This is an early access version of a paper accepted for publication at the 3rd IEEE International Conference on
Federated Learning Technologies and Applications (FLTA25).

FedLoRASwitch: Efficient Federated Learning via
LoRA Expert Hotswapping and Routing

Joakim Flink
Milardalen University
Visterds, Sweden
joakim.flink@mdu.se

Abstract—Adapting large language models (LLMs) to diverse
tasks in federated settings is hindered by communication over-
head, privacy constraints, and client heterogeneity. We introduce
FedLoRASwitch, a framework that trains multiple specialised
Low-Rank Adaptation (LoRA) experts on distributed clients with-
out sharing raw data. A lightweight Transformer router selects
the single most relevant expert from five categories (including a
general category and a web-search augmented category) based on
the highest confidence score per query, with a routing step latency
of approximately 35 ms on a single AS000 GPU. The selected ex-
pert’s LoRA weights (quantized to 4-bit, payload approx. 25 M B)
are then loaded on-the-fly into a frozen 0.5 B-parameter base
model. A retrieval-augmented web search capability is included,
ensuring access to newly published knowledge. Experiments on
CodeAlpaca (code generation), GSM8K (mathematics), Indian-
History, and MuskumPillerum (general Q&A) show that four
exemplar experts boost performance from 1.97% to 16.22%
exact-match on GSM8K, while reducing communicated bytes per
client per round by approximately 40 x compared with sending
full 16-bit model parameters. Beyond accuracy, FedLoRASwitch
enables cost-effective personalisation: institutions can host pri-
vate, domain-specific LoRAs instead of repeatedly training full
models. Previous work has validated federated learning, LoRA,
and Mixture-of-Experts principles individually; FedLoRASwitch
is, to our knowledge, the first system that combines these concepts
to train multiple distinct LoRA experts in a federated manner
and dynamically select one for inference. The framework offers
a pragmatic path to high-performance, privacy-preserving, and
resource-efficient multi-expert LLM adaptation.

Index Terms—Federated Learning, Large Language Models,
Mixture of Experts, Low-Rank Adaptation (LoRA), Parameter-
Efficient Fine-Tuning (PEFT), Model Routing.

I. INTRODUCTION

Large Language Models (LLMs) have demonstrated re-
markable capabilities [|1]], yet adapting them to specific down-
stream tasks, particularly in distributed environments, remains
a hurdle. Full fine-tuning is often computationally prohibitive
in federated learning (FL) settings due to massive parame-
ter counts and communication bottlenecks, compounded by
data privacy constraints that prevent data centralization [2].
Parameter-Efficient Fine-Tuning (PEFT) methods like Low-
Rank Adaptation (LoRA) [3] mitigate this by freezing the
base LLM and training only small, low-rank adapter modules,
drastically reducing trainable parameters and communication
overhead.

Bostan Khan
Milardalen University
Viisterds, Sweden
bostan.khan@mdu.se

Masoud Daneshtalab
Milardalen University
Visterds, Sweden
masoud.daneshtalab@mdu.se

While FL enables collaborative training on decentralized
data, adapting a single global model to heterogeneous client
data distributions (e.g., code vs. math vs. general knowledge)
can lead to negative interference and suboptimal performance.
Mixture-of-Experts (MoE) [4] models offer a solution by
employing specialized subnetworks (experts) activated condi-
tionally via a routing mechanism, increasing capacity with-
out proportionally increasing computation. However, apply-
ing MoE directly in FL is challenging due to data locality
constraints and the complexities of distributed expert training
and aggregation. In this paper, we propose FedLoRASwitch,
a framework that combines the strengths of FL, LoRA, and
MoE principles in a novel, modular fashion. Instead of a
monolithic MoE model, we train an example setup of multiple
domain-specific LoRA experts (e.g., Code, Math, Indian-
history, General) collaboratively across federated clients. A
key innovation is a lightweight Transformer router [5] that
learns to predict the most relevant expert for each query at
inference time. Selected LoRA experts, being small modules,
are then dynamically hor-swapped—merged with the frozen
base model on-the-fly using an efficient LLM serving engine
like TGI [|6]. This allows for flexible, conditional computation
tailored to each query while minimizing memory usage, as
only active experts need to be loaded.

In our approach, we utilize the Flower federated learning
system [7]], where clients train specific experts based on data
availability, ensuring focused updates. For aggregation, we
employ the FedAvg [2]] method, though it can be readily sub-
stituted with others, such as FedAdam [8]]. Additionally, a web
search mechanism allows the system to ingest external, up-to-
date information for knowledge-intensive queries. This setup
is particularly valuable for organizations such as businesses,
schools, and hospitals, where privacy and personalization are
crucial. By leveraging federated learning [2], LoRAs [3],
and Mixture-of-Experts (MoE) [4] principles, FedLoRASwitch
offers a practical and efficient approach to creating personal-
ized and private language models. This collaborative training
method not only enhances performance but also ensures cost-
effectiveness in terms of computational power and communi-
cation savings.

Our contributions in this work are summarized as follows:

o FedLoRASwitch Framework: A collaborative learning

system for training multiple LoRA experts on decentral-

This is an early access version of a paper accepted for publication at the 3rd IEEE International Conference on
Federated Learning Technologies and Applications (FLTA25).

ized data and combining their usage dynamically via a
router.

o Routing Transformer: An efficient and specialized
router for low-latency expert selection.

o LoRA Expert Hotswapping: An inference mechanism
leveraging a modern serving engine for on-demand LoRA
merging, optimizing memory and flexibility.

The remainder of this paper details related work (Section|[I)),

the FedLoRASwitch methodology (Section [III), results (Sec-
tion [[V), discussion (Section [V)), and conclusion (Section [VI).

II. RELATED WORK
A. Federated Learning for LLM Adaptation

FL enables privacy-preserving collaborative training [9].
Full federated training of LLMs faces communication and
computation challenges. PEFT methods, especially LoRA [3]],
have emerged as solutions, drastically reducing the param-
eters exchanged in FL. Works like FlexLoRA [10] address
client heterogeneity by allowing variable LoRA ranks. FedSA-
LoRA [11] proposes selective aggregation, sharing only part
of the LoRA matrices (e.g., “A” matrices) to enhance privacy
and efficiency. FewFedPIT extends federated instruction tun-
ing (FedIT) to better handle few-shot settings and privacy
risks [12]. Our work builds on federated LoRA but focuses
on managing task heterogeneity via multiple explicit experts
and routing.

B. Mixture-of-Experts (MoE) and Routing

MoE models increase capacity efficiently by activating
sparse expert subnetworks per input via a routing mech-
anism [4]. Sparsely-gated MoEs achieve massive effective
capacity with modest computational overhead. Switch Trans-
formers simplify this by routing each token to a single expert
[13]]. These are typically trained centrally. FedLoRASwitch
adapts the MoE concept to FL using modular LoRA experts
trained decentrally and combined at inference via a BERT-
based router [5].

C. Dynamic Model Composition and Inference Efficiency

Efficient LLM serving systems like vLLM [14]], Lorax [15]],
and TGI [6] optimize inference through techniques like ad-
vanced KV cache management, continuous batching, and
model quantization. Crucially, they support dynamic loading
and merging of adapters like LoRA. FedLoRASwitch utilizes
TGI due to its straightforward setup and widespread adop-
tion, though other engines with similar capabilities could be
employed. It exploits this capability for its expert hotswap-
ping mechanism, loading only necessary LoRA modules per
request, thereby minimizing memory overhead compared to
maintaining separate models or a full MoE architecture. We
also incorporate a simple retrieval-augmentation mechanism,
similar in spirit to RAG systems, using web search.

FedLoRASwitch uniquely integrates these threads: feder-
ated PEFT, modular MoE principles, and efficient dynamic
inference serving.

III. METHODOLOGY
A. System Overview

FedLoRASwitch operates in two primary phases: a feder-
ated training phase for developing specialized LoRA experts,
and a dynamic inference phase where these experts are uti-
lized. During training (illustrated in Figure [T), multiple clients
collaboratively train various domain-specific LoRA experts
(e.g., for Code, Math, Indian-history, General queries) using
their local data. This process is coordinated by a central server
which employs the FedAvg protocol [2]]. A key aspect of our
framework is the dynamic scheduling of expert training by the
server; the decision to train a particular expert in a given round
is based on factors such as the availability of new relevant data
reported by clients and the time elapsed since an expert’s last
update (staleness).

During inference (detailed in Figure [2), an incoming query
is first processed by a lightweight router. This router selects
the LoRA expert deemed most relevant to the query. The
weights of this selected LoRA module are then merged on-
the-fly with the frozen base LLM. The combined, temporarily
specialized model then generates the response. The system
also incorporates an extended functionality where selection
of a designated WebSearch expert by the router triggers a
retrieval-augmented web search. This allows the system to
incorporate up-to-date external information for knowledge-
intensive queries, with the search results augmenting the input
to the General LoRA expert. This separation of the web
search functionality addresses potential latency and API cost
considerations.

B. Architectural Components

The FedLoRASwitch framework is built upon several key
architectural components:

1) Base Language Model: We employ Qwen2.5-0.5B [16],
a capable 0.5 B-parameter LLM, as the foundational model.
This base model is kept frozen throughout both training and
inference phases, meaning its original weights are not altered.
It is operated with 8-bit quantization (via bitsandbytes in
TGI)..

2) Domain-Specific LoRA Experts: Low-Rank Adaptation
(LoRA) modules serve as lightweight, specialized experts. In
our experimental setup, we developed four such LoRA experts
(rank r = 32), each targeting a specific domain: Code (trained
on CodeAlpaca [[17]), Math (trained on GSM8K [18])), Indian-
history (available on Hugging Face [|19])), and General (trained
on MuskumPillerum dataset [20]). These LoRA modules are
quantized to 4-bit for efficient transfer and storage. Each
module introduces only a few million trainable parameters,
which are applied to specific layers (typically query and value
projection matrices in attention mechanisms) of the base LLM.

3) Expert Selection Router: A lightweight Transformer
model, specifically a fine-tuned albert-base-v1 [5], func-
tions as the expert selection router. Its role is to classify incom-
ing user queries into one of five predefined categories, each
corresponding to a LoRA expert or a specialized processing
path: Code, Math, Indian-history, General, and WebSearch.

Code LoRA

Client 1

Base Model

Math LoRA

[History LoRA]

[General LoRA]

A

J
i

Previous global ¢
Code LoRA i
Weights Y

\

Code LoRA
Updates

Training Orchestration Server
Current Target: Code LoRA

Previous global

Previous global

Code LoRA ==~ '-XRA Weitghts . Code LoRA

Weights .+ ggregation * Weights
Y
\ 4)

. Client 3
Client 2
Code LoRA Math LoRA Code LoRA Math LoRA
odero ah o Code LoRA Code LoRA
Updates Updates

Base Model

[History LoRA] [General LoRA]

Fig. 1.

Base Model

[History LoRA] [General LoRA]

Ilustration of a single federated training round in FedLoRASwitch, coordinated by the Training Orchestration Server. For the current round, the

Code LoRA expert is targeted for training. The server dynamically selects which expert to train based on factors like data availability and the time since the
expert was last updated. Clients with relevant data fine-tune these weights locally and send their resulting Code LoRA updates to the server, where they are

aggregated to produce an improved global Code LoRA expert.

C. Phase 1: Federated Training of Experts

The development of specialized LoRA experts and the
expert selection router is achieved through a federated learning
process, detailed in Algorithm [I] and illustrated in Figure [T}

1) Dynamic Training Orchestration: The central server
coordinates the training process. It dynamically schedules
which LoRA expert (Etqrget) is to be trained in any given
set of federated rounds (R;.:q;). This decision, detailed as
part of Algorithm [1| (lines 3-7), is based on a combination of
factors: primarily the availability of new, relevant data on client
devices (which clients might report in a privacy-preserving
manner, e.g., counts of new samples per expert domain) and
the staleness of each expert (i.e., the time elapsed or number
of rounds since its last update). The server calculates a priority
score for each expert based on these factors and selects the
one with the highest score for the current training cycle.

2) Client-Side LoRA Fine-tuning: For each training round
r € [1, Riotar] for a targeted expert Ejigrger: The server
selects a subset of clients (S;.) to participate. Clients k € S,
participate only if they possess a sufficient amount of relevant

domain data (experimentally set at over 2000 samples for
our setup). Each selected client k receives the current global
weights w. """ of the targeted LoRA expert. Using their
local, labeled dataset Dy, clients fine-tune these weights for
a number of local epochs, resulting in updated local LoRA

target

. E
expert weights w, 7"}

3) Server-Side Aggregation and Distribution: The updated
local LoRA expert weights wi’_‘?f’ (or their deltas) com-
puted by participating clients are transmitted to the server.
Each client sends approximately 25MB of data per round,
which includes the 4-bit LoRA parameters and any neces-
sary communication overhead. The server then abggregates

target

these updates using the FedAvg algorithm [2]: w, /] =
> kes, %wfﬁl’ff, where ny is the number of samples on

client K and N = >, _ s, k- The resulting updated global
LoRA expert model wffr"f‘"et is then distributed back to the
clients for the next round of training or for use in inference.
In our experiments, training was conducted for 100 rounds
per expert with K = 3 clients, taking approximately 2h per
expert. The aggregated LoRA expert updates handled by the

Input Query

Router
Expert Selection Module

: : Indian | i Web
Math Code History General Search
v v v ' v
Math LoRA Code LoRA Indian History General LoRA Web Search
LoRA Augmentation
v v) 2

Qwen2.5-0.5B (Frozen)

Generated
Response

Fig. 2. FedLoRASwitch inference pipeline. The solid red line illustrates an example flow where the router selects the Web Search option, leading to query

augmentation before processing by the General LoRA expert.

server amounted to approximately 25 MDB per round per expert,
totaling about 2.5 GB of data processed by the server for the
complete training of one expert.

4) Router Training: The expert selection router (M, outer)
is trained centrally after the initial set of LoRA experts has
been developed (this can also be done periodically). This
supervised training process uses a labeled dataset D, yter =
{(¢i,y:)}, where ¢; are sample queries and y; are their
corresponding true expert categories (Code, Math, Indian-
history, General, or WebSearch). For our experiments, Doy ter
was constructed from a small, unused portion of the other
domain-specific training datasets, augmented with synthetic
data generated by a GPT-3 series model. Specifically, we used
400 samples from each of the four primary expert categories.
We supplemented this with 639 synthetic data samples: 400
focused on WebSearch queries, 98 for General, 81 for Math,
and approximately 30 each for Code and Indian-history.
In practical deployments, D, .yt Would ideally be derived
from real user interactions or client-provided examples. The
router M,oyter 18 trained by minimizing a cross-entropy loss
function, with early stopping to prevent overfitting.

D. Phase 2: Dynamic Inference with Expert Hotswapping

Once the LoRA experts and the router are trained, the
system is ready for inference, as depicted in Figure 2] and
outlined in Algorithm [2] The inference pipeline is designed
for dynamic specialization per query.

1) Query Processing and Expert Selection: When an input
query q is received, it is first processed by the expert selection
router M.,y The router classifies the query and outputs
confidence scores for each of the five predefined expert cate-
gories. The expert category Cj.; with the highest confidence

score is chosen, and its corresponding LoRA expert Es.; (or
the WebSearch processing path) is selected.

2) WebSearch-Augmented Response Generation: If the se-
lected category Cle; is WebSearch, a dedicated web search
function is triggered using query g. This function retrieves
relevant, up-to-date information I, from external sources.
The original query ¢ is then augmented with I, to form
q q + Iep. This augmented query ¢’ is subsequently
processed by the General LoRA expert (Ese; = Egeneral)
to generate a contextually enriched response.

3) On-the-fly LoRA Adaptation and Response Generation:
For queries routed to a domain-specific LoRA expert Fg;
(e.g., Code, Math, Indian-history, or General directly, or
General after web search augmentation):

1) LoRA Merging: The weights ws< of the selected
LoRA expert are retrieved from storage (payload ap-
prox. 25 MB each, due to 4-bit quantization). These are
merged on-the-fly with the weights of the frozen base
LLM Mjp,se, creating a temporarily specialized model
Madapted = Mpase + whset,

Generation: M,qqptcq processes the input query (g or
q") and generates the response A.

Reset: After response generation, the LoRA weights
wPset are unmerged from Mp,qe, restoring it to its
original frozen state, ready for the next query.

This hotswapping mechanism allows the system to dynam-
ically adapt to the specific nature of each query using a
shared base model and lightweight, swappable expert modules,
optimizing memory usage and computational resources.

2)

3)

IV. EXPERIMENTAL EVALUATION

This section details the experimental setup used to evalu-
ate FedLoRASwitch and presents the results obtained across

Algorithm 1 FedLoRASwitch: Federated Training Phase

Algorithm 2 FedLoRASwitch: Dynamic Inference Phase

1:

2:
3:
4:
5:

Server Initializes: Global LoRA experts E; for j =
1,...,N; Router M, ,yier (can be pre-trained or trained
after initial expert versions); Staleness counter T; = 0 for
each expert F;.

for each training cycle c =1, ..., Ciotq do

{Server Selects Target Expert Eyqrget
for each expert F; do
Server requests/receives data availability metric DA,
from clients (e.g., total new samples for £}).
Calculate priority score P; = ao- DA; + - Tj.
end for
Etarger = argmax B P;.
Reset staleness for selected expert: Tiqpger = 0.
Increment staleness for other experts: 7 = T 4 1 for
j # target.
for each round r = 1,..., Riotar for Figrger do
Server selects subset of clients .S,..
for each client k € S, in parallel do
Client & downloads w;**"*** (current global LoORA
weights for E;qpget).
Client k fine-tunes wr """ on local data Dy, to
get wLyy".
Cgent k sends er_;“l’Z“ (or Awy, = wﬁ“{f' —
wy "9 to server.
end for
Server aggregates updates: wffl”“ =
FedAvg({w, (7§ Jres,)-
Server updates global model for FEigrger with
wﬁa{get
end for
: end for
: Router Training (Centralized, Post-Expert Training /
Periodic):
: Server collects/creates labeled dataset D,outer =

{(Qiayi)}'

Train M, oyter 0N Dyoyter using cross-entropy loss and
early stopping.

various performance metrics and efficiency benchmarks.

A. Experimental Setup

1) Datasets: We utilized several datasets to train and eval-

uate the domain-specific LoRA experts:

o Code Generation (Code expert):

CodeAlpaca-20k
dataset (using approximately half, 10k samples) [17].
Performance was assessed qualitatively using a Win-
Lose-Tie (WLT) methodology.

Indian History Q&A (Indian-history expert):
BashitAli/Indian_history dataset on Hugging Face [|19].
Performance was also assessed qualitatively via WLT.
Mathematical Reasoning (Math expert): GSM8K
dataset [|18]]. Performance was measured using the Exact
Match (EM) metric.

15:
16:
17:

: Input: User query gq.
: Server Components: Trained LoRA experts F1, ...

) EN;
Router M, oyter; Base LLM Mpy,se.

: Router M,pyter processes q: Csep = argmaxCiP(Ci|q).
: Let E4e; be the expert corresponding to Cl,;.
: if Oy is WebSearch then

Lyep = PerformWebSearch(q).

q = AugmentQuery(q, I yep)-

Esei = Egeneral-

Query for generation becomes ¢’.
else

Query for generation remains q.

. end if
: Retrieve LoRA weights wP=et for the selected expert Ege.

. Mudaptea = Merge(Mpgse, wPset). {On-the-fly hotswap}

Generate response A = Myqqpieqa(query for generation).
Unmerge(Mpqse, wP=<t). {Reset base model}
Output: Response A.

The General expert was trained on the MuskumPillerum
dataset [20].

2) Evaluation Metrics: Our evaluation employed a range

of metrics tailored to different aspects of the system:

o Exact Match (EM): Used for the GSM8K dataset [18|]

to evaluate mathematical reasoning, where only the final
numerical answer’s correctness is considered.
Win-Lose-Tie (WLT): A qualitative comparison frame-
work used for code generation and Indian-history queries.
Five SOTA LLMs served as judges, independently as-
sessing whether FedLoRASwitch or the base model
provided a more correct or contextually appropriate
answer, or if their performance was comparable. For
this qualitative assessment, we focused on code gen-
eration (using CodeAlpaca) and Indian history Q&A.
These diverse topics were selected to demonstrate Fed-
LoRASwitch’s ability to enhance answer quality for both
common, structured query types (code) and more spe-
cialized, knowledge-intensive domains (Indian history).
The complete lists of questions used are provided in
Appendix B of our supplementary material, available at
https://doi.org/10.5281/zenodo.15551664,

Router Accuracy: Measured on a held-out set of one
hundred samples per expert category. These samples
were not used during router training. Accuracy is the
percentage of queries correctly routed to their intended
expert category.

Inference Latency: The time taken to process a query
and generate a response.

VRAM Usage: Memory footprint of the models during
operation.

Communication Cost: The amount of data transmitted
during federated training rounds.

https://doi.org/10.5281/zenodo.15551664

For the WLT evaluation on Indian-history, the targeted set
comprised six questions.

3) FedLoRASwitch Configuration: The base LLM for our
FL experiments was Qwen2.5-0.5B-Instruct [16] with 8 bit
quantization. While this specific model was used, the Fed-
LoRASwitch framework is designed to be compatible with
various base models and sizes. The LoRA experts were
configured with a rank » = 32 and quantized to 4-bits
for communication and storage. For response generation, all
LoRAs had an output token limit of 256, except for the
Code LoRA, which was set to 512 tokens to accommodate
longer code snippets. Specific pre-prompts were used for each
LoRA expert to prime them for their respective domains.
While most were straightforward to guide the Al to the
correct focus area, the pre-prompt for the Code expert was
intentionally more detailed to illustrate the use of advanced
prompting techniques. The full list of pre-prompts is available
in Appendix A of our supplementary material, accessible
online at https://doi.org/10.5281/zenodo.15551664.

B. Performance Evaluation of Specialized Experts

This subsection presents the core performance results of
FedLoRASwitch, demonstrating the effectiveness of using
specialized LoRA experts.

1) Mathematical Reasoning (GSMS8K): The GSMSK
dataset served as the primary benchmark for quantitatively
evaluating specialized task performance. For a clear interpre-
tation of the results in Table |} it is essential to note the
consistent evaluation conditions: all listed models, including
our foundational 0.5B Qwen2.5-Instruct model, were oper-
ated with 8-bit quantization. This was applied in real-time
during inference using the bitsandbytes library within the
Text Generation Inference (TGI) framework. This practical,
efficiency-oriented setup impacts performance on precision-
sensitive tasks like GSM8K, generally resulting in lower scores
than those achieved with higher-precision (e.g., FP16/BF16)
evaluations common in standard model leaderboards.

Operating under these 8-bit quantized conditions, our 0.5 B
base model (detailed as "Qwen 2.5 instruct (Base Model)”
in Table [[) achieved an exact match score of 1.97 %. FedLo-
RASwitch, when activating its specialized Math LoRA expert
in conjunction with this same 8-bit quantized base, demon-
strated a striking improvement, reaching 16.22 % exact match.
This constitutes a more than 8-fold increase in performance
over its non-specialized counterpart (see Table [[), underscor-
ing the substantial advantage of targeted LoRA expertise
for complex reasoning, even within a quantized framework.
Notably, with this specialization, our 0.5 B parameter system
outperforms other larger models in this comparison, such as
the Qwen2.5-Instruct 1.5B and Smolm 1.7B, when all are
subjected to the same 8-bit real-time quantization constraints.
This highlights the power of focused adaptation to significantly
enhance capability within resource-constrained environments.

2) Coding Task Performance (WLT): In the qualitative eval-
uation of coding tasks using the WLT methodology (Table [[I),
FedLoRASwitch, equipped with its specialized Code expert

TABLE I
GSM8K PERFORMANCE UNDER REAL-TIME 8-BIT QUANTIZATION.
MODEL SIZE IN BILLIONS (B) OF PARAMETERS

Name Size (B) GSMSK (%)
Qwen 2.5 instruct 7 24.56
Qwen 2.5 instruct 3 17.36
Qwen 2.5 instruct 1.5 4.09
Qwen 2.5 instruct (Base Model) 0.5 1.97
Smolm [21] 1.7 2.96
FedLoRASwitch (0.5B base) 0.5 16.22

LoRA, demonstrated superior performance. Across the Al
evaluators, it secured more “wins” (14 total points) compared
to the base model (5 total points). The router successfully
directed all six coding questions to the Code expert, which
was crucial for this enhanced performance. Evaluators noted
that FedLoRASwitch often provided more complete, runnable
programs or utilized efficient libraries.

TABLE 11
COMPARATIVE EVALUATION OF BASE MODEL VS. FEDLORASWITCH
(W-L-T FOR CODING QUESTIONS - 6 QUESTIONS)

Evaluating Al Base Wins Tie FedLoRASwitch Wins

Grok 3 [22] 2 2 2
Claude 3.7 sonnet [23] 0 1 5
ChatGPT 03 [24] 1 3 2
DeepSeek 3 [25] 0 3 3
Gemini 2.5 Pro [26] 2 2 2
Total Points 5 10 14

3) Indian History Query Performance (WLT): For Indian-
history questions (Table [), FedLoRASwitch again won
the majority of “battles” according to all evaluating Als,
achieving 19 total points against the base model’s 3 points.
This reinforces the benefit of an expert LoRA when a router
trained on relevant data selects the appropriate expert. In this
test, the router correctly identified the Indian History expert
for five out of six questions. For one ambiguous question
(“What are the four separate collections included in the Mantra
category, and what is their significance?”), the router selected
the General expert, as this category received the highest
confidence score. FedLoRASwitch’s answers were often noted
as better structured.

TABLE III
COMPARATIVE EVALUATION OF BASE MODEL VS. FEDLORASWITCH
(W-L-T FOR INDIAN-HISTORY QUESTIONS - 6 QUESTIONS)

Evaluating Al Base Wins Tie FedLoRASwitch Wins

DeepSeek 3 [25] 0 2 4
Grok 3 [22] 0 1 5
ChatGPT (03) [24] 1 2 3
Claude 3.7 sonnet [23] 1 2 3
Gemini 2.5 Pro [26] 1 1 4
Total Points 3 8 19

https://doi.org/10.5281/zenodo.15551664

C. Router Performance

The effectiveness of FedLoRASwitch hinges on the router’s
ability to accurately direct queries to the appropriate expert.
Table [TV] summarizes the router’s accuracy on a held-out test
set.

TABLE IV
ROUTER ACCURACY BY TARGET EXPERT (ON 100 HELD-OUT SAMPLES
PER CATEGORY)

Target Expert Accuracy (%)

Indian History 94
General 95
Math 100
Code 98
Websearch 97

The router demonstrated high accuracy across all categories,
achieving perfect routing for Math queries. The average pro-
cessing time for expert selection was approximately 35.6 ms.
Misclassifications typically occurred with ambiguous queries,
which were often routed to the General expert, or when
broadly applicable terms led to selection of the Websearch
category. These instances suggest areas for future refinement
in router training data or logic.

D. System Efficiency Analysis

Beyond task performance, we evaluated FedLoRASwitch on
key efficiency metrics:

o Latency: Including routing and LoRA merging, FedLo-
RASwitch averaged approximately 1.5s per query for
100 output tokens. This was slightly slower than the
base model’s inference alone (approx. 80ms overhead
for routing and merging). For the 6 Indian History WLT
questions, the base model took 79.9s, while FedLo-
RASwitch took 86.4s (averaging 14.4s per question for
FedLoRASwitch). The higher per-question latency in this
specific test is likely due to the generation of longer and
more detailed responses than the 100-token benchmark.

e VRAM Usage: The system utilized approximately
14.77 GB of VRAM, compared to 14.51 GB for the base
model alone. This minor increase is a significant ad-
vantage for supporting multiple dynamic specializations
compared to hosting multiple full models. Hotswapping
LoRAs offers memory savings over restarting models
with different configurations.

o Communication Cost: Each client transmitted approx-
imately 25 MB of 4-bit LoRA updates per round. This
represents an approximate 40x reduction compared to
sending full 16-bit parameters for the 0.5 B base model
(estimated at 1000 MB or 1 GB per client per round). Fur-
ther reductions are possible via compression or selective
updates.

The inclusion of web search also successfully augmented
answers for factual, out-of-distribution queries, showcasing the
system’s extensibility.

V. DISCUSSION

Strengths: FedLoRASwitch demonstrates effective special-
ization by dedicating experts to domains while leveraging a
shared base model. The approach inherently supports privacy
and decentralization as raw data remains local. It achieves
significant efficiency gains in communication (uplink from
clients) and memory compared to full-scale fine-tuning. While
inference latency is slightly higher than the base model alone
due to routing and merging, the performance gains on special-
ized tasks can be substantial. The modular design promotes
adaptability, allowing easy addition or updating of experts,
and provides interpretability regarding which expert is used.
This makes it feasible to run unique experts directed towards
specific fields with small models on hardware-constrained
machines.

Scalability: Adding more clients seems feasible due to

LoRA’s training efficiency, potentially requiring stratified sam-
pling. Adding more experts is architecturally possible, with
minimal impact on router inference time and manageable
memory overhead, as serving engines like TGI support loading
multiple active LoRAs simultaneously (e.g., TGI supports at
least 32, and Lorax up to 100 [27], [28]]).
Limitations and Future Work: While FedLoRASwitch
shows promise, key limitations guide future work. Perfor-
mance is constrained by the 0.5 B base model, as larger mod-
els amplify FL challenges. Router accuracy is crucial, since
misclassifications lead to suboptimal responses; future work
includes adaptive expert creation and hierarchical routing.
Scaling with the current FedAvg necessitates advanced ag-
gregation strategies to address heterogeneity and convergence
[29]. While FL with LoRA offers baseline privacy, LoRA
updates lack formal differential privacy, making integration
of guarantees like DP or secure aggregation vital [30]. Other
promising directions include exploring fine-grained experts,
user personalization, RAG integration, and merging multiple
LoRAs simultaneously (e.g., combining domain and stylistic
experts). A slight inference overhead from routing/merging is a
consideration for high-throughput use, though modern serving
engines offer mitigation.

VI. CONCLUSION

In response to the pressing challenges of adapting Large
Language Models in distributed, privacy-sensitive environ-
ments, we introduce FedLoRASwitch. This novel framework
uniquely synergizes federated learning, the efficiency of Low-
Rank Adaptation, and the targeted intelligence of a Mixture-of-
Experts approach, all orchestrated via a lightweight dynamic
router. By enabling the collaborative training of multiple spe-
cialized LoRA experts on decentralized client data—without
sharing raw information—and dynamically hotswapping the
most relevant expert into a frozen base model at inference
time, FedLoRASwitch delivers substantial performance gains.
Our experiments demonstrate a significant uplift in task-
specific accuracy, such as an over 8-fold improvement on the
GSMS8K benchmark (from 1.97 % to 16.22 % exact match),

alongside an approximate 40x reduction in communication
overhead per client per round.

FedLoRASwitch is, to our knowledge, the first system to
holistically integrate these principles, offering a pragmatic and
scalable solution for creating personalized, high-performing,
and resource-efficient LLMs. It underscores the power of
modularity and conditional computation, paving the way for
more accessible and adaptable Al systems across diverse
domains and resource constraints. This work not only validates
a potent combination of existing techniques but also offers
a tangible blueprint for the future of decentralized, special-
ized, and privacy-preserving intelligent applications, enabling
organizations to harness the power of LLMs securely and
efficiently.

[3]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

REFERENCES

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
in Advances in Neural Information Processing Systems, vol. 33, 2020,
arXiv:2005.14165. [Online]. Available: https://arxiv.org/abs/2005.14165
H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics (AISTATS), ser.
PMLR, vol. 54, 2017, pp. 1273-1282, arXiv:1602.05629. [Online].
Auvailable: https://arxiv.org/abs/1602.05629

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “LoRA: Low-rank adaptation of large language models,”
in International Conference on Learning Representations (ICLR), Apr.
2022, poster.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.
[Online]. Available: https://arxiv.org/abs/1701.06538

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and
R. Soricut, “ALBERT: A lite BERT for self-supervised learning of
language representations,” in International Conference on Learning
Representations (ICLR), 2020, arXiv:1909.11942. [Online]. Available:
https://arxiv.org/abs/1909.11942

Hugging Face, “Text generation inference,” https://huggingface.co/docs/
text- generation-inference/en/index, accessed: May 11, 2025.

D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-
Marques, Y. Gao, L. Sani, K. H. Li, T. Parcollet, P. P. B.
de Gusmdo, and N. D. Lane, “Flower: A friendly federated learning
research framework,” arXiv preprint arXiv:2007.14390, 2020. [Online].
Available: https://arxiv.org/abs/2007.14390

S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konecny,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” in
International Conference on Learning Representations (ICLR), 2021,
arXiv:2003.00295. [Online]. Available: https://arxiv.org/abs/2003.00295
F. M. Awaysheh, M. Alazab, S. Garg, D. Niyato, and C. Verikoukis,
“Big data resource management & networks: Taxonomy, survey, and
future directions,” IEEE Communications Surveys & Tutorials, vol. 23,
no. 4, pp. 2098-2130, 2021.

J. Bai, D. Chen, B. Qian, L. Yao, and Y. Li, “Federated fine-tuning
of large language models under heterogeneous tasks and client
resources,” arXiv preprint arXiv:2402.11505, 2024. [Online]. Available:
https://arxiv.org/abs/2402.11505

P. Guo, S. Zeng, Y. Wang, H. Fan, F. Wang, and L. Qu,
“Selective aggregation for low-rank adaptation in federated learning,”
arXiv preprint arXiv:2410.01463, 2024. [Online]. Available: https:
/larxiv.org/abs/2410.01463

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

Z. Zhang, J. Zhang, J. Huang, L. Qu, H. Zhang, Q. Wang, X. Zhou,
and Z. Xu, “FewFedPIT: Towards privacy-preserving and few-shot
federated instruction tuning,” arXiv preprint arXiv:2403.06131, 2024.
[Online]. Available: https://arxiv.org/abs/2403.06131

W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” Journal of
Machine Learning Research, vol. 23, no. 120, pp. 1-39, 2022.

vLLM Project, “vLLM: A high-throughput and memory-efficient infer-
ence and serving engine for LLMs,” https://docs.vllm.ai/en/latest/index.
html, accessed: May 11, 2025.

Predibase, “LoRAX: Multi-LoRA inference server that scales to 1000s
of fine-tuned LLMs,” GitHub Repository. jhttps://github.com/predibase/
lorax, 2023.

Q. Team, “Qwen2.5: A party of foundation models,” September 2024.
[Online]. Available: https://qwenlm.github.io/blog/qwen?2.5/

S. Sahil, “CodeAlpaca-20k: An instruction-following dataset for code
generation,” https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k,
2023.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser,
M. Plappert, J. Tworek, J. Hilton, R. Nakano, C. Hesse, and
J. Schulman, “Training verifiers to solve math word problems,”
arXiv preprint arXiv:2110.14168, 2021, dataset available at https:
//huggingface.co/datasets/openai/gsm8k. [Online]. Available: https:/
arxiv.org/abs/2110.14168

BashitAli, “Indian-history,” Hugging Face Datasets. https://huggingface.
co/datasets/BashitAli/Indian_historyzz, accessed: May 11, 2025.

A. G. Ravi, “General-Knowledge: A dataset of general facts and
reasoning questions,” https://huggingface.co/datasets/MuskumPillerum/
General-Knowledge, 2023.

L. B. Allal, A. Lozhkov, E. Bakouch, L. von Werra, and T. Wolf,
“Smollm - blazingly fast and remarkably powerful,” 2024. [Online].
Available: https://huggingface.co/blog/smollm

xAl, “Announcing Grok-3: The Next Generation of Al for Everyone,”
https://x.ai/grok, 2025, accessed: [Current Date, e.g., 30 May 2025].
Anthropic, “Claude 3.7 Sonnet,” https://www.anthropic.com/news/
claude-3-7-sonnet, 2025, accessed: 30 May 2025.

OpenAl, “Introducing OpenAl 03 and o4-mini,” https://openai.com/
index/introducing-03-and-o04-mini/, 2025, accessed: 30 May 2025.
DeepSeek-Al, A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu,
C. Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai, D. Guo, D. Yang,
D. Chen, D. Ji, E. Li, F. Lin, F. Dai, F. Luo, G. Hao, G. Chen, G. Li,
B. Han, H. Xu, H. Wang, H. Zhang, H. Ding, H. Xin, H. Gao, H. Li,
H. Qu, J. L. Cai, J. Liang, J. Guo, J. Ni, J. Li, J. Wang, T. Wang,
T. Pei, T. Sun, W. L. Xiao, W. Zeng, W. Zhao, W. An, W. Liu,
W. Liang, W. Gao, W. Yu, W. Zhang, X. Q. Li, X. Jin, X. Wang,
X. Yu, X. Chen, X. Sun, X. Li, Y. Yu, Y. Ma, Y. Hou, Y. Deng,
Y. He, Y. Liu, Y. Wang, Z. S. Wei, Z. Li, Z. Ma, Z. Cai, Z. Peng, and
Z. Huang, “Deepseek-v3 technical report,” 2024. [Online]. Available:
https://arxiv.org/abs/2412.19437

Google DeepMind and Google Cloud, “Gemini 2.5 Pro: Our most
advanced reasoning Gemini model,” https://gemini.google.com, 2025,
accessed: 30 May 2025.

D. Thomas, D. Maniloff, and D. Holtz, “TGI Multi-
LoRA: Deploy once, serve 30 models,” Hugging Face Blog,
Jul. 2024, accessed: May 11, 2025. [Online]. Available:

https://huggingface.co/blog/multi-lora-serving

T. Addair, G. Angus, M. Saleh, and W. Abid, “LoRAX: Open source
LoRA serving framework for LLMs,” Predibase Blog, Nov. 2023,
accessed: May 11, 2025. [Online]. Available: https://predibase.com/blog/
lorax-the-open-source-framework-for-serving- 100s-of-fine- tuned-1lms-in
L. Nascimento, F. M. Awaysheh, and S. Alawadi, “Data skew in feder-
ated learning: An experimental evaluation on aggregation algorithms,” in
2024 2nd International Conference on Federated Learning Technologies
and Applications (FLTA), 2024, pp. 162-170.

M. Tahir, T. Mawla, F. Awaysheh, S. Alawadi, M. Gupta, and M. In-
tizar Ali, “Securefedprom: A zero-trust federated learning approach
with multi-criteria client selection,” IEEE Journal on Selected Areas
in Communications, vol. 43, no. 6, pp. 2025-2041, 2025.

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1909.11942
https://huggingface.co/docs/text-generation-inference/en/index
https://huggingface.co/docs/text-generation-inference/en/index
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2003.00295
https://arxiv.org/abs/2402.11505
https://arxiv.org/abs/2410.01463
https://arxiv.org/abs/2410.01463
https://arxiv.org/abs/2403.06131
https://docs.vllm.ai/en/latest/index.html
https://docs.vllm.ai/en/latest/index.html
https://github.com/predibase/lorax
https://github.com/predibase/lorax
https://qwenlm.github.io/blog/qwen2.5/
https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/openai/gsm8k
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://huggingface.co/datasets/BashitAli/Indian_historyzz
https://huggingface.co/datasets/BashitAli/Indian_historyzz
https://huggingface.co/datasets/MuskumPillerum/General-Knowledge
https://huggingface.co/datasets/MuskumPillerum/General-Knowledge
https://huggingface.co/blog/smollm
https://x.ai/grok
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://arxiv.org/abs/2412.19437
https://gemini.google.com
https://huggingface.co/blog/multi-lora-serving
https://predibase.com/blog/lorax-the-open-source-framework-for-serving-100s-of-fine-tuned-llms-in
https://predibase.com/blog/lorax-the-open-source-framework-for-serving-100s-of-fine-tuned-llms-in

	Introduction
	Related Work
	Federated Learning for LLM Adaptation
	Mixture-of-Experts (MoE) and Routing
	Dynamic Model Composition and Inference Efficiency

	Methodology
	System Overview
	Architectural Components
	Base Language Model
	Domain-Specific LoRA Experts
	Expert Selection Router

	Phase 1: Federated Training of Experts
	Dynamic Training Orchestration
	Client-Side LoRA Fine-tuning
	Server-Side Aggregation and Distribution
	Router Training

	Phase 2: Dynamic Inference with Expert Hotswapping
	Query Processing and Expert Selection
	WebSearch-Augmented Response Generation
	On-the-fly LoRA Adaptation and Response Generation

	Experimental Evaluation
	Experimental Setup
	Datasets
	Evaluation Metrics
	FedLoRASwitch Configuration

	Performance Evaluation of Specialized Experts
	Mathematical Reasoning (GSM8K)
	Coding Task Performance (WLT)
	Indian History Query Performance (WLT)

	Router Performance
	System Efficiency Analysis

	Discussion
	Conclusion
	References

