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Abstract. The emergence of Connected, Cooperative, and Automated
Mobility (CCAM) systems has significantly transformed the safety as-
sessment landscape. Because they integrate automated vehicle functions
beyond those managed by a human driver, new methods are required
to evaluate their safety. Approaches that compile evidence from multiple
test environments have been proposed for type-approval and similar eval-
uations, emphasizing scenario coverage within the system’s Operational
Design Domain (ODD). However, aligning diverse test environment re-
quirements with distinct testing capabilities remains challenging.
This paper presents a method for evaluating the suitability of test case
allocation to various test environments by drawing on and extending an
existing ODD formalization with key testing attributes. The resulting
construct integrates ODD parameters and additional test attributes to
capture a given test environment’s relevant capabilities. This approach
supports automatic suitability evaluation and is demonstrated through a
case study on an automated reversing truck function. The system’s imple-
mentation fidelity is tied to ODD parameters, facilitating automated test
case allocation based on each environment’s capacity for object-detection
sensor assessment.

Keywords: Safety assurance · Operational design domain · Automated
systems · Test case allocation.

1 Introduction

The safety assurance of Connected, Cooperative, and Automated Mobility (CCAM)
systems is a critical challenge for their widespread adoption. As higher levels of
automation are pursued, traditional validation through real-world testing be-
comes impractical due to the immense number of scenarios required. In the
automotive field, this is commonly called the ”billion-miles” challenge [12] but
extends to any domain with automation ambitions. An appropriate mix of phys-
ical and virtual testing has emerged as a more feasible solution in such contexts.
A blended physical and virtual strategy is, therefore, the practical alternative.
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Despite these efforts, a significant gap remains between high-level schematic
descriptions and practical guidance in concrete methods. The lack of a practical
validation hampers the safe and large-scale deployment of CCAM technologies,
with many still under development or recently introduced.

Today, scenario-based testing for automated driving is growing in importance
and prevalence. However, it is still a challenge to determine if a test suite suffi-
ciently covers the ODD [25]. Part of solving this is to develop systematic methods
to align scenario requirements with distinct test environment capabilities. Inte-
grating ODD parameters with test attributes can address this gap by enabling
automated test case allocation to appropriate test environments. A subcategory
of this topic is an external assessment of the appropriateness of such allocations,
as required by functional safety standards [7]. This assessment is similarly com-
plex for the reasons that hamper the initial allocation, particularly scope, and
link to intended context and test environment appropriateness [17].
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Fig. 1: Schematic overview of a scenario-based safety-assurance process highlight-
ing the allocation step.

Building on Road vehicles - Test scenarios for automated driving systems ISO
3450X [8–10] and an ODD formalization [18], this paper proposes an automated
test case allocation process centered on extending an ODD object with test
environment attributes. The ODD parameters alone do not fully reflect a test
environment’s capacity to address hazards, complexity, and fidelity. Accordingly,
we extend the ODD concept with additional test environment attributes, form-
ing a unified structure that better aligns test scenario requirements with test
environment capabilities.

The approach confines test requirements to specified capabilities, allowing for the
evaluation and automated allocation of test cases based on each environment’s
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capacity to provide relevant safety evidence. Cost and scheduling considerations,
which lie outside the scope of functional safety, are excluded to maintain focus
on safety-specific concerns.

This study builds on the ISO 3450x scenario framework and a recent formaliza-
tion of operational design domains to propose an automated allocation method
that augments the ODD with test-environment descriptors [16]. Confining test
requirements to declared capabilities enables objective allocation of scenarios to
those environments that can produce credible safety evidence; this claim is illus-
trated with an automatic reversing-truck case study supported by an open-source
implementation. The remainder of this paper is organized as follows. Section 2
reviews related work on scenario-based safety assurance. Section 3 details the
proposed methodology for test allocation based on a formalized ODD. Section 4
presents the reversing-truck case study, and Section 5 summarises the principal
findings and outlines avenues for future research.

2 Background and Related Work

Automated driving functions exemplify the broad challenges associated with
CCAM safety assurance. Growing complexity and variant diversity lead to ex-
ponentially increasing testing demands that exceed the capacity of conventional
requirement-based approaches. Many initiatives adopt a scenario-based perspec-
tive to address the increased complexity, at least for top-level testing [8–10].
This practice can improve coverage of diverse and potentially unforeseen cor-
ner cases while enabling reuse across different functionalities. However, it also
creates challenges in ensuring completeness. Scenario-based tests often require
significant computational and organizational resources for test design, execution,
and assessment across heterogeneous environments, and the principal challenge
lies in implementing these methods at scale [15]. The approach offers increased
flexibility in adapting to evolving test requirements by decoupling scenarios from
complex, difficult-to-maintain test code. Its practical relevance is underscored by
UNECE Regulation No. 157, which governs automated lane-keeping systems and
highlights the importance of scenario-based testing in ensuring robust system
performance [24]. Scenario-based safety assurance approaches can be seen as an
extension of the dynamic testing described in Software and systems engineer-
ing — Software testing ISO 29119 [11], which more comprehensively addresses
processes, documentation, techniques, and test management in software testing,
a wealth of information to be drawn upon in areas where ISO 3450x lacks de-
tails. Additionally, the structured use of high-dimensional ODD parameter data
for automated testing in automated driving supports the data-driven intelligent
transportation systems approach, which leverages diverse, large-scale data to
enhance safety, efficiency, and decision-making [26].

Fig.1 schematically illustrates four main stages of a scenario-based safety assur-
ance process focusing on putting the test case allocation method in context, in
line with approaches such as [4, 20, 23]. The first stage, Scenario Identification
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(Fig.1 Stage 1), defines the ODD and the system’s expected behavior. Relevant
scenarios are sourced from a database and aligned with test objectives. The
second stage, Concrete Test Design (Fig.1 Stage 2), involves translating these
high-level scenarios into detailed test cases and specifying the necessary test en-
vironment and data requirements, following guidance from ISO 29119 [11]. A
test specification encompasses all test design elements, including the test cases,
procedures, and requisite environments.
The third stage, the Test Case Allocation Process, addresses the growing need
to manage large, parameterized test suites and integrate evidence from multiple
test environments. Test environments are generally categorized as field testing,
test track testing, XiL testing, or fully virtual testing, each having different at-
tributes.

The allocation aims for effectiveness—ensuring that tests produce credible safety
evidence—and efficiency—matching scenarios to environments suited to the re-
quired capabilities. Readiness reports (as described in ISO 29119) record envi-
ronment status, data availability, resource planning, scheduling, risk assessments,
and operational constraints. As aims for a method that focuses on safety and
needs to be agnostic to the technology up to point in interface with different
ODD parameters, in contrast to the similar methods proposed by Striemle et
al. [19].
The final stage, Test Execution (Fig.1 Stage 4), proceeds once test cases have
been allocated to specific environments. It involves verifying the environment and
data are ready, executing test cases, and reporting the results. As exemplified
in Section 4, environments should maintain validated parameter ranges, repeat-
ing tests that exceed or approach these boundaries in more reliable settings to
ensure credible outcomes. Machine-readable scenarios and ODD specifications
reduce errors in preparation and execution by confirming that collected data
meets the requirements for evaluation and coverage.

3 Methodology for Test case Allocation based on a Formalized
ODD (METAFODD).

In the context of the construction of a test case allocation methodology, we
leverage an ODD taxonomy construct consistent with ISO 34503 [10], as well
as the formalizing ODDs by the use of the Pkl [1] language, as proposed by
Skoglund et al. [18]. From that work, we have a hierarchical taxonomy ODD
definition, an inclusive ODD, where parameters must be explicitly specified.
Our work of refining test attributes into a minimal essential set for the initial
allocation process is detailed in [5], emphasizing the key factors required to
achieve the intended evaluation objectives. Test environment attributes: These
include several aspects related to the capacity of the testing system:

– Safety Hazard Mitigation Capability: The ability to minimize potential haz-
ards, which could pose risks to participants, including safety drivers and
experiment observers, commonly associated with track testing.
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– Test Complexity Capability: The degree of complexity involved in testing,
including the facility’s ability to accommodate diverse test elements, orches-
tration, and ODD conditions.

– Test Environment Fidelity Capability: The accuracy with which test models
replicate real-world conditions, including vehicle and road user behavior,
relevant to the test coverage item, i.e., what you are testing.

– System Under Test (SUT) Fidelity Capability: A metric that assesses the
abstraction between a model and its intended production implementation,
considering the limitations of virtual environments or test harnesses relevant
to the test coverage item.

The ODD template is extended with four additional test environment attributes.
These attributes must be specified both in the test case definition, which repre-
sents the requirements and in the test environment capabilities, which represent
the provider. Both sides use the same extended template to ensure comparability
for validation. Each of the four test attributes is subdivided into low, medium,
and high levels, reflecting incremental capability, where higher levels include the
properties of the lower levels. In PKL, this extension can be represented as an
addition to the ODD, as illustrated in Fig. 2. Low generally indicates minimal
emphasis or significant abstraction, medium corresponds to partial coverage or
moderate complexity, and high denotes thorough hazard management or near-
complete fidelity.

In a typical virtual environment, safety hazard mitigation and overall through-
put are often high because there is no kinetic energy, and multiple tests can run
in parallel. However, environment fidelity and SUT fidelity are usually lower ow-
ing to abstracted models. In typical XiL setups safety mitigation remains high,
throughput is medium, and test complexity is moderate, although environment
fidelity typically remains low and SUT fidelity is high. Proving ground tests
usually provide a high environment and SUT fidelity because they involve real
vehicles and conditions. However, safety hazard mitigation and test through-
put remain low, and the practical challenges of physical testing constrain test
complexity. Limited safety hazard mitigation capabilities indicate that certain
high-risk tests may be infeasible and should not be conducted. This classification
scheme is acknowledged as a preliminary. With the prospect of more quantitative
metrics [3] there is an opportunity to refine these categories in future research.
Nonetheless, even this coarse extension to the ODD has proved beneficial in prac-
tice, verifying the soundness of pre-existing (initial) allocations scenario coverage
within the ODD.

Good maintainability is achieved as the Pkl templates enable reuse by importa-
tion. An example is in Fig.2 where one large module is split into multiple smaller
ones, templates can be repeatedly turned into concrete configurations by filling
in the blanks and, when necessary, overriding defaults. One can generate static
configurations in one of many standard formats to configure testing tools from
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1 #ModuleInfo { minPklVersion = "0.25.1" }

2 module ODD.ODD_template.pkl

3

4 import "dyn_template.pkl"

5 import "env_sun_ext_template.pkl"

6 import "scen_template.pkl"

7

8 open class odd {

9 scenery: scen_template.scenery

10 environment: env_sun_ext_template.environment

11 dynamic: dyn_template.dynamic_elements

12 }

13

14 class ext_odd extends odd {

15 # 1 Low, 2 Medium , 3 High

16 Safety_Hazard_Mitigation: Int (isBetween(1,3))

17 Test_Complexity: Int (isBetween(1,3))

18 Test_Environment_Fidelity: Int (isBetween(1,3))

19 SUT_Fidelity: Int (isBetween(1,3))

20 }

Fig. 2: Extend the PKL formalized ISO 34503 template with four test envi-
ronment attributes, specified in both test case requirements and environment
capabilities for valid comparison.

this dynamic base directly. The constructed ODD templates in Pkl can be found
here [16].

4 Case Study: Reversing Truck Functionality

A case study on automated reversing of a semitrailer truck, further detailed in [6],
demonstrates how ODD parameters shape the allocation of test cases. Confined
areas with perimeter protections and reduced unauthorized entry risks provide
a well-defined operational scope to validate automated functionality in heavy
vehicles. Our use case is an automated docking function of a truck to a logistic
port, where the area behind the truck is monitored by a camera mounted on the
hub. The camera aims to ensure the safety zone (Fig 3) is free from persons and
objects. The system is defined to work during the daytime. The daytime test
space and the fixed mounting of the camera will then incorporate the special
problem of sun glare as defined in Fig 3, which affects object detection.

In many cases, oblique angles just outside or near the field of view are the most
prone to inducing reflections or scatter that manifest as glare [14]. Glare can
occur over various angles depending on lens design, coatings, and light source
intensity, and it must be tested in a high-fidelity environment; in this situation, a
simulated environment cannot produce reliable results (see Fig. 4a compared to
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Fig. 3: Test configuration for a fixed mounted camera.

(a) (b)

Fig. 4: Illustration of low sun glare test scenarios: the simulation environment
shown in (a) uses CARLA with a sun elevation of 6°, while the hardware-in-the-
loop scale truck setup in (b) has a sun elevation of 9°.

Fig. 4b), so a hardware-in-the-loop (HiL) environment will be employed. Here,
camera orientation, combined with the sun’s azimuth and orientation angles,
defines a field of view that forms a test subspace. This expansion of the ODD to
include the sun position is reflected in the ODD template and, therefore, in the
test environment requirements, as shown in Fig. 5.

Fig. 5 uses the template in Fig.2, configured as a test environment requirement,
exported to YAML format, and visualized in PlantUML [22], which allows human
reviewers to verify the requirements easily.
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Fig. 5: A subset of the test environment requirement parameters, out of 300 ODD
configurable elements.

4.1 Test environment capability, CARLA simulator

The CARLA simulator [21] is an open-source platform used in automated driving
research, offering flexibility in modeling a variety of road, weather, and lighting
conditions. Fig.6 shows a subset of configurable weather parameters in CARLA,
including sun azimuth and elevation angles. The test environment capabilities
do include these parameters. Still, correctly modeling the SUT is essential to
provide a reliable object detection test result, particularly when evaluating glare
effects at oblique angles. Fully replicating complex glare conditions in simulation
can be challenging, so a HiL environment will be employed where glare might
be an issue to ensure reliable results.

1 #include <WeatherParameters.h>

2 WeatherParameters (

3 ...

4 float in_cloudiness

5 float in_sun_azimuth_angle,

6 float in_sun_altitude_angle,

7 #Same as sun_elevation_angle in ODD definition

8 ...)

Fig. 6: Excerpt of weather parameters, it is available in CARLA.

To capture the glare caveat for oblique angles, the Fig.7. extends SUT Fidelity
with the conditional expression to incorporate a check on sun azimuth angle,
ensuring the value lies within 126.0° ± 10.0°. It sets SUT Fidelity to 1 when
both sun elevation angle are less than or equal to 10.0°, and sun azimuth angle
remains in the given range and otherwise sets it to 2. An ODD is a complex class
with a deep, non-static structure, allowing for the amendment and extension
of its leaves. These leaves can take various forms, including booleans, strings,
durations, data sizes, floats, and integers.

Because the ODD structure is large and complex, verifying whether one config-
ured ODD is contained within another—such as comparing specific test require-
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1 import "ODD_template.pkl"

2

3 odd_cap_carla: ODD_template.ext_odd = new {

4 scenery {

5 zone {

6 region_or_state = "sweden"

7 zone_type {

8 freight_distribution_centre = true

9 }

10 }

11 }

12 environment {

13 illumination {

14 natural_illumination {

15 # Max capability

16 sun_azimuth_angle = 360.0

17 sun_elevation_angle = 90.0

18 }

19 }

20 }

21 Safety_Hazard_Mitigation = 3

22 Test_Complexity = 3

23 Test_Environment_Fidelity = 2

24 # Glare caveat for oblique angles

25 # When the risk of glare SUT_Fidelity = low

26 SUT_Fidelity = (if (

27 (odd_req.environment.illumination.natural_illumination

28 .sun_azimuth_angle >= 116.0)

29 && (odd_req.environment.illumination.natural_illumination

30 .sun_azimuth_angle <= 136.0)

31 && (odd_req.environment.illumination.natural_illumination

32 .sun_elevation_angle <= 10.0)

33 ) 1 else 2)

34 }

Fig. 7: The CARLA test environment capability.
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1 # The ext_ODD_test contains test requirements and test capabilities.

2 # Also a method of generic comparisons that evaluate those conditions.

3 ...

4 Within_CARLAs_Capabilities = genCompare.apply(odd_cap_carla, odd_req)

5 Within_Scaletruck_Capabilities = genCompare.apply(odd_cap_scale, odd_req)

6 ...

7 C:\pkl\ODD_allocate> ./pkl eval .\ext_ODD_test.pkl

8 ...

9 # Result

10 Within_CARLAs_Capabilites = false

11 Within_Scaletruck_Capabilites = true

Fig. 8: Automatic allocation evaluation.

ments in Fig. 5 with the CARLA test environment capabilities in 7—necessitates
tool support. A validation method called genericCompare is defined using the
reflection property of Pkl 8 [16]. Reflection enables querying a program’s meta-
data, such as the classes within an assembly and the methods, fields, and proper-
ties they contain. By leveraging this capability, an intelligent recursive loop can
be constructed to perform a detailed, piecewise comparison of all leaves. This
method ensures that string and boolean values are checked for equality while
integers and floats are compared using an equality or ”less than” condition.

The proposed method for comparing two configured ODDs has several limita-
tions. One significant limitation is handling extremes such as temperature at
both ends of numeric ranges, which needs to be addressed. Simply checking for
equality or ”less than” conditions may not capture the nuances of overlapping
ranges or boundary conditions, limitations inherited from the specification, and
also best addressed at that level. Limitations aside, the method works and can
be used for both automation and assessment of allocations.

Test criteria outlined in Section 3 can be integrated with the template in Fig.2.
and, in conjunction with the genericCompre function (Fig.8.), enable the com-
parison of test requirements (Fig. 5) with environment capabilities, such as those
in Fig.7. These elements, when integrated, form a prototype methodology for au-
tomatically allocating test cases to suitable environments.

5 Conclusions

In conclusion, any ODD definition formalized using the Pkl language method [18]
can be extended with test environment attributes to capture test environment
capabilities better. This enables automated, flexible, and scalable test allocation.

This framework-agnostic approach aligns with multi-pillar validation strategies
such as NATM [4] and SUNRISE [13], making it compatible with assurance
cases that rely on heterogeneous evidence from diverse test environments. The
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representation permits verification of whether one ODD is subsumed by another,
demonstrating its scalability and efficiency in handling extensive ODDs and abil-
ity to handle scenarios requiring finer-grained environment attributes.

We propose and provide [16] an approach that extends the ODD [10] formal-
ization in the Pkl configuration language by incorporating test environment at-
tributes and tools for automated test case allocation, facilitating systematic and
data-driven matching of scenario requirements to environment capabilities. Al-
though still a proof of concept, this approach establishes a foundation for further
refinement and broader adoption through community collaboration. Its contin-
ued development may benefit developers, assessors, tool vendors, and standard-
ization bodies, and has the potential for wider use if its value is recognized by
the research community.

Future work will examine domain-specific ODD definitions—such as those in
forestry—and expand the formalization to generate test spaces that facilitate
automated allocation. Efforts will also include investigating compatibility with
OpenODD [2] to ensure alignment with emerging ASAM standards and explore
potential integration opportunities.
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