent on individual applications,
making it challenging to generalize findings or systematically apply established
solutions. The goal of this study is to provide a comprehensive understanding of
how timing is defined, characterized, and measured within the IoT community.
We conducted this study through a systematic and structured mix methods
research approach. First, we performed a systematic review of the literature,
extracting and analyzing information from 38 primary studies, selected from a
rigorous process involving 1176 studies. Second, to complement the literature
findings, we conducted an expert survey involving 28 respondents from academia
and industry, representing a variety of roles with specialized expertise in IoT
systems and timing-related issues. We identified two primary characterizations
of timing within the IoT: time-criticality and predictability. Additionally, we
collected and categorized 113 distinct timing metrics from literature into com-
monly found layers of an IoT system. The majority of the surveyed practitioners
and researchers (75%) agree with our categorization and consider this research
useful and relevant (71.5%). We believe that our study provides practition-
ers and researchers with insights into timing characteristics and metrics in IoT
applications, toward the ultimate goal of standardization.
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1. Introduction

The Internet of Things (IoT) is experiencing rapid adoption across diverse
sectors, driven by the proliferation of connected devices. According to IoT Ana-
lytics1, approximately 16.6 billion IoT devices were connected globally in 2023,
with projections indicating continued growth. Emerging IoT applications in-
creasingly demand strict timing constraints, especially within domains such as
disaster monitoring, emergency-stop mechanisms, smart healthcare, and trans-
portation [1, 2, 3]. These domains require systems with Real-Time (RT) capa-
bilities, characterized by on-time response times and deterministic behavior, to
effectively manage critical events. In safety-critical contexts such as industrial
control and healthcare monitoring, delays or missed deadlines can have severe
consequences [4, 5].

Timing challenges in IoT are compounded by its multi-layered architecture,
where timing characteristics differ significantly across components such as edge
devices and cloud infrastructures. Despite the recognized importance of timing,
the IoT community currently lacks a standardized approach for addressing tim-
ing requirements [6, 7]. Existing practices often remain fragmented, ad hoc, and
application-specific, leading to reduced reproducibility, scalability, and consis-
tency in evaluation. Recently, a special issue of Institute of Electrical and Elec-
tronics Engineers (IEEE) IoT Magazine on Internet of Time-critical Things [8]
highlighted this complexity by examining various timing considerations, includ-
ing network performance, scheduling algorithms, and methodologies for timing
evaluation. Additionally, within the RT community, predictability is widely
considered essential in safety-critical systems, where system behavior must be
analyzable to ensure timing guarantees in advance [9].

Given the above promises, this study aims to provide a comprehensive under-
standing of how timing is defined, characterized, and measured within the IoT
community. Specifically, we address the following Research Questions (RQs):

• RQ1: How is the concept of timing characterized in IoT?

• RQ2: How are timing characteristics measured in IoT systems?

We employed a systematic mixed-methods research approach. Initially, we con-
ducted a systematic literature review, analyzing 38 primary studies selected from
an initial pool of 1176 studies using clearly defined inclusion and exclusion crite-
ria. To complement and validate these findings, we conducted an expert survey
involving 28 respondents from academia and industry. Respondents included
researchers, architects, developers, and consultants with specialized expertise in
IoT and timing-related topics. Our analysis identified two primary categories
of timing within IoT systems: time-criticality and predictability. Additionally,
we collected and classified 113 distinct timing metrics from the literature, high-
lighting substantial variability based on application contexts and specific do-
mains. Most surveyed experts (75%) agreed with our categorization and found

1https://iot-analytics.com/number-connected-iot-devices
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this research useful and relevant (71.5%). To enable independent replication
and transparency, we provide a complete replication package2 containing our
selection process, extracted data, and survey responses. We believe our study
offers valuable insights into timing characteristics and metrics for IoT applica-
tions, representing a foundational step towards standardized timing metrics —
a contribution considered strongly relevant by 57.1% of the respondents.

The rest of this review is organized as follows. Section 2 presents a brief
background on IoT, RT systems and analysis, and communication networks.
This is followed by Section 3 which discusses the research method. Then, Sec-
tion 4 presents the extracted and synthesized definitions for time-criticality and
predictability within IoT. After that, Section 5 examines the key timing mea-
surements and metrics extracted from the studies. Section 6 presents the per-
spective of the practitioners — examined through the survey — on this research
results and their relevance. In addition, it discusses other complementary in-
sights such as measurement techniques and challenges. Section 7 compares this
review with related work. Finally, Section 8 concludes the paper.

2. Background

This section provides foundational concepts essential for understanding time-
critical IoT performance. Section 2.1 offers a high-level overview of IoT, illus-
trated by a detailed Wireless Sensor Network (WSN) scenario, and presents
our adopted IoT reference architecture. Section 2.2 introduces fundamental
RT concepts, including key terminology and analysis methods related to timing
behavior in wireless RT systems.

2.1. Internet of Things Fundamentals

IoT is rooted in the idea of ubiquitous computing and can be traced back to
the late 1980s [6]. As a continuously evolving paradigm, IoT encompasses a wide
range of distributed, heterogeneous, and interconnected systems. Typically, the
systems consist of small embedded hardware platforms equipped with sensors
and actuators, integrated software, and various technologies that exchange data
over various networks to produce value for an individual or organizations in
different domains [6, 10].

An illustrative example of an IoT system is a WSN for environmental mon-
itoring, as seen in Fig. 1. Nodes wirelessly relay data to central sink nodes,
which may process it locally or forward it to higher-level computing layers such
as Edge, Fog, or Cloud infrastructure [11]. The wireless link between nodes and
the sink can use technologies like Wi-Fi, Bluetooth Low Energy (BLE), Visible
Light Communication (VLC), Time Slotted Channel Hopping (TSCH), or cellu-
lar networks. Messages are typically formatted using lightweight IoT protocols
such as request-response-based Constrained Application Protocol (CoAP) or

2github.com/SebastianLeclerc/time-critical-iot
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publish-subscribe-based Message Queuing Telemetry Transport (MQTT), op-
timized for Size, Weight, Power, and Cost-Constrained (SWaP-C) IoT devices
in unreliable wireless environments. Beyond the sink node, data typically trav-
els through wired networks, possibly through local Edge or Fog infrastructures,
before reaching Cloud infrastructures via the internet.

CloudEdge/FogSinksNodesIndustrial
Robots

Electrical
Substations

Environmental
Monitoring

Figure 1: An overview of the components in a WSN for different application
domains.

Due to the significant diversity of IoT systems, numerous reference archi-
tectures have been proposed, each targeting specific application domains. For
instance, Al-Fuqaha et al. surveyed the existing IoT literature in [11] and dis-
cussed key architectural patterns and system components. Among these, they
describe a basic three-layer model composed of Application, Network, and Per-
ception layers. In a complementary approach, Yi et al. adopted a three-layer
architecture comprising Device, Edge/Fog, and Cloud layers [12] — focusing
on computational offloading and latency reduction. In our study, we have inte-
grated these two widely adopted reference architectures into a unified five-layer
model, consisting of Perception, Network, Edge/Fog, Cloud, and Application
layers.

2.2. Real-time Fundamentals and Timeliness

Strict timing requirements are particularly critical in IoT applications within
industrial, transportation, and safety-critical domains, including emergency ser-
vices. Many systems in these domains can be classified as RT. In this subsection,
we briefly introduce core concepts from RT theory, as well as with mechanisms
and components that influence timing performance in IoT systems.

Using the WSN example described earlier, we can map timing requirements
to standard RT categories [9]: hard, firm, and soft RT. In a hard RT system,
missing deadlines can cause catastrophic outcomes, thus requiring strict timing
guarantees. Such systems are common in safety-critical domains, such as a WSN
monitoring industrial robots in automated manufacturing. firm RT systems
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tolerate occasional missed deadlines, but any results produced after the deadline
lose their usefulness. An example is a WSN in electrical substations for RT load
balancing. soft RT systems tolerate deadline violations, which only degrade
performance. A practical example is a WSN used for environmental monitoring,
such as tracking temperature, humidity, and air quality in a forest for long-term
analysis.

Tasks in RT systems are typically classified based on their activation patterns
as periodic, aperiodic, or sporadic [9]. Periodic tasks are activated at regular in-
tervals, while aperiodic tasks activate unpredictably. Sporadic tasks are a sub-
set of aperiodic tasks with a defined minimum inter-arrival time. Time-critical
events typically involve high-priority aperiodic or sporadic tasks, triggered by
external stimuli such as sensor measurements exceeding thresholds. These
events often originate from peripheral devices or software signals that gener-
ate Interrupt Requests (IRQs), handled by the Operating System (OS) through
the Interrupt Service Routine (ISR). Real-Time Operating Systems (RTOSs)
support such time-sensitive processing through task scheduling, enabling pre-
emption of lower-priority tasks. In distributed systems such as a WSN, meeting
timing constraints is more difficult due to additional complexities like tight clock
synchronization and unpredictability of wireless communication.

Timing performance in wireless communication is mainly influenced by Lay-
ers 1 and 2 (L1, L2) of the Open Systems Interconnection (OSI) model [13], [14].
L1 is responsible for signal modulation, encoding, and transmission strength.
L2 manages Medium Access Control (MAC) mechanisms, regulating access to
a shared communication medium. For example, Wi-Fi employs Carrier Sense
Multiple Access/Collision Avoidance (CSMA/CA), whereas TSCH combines
CSMA/CA, Time Division Multiple Access (TDMA), and channel hopping.
While these techniques can improve determinism and reduce collisions, wire-
less communication remains vulnerable to unpredictable delays from multi-path
fading, interference, and jamming — especially in dense environments. Conse-
quently, ensuring communication reliability is vital for meeting stringent timing
requirements in time-critical IoT systems. Wireless reliability can be defined
as the Bit Error Rate (BER) and Packet Delivery Ratio (PDR) for a receiver
decoding a signal with a specific Signal-to-Interference-plus-Noise-Ratio (SINR)
in time [15].

Response-Time Analysis (RTA) includes methods for verifying whether a
system can meet its timing constraints under worst-case conditions [9], [16].
This involves evaluating the worst-case timing behavior, which depends on the
system layer and specific use case.

Various timing metrics are used to analyze RT systems from different per-
spectives. At the Perception layer, metrics typically address task execution in
embedded and RT operating environments. Core metrics are Worst-Case Ex-
ecution Time (WCET) — the maximum uninterrupted execution time — and
Worst-Case Response-Time (WCRT), which accounts for interruptions, block-
ing, and scheduling delays. At the Network layer, analysis shifts to communi-
cation timing rather than computation. Metrics emphasize latency components
such as queuing, transmission, and propagation. Common examples include
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Round-Trip Time (RTT), unidirectional delay, and End-to-End (E2E) latency
— the total time for data to travel from source to destination.

3. Research Methodology

This study was conducted following Kitchenham’s guidelines for secondary
studies in software engineering [17]. To mitigate the limitations of a single-
method approach and reduce validity threats from the lack of expert evalua-
tion, we followed Molléri et al.’s guidelines for software engineering question-
naires and included an expert survey as an additional validation step [18]. Our
method comprised three phases: planning, conducting, and reporting. In the
planning phase, we defined the RQs and developed the research protocol, which
structured all subsequent steps. The conducting phase followed this protocol
and involved (i) identifying and screening relevant studies, (ii) defining an ex-
traction form, and (iii) extracting and synthesizing data. The reporting phase
addressed potential threats to validity and mitigation strategies to ensure re-
liability and reproducibility. All study details are documented in this paper.
To facilitate independent verification and replication, we provide a replication
package2, including search and selection data, extracted and synthesized data,
and survey responses.

3.1. Definition of Research Goal and Questions

Following the Goal-Question-Metric (GQM) approach [19], we defined the
research goal, which is presented in Table 1, and then refined the goal in the
RQs, which was already introduced in Section 1.

Table 1: Research goal expressed using the GQM perspectives.

Purpose Identify, and classify
Issue definitions, measurements, research methods, and

application domains
Object of time-critical and predictable IoT
Viewpoint from the point of view of researchers and practi-

tioners.

3.2. Screening Process

A summary of the automatic search and selection is presented in Fig. 2,
following the PRISMA 2020 guidelines [20]. We performed automated searches
in three academic databases: ACM Digital Library3, SCOPUS4, and Web of

3dl.acm.org
4scopus.com
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 Records identified through 
 database searching: 
 ACM Digital Library (n = 23) 
 Scopus (n = 689) 
 Web of Science (n = 464) 
 Total (n = 1176)

 Reports sought for retrieval:
 (n = 55)

 Reports assessed for eligibility:
 (n = 55)

 Records screened:
 (n = 660)

 Studies included in review: 
 (n = 36) 
 Snowballing added: 
 (n = 2)

 Records after duplicates removed: 
 (n = 660)

 Records excluded:
 (n = 605)

 Reports excluded:
 (n = 19)

Figure 2: Overview of the search and selection process.

Science (WoS)5, chosen for their strong support of systematic studies in com-
puter science and software engineering [21]. To ensure broad coverage aligned
with our research goals and RQs, we designed a flexible search string that cap-
tured terminology variations (e.g., treating ”time critical,” ”time-critical,” and
”time?critical” equivalently). We also used ”predicta*” to target relevant stud-
ies while excluding broader ”predict*” results, which mainly returned unrelated
Artificial Intelligence (AI)/Machine Learning (ML) papers. The final search
string was:

(”time-critical” OR predicta*)
AND (iot OR ”Internet of Thing*”)

5webofscience.com/wos
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We kept the search string minimal to gather a broad range of studies for
manual filtering, reducing construct validity threats discussed later in this sec-
tion. The automated search was conducted in September 2024, covering studies
from 2019-01-01 onward. It initially retrieved 1176 studies. After excluding
non-research papers, summaries, and duplicates, we refined the set to 660 stud-
ies. We followed the selection process by Ali and Petersen, which emphasizes
inclusion and exclusion criteria [22]. As detailed in Table 2, we applied three
inclusion and ten exclusion criteria. Only studies meeting all inclusion and none
of the exclusion criteria were retained for further analysis.

Table 2: Inclusion and exclusion criteria.

E/I Criteria Explanation

In
cl
.

Software or Network Paper is published in Software or Network Engineering.
IoT timing aspects Paper is fully or partially focused on IoT timing aspects.
Time bounded Is bounded, targeting soft/hard RT system.

E
x
cl
.

Non-English The paper is not written in English.
Non-peer-reviewed The paper is not peer-reviewed.
Too few pages The full-text paper was ≤ 4 pages.
Not available We could not access the full-text paper.
Survey or review The paper presents a survey or review.
No results The paper presents an idea without results.
Non-IoT Paper only mentioned IoT but targets another domain.
No analysis The paper does not provide sufficient timing analysis.
AI or ML-based Paper’s main proposed solution was based on AI or ML

techniques.
Hardware-based Paper’s main proposed solution was based in hardware.

The selection process was conducted iteratively, refining the dataset based
on title, abstract, and keywords. This resulted in 55 studies, all of which under-
went full-text screening. During screening, 19 studies were excluded due to: (i)
insufficient information on time-criticality or predictability (e.g., only brief key-
word mentions), or (ii) exclusion criteria identified upon full-text review (e.g.,
AI/ML-based focus or idea papers). This yielded 36 studies. Through forward
and backward snowballing [23], two additional studies were identified [24, 16],
resulting in a final set of 38 primary studies. The full list of included papers is
provided in Table 3, where the IDs correspond to those used in the replication
package2 for improved traceability.

3.3. Extraction Form and Data Extraction

We developed a well-defined classification framework (Table 4) to systemati-
cally extract and categorize relevant information from the primary studies. The
framework consists of two facets, one for each RQ. RQ1 includes two clusters,
definitions and characteristics. The definitions consist textual descriptions of
time-criticality and predictability in the given study. After collecting all the
definitions for each term, we synthesized a set of high-level textual characteris-
tics of each term. RQ2 focuses on timing metrics, which are extracted as a set
of key timing metrics in textual form from the respective studies. We adopted
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Table 3: List of peer-reviewed primary studies.

ID Title (truncated) Author Year Ref.

89 A Comprehensive Worst Case Bounds Analysis of IEEE 802.15.7 Kurunathan et al. 2021 [25]
177 A lightweight messaging engine for decentralized data processing in the Internet of Things Del Gaudio et al. 2020 [26]
242 A Markov chain model for IEEE 802.15.4 in time critical wireless sensor networks Yousefi et al. 2022 [27]
572 A software architecture for the industrial internet of things - a conceptual model Ungurean 2020 [4]
336 An Effective Communication Prototype for Time-Critical IIoT Manufacturing Factories Kiangala et al. 2021 [5]
640 Analysis of joint scheduling and power control for predictable URLLC in industrial wireless networks Wang et al. 2019 [15]
302 Autonomous Flow-Based TSCH Scheduling for Heterogeneous Traffic Patterns Urke et al. 2023 [28]
504 Bounded transmission latency in real-time edge computing: a scheduling analysis Fara et al. 2023 [29]
463 Blue Danube: A Large-Scale, End-to-End Synchronous, Distributed Data Stream Processing Architecture Michael et al. 2022 [30]
185 Cellular network-based IIoT architecture for time-critical control tasks of building automation Li et al. 2024 [31]
340 Coexistence Analysis of Multiple Asynchronous IEEE 802.15.4 TSCH-Based Networks Veisi et al. 2020 [32]
132 Collaborative Task Scheduling for IoT-Assisted Edge Computing Kim et al. 2020 [33]
28 Computation Resource Allocation for Heterogeneous Time-Critical IoT Services in MEC Liu et al. 2020 [34]
278 Delay Analysis in IoT Sensor Networks Althoubi et al. 2021 [35]
22 Distributed Graph Routing and Scheduling for Industrial Wireless Sensor-Actuator Networks Shi et al. 2019 [36]
33 Dynamic Bandwidth Slicing for Time-Critical IoT Data Streams in the Edge-Cloud Continuum Habeeb et al. 2022 [37]
156 Dynamic decision support for resource offloading in heterogeneous Internet of Things environments Jaddoa et al. 2020 [38]
1195 End-to-end response time analysis for RT-MQTT: Trajectory approach versus holistic approach Shahri et al. 2023 [16]
3 Ensuring End-to-End Dependability Requirements in Cloud-based Bluetooth Low Energy Applications Spörk et al. 2021 [2]
833 Fog network task scheduling for IoT applications Zhang et al. 2020 [39]
1199 Improving the timeliness of Bluetooth Low Energy in dynamic RF environments Spörk et al. 2020 [24]
317 iSotEE: A Hypervisor Middleware for IoT-Enabled Resource-Constrained Reliable Systems Li et al. 2022 [40]
324 Interrupting Real-Time IoT Tasks: How Bad Can It Be to Connect Your Critical Embedded System to the Internet? Behnke et al. 2020 [41]
81 Jamming-Aware Simultaneous Multi-Channel Decisions for Opportunistic Access in Delay-Critical IoT Salameh et al. 2022 [42]
274 Metascheduling Using Discrete Particle Swarm Optimization for Fault Tolerance in Time-Triggered IoT-WSN Baniabdelghany et al. 2023 [43]
5 Non-Intrusive Distributed Tracing of Wireless IoT Devices with the FlockLab 2 Testbed Trüb et al. 2021 [44]
870 On the Performance of Commodity Hardware for Low Latency and Low Jitter Packet Processing Stylianopoulos et al. 2020 [45]
497 On the QNX IPC: Assessing Predictability for Local and Distributed Real-Time Systems Becker et al. 2023 [46]
25 Optimized Scheduling for Time-Critical Industrial IoT Brun-Laguna et al. 2019 [47]
1017 PrioMQTT: A prioritized version of the MQTT protocol Patti et al. 2024 [48]
253 Prioritized Clock Synchronization for Event Critical Applications in Wireless IoT Networks Bhandari et al. 2019 [14]
322 REA-6TiSCH: Reliable Emergency-Aware Communication Scheme for 6TiSCH Networks Farag et al. 2021 [49]
1069 RT-BLE: Real-time Multi-Connection Scheduling for Bluetooth Low Energy Li et al. 2023 [50]
295 Status Prediction and Data Aggregation for AoI-Oriented Short-Packet Transmission in Industrial IoT Xiong et al. 2023 [51]
366 Timing Comparison of the Real-Time Operating Systems for Small Microcontrollers Ungurean 2020 [52]
1134 Towards Multi-channel GTS Allocation in Visible Light Communication Kurunathan et al. 2023 [53]
255 Transmission Early-Stopping Scheme for Anti-Jamming Over Delay-Sensitive IoT Applications Halloush 2019 [54]
53 Unobtrusive, Accurate, and Live Measurements of Network Latency and Reliability for Time-Critical Internet of Things Bhimavarapu et al. 2022 [55]

Grounded Theory as a general framework for qualitative research [56]. Specifi-
cally, we applied open coding during the data extraction phase to systematically
identify and categorize key concepts.

Table 4: Form used during data extraction.

Facet Cluster Description

RQ1
Definitions Definition of timing as given in the study.
Characteristics Synthesized characteristics based on the extracted defini-

tions.
RQ2 Timing metrics Metric as given in the study, categorized by the layer.

3.4. Data Analysis and Synthesis

During the synthesis phase, we utilized axial coding to establish relationships
between the initial codes, forming coherent higher-level categories. We followed
the recommendations described in [57] throughout the analysis and synthesis
process. To ensure a structured and comprehensive approach, we combined
content analysis [58] and narrative synthesis [59]. Initially, content analysis was
applied to examine each study individually (vertical analysis), allowing us to
identify patterns, themes, and relationships within the data. These findings
were systematically classified and categorized based on the predefined structure
of our data collection form. Following this, narrative synthesis was employed
to synthesize and interpret the findings across all studies (horizontal analysis).
This approach facilitated the development of a thematic summary.
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3.5. Survey

We conducted the survey following the process proposed by Molléri et al. [18].
In the subject selection, we identified the target audience tailored terminology
accordingly. The group included (i) academics with expertise in IoT and RT
systems, and (ii) industry professionals working with IoT applications. We then
designed the sampling plan, determining the group size and participant selec-
tion method. The questionnaire design involved defining: (i) the questions, (ii)
their types, (iii) sequencing, and (iv) overall layout. Implemented via Google
Forms6, the survey primarily used close-ended (evaluation-type) questions. Fol-
lowing established guidelines [60], questions were organized into five categories
addressing topics such as understanding of timing in IoT, timing measurements,
and the relevance of our research. To minimize bias and maximize the reliabil-
ity, we used Likert-scale, multiple-choice, and free-text questions, enabling both
quantitative and qualitative analysis. Sensitive responses in free-text boxes were
carefully reviewed and redacted if needed to ensure privacy and ethical compli-
ance. All responses were anonymous.

To validate the questionnaire, we conducted a pilot survey with nine respon-
dents from the target audience. This helped assess question clarity and survey
relevance. Based on feedback, we refined the questionnaire — for example, by
adding an explanation of timing measurements and removing a duplicated ques-
tion. We then distributed the survey via e-mail to 57 potential respondents and
collected 28 answers.

Experts were selected through purposive sampling from our professional net-
work, including academic colleagues from other institutions, practitioners in IoT
system development, and close collaborators in the research project. This en-
sured that participants had relevant domain knowledge. For transparency and
to support reproducibility, we provide a full replication package2 containing the
anonymized survey responses.

3.6. Threats to validity

A common threat to construct validity in systematic studies is the potential
omission of relevant work. To mitigate this, we utilized three scientific databases
and applied snowballing. Although databases such as IEEE Xplore Digital Li-
brary were not directly queried, many of their papers were included via indexing
in SCOPUS and WoS, helping ensure broad coverage.

Another construct validity threat is the formulation of the search string.
As noted earlier, terms like ”predict*” predominantly appear in AI/ML con-
texts, which are beyond this review’s scope. The study was also limited to
English-language publications, consistent with the de-facto norm in computer
science research. To ensure data consistency, we employed descriptive statistics,
cross-checked the extraction form, and performed sanity checks to validate the
accuracy and reliability of the extracted data.

6google.com/forms/about
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Other threats to internal and construct validity were mitigated through mul-
tiple strategies, including the active involvement of all authors in key method-
ological decisions [61, 23, 57]. This included: (i) defining clear RQs, (ii) devel-
oping a comprehensive search strategy, (iii) establishing well-defined inclusion
and exclusion criteria, (iv) designing a structured data extraction form, and (v)
applying Grounded Theory [56] to reduce synthesis bias.

To enhance conclusion validity, we provide a replication package2 enabling
independent analysis and reproduction of our process. Finally, conducted a
representative survey using academics and professionals with experience in RT
and IoT.

4. Definitions of time-criticality and predictability (RQ1)

In this section, we address the first research question regarding how timing
characteristics are addressed within the IoT community. Specifically, we define
two key concepts — time-criticality and predictability — by presenting exist-
ing definitions derived from an analysis of 38 studies. Readers may refer to
Table 5 for an overview of the studies from which one or more characteristics
were extracted. This is followed by a detailed discussion of their key charac-
teristics, providing a comprehensive overview of how these concepts are defined
and applied in the literature.

Table 5: Primary studies supporting the definitions.

Definition Characteristic Primary Study

Time-critical

Determinism [44],[55],[4],[48],[53],[27],[14],[5],[51],[41],[47],[49],[33],[37],[25]
Reliability [2],[55],[4],[50],[54],[31],[5],[47],[49],[37]
Low Latency [44],[2],[55],[4],[48],[50],[31],[14],[34],[30],[5],[51],[47],[42],[26],[33],[37],[38]
Strict Deadline [4],[54],[27],[41],[49],[42],[33]

Predictability

Min. External [49],[42],[24]
Predictive [5],[51],[24]
Scheduling [36],[4],[15],[40],[46],[41],[43],[28],[33],[52],[29]
Analyzable [36],[2],[55],[45],[39],[4],[15],[40],[46],[14],[41],[43],[28],[32],[33],[35],[52],[29],[16]

4.1. Time-critical definition

From the studies, we extracted 24 definitions of time-critical IoT applica-
tions. Due to space constraints, the full definitions are omitted here, but are
available in the provided replication package2. Collectively, these definitions
emphasize four key characteristics: Strict Deadlines, Low Latency, Reliability,
and Determinism. Different studies prioritize different aspects. For example,
studies in [4, 33] emphasize strict deadlines, defining time validity windows af-
ter which data becomes useless or invalid. In contrast, studies such as [48, 26]
focus on low latency. Based on the collected definitions in this study, we ob-
serve an interconnection among strict deadlines, low latency, and determinism.
Although different terms are used, the essential components in all three defini-
tions are similar and focus on the guarantee of the upper bound of latency in
either a process or transmission. Based on the collected definitions, we define
time-critical as follows:
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Time-critical. A time-critical IoT system must demonstrate robust and reliable
performance to consistently meet stringent temporal requirements via means of
predictability. These requirements are application-specific and typically entail
low, bounded, and deterministic latency, ensuring that time-critical events are
processed safely and effectively from E2E.

Hereafter, we provide a description of each of the four characteristics of time-
critical based on the collected information from the studies.

Strict Deadlines. This characteristic focuses on the use of deadlines hence pre-
determined time windows within which data must be processed or transmitted,
after which the data is considered invalid or useless. Borrowing from the RT
theory, strict deadlines may be classified as hard, firm, or soft, depending on
the severity of the consequences when these deadlines are missed. In Industrial
Internet of Things (IIoT), strict deadlines are crucial for tasks that require RT
control and monitoring, often managed by an RTOS with preemptive schedul-
ing to ensure that time-critical tasks are prioritized [4, 41]. Edge computing is
also leveraged to meet strict deadlines by reducing network congestion and la-
tency [33]. Mechanisms like reneging, where deadline-exceeded queued packets
are dropped, are employed to maintain system performance [27]. Additionally,
for ensuring aperiodic time-critical traffic such as emergency alarms meets its
deadline with sufficient reliability, a strategy is to sacrifice a portion of the reg-
ular traffic [49].

Low Latency. Time-critical systems often demand strict, low, and explicitly
defined latency constraints (e.g., ”must be less than X ms”). Centralized pro-
cessing can introduce significant communication delays, making it unsuitable
for time-critical applications [26]. Many IoT and stream processing platforms
have latencies exceeding 10 seconds –— far too high for time-critical tasks [30].
In contrast, safety systems in Internet of Vehicles (IoV) require average and
maximum latencies below 15 ms, as demonstrated by benchmarks like Linear
Road. Communication protocols are also critical. Transmission Control Proto-
col (TCP)-based MQTT is suboptimal for IIoT scenarios demanding low latency
and prioritized messaging [48], whereas User Datagram Protocol (UDP) is pre-
ferred for its connectionless nature, lack of congestion control, and Application-
layer retransmission management. Some applications must also balance low
latency with energy efficiency [38]. In others, processing is shifted to the edge
or device level to meet strict timing needs [34, 33]. Reverse task offloading –—
delegating tasks directly to IoT devices within defined intervals — is an emerg-
ing trend [33]. Processing closer to the data source, especially for small payloads
(e.g., ¡250 B vs. Ethernet’s Maximum Transmission Unit (MTU) of 1500 B),
reduces both Age of Information (AoI) and E2E delays [51]. Edge computing
is increasingly adopted in industrial time-critical systems, combining local re-
sponsiveness with cloud analytics while maintaining Quality of Service (QoS)
under varying network and workload conditions [37].
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Reliability. This characteristic focuses on reliability and safety requirements,
emphasizing that any downtime or failure to meet temporal requirements can
have severe safety, production, or financial consequences. In the context of
IIoT, time-criticality involves systems that require hard, firm, or soft RT capa-
bilities, low latency, and high reliability to ensure safe and efficient monitoring
and control of industrial processes [4]. For example, local process control in
smart buildings demands tasks with periods shorter than 1 second, low latency,
and high network reliability—requirements that current IoT architectures and
networks often struggle to meet [31]. Cellular networks with dedicated network
slices or Wi-Fi can potentially support such IIoT applications. Additionally,
time-critical applications requiring stringent E2E latency and reliability bounds
increasingly utilize BLE and TSCH [2, 47].

Determinism. This characteristic focuses on deterministic scheduling and RT
guarantees, which ensure communication and processing in a bounded time
where sometimes the exact time that the process or communication occurs can
be determined in advance. In IIoT (and Operational Technology (OT)) en-
vironments, time-critical applications demand deterministic, low-latency com-
munication responses [5]. Enablers include Time Sensitive Networking (TSN)
mechanisms, such as prioritization, resource reservation, guard bands, and pre-
emption, to support time-critical information driving physical processes, as well
as zero-loss redundancy protocols (e.g., Parallel Redundancy Protocol (PRP)
and High-Availability Seamless Redundancy Protocol (HSR)) for applications
where downtime is unacceptable. Non-intrusive debugging is crucial for main-
taining the timing behavior of distributed systems, particularly for time-critical
components like wireless radio operations, network protocols, and synchronized
transmissions with high precision requirements [44]. Techniques such as code
instrumentation (e.g., printf()) can alter execution timing, thus necessitating
careful adjustments in time-critical code. Other promising approaches include
the use of VLC in WSN, where the MAC supports contention-free communica-
tion via Guaranteed Time Slot (GTS) in a periodic synchronized super-frame
structure, although this requires rigorous worst-case condition modeling [25].
Additionally, WSN designed for RT applications require deterministic data re-
ception within strict deadlines, often employing strategies like reneging to ensure
data validity [27].

We also performed an orthogonal analysis to identify potential correlations
between the identified characteristics of time-critical applications and the layers
of our IoT model, as described in Section 2. The results, illustrated by the
bubble chart in Fig. 3, reveal a clear correlation between the Network layer and
the characteristics of Determinism, Low Latency, and Reliability. By examining
the bubble chart by IoT layer, we observe that the Network layer exhibits a
significantly higher number of occurrences (46) related to the identified charac-
teristics. In contrast, all other layers show around 20 occurrences each, with the
notable exception of the Cloud element, which registers only 6 occurrences. The
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Figure 3: Orthogonal analysis of the correlation between IoT elements and time-critical defi-
nitions.

low occurrences in the Cloud layer could be explained by this layer’s implied
longer latency, which is not suitable for time-critical applications. Hence we
see an emphasis for the edge in the extracted characteristics and in the bubble
chart. Similarly, by examining the bubble chart segmented by the identified
characteristics of time-critical applications, we observe that two characteristics
dominate in frequency: Low Latency with 45 occurrences, and Determinism
with 30 occurrences.

4.2. Predictability definition

From the studies, we extracted 24 definitions of predictable IoT applica-
tions. Due to space constraints, the full definitions are omitted here but are
available in the provided replication package2. Collectively, these definitions
emphasize four key characteristics: Analyzable Timing, Scheduling, Predictive
Behavior, and Minimizing External Unpredictabilities. Different studies prior-
itize different aspects. For example, the study [35] focuses on interactive and
latency-sensitive applications for which they propose using queuing analysis to
predict the E2E latency in closed forms. Other studies, such as [49], discussed
how aperiodic traffic, like an emergency alarm, is unpredictable and impractical
to pre-assign resources for. According to the collected definitions, we observe
that there is an interconnection between analyzable timing and scheduling def-
initions. In both terms, the main component is to guarantee a certain latency
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in a process or transmission. However, other characteristics target different be-
havior of the IoT system as predictability. Based on the collected definitions,
we define predictability as follows:

Predicatbility. A predictable IoT system employs rigorous scheduling, resource
allocation, and temporal analysis to ensure that all timing constraints are con-
sistently met as the application-specific tasks evolve in time from E2E. By
leveraging strategies such as resource reservation and RT prediction of future
system states, these systems may mitigate external sources of unpredictability,
including those arising from the wireless radio environment.

Hereafter, we provide a description of each of the four characteristics of pre-
dictability.

Analyzable Timing. This characteristic encompasses requirements for bounded
latencies, consideration of WCET, predictable jitter, and overall performance
that can be analyzed deterministically (e.g., via some form of WCRT). This
is crucial for interactive and latency-sensitive applications, where predictable
performance in terms of tail latency, jitter, or response time is essential [35].
Analyzability can sometimes be achieved through queuing analysis using closed-
form formulas. In industrial event-based applications, ultra-low and predictable
latency (e.g., less than 10 ms) along with minimal jitter is often required, al-
though this is challenging due to the influence of multiple components, such as
queue behavior and how the OS and hardware manage thread isolation [45].
Moreover, the integration of Information Technology (IT) into OT systems fre-
quently does not fully consider RT requirements, leading to a pessimistic view
of bounded network latency [16]. For instance, the TSCH channel hopping
mechanism mitigates the impact of multi-path fading and external interference,
and its use of TDMA avoids intra-TSCH collisions, thereby providing efficient,
reliable, and predictable communication that is well-suited for IIoT environ-
ments [32]. Additionally, performance predictability with minimal RT overhead
is often essential for critical (I)IoT applications, and the use of an RTOS can
enable the predictable performance needed for hard RT applications. Finally,
SWaP-C constrained devices, being relatively simple, can offer predictable on-
chip memory access latencies, further supporting the goal of analyzable timing.

Scheduling. This characteristics focuses on ensuring predictability by coordinat-
ing system resources, such as processors, memory, and network links, to meet
RT requirements. The behavior of the system’s scheduler is crucial and must be
analyzable to determine timing bounds [46]. Techniques such as temporal isola-
tion, which guarantees dedicated resource access, and priority inheritance, de-
signed to mitigate the priority-inversion phenomenon, are commonly employed
to enhance predictability. In industrial contexts, scheduling unpredictable het-
erogeneous traffic, often affected by the radio environment, remains a signifi-
cant challenge [28]. More robust L2 scheduling mechanisms, when combined
with effective power control, are essential for achieving predictable per-packet
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communication reliability, a cornerstone of Ultra Reliable Low Latency Com-
munication (URLLC) in IIoT applications [15]. Moreover, leveraging fog/edge
computing and decoupling software components with and without hard RT re-
quirements across different processors enables more predictable latencies, which
is vital for monitoring and controlling time-critical operations in IIoT [4].

Predictive Behavior. This characteristic refers to the run-time prediction of
system states, events, or updates to enhance overall efficiency and reliability.
For instance, IIoT data, such as location and velocity, often exhibit time corre-
lations that can be leveraged to reduce the AoI [51]. In this context, authors
have proposed strategies such as immediately transmitting a predicted status
update when it matches the source data or aggregating multiple predicted sta-
tus updates into a single packet, with careful optimization to balance prediction
accuracy against transmission error probabilities. Additionally, downtime and
delays caused by unpredictable faults can be mitigated through redundancy
mechanisms, robust protocols, and cloud-based analytics, all of which support
predictive maintenance [5]. Another approach involves forecasting the number
of future connection events necessary for successful transmissions by filtering
data through an observation window, thereby further enhancing system perfor-
mance [24].

Minimizing External Unpredictabilities. This characteristic focuses on mitigat-
ing environmental factors that can cause unpredictable behavior, such as radio
interference, jamming, or contention. For example, in WSNs, reliability can be
compromised by reactive jammers that intelligently predict and interfere with
communication [42]. Aperiodic traffic, such as emergency alarms, is inherently
unpredictable and challenging to allocate resources for in advance [49]. Radio
interference, particularly in BLE applications, may lead to prolonged and unpre-
dictable transmission delays [24]. Moreover, accurately forecasting future noise
in the radio environment is often not feasible, as many existing models assume
ideal conditions or rely on atypical data. Although BLE employs mechanisms
such as Adaptive Frequency Hopping (AFH) and autonomous retransmissions,
these do not guarantee an upper bound on latency. Additionally, variations in
AFH implementations may result in inconsistent behavior and inaccurate pre-
dictions of the Bluetooth frequencies in use.

We also performed an orthogonal analysis to identify potential correlations be-
tween the identified characteristics of predictability and the layers of our IoT
model, as described in Section 2. The results, illustrated by the bubble charts
in Fig. 4, reveal a clear correlation between the Network layer and the charac-
teristics of Analyzable Timing and Scheduling. By examining the bubble chart
by IoT layer, we observe that the Network layer exhibits a significantly higher
number of occurrences (32) related to these characteristics. In contrast, all other
layers show around 10 occurrences each, with the notable exception of the Cloud
element, which registers only 2 occurrences. This pattern is very similar to the
one observed for time-critical applications, suggesting that the Cloud may be
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the least explored or significant layer, while the Network remains the primary
focus of current research. This similarity is not surprising, as predictability
is inherently more stringent than time-criticality. Moreover, when segmenting
the bubble chart by the identified characteristics of predictability, we observe
that two characteristics dominate in frequency: Analyzable Timing, with 36
occurrences, and Scheduling, with 23 occurrences.

App. Clo. Edg. Net. Per.

Analyzable

Scheduling

Predictive

Min. External

36

23

5

3

9 2 10 32 14

5

4

0

0

2

0

0

0

5

3

2

0

17

10

2

3

7

6

1

0

Figure 4: Orthogonal analysis of the correlation between IoT elements and predictable defi-
nitions.

Highlights - RQ1 Timing definitions and characteristics

▶ Time-Criticality is defined by four characteristics: Strict Deadlines, Low Latency,
Reliability, Determinism. Hard, firm, or soft deadlines are supported by edge com-
puting and task offloading. Applications often require latency < 15 ms. UDP is
preferred over TCP. Techniques like BLE, TSCH, and network slicing are explored
to increase reliability. Determinism is enabled through TSN, VLC, preemption,
guard bands, and redundancy protocols. Network layer and Low Latency are most
closely associated with time-criticality in IoT systems.

▶ Predictability is defined by 4 key characteristics: Analyzable Timing, Scheduling,
Predictive Behavior, Minimizing External Unpredictabilities. WCRT, WCET,
and queuing models are used for latency/jitter analysis. Predictable resource ac-
cess via temporal isolation, priority inheritance, and L2 scheduling. Forecasting
system states/updates (e.g., AoI, status prediction, fault tolerance). Tackling
interference, jamming, and aperiodic traffic is explored. Network layer and Ana-
lyzable timing are most closely associated with predictability in IoT systems.
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5. Timing metrics (RQ2)

This section addresses the second research question by examining the key
metrics used to capture timing aspects in IoT systems. In total, we identified
and collected 113 timing metrics from the literature. Most of these are highly
specialized and situational, tailored to specific systems, environments, condi-
tions, and assumptions. For example, some studies propose unique metrics,
such as [24], which introduces the metric nCE to estimate the future number of
connection events required for successful transmission; [34], which defines “so-
journ time” as the duration an object remains in a node — a metric closely
related to deadline adherence. Other studies integrate established metrics into
novel composite Key Performance Indicators (KPIs). For instance, [31] merges
network transmission latency with IoT controller processing time into a “time
cost” metric. Additionally, many proposals explore a wide range of configura-
tions, including variations in task sets, priorities, network sizes, data rates, and
radio environments, to encompass diverse operational scenarios. These factors
complicated the development of a unified timing metrics framework capable of
serving as both a broad descriptive and prescriptive instrument. Our attempt
to provide such a framework is presented in Table 6.

For the sake of brevity and clarity, Table 6 displays some of the collected
timing metrics, categorizing them first according to the IoT layer and then
by category type, which includes Latency, Data rate, Reliability, Scheduling,
and Resource. It is worth remarking that the category types were identified by
applying open coding on the selected studies and further verified with our survey
respondents (of whom 75% agreed with our categorization). The interested
reader is encouraged to consult the cited works and our replication package2 for
additional metrics and detailed measurement information. In addition, Table 6
also includes a brief description of each measurement along with references to
the corresponding studies. When a study presented a timing metric addressing
multiple IoT layers, we included the reference for each layer individually. For
instance, [41] examines the impact of network interrupts on tasks across the
Application, Network, and Perception layers.

We group all measurements and metrics into the above mentioned five tim-
ing categories. Latency covers time-based performance measures in delivery or
processing such as E2E delay, WCRT of messages, execution time, and jitter.
Data rate focuses on how much data the system can handle or transfer over
time such as network or task throughput, and network utilization. Reliabil-
ity addresses success or failure metrics in network packet delivery such as PDR,
Packet Reception Ratio (PRR), and various probabilities of successful transmis-
sion. Scheduling captures the scheduler’s behavior in terms of metrics such as
Deadline Satisfaction Ratio (DSR), more complex measurements of adaptability
or scalability, but also temporal metrics derived from some RTA method, etc.
Finally, Resource encompasses overhead such as Central Processing Unit (CPU),
memory usage, queue length, capacity, and other system-level factors.

The observant reader may notice that there are timing metrics that might
not seem to fit a certain IoT layer, e.g., typical network measurements under the
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Table 6: Summary of key measurements taken in each IoT layer.

IoT Layer Type Description Paper ID

Application

Latency

Overhead [26]
End-to-End [30], [50]
Round-Trip Time [48], [31], [46]
Queue [48]
Execution Time [50]
Network Interrupt Effect on Tasks [41]

Data rate
Network: Throughput, Capability, Utilization [30], [37]
Task Throughput [33]

Reliability Message Loss Ratio, Packet Loss Rate [48], [31]

Scheduling
Task Distribution [33]
Adaptability to Requirement Changes, Connection Re-Schedule Delay [50]
Response-Time Analysis [46], [33], [16]

Resource Connection Capacity [50]

Cloud

Latency
End-to-End [35]
Jitter [35]
End-to-End Unidirectional [2]

Data rate Network Utilization [37]
Reliability End-to-End Necessary Transmissions [2]

Scheduling
Task Distribution [38]
Offloading Response-Time [38]

Edge/Fog

Latency
End-to-End [35], [5]
Jitter [35]

Data rate
Network Utilization [37]
Task Throughput [33]

Reliability Failure Recovery [5]

Scheduling

Task Distribution [33], [38]
Task Timeout Probability [34]
Offloading Response-Time [38]
End-to-End delay [39]
Response-Time Analysis [29], [33]

Network

Latency

End-to-End [35], [50], [5]
Jitter [35]
End-to-End Unidirectional [2], [55]
Round-Trip Time [31], [45], [46]
Execution Time [50]
Worst-Case Bounds [25], [53], [24]
n-th Packet Delay [27]
Reneging Effect [27]
Possible Deadline Limits [36]
Latency Exceeded Data [24]
Network Interrupt Effect on Tasks [41]
Measurement Accuracy (Tightness) [44]

Data rate
Network: Throughput, Utilization [45], [25], [49], [37]
Task Throughput [33]
Maximal Measurement Event Rate [44]

Reliability

End-to-End Necessary Transmissions [2]
Failure Recovery [5]
Packet Delivery Ratio, Packet Loss Rate, Packet Reception Ratio [27], [36], [49], [54], [31], [32]
Collision-Free Transmissions [32]
Latency Bounds at Expected Reliability Levels [55]
Mean-Time Attempting to Transmit [54]
Channel Idle Probability [42]

Scheduling

Task Distribution [33]
Response-Time Analysis [29], [46], [33]
Adaptability to Requirement Changes, Connection Re-Schedule Delay [50]
Superframe Scalability [25]
Transmission Probability (with Required Signal-to-Interference-plus-Noise-Ratio) [15]
Pessimistic Bounds (via Key Performance Indicator) [28]
Convergence [28]
Node Join Time [36]
Generated Schedules Validity [43]
Medium Access Control Delay [14]
End-to-End in Ideal and Non-Ideal Radio Environment [47], [49]

Resource Connection Capacity [50]

Perception

Latency

Round-Trip Time [31], [46]
Network Interrupt Effect on Tasks [41]
Measurement Accuracy (Tightness) [44]
Context Switch, Execution time [52]

Data rate
Task Throughput [33]
Real-time Operating System’s function throughput [40]
Maximal Measurement Event Rate [44]

Reliability
Packet Loss Rate, Packet Delivery Ratio [31], [54]
Mean-Time Attempting to Transmit [54]

Scheduling
Task Distribution [33]
Response-Time Analysis [46], [33]
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Application layer. The reason is that we have categorized the study belonging
(in part, or fully) to the Application layer, and the authors have tested their
application under various network scenarios.

5.1. Application layer metrics

Latency in the Application layer involves two primary performance concerns
for time-critical IoT systems: application overhead-induced latency [26] and the
execution time of the proposed application, such as the centralized RT BLE
scheduler in [50]. The study in [26] evaluates a prototype of a conveyor belt
system transporting items between production machines, focusing on Machine-
to-Machine (M2M) communication with RT requirements. This layer also in-
cludes network-centric measurements evaluating application performance. For
example, PrioMQTT, introduced in [48], assesses the impact of priority lev-
els on MQTT message transmission by measuring average queue times under
different priority conditions. In the Data rate metrics, task throughput mea-
surements are considered from multiple perspectives, such as the throughput of
IoT nodes and the Edge/Fog layer in [33]. Additionally, network-centric evalu-
ations include the large-scale data stream processing performance in [30], which
simulates a large intelligent transportation system, and network throughput (or
utilization) assessments in both [30] and [37]. Reliability metrics play a crucial
role in IoT applications. The Message Loss Ratio (MLR) has been analyzed
in [48], measuring the ratio of lost messages to transmitted messages. Similarly,
Packet Loss Rate (PLR) has been evaluated using ping measurements within a
(4G) cellular IoT application in [31], applied to a real-world building automation
scenario involving Heating, Ventilation, and Air Conditioning (HVAC) systems.
For Scheduling metrics related to distributed Edge/Fog applications, task distri-
bution has been measured in [33] under varying task arrival rates and different
offloading strategies. Time-critical applications require robust RTA, which has
been assessed through the DSR metric in [33], particularly concerning local
and time-critical tasks. Additionally, traditional RTA approaches have been
employed in [46] to evaluate the QNX RTOS distributed scheduling behavior,
focusing on execution traces and WCRT. Study [16] compares various RTA
approaches for RT-MQTT, an Application-layer protocol responsible for trans-
mitting MQTT messages across a network. Moreover, specialized performance
evaluations of BLE scheduling adaptability have been conducted in [50], an-
alyzing worst-case latency under deadline requirement changes and the delay
incurred when modifying the wireless schedule. Finally, in the Resource cate-
gory, connection capacity in BLE applications has been assessed for its ability
to meet deadline requirements [50].

5.2. Cloud layer metrics

In Latency metrics, study [35] focuses on time-critical operations across the
Cloud, Edge/Fog, and Network layers using queuing analysis. This study eval-
uates E2E latency through synthetic network traces and modeling, while also
conducting jitter analysis under varying data rates. Similarly, study [2] examines
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cloud-based BLE applications by measuring unidirectional E2E latency. This
assessment involves evaluating transmission latency (Tx) from the BLE device
within the Local Area Network (LAN) to the cloud server in the Wide Area Net-
work (WAN) via different wireless communication technologies (Wi-Fi, cellular),
as well as the reverse direction (Rx). For Data rate metrics, study [37] inves-
tigates network utilization over time in both the Edge/Fog and Cloud layers.
This research explores the role of Software-Defined Networking (SDN)’s band-
width slicing and (5G) cellular technology in supporting time-critical applica-
tions. The study is based on a simulated self-driving car scenario, emphasizing
high-bandwidth, low-latency communication requirements. Regarding Relia-
bility metrics, study [2] further examines the reliability of BLE communication
between the cloud and BLE devices, analyzing the number of required transmis-
sions based on the network path’s transmission reliability. Finally, in Scheduling
metrics, study [38] evaluates Cloud and Edge/Fog offloading by measuring an
application’s average response time, accounting for delays in uploading, pro-
cessing, and downloading. Additionally, this study assesses the average task
distribution across different layers under various offloading strategies.

5.3. Edge/Fog layer metrics

In the Edge/Fog layer, several performance measurements overlap with those
discussed in the Application and Cloud layers. Therefore, this section focuses
only on unique measurements. For Latency metrics, study [5] develops an IoT
prototype incorporating industrial wired zero-loss redundancy protocols (PRP,
High-Availability Seamless Redundancy Protocol (HSRP)), TSN, and edge com-
puting. This study derives a formal E2E frame communication delay, account-
ing for transmission, propagation, and processing delays. Regarding Reliability
metrics, the same study [5] evaluates network link failure recovery time using
the aforementioned zero-loss redundancy protocols. For Scheduling metrics,
study [34] investigates time-critical computational resource allocation in mobile
Edge/Fog scenarios. This study assesses the probability of task timeouts across
different configurations, including varying task sets and data rates, using differ-
ent queuing models. Additionally, a distinct RTA approach is identified in the
Edge/Fog layer. Study [29] develops an RT Edge/Fog system model that sched-
ules transmission operations using a compatible RTA. The proposed RTA is
experimentally evaluated based on system schedulability ratio, using randomly
generated WCET tasks across different network scenarios varying in size and
utilization. The evaluation is applied to modelled crowdsensing applications
and networks of smart sensors, representing time-critical distributed data col-
lection scenarios. Similarly, study [39] examines the scheduling of bursty and
unpredictable tasks in IoT systems utilizing an Edge/Fog layer, measuring E2E
task scheduling-induced delays for different task sets. Finally, another Schedul-
ing metric already discussed in the Application layer, study [33], evaluates the
scheduling DSR within this context.
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5.4. Network layer metrics

In the Latency metrics, a variety of typical network performance metrics
are considered. Study [50] provides a Cumulative Distribution Function (CDF)
of E2E latency over BLE, while [31], [45], and [46] report various RTT distri-
butions. Study [55] uses a precise industrial testbed to evaluate unidirectional
latency over Wi-Fi 6 and 5G, aligning with [2, 44]. Latency bounds for VLC
are analyzed in [25] and modeled further in [53]; worst-case BLE latency under
dynamic conditions is examined in [24]. Specific behaviors are also studied: [27]
measures n-th packet delay and analyzes the reneging effect in IEEE 802.15.4,
while [36] compares a decentralized TSCH scheduler against Orchestra using
latency CDF. Study [24] assesses latency-exceeded data in BLE under inter-
ference. In the Data rate metrics, studies [25] and [49] evaluate throughput
for IEEE 802.15.7 and emergency TSCH applications, respectively. Study [45]
analyzes the impact of a Virtual Network Function (VNF) on throughput in a
software switch. In the Reliability metrics, we mainly find PDR assessments.
Study [27] uses periodic transmissions, while [36] provides a CDF across net-
work sizes. Studies [49] and [32] evaluate alarm message delivery and PRR in
coexisting networks. Study [32] also estimates collision-free transmissions in
concurrent TSCH networks. Jamming resilience is analyzed in [42], measuring
idle channel probability across protocols. Study [55] shows 5G achieves lower
latency than Wi-Fi 6 at ≥ 99.9% reliability. This evaluation was conducted
on a real-world industrial control testbed, where a Programmable Logic Con-
troller (PLC) communicated with a motor controller over wireless PROFINET.
In the Scheduling metrics, various RTA approaches are used to determine per-
formance bounds, measured through schedulability ratio in [29], WCRT and
execution traces [46], and DSR in [33]. The evaluation in [46] targets a simu-
lated and hardware-based autonomous driving scenario on a Raspberry Pi plat-
form, focusing on detection and localization tasks. Study [28] computes KPIs
from experimental data to estimate pessimistic performance bounds. Study [14]
examines MAC delay scalability with prioritized nodes. TSCH is a recurring
focus. Studies [47, 49] evaluate E2E upstream latency in ideal and non-ideal
radio environments for emergency traffic. Study [25] assesses superframe scala-
bility in VLC-based networks. Study [15] shows that integrating power control
with scheduling improves successful transmission rates based on SINR thresh-
olds. Scheduling convergence is addressed in [28], which analyzes PDR, duty
cycles, and latency during network formation and topology changes. Study [36]
compares join times across scheduling methods and network sizes. Study [43]
introduces an offline metascheduler that maintains feasible schedules during
single- and two-failure events, mitigating state space explosion.

5.5. Perception layer metrics

In the Perception layer, there is a significant overlap with previously dis-
cussed performance metrics; therefore, this section highlights only a few unique
ones. For Latency metrics, study [44] proposes a non-intrusive method for trac-
ing a distributed wireless IoT system. The method was evaluated on a real
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testbed running a generic event-based application. To evaluate this approach,
the accuracy (tightness) of its measurements is compared to ground-truth logic
tracing, quantifying the magnitude of measurement errors. Another study inves-
tigates the timing behavior of RTOSs suitable for IoT through experiments on
real controllers, assessing the delay and jitter associated with context switching
triggered by various sources, such as events, semaphores, and mailboxes [52].
Additionally, the same study measures the execution time of key RTOS primi-
tives, including semaphores. For Data rate metrics, study [44] further examines
the maximal measurement event frequency of its proposed tracing system, de-
termining how frequently a variable can be accessed or read without causing
delays or overflow. Another approach investigated in the Perception layer is
found in study [40], which proposes an RTOS hypervisor middleware for IoT,
providing resource allocation to enhance system predictability. Various RTOS
function throughputs are then measured using a benchmarking framework. For
Reliability metrics, study [54] explores strategies to mitigate wireless jamming in
time-critical IoT applications. The authors evaluate the packet success rate (or
PDR) of their proposed wireless communication schemes under various hostile
radio environments via MATLAB simulations. Additionally, they analyze the
mean time required for the system to attempt a transmission, offering insights
into the resilience of their approach.

Highlights - RQ2 Timing metrics

▶ 113 timing metrics were identified and categorized into Latency, Data rate, Reli-
ability, Scheduling, and Resource, then grouped by IoT architecture layers.

▶ Latency and Scheduling metrics (e.g., E2E delay, RTT, DSR) are most associated
with the Network and Edge/Fog layers.

▶ Resource and Reliability metrics (e.g., CPU usage, PDR, redundancy success) are
found across all layers, with emphasis on system robustness.

▶ The Cloud layer shows fewer metrics overall, while the Application, Edge/Fog,
and Perception layers present more context-specific measures.

6. Discussion

This section discusses our findings in conjunction with the survey results,
providing the practitioners’ perspective of our findings and complementary in-
sights. Section 6.1 explores broader research trends in time-critical IoT, Sec-
tion 6.2 reports on the respondents’ opinion on our synthesized definitions and
timing metrics, while Section 6.3 addresses general considerations and challenges
in measuring time-critical IoT systems.
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6.1. Relevance of the research topics

The relevance of this research is evident in the rising trend observed in our
collected studies, as shown in the publication trends over the last five years7

in Fig. 5. This observation is further supported by our survey respondents,
71.5% of whom strongly indicated that unifying time-critical IoT applications
would be useful (See Q23 in Table 9). Moreover, Fig. 5 shows that most of the
selected studies were published in 2020. Notably, only one study appeared at a
workshop, while the rest were featured in venues such as the IEEE Internet of
Things Journal and IEEE Access.
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Figure 5: Distribution of primary studies by year and by type of publica-
tion.

To provide a broader perspective on research trends within time-critical IoT,
we identified nine distinct solution and target domains, as illustrated in Fig. 6.
The solution domains represent a given study’s potential domains of utilization,
whereas the target domains refer to the specific domains that were actually
targeted in a given study. From both of these categories combined, the indus-
trial sector accounts for the largest share (28.21%), followed by environmental
monitoring (14.74%) and transportation (14.10%). A small portion of studies
(4.49%) did not specify a domain. This distribution aligns with the expecta-
tion that time-critical behavior holds greater importance in sectors such as the
industrial compared to typical consumer products.

6.2. Practitioners Perspective

The survey results provide practitioner perspectives that both validate and
complement the literature findings. To support transparency and provide con-
text for the survey analysis, Table 7 lists all survey questions along with their
formats. While we do not elaborate on each response in the paper, we focus on
the most meaningful results relevant to our contributions. We did not collect

7The exception being 2024, for which data was not collected for the entire year.
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Figure 6: Identified solution domains and target domains from primary
studies.

broader demographic data (e.g., age, gender, location), as it was not central to
the research focus, we did capture respondents’ roles and levels of experience.
Most respondents identified as researchers (82.1%), with others identifying as
developers (7.1%), developer–researchers (3.6%), a software architect (3.6%), or
a researcher/consultant (3.6%). Notably, 78.6% reported having worked with
time-critical IoT applications. Respondents also reported moderate-to-high fa-
miliarity with performance and timing evaluations as seen from Q3 in Table 9.
These results suggest that the survey responses reflect informed perspectives
grounded in practical experience with time-critical IoT systems. Tables 8 and 9
summarize the yes/no/partially and Likert-scale survey responses, respectively,
while other survey results are available in the replication package2.

From our synthesized definitions of time-criticality and predictability, we
identified four key characteristics for each. Of the survey participants, 53.6%
agreed with these, while 35.7% suggested minor changes as seen from Q5 in
Table 8.

Feedback indicated that time-criticality and predictability sometimes overlap
and may be merged in certain contexts. Respondents emphasized that defini-
tions should be grounded in application-specific requirements. For example,
one described time-criticality as a general term that “could be refined into re-
quirements,” while others linked it to QoS, Quality of Experience (QoE), or RT
categories. The perspective varied by system layer — some considered the view
from individual IoT nodes (Perception layer), others from an E2E standpoint.

Additional comments suggested that predictability could be seen as a means
to achieve time-critical behavior. One noted, ”you cannot have complete pre-
dictability of the communication,” particularly in dynamic wireless environ-
ments. Another aligned predictability with Buttazzo’s view [9] that ”the system
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Table 7: Survey questions and their types.

Q# Question (truncated) Type

Q1 What is your primary role in IoT? Free-text
Q2 Have you worked with time-critical IoT applications? Multiple choice
Q3 How familiar are you with performance/timing evaluations in IoT? Likert (1–5)
Q4 How often are timing requirements defined in IoT applications? Likert (1–5)
Q5 Our research identified two ways timing is addressed in IoT: Time-

Critical and Predictability. Do you agree with this categorization?
Multiple choice

Q6 Q5 Follow-up: Specify which modifications or alternatives to the def-
initions above.

Free-text

Q7 How frequently do you encounter timing measurements in IoT appli-
cations?

Likert (1–5)

Q8 We categorized timing measurements based on these IoT layers: ...
Are there additional layers where timing measurements are relevant?

Multiple choice

Q9 Q8 Follow-up: If yes, please specify additional layers. Free-text
Q10 Which IoT layer do you believe requires the most stringent timing

guarantees?
Multiple choice

Q11 We categorized timing measurements into: ... Are there any measure-
ment categories that were not mentioned?

Multiple choice

Q12 Q11 Follow-up: If yes, please specify additional categories. Free-text
Q13 Our findings indicate that the Network layer contains the most timing

measurements, whereas the Cloud layer has the least. Do you agree?
Multiple choice

Q14 Q13 Follow-up: If not, please explain. Free-text
Q15 What are the greatest challenges you face when measuring timing

performance in IoT applications?
Multiple choice

Q16 Q15 Follow-up: If other, please specify the challenge(s). Free-text
Q17 Do you believe timing aspects in IoT are underexplored? Multiple choice
Q18 Q17 Follow-up: Please explain why or why not? Free-text
Q19 Our findings suggest that timing measurements in IoT are often ad-

hoc and case-specific ... do you agree with this observation?
Likert (1–5)

Q20 Would standardized timing metrics be beneficial for IoT applications? Likert (1–5)
Q21 What are the biggest challenges in adopting standardized timing met-

rics for IoT applications?
Free-text

Q22 Beyond standardization, what other timing-related challenges or re-
search gaps do you think should be addressed in IoT?

Free-text

Q23 How useful do you find this research on defining unified time-critical
IoT applications?

Likert (1–5)

Q24 Would you be willing to engage with the team in an interview? Multiple choice

Table 8: Summary of Yes, No, and Partially survey responses.

Question (truncated) Yes No Partially

Q5: Agree: time-critical and predictive categorization? 15 (53.6%) 3 (10.7%) 10 (35.7%)
Q8: Are additional IoT layers relevant for timing? 9 (32.1%) 19 (67.9%) -
Q11: Are there additional measurement categories? 7 (25%) 21 (75%) -
Q13: Agree: Net. most, Clo. least timing measurements? 25 (89.3%) 3 (10.7%) -
Q17: Are timing aspects underexplored in IoT? 16 (57.1%) 12 (42.9%) -
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Table 9: Summary of Likert-scale survey responses.

Question (truncated) Mean ± SD 95% CI % Agree (4–5)

Q3: Familiarity with performance/timing evaluations 3.64 ± 1.22 [3.17, 4.12] 71.4%
Q4: Frequency of defined timing requirements 2.89 ± 0.83 [2.57, 3.22] 21.5%
Q7: Frequency of encountering timing measurements 3.54 ± 0.79 [3.23, 3.84] 57.1%
Q19: Agreement on ad-hoc timing standards 3.96 ± 0.64 [3.72, 4.21] 78.6%
Q20: Usefulness of standardized metrics 3.82 ± 0.82 [3.50, 4.14] 57.1%
Q23: Usefulness of research findings 3.93 ± 0.90 [3.58, 4.28] 71.5%

should be able to predict the evolution of the tasks and guarantee in advance that
all critical timing constraints will be met.”

These responses reflect diverse interpretations and reinforce the need for
unified definitions. Based on the feedback, we refined our definitions, presented
in Sections 4.1 and 4.2.

To categorize timing metrics, we adopted a five-layered IoT model based
on [11, 12] and classified all 38 reviewed studies accordingly. Survey responses
show 67.9% agreed with the layer structure, while 32.1% proposed more granu-
larity (e.g., device, OS, middleware, or OSI layers) as seen from Q8 in Table 8.
Some noted confusion around the Perception layer, suggesting separation of
sensing and actuating or adding a dedicated RT layer. Others questioned con-
ceptual clarity, asking ”how does Application, Perception, and Cloud live on a
single plane?”. This highlights that strict layering may not fully capture the
interconnected nature of IoT systems.

Survey respondents were also asked to identify layers requiring the most
stringent timing guarantees. Results: Application (46.4%), Cloud (10.7%),
Edge/Fog (42.9%), Network (64.3%), and Perception (42.9%). These responses
suggest a broad distribution of timing-critical points, with a lower emphasis on
the Cloud. This aligns with findings from Table 6, where the Network layer
has the most timing metrics, and the Cloud the fewest. This observation was
validated by 89.3% of respondents (Q13 in Table 8), with comments such as ”the
Cloud is a complex ecosystem” and ”can only to a certain degree rely on net-
work timing information”. Several noted that the Cloud must often reconstruct
timing indirectly from other layers.

Our analysis revealed variability in how explicitly timing requirements are
defined in IoT systems. Study [16] noted that integrating IT into OT often
ignores RT requirements. Similarly, [31] argued that current smart building
IIoT architectures are inadequate for time-critical tasks. One trade-off strategy
is to relax energy efficiency constraints [38]. Survey results showed only 21.5%
strongly agreed that timing requirements are explicitly defined during design
or operation (Q4 in Table 9), indicating a need for stronger emphasis in future
systems.

We also mapped reviewed studies to the lower OSI layers: L1 (16.98%), L2
(54.72%), L3 (22.64%), and L4 (5.66%). As expected, L2 had the strongest focus
due to its influence on timing. However, as [28] notes, robust L2 scheduling can
be undermined by upper-layer behavior. Environmental context was also raised,
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with one respondent noting higher latency risks in signal-dense environments
(e.g., offices) compared to open fields.

From the survey, 57.1% of respondents strongly indicated frequent use of
timing measurements, as seen from Q7 in Table 9. Our review identified 113
distinct timing metrics, a subset of which is listed in Table 6. The variety
and frequency of these metrics highlight the need for standardization to enable
consistency across studies.

We grouped timing metrics into five categories: Latency, Data rate, Reli-
ability, Scheduling, and Resource. This categorization was supported by 75%
of respondents (Q11 in Table 8). The remainder suggested adding metrics for
error handling, resilience, and precision. We argue that such metrics may fit
under Reliability. One respondent noted the interdependence between Latency
and Reliability, especially for hard deadlines. Another suggested a scalability
category, which is indeed important in dynamic IoT systems.

On the use of RTT, one respondent recommended the TWAMP protocol8

for accurate two-way measurements without clock synchronization.
Our findings indicate that timing metrics in IoT are often ad hoc and context-

specific, with 78.6% agreeing on the lack of standardization (Q19 in Table 9).
The diversity of metrics makes comparison across studies difficult. Still, 57.1%
strongly agreed (Q20 in Table 9) that standardizing metrics — similar to those
used in RT systems — would benefit IoT. While new metrics may be needed
for niche cases, a shared baseline would support consistent evaluation.

Several challenges were raised by respondents. The most common was
ecosystem heterogeneity — diverse technologies and architectures make uni-
fied timing guarantees difficult. Respondents also called for standardization of
practices, especially around WCET, and better methodologies for evaluating
timing under resource constraints. Some suggested applying hard RT methods
to time-critical systems and using QoS techniques for soft RT.

Additional gaps include the lack of tools for timing analysis, integration
challenges, and coordination issues between Edge/Fog and Cloud. Security and
usability were also noted.

Although most respondents supported standardization, only 57.1% felt that
timing is underexplored in IoT as seen in Q17 in Table 8. This suggests a
research-industry gap: academia may emphasize theoretical timing models (e.g.,
TSN), while industry faces deployment challenges. Collaboration may be needed
to bridge this divide.

Some respondents noted that not all IoT systems need strict timing; in
many, reliability or availability is more important. However, as adoption grows,
more applications will demand strict timing. The challenge remains to provide
guarantees in large-scale, heterogeneous, and unpredictable systems.

Several respondents emphasized that E2E timing remains underexplored.
Others pointed out that while timing may be well-studied in RT contexts, it
remains insufficiently addressed in the specific landscape of IoT.

8https://datatracker.ietf.org/doc/html/rfc5357
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6.3. Identifying, Capturing, and Presenting Timing Data
Depending on the application, we must first identify what exactly to mea-

sure. Some studies clearly specify the precise start and end points of their
measurements ([45, 30, 47, 49]) or define exactly what is included in the mea-
surement such as the response time in [38]. For instance, studies [47, 49] measure
WSNs schedulers’ E2E upstream latency from the moment sensor data (or an
alarm) is generated until it arrives at the sink in different radio environments.
Additional examples of such start and end point variations can be observed in
Table 6, where the measured latency might be captured from an E2E perspective
(which itself varies), as RTT, as one-way Tx/Rx latency, or upstream/down-
stream. While this level of granularity aids in comparing different proposals,
it is not always clearly reported in every study. Moreover, depending on sys-
tem constraints — such as the lack of access to low-level timing information
— some level of measuring abstraction may be necessary, and certain in-depth
measurements might be impractical.

Beyond addressing exactly what to measure, we must also consider ap-
propriate methods of capturing the timing data in validating that the tim-
ing requirements are met. We have identified five high-level validation methods
from the studies: Formal Analytical Approaches (21.82%), Comparative Perfor-
mance Analysis (26.36%), Experimental Approaches (18.18%), System Design
and Construction (15.45%), and Simulation or Emulation (18.18%). Note that
the studies often included some form of comparative performance analysis to jus-
tify their contributions, thereby explaining their high frequency. Several studies
also compare various validation methods to assess the tightness or accuracy
of results. For instance, study [46] examines experimental and formal meth-
ods for evaluating WCRT, while study [16] contrasts an experimental approach
with two formal ones. The latter shows that a holistic formal WCRT analy-
sis (classic RTA of WCET task sets) is more pessimistic than a more complex
trajectory-based WCRT (which follows packets backward in trajectory). When
validating the timing requirements via an experimental testbed or deployment,
the act of measuring a system can itself alter the system’s timing behavior as
discussed in [44, 55]. Examples of this include logging overhead consuming CPU
(printf()) or network probes that consume bandwidth. Both studies offer ex-
tensive guidance on achieving tight, unobtrusive, and accurate measurements,
discussing methods such as serial interface logging, buffered transfers, hardware-
based logic tracing (e.g., via General-Purpose Input/Output (GPIO) pins), and
dedicated debugging hardware. The two latter methods here represent the bet-
ter options in general.

We also surveyed our respondents on the challenges of measuring timing
performance through a multiple-choice question supplemented by an optional
free-text response (Q15 and Q16 in Table 7). The majority (60.7%) identified
high variability in wireless conditions and difficulties in synchronization across
distributed nodes as the most significant challenges. Following this, 25% consid-
ered measurement overhead and limited access to low-level timing information
to be the primary obstacles. Beyond these predefined categories, respondents
also highlighted additional challenges such as the heterogeneity of IoT devices
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crossing different (software, network, IoT) conceptual layers, which increases
measurement complexity, and the application-dependent nature of timing eval-
uations, such as the possible wireless signal strengths in a particular environ-
ment. These observations highlight the complexity of ensuring that timing
requirements are met within the broad and dynamic IoT ecosystem. Through
this research, we aim to provide guidance on key considerations and resources,
including where to measure, how to measure, and which metrics to use –—
ultimately contributing to the broader goal of standardization.

Once we know what and how to measure, we must now decide on an ap-
propriate presentation of time. As previously discussed, in many time-critical
IoT systems, we are primarily concerned with worst-case timing behavior or
bounded latencies [27], which aligns with our definitions. Several studies report
these bounds using tail Latency metrics — for instance, first or last percentiles
(or more stringent thresholds, depending on reliability requirements) of tasks
missing their deadlines [28, 35]. Consequently, the CDF is frequently used to
depict this distribution, such as in [55, 48, 35], allowing an assessment of how
reliably a given latency constraint is met. In this sense, latency and reliability
function as two sides of the same coin. To ensure reliable findings, a statistically
significant amount of empirical data should be collected, thereby revealing any
temporal fluctuations [2].

7. Related work

To the best of our knowledge, no prior peer-reviewed study provides a holis-
tic view of time-critical IoT. Existing research primarily focuses on specific
components or isolated aspects.

Behnke and Austad offer a comprehensive review of RT performance in IIoT
communication, identifying common use cases and corresponding RT require-
ments [62]. The use cases include autonomous vehicles, worker safety and hazard
protection, and augmented reality. Their five-year study highlights challenges
such as lack of standardization, wireless limitations, scalability-predictability
trade-offs, and complexity in adopting technologies like 5G and TSN. Our work
differs by taking a foundational step toward standardizing timing metrics — an
identified gap in the field.

As discussed earlier, timing is closely linked to wireless reliability. Vlavianos
et al. [63] assessed link quality metrics in IEEE 802.11a/g networks, showing
that no single metric is sufficient. The evaluation was conducted through a
measurement-based study on a physical testbed in an office environment, using
multiple nodes under varying parameters and conditions. Their study found:
Received Signal Strength Indicator (RSSI) is useful only at low data rates;
SINR is accurate but hard to measure; PDR depends on transmission rate and
packet size; and BER requires large samples and careful outlier handling. They
concluded that combining metrics offers better link quality estimation.

Few studies examine time-criticality in relation to connectivity and cloud
technologies. Perez-Ramirez et al. [1] explored new Wi-Fi features for Industry
4.0, proposing multi-frame scheduled MAC, packet redundancy via Multi-Link
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Operation (MLO) in Wi-Fi 7, and time synchronization using Fine Timing
Measurement (FTM), targeting use cases such as safety-critical wireless control
(e.g., emergency stops) and autonomous mobile robots on the factory floor.

Shukla et al. [64] reviewed latency reduction techniques in IoT and cloud
computing, using a Systematic Literature Review (SLR) process to identify
time-critical applications and emergency response scenarios requiring low la-
tency. Their work emphasizes fog computing techniques, including use cases
such as secure social networks demanding ultra-low latency. Gowri et al. [65]
proposed a Resource Allocation and Service Placement (RASP) strategy lever-
aging Reinforcement Learning (RL) and Energy-Efficient Computing (EEC) in
Fog/Cloud settings. These works focus on improving timing predictability in
specific system layers, complementing our broader metric-centered perspective.

Other studies address scheduling. Kharb and Singhrova [66] reviewed TSCH,
focusing on scheduling algorithms, advertisement policies, and challenges in
IIoT. Their work follows a SLR process and identifies real-world scenarios such
as safety, control, and monitoring in industrial process automation, as well as in
smart metering, body area networks, and home automation. Khajeh et al. [67]
reviewed RT scheduling across diverse IoT domains such as healthcare, smart
cities, and industrial systems. Using a SLR process, they discuss a range of
application scenarios, including traffic monitoring with RT traffic light schedul-
ing and smart building systems for energy consumption tracking. These works
emphasize resource management in time-critical applications and complement
our focus on timing analysis.

Mitra et al. [68] surveyed the design of time-critical systems, focusing on tim-
ing interference in single-core, multi-core, and distributed environments. They
discussed how interference affects execution time bounds and presented model-
ing and mitigation strategies to ensure timing guarantees under variable work-
loads.

Finally, Soularidis et al. [69] reviewed time-critical IoT systems in mission-
critical contexts, such as decision support for Search and Rescue (SAR) oper-
ations. Their work proposes a conceptual framework, leveraging heterogeneous
collaborative IoT entities with diverse data sources and edge devices. Their
work further underscores the growing need for time-critical capabilities in mod-
ern IoT applications.

8. Conclusion and Future Work

The IoT market has seen extensive growth over the last few years. Some
of the targeted domains and applications have requirements on timing perfor-
mance. We have identified two key timing characteristics in the literature,
time-criticality and predictability, which are represented by a broad spectrum
of features affecting the timing. Moreover, the methods of measuring the IoT
system’s performance and the metrics to use, in ensuring these features are
spread. We have therefore conducted a systematic literature review consisting
of 38 primary studies, combined with surveying 28 IoT experts, in order to pro-
vide clear definitions of our characteristics of interest along with showcasing the
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current state of the practice and theory in measuring timing in an IoT system
across our five-layered system model.

Our hope is that this research will contribute to the future standardization
of time measurement in IoT. Our findings offer actionable insights that could
directly inform standardization efforts in organizations such as IEEE or Internet
Engineering Task Force (IETF) and ongoing working groups such as DetNet and
6TiSCH. A fundamental next step is the establishment of a unified IoT reference
model — existing models are often fragmented or outdated, lacking consensus
across academia and industry. This study contributes to such efforts by identi-
fying a structured set of timing-related measurement categories (e.g., Latency,
Data rate, Reliability, Scheduling, Resource) that emerged both from literature
analysis and were validated by over 75% of expert survey respondents. These
categories, aligned with a layered IoT architecture, can serve as a foundation for
categorizing and standardizing performance metrics across application domains.
Furthermore, the observed imbalance in timing measurements across layers —
particularly the relative scarcity of metrics in the Cloud layer compared to the
Network layer — suggests targeted areas where standardization efforts could
focus. This work may also support the harmonization of timing requirements
across IoT applications, much like ongoing initiatives in adjacent fields such as
digital twins, where research outputs have informed real-world standardization
processes [70, 71]. We see potential in engaging with relevant working groups
to translate these findings into formal specification drafts.

Future work should tackle the key timing challenges in IoT systems, such as
device heterogeneity, multi-layered solutions, unpredictable wireless conditions,
and the absence of a unified standard. Developing tools and methodologies
for unobtrusive E2E timing analysis across IoT layers is essential. It is also
vital to bridge the gap between theoretical models and practical deployment
challenges, ensuring timing guarantees in large-scale, distributed, and resource-
constrained environments. Collaboration between academia and industry will
be crucial to aligning timing requirements with real-world use cases. Future
studies could investigate the adaptation of hard RT techniques for time-critical
IoT applications and the refinement of soft RT methods for diverse scenarios,
ultimately supporting more reliable and predictable IoT systems.
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