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 A B S T R A C T

The efficiency and reliability of industrial cooling systems are critical for sectors such as energy systems, 
electronics manufacturing, and data centers. Traditional cooling systems rely on reactive maintenance, leading 
to increased downtime, energy consumption, and operating costs. Recent advances in artificial intelligence 
(AI), including machine learning (ML), deep learning (DL), and physics-informed neural networks (PINNs), 
have enabled proactive fault diagnosis and predictive maintenance in industrial cooling systems, significantly 
reducing energy use and improving operational reliability. However, current AI applications face challenges, 
such as limited access to quality datasets, computational complexity, integration with legacy systems, and 
model scalability. This paper systematically addresses these gaps by providing a detailed taxonomy of AI-driven 
cooling system diagnostics, categorizing state-of-the-art methods, and identifying critical research challenges. 
Our main contribution is a structured taxonomy that integrates ML, DL, and PINNs, offering a clear framework 
for analyzing current practices and potential improvements. The paper highlights critical insights across 138 
reviewed studies, emphasizing the transformative role of hybrid AI frameworks in diagnostics, including use 
cases in HVAC, data centers, and thermal imaging. Notably, the integration of ML, DL, and PINNs has been 
shown to improve fault detection accuracy, energy efficiency, and model interpretability, paving the way for 
scalable, real-time deployments.
1. Introduction

Industrial cooling systems are integral to the functioning of modern 
industries, particularly in sectors such as energy systems [1], electron-
ics manufacturing [2], and data centers [3,4]. These systems ensure 
that sensitive components, such as electronic circuits, transformers, 
and servers, remain within their permissible operating temperature 
ranges. This is vital to prevent overheating, which can cause system 
failures, decreased performance, and significant economic losses. How-
ever, the increasing complexity of industrial processes and the growing 
demand for higher energy efficiency have exposed the limitations of 
traditional cooling methods. For instance, conventional designs often 
rely on worst-case scenarios to ensure thermal stability, leading to 
over-dimensioned, energy-intensive, and costly systems [5].

Fig.  1 illustrates the workflow of traditional cooling systems, high-
lighting their reactive nature, where sensor data are manually mon-
itored, and faults are detected only after they occur, leading to sig-
nificant downtime and inefficiency due to delayed fault detection and 
reactive maintenance. In contrast, Fig.  2 showcases the AI-driven cool-
ing system, highlighting proactive and automated capabilities. AI mod-
els leverage real-time sensor data for fault detection and predictive 
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maintenance, supported by continuous learning and feedback mecha-
nisms. This approach minimizes downtime, enhances reliability, and 
transitions cooling systems from reactive to proactive diagnostics, sig-
nificantly improving efficiency and reducing energy consumption.

The global push for sustainability and carbon neutrality by 2050 fur-
ther emphasizes the need for sustainable cooling solutions [7]. Cooling 
systems account for a significant portion of industrial energy consump-
tion, and uncontrolled temperature levels can result in catastrophic 
failures, such as outages of the electric grid or data center shutdowns. 
Fig.  3 highlights the primary causes of electronic equipment failures, 
with temperature being the dominant factor (53%), followed by vi-
bration (22%), humidity (19%), and dust (6%) [8]. These failures not 
only cause financial losses but also have environmental and social 
consequences. Industries are exploring advanced technologies to make 
cooling systems more intelligent, adaptive, and efficient. Artificial Intel-
ligence (AI) [9], particularly Machine Learning (ML) [10], Deep Learn-
ing (DL) [11], Reinforcement Learning (RL) [12], and Physics-Informed 
Neural Networks (PINNs) [13], has emerged as a promising solution 
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Fig. 1. Traditional cooling system framework [6].
Fig. 2. AI-driven cooling system diagnostics framework.
2 
Fig. 3. Distribution of factors contributing to electronic equipment failures [8].

for AI-driven cooling systems. By leveraging these technologies, indus-
tries can shift from reactive maintenance to predictive and proactive 
diagnostics, ensuring system reliability and minimizing energy waste. 
Although AI technologies have shown potential in diagnostics and 
predictive maintenance, their application in industrial cooling systems 
and monitoring systems still faces several challenges. First, there is a 
lack of high-quality standardized datasets tailored to train AI models 
in the context of cooling systems. Existing data sets are often specific 
to particular industries or applications, limiting the generalizability of 
AI solutions. Second, understanding how cooling systems behave over 
time — especially as heat levels, outside conditions, and system settings 
change — requires advanced algorithms that combine real-world data 
with physical laws. Although physics-informed neural networks are 
a step forward [14,15], their implementation in real-world industrial 
settings is still in its infancy.

Furthermore, AI models face scalability challenges due to the high 
computational demands of processing large-scale industrial data, the 
need for seamless integration with legacy systems, and the variability in 
cooling system configurations across different industries. Real-time per-
formance is hindered by the complexity of handling multi-source sensor 
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Table 1
Related surveys on AI-driven industrial cooling systems.
 Focus area Cite Algorithms 

discussed
Key strengths Limitations  

 AI for Industrial 
Failure Prediction

[17–23] ML Comprehensive overview of ML algorithms 
for failure prediction; Consistent and 
standardized reporting of studies to mitigate 
the impact of heterogeneity in knowledge 
accumulation.

Studies varied in methods, making 
comparisons difficult; Inconsistent reporting 
made data extraction hard; Study quality 
was judged only by publication

 

 Predictive 
Maintenance for 
HVAC Systems

[9,24–26] DL Comprehensive review of predictive 
maintenance algorithms for HVAC systems; 
Not only highlights the advantages of 
predictive maintenance in HVAC systems 
but also critically assesses the constraints 
and challenges of different algorithmic 
approaches.

Limited Coverage of Recent Advances; Lacks 
real-world implementation or performance 
comparison; Issues like sensor failures, data 
sparsity, and noise may be overlooked; 
Limited discussion on feasibility in 
large-scale HVAC systems

 

 Optimization of 
Cooling and Thermal 
Systems

[27–30] ML, DL Detailed overview of ML and DL techniques 
applied to optimize cooling and thermal 
systems; Comprehensive analysis of thermal 
and cooling methods, focusing on how ML 
and DL improve their efficiency and 
performance.

No empirical case studies to support AI 
applications; AI adaptability across different 
thermal systems is not fully addressed

 

 Applications in 
Specialized Industrial 
Domains

[31–37,37,38] ML, DL, IoT Addresses Industry 4.0 practices; Highlights 
the application of ML, DL, and IoT in 
solving complex problems in specialized 
industries; Covers challenges and future 
opportunities for implementing smart 
technologies in industries.

AI is not yet fully integrated into Industry 
4.0, and the study does not suggest clear 
solutions; Cybersecurity challenges are 
mentioned but not analyzed in detail

 

 General AI 
Techniques for 
Diagnostics and 
Maintenance

[39–42] PINNs, PIMLs Comprehensive integration of PIMLs and 
PINNs; Analyze the benefits of integrating 
physical knowledge of AI models; Addresses 
real-time applications and sustainability.

A limited number of literary works 
analyzed; The findings may be skewed 
toward certain authors or methodologies, 
affecting the accuracy of the overall trend 
in Condition Monitoring (CM) applications

 

data, latency in decision-making processes, and the computational 
overhead of deploying deep learning models in resource-constrained 
environments [16]. Cooling systems are often integrated with other 
subsystems, creating interdependencies that complicate diagnostics. 
These gaps in research and practice highlight the urgent need for 
systematic studies to synthesize existing advancements, address limi-
tations, and propose actionable solutions for improving the reliability 
and efficiency of industrial cooling systems. This review is timely and 
necessary as industries face increasing demands for energy-efficient 
and reliable cooling solutions amidst growing pressures to achieve 
carbon neutrality by 2050. Integrating AI-driven methodologies offers a 
pathway to improve system reliability and reduce energy consumption 
and CO2 emissions.

The analysis of recent surveys in the domain of AI-driven diagnostics 
and predictive maintenance for industrial cooling systems highlights 
several research gaps. As shown in Table  1, existing studies on indus-
trial failure prediction offer a broad view of ML applications; however, 
these studies often present variations in methodology and inconsistent 
data reporting, making cross-study comparisons challenging. Surveys 
focused on predictive maintenance in HVAC systems provide insights 
into DL techniques. Additionally, research addressing optimization in 
cooling and thermal systems gives a comprehensive overview of ML 
and DL methods, but has limited practical applicability. Furthermore, 
surveys exploring AI applications in specialized industrial domains em-
phasize the potential of Industry 4.0 practices but do not provide clear 
guidance on overcoming integration challenges, particularly in terms of 
cybersecurity. Finally, studies examining general AI techniques, such 
as physics-informed neural networks, offer useful perspectives on the 
integration of physical principles into data-driven models but analyze 
a limited number of works, which may lead to biased conclusions. 
These gaps underscore the need for future research to adopt standard-
ized methodologies, conduct more real-world validations, and explore 
hybrid AI approaches to improve the reliability and effectiveness of 
predictive maintenance systems in industrial cooling environments.
3 
In contrast, this review addresses these gaps by offering a compre-
hensive integration of ML, DL, and PINNs, along with a detailed tax-
onomy and analysis of their applications in industrial cooling systems. 
Moreover, this review focuses on integrating AI-driven methodologies 
into industrial cooling systems’ diagnostics, monitoring, and predictive 
maintenance. It examines how AI technologies can significantly im-
prove fault detection, real-time monitoring, and system optimization 
when paired with advanced sensing techniques. The emphasis lies on 
three primary areas: First, the role of AI in diagnostics and predictive 
maintenance, highlighting its ability to identify faults and predict sys-
tem failures before they occur, thus minimizing operational downtime 
and extending the lifespan of industrial systems. Second, AI-driven solu-
tions that leverage advanced sensing technologies — including infrared 
(IR) imaging, IoT sensors, and real-time data fusion — to improve data 
quality, enable precise fault localization, and enhance decision-making 
in cooling system management. Finally, the review discusses industrial 
applications, such as cooling systems in energy-intensive environments 
and electronics-based industries, including electric grid cooling, HVAC 
systems in data centers, and manufacturing processes. The following 
research questions (RQs) guided the review process:

• RQ1: How do different AI techniques (machine learning, deep 
learning, and PINNs) impact the diagnostics and predictive main-
tenance in industrial cooling systems?

• RQ2: In what ways do AI-driven diagnostics and predictive main-
tenance approaches differ across various industrial cooling appli-
cation domains, such as HVAC, data centers, and refrigeration 
systems?

• RQ3: Which critical gaps exist in current AI-driven cooling diag-
nostics research, and how can addressing these gaps guide future 
methodological advancements and practical deployments?

The research questions outlined above frame the key areas of in-
vestigation in this review. By addressing these questions, this study 
systematically explores the current landscape of AI-driven diagnostics 
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Table 2
Inclusion and exclusion criteria.
 Criteria Details  
 Inclusion Criteria • Peer-reviewed review or survey articles published between 2018 and 2025.

• Studies focusing on AI techniques (ML, DL, PINNs) in diagnostics and predictive 
maintenance for industrial cooling systems.
• Papers discussing applications of AI in fault detection, energy optimization, and 
thermal management.
• Articles providing detailed methodologies and frameworks for AI-driven solutions.
• Studies addressing sustainability and energy efficiency in industrial systems.

 

 Exclusion Criteria • Articles not published in peer-reviewed journals or conferences.
• Studies lacking methodological or experimental details.
• Papers focusing on non-industrial applications, such as consumer electronics or 
automotive systems.
• Articles unrelated to AI or predictive maintenance for cooling systems.
• Duplicate studies or studies published as abstracts without full-text availability.

 

and predictive maintenance in industrial cooling systems, identify-
ing existing methodologies, application domains, and associated chal-
lenges. Through this structured inquiry, the review not only synthesizes 
prior research but also highlights critical gaps that necessitate further 
exploration. Building on these research questions, this study makes 
several key contributions:

• Provides a comprehensive review and taxonomy of AI-driven 
methodologies, categorizing techniques into machine learning, 
deep learning, and physics-informed neural networks for diagnos-
tics and predictive maintenance in industrial cooling systems.

• Identifies and analyzes critical challenges in deploying AI solu-
tions, including data scarcity, model scalability, computational 
overhead, and the need for real-time integration in complex 
industrial environments.

• Explores diverse application domains of AI in industrial cooling 
systems, such as fault detection, thermal imaging, energy opti-
mization, and anomaly detection, providing actionable insights 
for researchers and practitioners.

• Proposes future research directions, including the development 
of interpretable AI models, hybrid approaches combining data-
driven and physics-based methods, and advancements in sustain-
able cooling solutions.

The remainder of this paper is organized as follows: Section 2 
presents the review methodology, detailing the systematic review ap-
proach based on PRISMA guidelines. Section 4 provides an in-depth 
analysis of AI techniques for diagnostics, categorizing them into ma-
chine learning-based, deep learning-based, and physics-informed neural 
networks-based approaches. Section 3 explores the applications of AI-
driven diagnostics and predictive maintenance in industrial cooling 
systems, highlighting use cases such as fault detection, energy effi-
ciency optimization, and real-time monitoring. Section 5 discusses the 
research questions and outcomes of this survey. Finally, Section 6 
concludes the paper by summarizing the findings and emphasizing 
the significance of integrating AI techniques for advancing industrial 
cooling systems.

2. Review methodology

This review adopts a systematic methodology to identify, analyze, 
and synthesize studies relevant to AI-driven diagnostics and predictive 
maintenance for industrial cooling systems. The approach follows the 
PRISMA (Preferred Reporting Items for Systematic Reviews) guidelines 
to ensure transparency and applicability.

2.1. Review methodology

2.1.1. Databases searched
The literature search was conducted across leading academic data-

bases, including IEEE Xplore, ScienceDirect, SpringerLink, and Scopus. 
4 
These databases were chosen for their extensive coverage of research in 
artificial intelligence, machine learning, deep learning, and industrial 
systems.

2.1.2. Search strategy
A structured search query was developed to identify relevant stud-

ies. The primary search string included combinations of keywords 
representing AI techniques, application domains, and review-specific 
terms. Such as:

[‘‘Machine Learning’’ OR ‘‘Deep Learning’’ OR ‘‘Physics Informed 
Neural Networks’’ ] AND (‘‘Industrial Cooling Systems’’ OR ‘‘Fault 
Diagnosis’’ OR ‘‘Predictive Maintenance’’)

The search was refined with Boolean operators and tailored to the 
syntax of each database to maximize coverage.

2.1.3. Inclusion and exclusion criteria
Specific inclusion and exclusion criteria were defined to ensure the 

relevance and quality of the studies included in this review. Table  2 
summarizes the criteria used for study selection. This table ensures 
clarity in the selection process by outlining the specific parameters for 
study inclusion and exclusion. The criteria were applied consistently 
during the review process to maintain rigor and relevance.

2.1.4. Study selection process
The study selection process involved three key steps:

1. Initial Screening: Titles and abstracts were screened for rele-
vance to the research scope.

2. Full-Text Review: Full texts of potentially relevant studies were 
evaluated against the inclusion and exclusion criteria.

3. Final Selection: Studies meeting all criteria were included for 
detailed analysis and synthesis.

2.1.5. Analysis and synthesis
For each selected study, key data points were extracted, including 

the focus area, AI methodologies (e.g., ML, DL, PINNs), applications dis-
cussed, challenges addressed, and notable findings. This data was syn-
thesized to provide a comprehensive understanding of the field, identify 
gaps in the literature, and propose directions for future research.

2.1.6. PRISMA flow diagram
The PRISMA flow diagram (Fig.  4) summarizes the review pro-

cess, illustrating the stages of study identification, screening, eligibil-
ity assessment, and inclusion. The inclusion of clear research ques-
tions ensures a focused approach to addressing key gaps and ad-
vancements in AI-driven diagnostics and predictive maintenance. By 
adhering to PRISMA guidelines, this study maintains a transparent and 
reproducible framework, providing valuable insights into the existing 
body of knowledge and identifying future research opportunities.
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Fig. 4. PRISMA flow diagram for the review process.
2.2. Bibliometric analysis

Fig.  5 provides a consolidated overview of key bibliometric insights 
into AI-driven diagnostics and predictive maintenance in industrial 
cooling systems. As shown in Fig.  5(a), the publication trend reveals 
a clear rise in research interest, with a sharp increase in contribu-
tions after 2020. While earlier years saw limited output, 2024 marks 
the peak with 45 published studies, reflecting a strong and growing 
academic focus on this topic. The geographic distribution in Fig.  5(b) 
further emphasizes the global scope of this research, with contributions 
from 42 countries spanning North America, Europe, Asia, Africa, and 
Australia. This international engagement highlights the widespread 
relevance of AI applications in industrial maintenance and suggests a 
collaborative global effort to address shared industrial challenges. Fig. 
5(c) shows that journal articles comprise the majority (96%) of the 
selected sources, reinforcing the field’s reliance on peer-reviewed, high-
quality studies. Conference papers make up 2.6%, representing recent 
innovations and experimental approaches, while a small number of 
book chapters and preprints provide foundational context or emerging 
insights. Together, these figures indicate a maturing research domain 
marked by increasing output, global collaboration, and a preference for 
rigorously validated methodologies.

2.3. Evolution of AI methods in industrial cooling systems

Fig.  6 presents a structured timeline outlining the technological 
evolution of AI methodologies applied to fault detection and diagnostics 
(FDD) in industrial cooling systems. This progression reflects not only 
advancements in computational power and sensing infrastructure but 
also the increasing complexity and data-richness of modern indus-
trial environments. Initial developments were grounded in rule-based 
5 
systems and heuristic thresholds; however, the emergence of data-
driven approaches marked a significant shift. Comprehensive reviews 
such as [26] have catalogued the transition toward statistical learning 
frameworks. Classical machine learning methods, including Support 
Vector Machines and ensemble classifiers, became prevalent in early 
applications due to their robustness and interpretability. Notable ex-
amples include the hybrid random forest and SVM approach by Tun 
et al. [43] and the LightGBM-based fault warning model proposed by 
Li et al. [44].

The subsequent rise of deep learning, enabled by increased avail-
ability of high-performance GPUs and thermal imaging sensors, facili-
tated automatic feature extraction and improved performance on high-
dimensional data. Calderon-Uribe et al. [45] and Wiysobunri et al. [46] 
demonstrated the efficacy of convolutional neural networks (CNNs) 
for thermal fault detection in motors and server cooling systems, re-
spectively. More recently, hybrid deep learning architectures have 
gained prominence to address limitations in labeled data availability 
and model generalizability. Transformer-based self-supervised learning 
for HVAC systems [47] and few-shot GAN approaches for imbalanced 
datasets [48] exemplify this trend.

The latest developments emphasize physics-informed learning para-
digms, which integrate domain knowledge directly into the training 
process to enhance physical consistency and interpretability. Zhang 
et al. [49] employed PINNs for simulating conjugate heat transfer in 
microchannel heat sinks, while Wang et al. [50] introduced a physics-
informed reinforcement learning framework for real-time control in 
data center cooling. Finally, emergent directions such as quantum-
enhanced AI are beginning to show promise in complex energy sys-
tems, as illustrated by Sworna et al. [51]. Collectively, this timeline 
contextualizes the methodological trajectory reviewed in this paper 
and illustrates the domain-specific motivations behind each successive 
advancement.
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Fig. 5. Overview of research trends in AI-driven diagnostics and predictive maintenance in industrial cooling systems: (a) publication trends, (b) geographic distribution, and (c) 
publication types.
Fig. 6. Technology development pulse diagram showing the evolution of AI methods in industrial cooling systems and the key motivations for each transition.
3. Applications

The integration of AI technologies into industrial cooling systems 
has revolutionized diagnostics and predictive maintenance, enhancing 
system reliability, energy efficiency, and operational performance. This 
section categorizes the key application domains where AI-driven meth-
ods have demonstrated a significant impact. The taxonomy presented 
in Fig.  7 illustrates the key domains and techniques within AI-driven 
diagnostics and predictive maintenance for industrial cooling systems.

3.1. Fault detection and classification

AI algorithms are extensively used to identify and classify faults 
in industrial cooling systems. Fault detection aims to identify abnor-
mal operating conditions, while classification determines the type and 
severity of the fault.

• HVAC Systems: Algorithms like Support Vector Machines and 
Random Forests classify faults such as refrigerant leaks, sensor 
failures, and compressor issues [52]. Chen et al. [26] provided 
a comprehensive review of data-driven fault detection and diag-
nostics (FDD) methods for HVAC systems, emphasizing the impor-
tance of supervised, semi-supervised, and unsupervised learning 
techniques. Their study outlined the steps in FDD processes, 
including data collection, preprocessing, baseline establishment, 
and fault detection. Support Vector Machine (SVM) and Random 
Forests were highlighted for their accuracy in fault classification, 
although challenges such as scalability, real-building deployment, 
and data privacy remain significant. The review stressed the 
need for improved interpretability and benchmarking to facilitate 
real-world adoption.
6 
• Thermal Imaging: Deep learning models, particularly Convolu-
tional Neural Networks, utilize thermal images to detect anoma-
lies such as overheating or hotspots in cooling circuits. Javed 
et al. [53] proposed a novel methodology combining infrared 
thermography (IRT) with machine vision for fault detection in 
induction motors. The approach involved generating thermal im-
age datasets under various operational conditions and using Local 
Octa Patterns (LOP) for feature extraction, followed by SVM 
classification. However, the reliance on pre-configured datasets 
and manual feature extraction limits scalability for broader ap-
plications.

• Chiller Systems: Physics-informed neural networks diagnose con-
denser fouling and other performance degradation issues by in-
tegrating operational data and physical laws. Shen et al. [54] 
proposed a data-driven self-attention-based deep learning method 
for diagnosing faults in HVAC chiller systems under imbalanced 
data scenarios. Their model combines the stable synthetic mi-
nority oversampling technique (SSMOTE) for data augmenta-
tion with a skip self-attention temporal convolutional network 
(STCN) for fault classification. Despite its high performance, the 
computational overhead and dependence on curated datasets 
remain limitations for real-time applications in complex industrial 
settings.

3.2. Predictive maintenance

Predictive maintenance leverages AI to forecast potential failures, 
enabling timely interventions to prevent downtime.

• Remaining Useful Life Prediction: Recurrent Neural Networks 
and Long Short-Term Memory Networks (LSTMs) analyze time-
series data to estimate the lifespan of cooling components. Nunes 
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Fig. 7. Taxonomy of the applications of AI-driven diagnostics and predictive maintenance in industrial cooling systems (Application-driven approach).
et al. [55] reviewed various prognostic methods and their appli-
cations in predictive maintenance, with a focus on RUL prediction 
using data-driven approaches. The study emphasized the inte-
gration of anomaly detection with RNN and LSTM models to 
enhance the accuracy of RUL predictions in industrial systems. 
By addressing challenges such as noisy sensor data and data 
heterogeneity, the paper demonstrated how these models can 
effectively forecast equipment degradation and schedule timely 
maintenance actions. However, the computational demands and 
dependency on high-quality labeled datasets limit their scalability 
across diverse industrial scenarios.

• Energy Efficiency Monitoring: Algorithms like Gradient Boost-
ing Machines and Autoencoders identify operational inefficiencies 
and predict energy-saving opportunities. Jeon et al. [56] proposed 
a predictive maintenance framework for compressed air systems, 
combining an LSTM-based motor power prediction model with 
ML-based radiator fault detection. However, the framework’s re-
liance on curated datasets and high computational overhead for 
time-series analysis remains a limitation for scaling across diverse 
industrial applications.

3.3. Anomaly detection and data imbalance resolution

Anomaly detection identifies deviations from normal operational 
patterns, often in scenarios with imbalanced datasets.

• GAN-Based Augmentation: Generative Adversarial Networks 
generate synthetic data to improve fault detection accuracy and 
mitigate class imbalance. Ren et al. [48] introduced a Few-Shot 
GAN framework tailored for severe data imbalance in intelligent 
fault diagnosis. The method leverages a pre-training strategy on 
sample-rich classes followed by fine-tuning with anchor samples 
to generate diverse and realistic fault samples for sample-poor 
classes. The approach achieved very high accuracy in fault detec-
tion tasks by improving the diversity of generated samples while 
addressing GAN overfitting issues. Despite its advantages, the re-
liance on pre-trained generative models and computational com-
plexity in high-dimensional sample spaces limits its scalability in 
real-world scenarios.

• Infrared Thermal Data Analysis: Autoencoders use reconstruc-
tion errors to detect anomalies in cooling systems based on ther-
mal imaging. Sinap et al. [57] developed a CNN-based framework 
for detecting faults in photovoltaic solar modules using a dataset 
of 20,000 infrared images. The model demonstrated robust classi-
fication for various fault types, such as hotspots and shading, but 
relied heavily on curated datasets and required substantial com-
putational resources for hyperparameter optimization, limiting 
scalability in broader industrial settings.
7 
3.4. Energy optimization and load prediction

AI-driven methods improve the energy efficiency of industrial cool-
ing systems by optimizing load distribution and minimizing wastage.

• Load Balancing: Transformer models analyze multivariate oper-
ational data to optimize cooling loads across components. Fan 
et al. [58] introduced the DTformer, a transformer-based model 
designed for multi-horizon, multi-energy load forecasting in inte-
grated energy systems. The model incorporates a dual variable 
attention module and a temporal windowed attention (TWA) 
mechanism to capture both long-term temporal dependencies and 
variable interactions efficiently. Despite its high accuracy and 
reduced memory usage, the model’s computational overhead and 
dependency on extensive hyperparameter tuning pose challenges 
for real-time industrial deployment.

• Dynamic Energy Modeling: PINNs predict thermal dynamics 
under varying loads, enabling real-time energy optimization. Xiao 
and You [59] proposed a Physically Consistent Deep Learning 
(PCDL) framework for building thermal modeling and energy 
optimization. The PCDL model integrates physics consistency into 
deep learning structures, leveraging RNN-LSTM hybrid archi-
tectures to predict indoor temperature and humidity dynamics. 
Despite these advancements, the model’s computational overhead 
and dependence on extensive domain-specific constraints pose 
challenges for large-scale industrial deployment.

3.5. Heat transfer modeling

AI techniques are applied to simulate and optimize heat transfer 
processes critical to industrial cooling systems.

• Thermal Regulation in Microchannels: PINNs solve heat trans-
fer equations to enhance cooling efficiency in compact systems. 
Zhang et al. [49] developed a Physics-Informed Neural Network 
framework to simulate conjugate heat transfer within manifold 
microchannel heat sinks (MMC) for high-power Insulated Gate 
Bipolar Transistor (IGBT) cooling. The study employed dual sub-
PINNs to separately model flow dynamics and thermal behavior, 
integrating physical constraints from governing equations. Exper-
imental results showed PINNs effectively predicted temperature 
distributions and pressure drops, achieving results comparable to 
Computational Fluid Dynamics (CFD) simulations while reducing 
computational cost. However, limitations included sensitivity to 
geometric complexities and numerical instabilities in scenarios 
with abrupt changes in flow patterns or gradients, which affected 
the accuracy near complex boundary conditions.
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• Real-Time Thermal Dynamics Prediction: DL models combined 
with PINNs predict temperature distributions and identify in-
efficiencies in large-scale systems. Zhao et al. [60] proposed 
a Physics-Informed Convolutional Neural Network (PI-CNN) for 
real-time prediction of temperature fields in complex thermal 
systems without labeled data. By integrating heat conduction 
equations into the loss function and applying finite difference 
methods, the PI-CNN accurately mapped heat source layouts to 
steady-state temperature fields. Experimental evaluations demon-
strated that the PI-CNN achieved competitive accuracy compared 
to finite difference methods (FDM), with a mean absolute error 
(MAE) below 0.03 K. While the framework significantly reduced 
computational costs, challenges included sensitivity to boundary 
conditions and difficulty in scaling to irregular geometries or 
dynamic thermal environments.

3.6. Root cause analysis

AI enables comprehensive fault diagnostics by identifying the un-
derlying causes of performance issues.

• Causal Analysis: Algorithms like ML, DL, and hybrid approaches 
identify causal relationships between sensor anomalies and sys-
tem faults. Oliveira et al. [61] provided a comprehensive over-
view of Automatic Root Cause Analysis (ARCA) techniques in 
manufacturing, highlighting the integration of machine learning 
and data mining for identifying causal pathways in system faults. 
The study emphasized the use of hybrid methodologies combining 
classification models and association rules to link operational data 
with root causes, achieving significant efficiency improvements in 
diagnosing complex anomalies. While promising, the approaches 
face limitations such as reliance on extensive labeled datasets and 
challenges in adapting to dynamic manufacturing environments, 
which restrict real-time scalability.

• Lookup-Based Fault Localization: Autoencoder-based methods 
provide interpretable diagnostics by associating reconstruction er-
rors with specific faults. Qian et al. [62] presented a comprehen-
sive review of autoencoder (AE) frameworks for fault detection 
and diagnosis in industrial processes. The study highlights how 
encoder–decoder structures and their variants, such as denoising 
AEs (DAEs) and sparse AEs, effectively identify fault locations 
by associating reconstruction errors with specific process vari-
ables. The findings underscore the capability of AE models in 
handling nonlinear, multimodal industrial data but also point out 
limitations such as sensitivity to data quality and challenges in 
interpreting abstract features in highly complex systems.

3.7. Advanced thermal management in data centers

AI technologies have been instrumental in optimizing cooling strate-
gies for data centers, a critical application domain for industrial cooling 
systems.

• Real-Time Monitoring: DL-based methods analyze temperature 
distributions to detect thermal hotspots and suggest cooling ad-
justments. Wang et al. [63] proposed a multi-scale collaborative 
modeling framework combined with a CNN-BiLSTM-Attention 
network to predict thermal conditions in air-cooled data cen-
ters. The model incorporates boundary conditions derived from 
Computational Fluid Dynamics simulations and Bayesian opti-
mization for hyperparameter tuning. This integration enabled 
precise real-time hotspot detection and cooling strategy optimiza-
tion. However, the reliance on extensive simulation data and high 
computational overhead may limit scalability to diverse industrial 
scenarios.
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• Cooling Efficiency Optimization: PINNs integrate physical laws 
with operational data to minimize energy consumption while 
maintaining thermal stability. Wang et al. [50] proposed Phyllis, 
a physics-informed lifelong reinforcement learning framework 
for data center cooling control. By embedding thermodynamic 
constraints into the learning process, Phyllis rapidly adapts to 
dynamic changes in data center configurations, such as the addi-
tion of IT devices or the installation of air containment. However, 
the reliance on extensive pre-training and the computational 
demands of lifelong adaptation present scalability challenges in 
larger and more diverse industrial cooling setups.

3.8. Applications across diverse industrial settings

AI-driven diagnostics and predictive maintenance extend beyond 
traditional cooling systems into diverse industrial contexts:

• Renewable Energy Systems: AI identifies cooling faults in wind 
turbine generators and photovoltaic panels, ensuring operational 
efficiency. Polymeropoulos et al. [64] reviewed vision-based mon-
itoring techniques for fault detection in photovoltaic (PV) sys-
tems, highlighting advancements in unmanned aerial vehicles 
(UAVs) and AI-based methodologies, such as CNNs and YOLO 
frameworks. These approaches improved fault localization ac-
curacy for anomalies like shading, cracks, and dirt accumula-
tion, significantly enhancing PV performance and energy yield. 
However, challenges such as data overload, high-resolution pro-
cessing requirements, and limited adaptability to diverse en-
vironmental conditions remain barriers to real-time industrial 
application [65].

• Electronics Manufacturing: DL models diagnose overheating 
and cooling failures in semiconductor fabrication processes.
Moosavi et al. [66] proposed an Explainable Artificial Intelli-
gence (XAI)-driven framework for diagnosing faults in induction 
furnaces used in semiconductor manufacturing. The system com-
bines Deep Neural Networks (DNNs) with Shapley Additive Ex-
planations and Local Interpretable Model-Agnostic Explanations 
(LIME) to interpret fault predictions based on electrical parame-
ters such as voltage and current harmonics. The proposed model 
achieved an average F-measure of 0.9187, effectively identifying 
faults like phase-to-phase shorts and component overheating. 
However, challenges include reliance on curated datasets and 
the complexity of real-time XAI integration in dynamic industrial 
environments.

• Industrial Refrigeration: PINNs model dynamic thermal be-
havior to optimize energy use in refrigeration systems. Hussain 
et al. [67] developed a physics-informed, data-driven framework 
for estimating and optimizing two-phase pressure drops in mini- 
and macro channels for various refrigerants. The framework in-
tegrates deep neural networks with genetic algorithms (GAs) 
to optimize operational parameters such as hydraulic diameter, 
saturation temperature, and mass flux. However, challenges in-
cluded sensitivity to irregular geometries and limited scalability 
to real-time applications across diverse operational conditions.

4. Materials and existing methods

This section provides a comprehensive overview of existing ma-
terials and methods relevant to AI-driven diagnostics and predictive 
maintenance in industrial cooling systems. It critically examines cur-
rently available datasets, categorizing them as either real-world or 
synthetic. Additionally, the section reviews established methods across 
machine learning, deep learning, and physics-informed neural net-
works, highlighting their strengths, weaknesses, and suitability for 
various cooling system scenarios.
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Table 3
Dataset availability for AI-driven diagnostics and predictive maintenance in industrial cooling systems.
 Dataset name Reference Dataset link Dataset type 
 Simulation Data for Cooling Water System [12] Not available publicly Synthetic  
 DAMADICS Benchmark [14] https://iair.mchtr.pw.edu.pl/Damadics Both  
 ASHRAE RP-1312 Project [43] https://tinyurl.com/ASHRAE-RP-1312 Real data  
 AI4I 2020 Predictive Maintenance Dataset [68] https://archive.ics.uci.edu/dataset/601/ai4i+2020+predictive+maintenance+dataset Synthetic  
 Infrared Thermographic Image Dataset [69] Not available publicly Real data  
 Limited Thermal Image Dataset [70] Not available publicly Real data  
 Infrared Thermal Image Dataset for Induction Motors [45] https://data.mendeley.com/datasets/m4sbt8hbvk/3 Real data  
 Industrial Fault Warning Dataset [44] Not available publicly Real data  
 Cooling Load Estimation Dataset [71] Not available publicly Real data  
 Industrial HVAC Energy Consumption Dataset [72] Not available publicly Real data  
 Chandigarh UT Electricity Utility Data [73] Not available publicly Real data  
 ITI/CERTH Smart House Dataset [74] https://tinyurl.com/ITI-CERTH-Dataset Real data  
 Household Energy Consumption Dataset [75] https://archive.ics.uci.edu/dataset/235/individual+household+electric+power+consumption Real data  
 Hydraulic Test Rig Dataset [76] https://archive.ics.uci.edu/dataset/447/condition+monitoring+of+hydraulic+systems Real data  
 Real-Time Energy and Temperature Data [77] Not available publicly Real data  
 VRF Refrigerant Charging Test Dataset [78] Not available publicly Real data  
 Bus Voltage Dataset (24-Bus Network) [31] Not available publicly Real data  
 Physics-Based Simulation Data [60] Not available publicly Synthetic  
 Alibaba CPU Utilization Trace [50] Not available publicly Real data  
 Temperature Data for Induction Heating Systems [79] Not available publicly Real data  
 Libya Power System Fault Dataset [80] Generated using MATLAB/Simulink Synthetic  
 ASHRAE RP-1043 Chiller Fault Dataset [81] https://tinyurl.com/ASHRAE-RP-1043 Real data  
4.1. Dataset availability

The availability of high-quality datasets is crucial for developing 
and validating AI-driven diagnostics and predictive maintenance mod-
els in industrial cooling systems. Table  3 summarizes publicly available 
and proprietary datasets used in recent studies. These datasets cover 
various aspects, including fault detection, predictive maintenance, ther-
mal analysis, and energy efficiency monitoring. Most datasets consist of 
real-world industrial data, such as ASHRAE RP-1312, Infrared Thermo-
graphic Image Dataset, and Industrial Cooling System Dataset, which 
provide valuable insights for machine learning models. However, sev-
eral studies rely on synthetic data generated through simulations, 
such as Physics-Based Simulation Data and Libya Power System Fault 
Dataset, which may not fully capture real-world operational com-
plexities. Additionally, some datasets remain proprietary, limiting the 
accessibility and reproducibility of research. Future efforts should focus 
on developing standardized, open-access datasets with diverse fault 
scenarios to enhance model generalization and benchmarking. Integrat-
ing real-world and physics-informed synthetic datasets can improve 
the robustness of AI models for predictive maintenance in industrial 
settings.

4.2. AI methodologies

This section provides a systematic overview of these techniques, 
categorized into three main groups: traditional machine learning algo-
rithms, advanced deep learning models, and the emerging paradigm of 
physics-informed neural networks. Each category addresses the com-
plexities of cooling system diagnostics in unique ways — from data-
driven inference to hybrid physics-data integration — offering insights 
into fault detection, real-time monitoring, and system optimization. Fig. 
8 presents the taxonomy of AI techniques in diagnostics for industrial 
cooling systems. This taxonomy categorizes the key AI methodolo-
gies into three primary domains: machine learning approaches, deep 
learning models, and physics-informed neural networks. Each domain 
is further divided into specific algorithms and frameworks used for 
fault detection, predictive maintenance, and optimization. The struc-
ture follows a hierarchical conceptual taxonomy, meaning it organizes 
concepts from general to specific in a tree-like format, making it 
easier to understand how broader AI categories branch into particular 
techniques. Simultaneously, it functions as a data-driven classification 
model, where the taxonomy is shaped by the analysis of reviewed litera-
ture, reflecting real-world usage patterns and research focus areas. This 
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dual framework helps readers grasp both the theoretical organization of 
AI methods and their practical deployment in industrial cooling system 
diagnostics.

4.2.1. Machine learning approaches
Machine learning (ML) techniques have been extensively applied 

to fault diagnostics, anomaly detection, and predictive maintenance 
in industrial cooling systems [82]. Among these, Support Vector Ma-
chines [83] are widely employed for fault classification due to their 
ability to handle high-dimensional, nonlinear sensor data, making them 
particularly useful for identifying refrigerant leakage, compressor inef-
ficiencies, and airflow disruptions in HVAC systems [84,85]. Random 
Forest (RF) [86] has emerged as a preferred ensemble learning method 
for anomaly detection and energy efficiency monitoring, excelling in 
situations where multivariate sensor data — such as temperature, pres-
sure, and refrigerant flow rates — need to be analyzed for predictive 
diagnostics [76,87]. K-Nearest Neighbors (KNN) [88] has been applied 
in performance evaluation and fault detection through similarity-based 
classification, particularly in HVAC systems and energy efficiency stud-
ies [89,90]. Gradient Boosting Machines (GBM), including variants like 
XGBoost and LightGBM, are increasingly used for fault detection and 
energy load prediction due to their capability to optimize predictive 
accuracy through iterative ensemble learning [91,92]. Naïve Bayes 
(NB) [85] has proven useful for fault classification tasks where feature 
independence assumptions hold, though its effectiveness is limited 
in scenarios with correlated sensor data [80,93]. Logistic Regression 
(LR) remains a simple yet interpretable method for fault detection in 
cooling systems, though its reliance on linear separability constrains its 
applicability to more complex datasets [85]. While these ML algorithms 
each demonstrate strengths in different diagnostic tasks, challenges 
remain in handling noisy sensor data, adapting to dynamic operational 
conditions, and ensuring real-time efficiency. Future advancements 
should focus on hybrid approaches that combine ML models with 
physics-informed constraints and deep learning techniques to enhance 
diagnostic accuracy and robustness in industrial cooling applications. 
Table  4 summarizes the strengths, limitations, and applications of 
machine learning approaches in fault diagnostics for industrial cooling 
systems.

4.2.2. Deep learning models
Deep learning (DL) models have emerged as powerful tools for 

fault diagnostics, anomaly detection, and predictive maintenance in 

https://iair.mchtr.pw.edu.pl/Damadics
https://tinyurl.com/ASHRAE-RP-1312
https://archive.ics.uci.edu/dataset/601/ai4i+2020+predictive+maintenance+dataset
https://data.mendeley.com/datasets/m4sbt8hbvk/3
https://tinyurl.com/ITI-CERTH-Dataset
https://archive.ics.uci.edu/dataset/235/individual+household+electric+power+consumption
https://archive.ics.uci.edu/dataset/447/condition+monitoring+of+hydraulic+systems
https://tinyurl.com/ASHRAE-RP-1043
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Fig. 8. Taxonomy of AI techniques in diagnostics for industrial cooling systems (hierarchical conceptual taxonomy | data-driven classification model).
Table 4
Comparison of machine learning Approaches for Fault Diagnostics in Industrial Cooling Systems.
 Algorithm Cite Strengths Limitations Applications  
 SVM [76,84,85,94–

96]
High-dimensional data 
handling; robust against 
overfitting.

Computationally expensive; 
requires careful parameter 
tuning; struggles with noisy 
data.

Fault classification in HVAC 
and centrifugal chillers.

 

 RF [76,78,87,97,
98]

Handles high-dimensional 
data; robust to overfitting; 
feature importance ranking.

Computationally intensive 
with large datasets; less 
interpretable.

Anomaly detection, refrigerant 
leakage diagnostics.

 

 KNN [77,98] Simple and interpretable; 
effective for non-Gaussian 
data; works well with small 
datasets.

Sensitive to noisy data; 
computationally expensive for 
large datasets; requires careful 
selection of 𝑘.

Energy performance 
evaluation, fault detection in 
HVAC systems.

 

 GBM [44,73–75] High accuracy; handles 
nonlinear relationships well; 
feature importance ranking.

Computationally intensive; 
prone to overfitting with small 
datasets; requires extensive 
hyperparameter tuning.

Fault detection, energy load 
prediction.

 

 NB [71,72,85,96] Computationally efficient; 
effective with 
high-dimensional data; 
interpretable.

Assumes feature 
independence; struggles with 
noisy or correlated data; 
sensitive to data distribution.

Fault classification, HVAC 
energy prediction.

 

 LR [85,96] Simple and interpretable; 
efficient for binary 
classification.

Assumes linear separability; 
struggles with 
multicollinearity; limited to 
simple relationships.

Fault detection in heat pumps, 
anomaly detection in HVAC 
systems.

 

industrial cooling systems. Their ability to automatically learn hier-
archical representations from sensor data, infrared images, and time-
series signals allows for enhanced fault detection, system monitoring, 
and optimization. Convolutional Neural Networks (CNNs) [99] have 
been widely applied in thermal imaging-based fault detection, iden-
tifying surface anomalies such as micro cracks, refrigerant leaks, and 
cooling inefficiencies in HVAC systems [46,100]. By leveraging feature 
extraction capabilities, CNNs process high-resolution infrared images to 
classify operational states and detect emerging faults in industrial cool-
ing networks. Recurrent Neural Networks (RNNs) [101], particularly 
Gated Recurrent Units (GRUs) and Long Short-Term Memory, excel 
in predictive maintenance tasks by analyzing multivariate time-series 
data [102,103]. These models are effective for remaining useful life 
(RUL) estimation, predictive thermal modeling, and anomaly detection 
in cooling systems exposed to fluctuating environmental conditions. 
Transformer-based models [47,104] have recently gained attention 
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for processing large-scale sensor data, offering superior scalability in 
multivariate time-series analysis and HVAC fault prediction through 
self-attention mechanisms. Autoencoders (AEs) [105,106] have been 
successfully utilized for unsupervised anomaly detection, where devi-
ations between reconstructed and actual data points indicate potential 
system failures. Lastly, Generative Adversarial Networks (GANs) [107] 
play a key role in addressing class imbalance issues by generating 
synthetic fault data and improving the robustness of machine learning 
models for HVAC diagnostics [108,109]. While deep learning mod-
els have demonstrated remarkable success in various industrial ap-
plications, challenges remain in computational efficiency, real-time 
deployment, and the interpretability of complex neural network archi-
tectures. Future advancements should focus on hybrid AI frameworks 
that integrate physics-informed deep learning with domain knowledge 
to enhance diagnostic precision and predictive reliability. Table  5 
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Table 5
Comparison of deep learning models for fault diagnostics in industrial cooling systems.
 Model Cite Strengths Limitations Applications  
 CNNs [45,69,70,

110–112]
Excels in extracting spatial 
features; effective for 
image-based data such as 
thermal images.

Computationally expensive; 
requires large datasets for 
training; limited 
generalization to unseen 
industrial scenarios.

Fault detection using 
thermal imaging in HVAC 
systems and electronics.

 

 RNNs [68,113] Captures sequential 
dependencies; effective for 
time-series data in 
dynamic systems.

High computational cost; 
challenges in scaling to 
larger datasets and diverse 
operational settings.

Predictive thermal 
modeling, RUL estimation 
for cooling systems.

 

 LSTMs [113] Handles long-term 
dependencies in sequential 
data; effective for 
time-series fault prediction.

Computationally intensive; 
dependency on specific 
datasets limits 
generalization; challenges 
in hyperparameter 
optimization.

Early anomaly detection, 
predictive maintenance in 
heating and cooling.

 

 Transformer [47,114–116] Efficient processing of 
multivariate and long 
sequential data; scalable to 
large datasets.

High computational 
overhead; requires careful 
hyperparameter tuning; 
training instability with 
small datasets.

Fault detection in HVAC 
systems, anomaly detection 
in data-scarce setups.

 

 Autoencoders [105,117,
118]

Effective for anomaly 
detection through 
reconstruction error; 
capable of learning 
complex data distributions.

High computational 
demands; dependency on 
expert domain knowledge 
for root cause analysis; 
limited scalability to 
diverse industrial 
applications.

Anomaly detection, 
explained fault localization 
in cooling systems.

 

 GANs [119] Generates synthetic data 
for addressing data 
scarcity; robust against 
class imbalance in fault 
datasets.

Training instability; 
computationally intensive; 
requires extensive 
hyperparameter tuning and 
careful balancing of 
generator-discriminator 
networks.

Fault detection, synthetic 
data generation for HVAC 
systems.

 

summarizes the strengths, limitations, and applications of various deep 
learning models for fault diagnostics in industrial cooling systems.

4.2.3. Physics-informed neural networks (PINNs)
While conventional ML and DL methods rely heavily on data pat-

terns, physics-informed neural networks incorporate domain knowl-
edge via partial differential equations (PDEs) and other physical con-
straints into the training objective. PINNs are particularly valuable 
for industrial cooling, where thermal processes often exhibit complex 
transient behaviors governed by fundamental physical laws. PINNs 
can offer enhanced interpretability, reduced data requirements, and 
more robust extrapolation to unseen operating conditions by fusing 
data-driven insights with physics-based priors.

Diagram 9 illustrates the workflow of physics-informed neural net-
works for fault diagnostics in industrial cooling systems. Observational 
data points, such as thermal measurements, serve as inputs to a neural 
network that approximates the system behavior. The physics-guided 
residual loss ensures compliance with governing PDEs, while boundary 
and data loss terms enforce boundary conditions and data fidelity, re-
spectively. These components are integrated into a composite loss func-
tion, which is optimized using gradient-based techniques and automatic 
differentiation. The resulting model provides accurate and physically 
consistent predictions for fault detection and system diagnostics.

This integration of physics with neural networks enables PINNs 
to handle sparse, noisy datasets effectively while preserving physical 
consistency, making them ideal for industrial cooling system appli-
cations. Jagtap et al. [120] introduced the CoolPINNs framework to 
model thermal regulation in microvasculatures, addressing challenges 
such as sharp thermal flux discontinuities and nonlinear radiative heat 
transfer. This meshless method demonstrated robust real-time monitor-
ing and inverse modeling capabilities, offering significant advantages 
over traditional finite element methods (FEM). However, CoolPINNs 
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required careful hyperparameter tuning to stabilize training when solv-
ing highly nonlinear problems, limiting its scalability. Pan et al. [121] 
applied PINNs for fault diagnostics in HVAC chillers, focusing on con-
denser fouling faults. By embedding physical inconsistencies into the 
loss function, their approach improved interpretability while achiev-
ing diagnostic accuracy comparable to purely data-driven methods. 
Nevertheless, the reliance on pre-defined fault-specific physical mod-
els constrained the framework’s generalizability to other fault types. 
Chen et al. [122] developed an Adaptive PINNs (A-PCNNs) frame-
work for thermal modeling in data centers, replacing static coefficients 
with adaptive ones to enhance flexibility and reduce computational 
costs. Their results showed a 79.2% reduction in long-term forecast 
errors compared to traditional PINNs, but the increased computa-
tional demand for adaptive coefficient estimation posed challenges for 
real-time applications. Zobeiry et al. [123] explored PINNs for heat 
transfer modeling in manufacturing processes. By incorporating convec-
tive boundary conditions directly into the loss function, their method 
achieved real-time thermal response predictions, outperforming FEM in 
speed. However, the model struggled to generalize across diverse man-
ufacturing scenarios due to limitations in capturing complex transient 
thermal behaviors.

In addition, PINNs have gained significant attention for solving 
PDEs across various scientific and engineering domains. The foun-
dational work by Raissi et al. introduced the original PINNs frame-
work, enabling data-driven solutions that respect physical laws [124]. 
Subsequent advancements like VPINNs adopted a Petrov–Galerkin for-
mulation to improve accuracy and reduce training costs by lower-
ing differential order through integration by parts [125]. To address 
the limitations of PINNs in handling stiff PDEs, SA-PINNs introduced 
trainable adaptive weights that focus on regions with higher solution 
difficulty [126]. For high-dimensional or multi-scale problems, cPINNs 
and XPINNs employed spatial and space–time domain decomposition, 
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Fig. 9. Illustration of the PINNs framework for solving heat transfer problems, integrating physical laws into the neural network training process.
respectively, offering better scalability and parallelizability [127,128]. 
Further, APINNs enhanced domain decomposition through a gating 
network mechanism that learns soft partitions for improved gener-
alization [129]. gPINNs introduced gradient-enhanced loss functions 
to improve convergence and training efficiency [130], while trans-
fer learning approaches have been applied in PINNs for phase-field 
modeling of fracture, showing improved efficiency and accuracy in 
sequential loading scenarios [131]. Operator learning methods like 
PINO combined coarse data with high-resolution PDE constraints, out-
performing standard PINNs in zero-shot super-resolution settings [132]. 
OL-PINNs hybridized operator learning and PINNs to solve PDEs with 
sharp solutions using fewer residual points [133]. B-PINNs introduced 
Bayesian inference for uncertainty quantification and noise robustness 
in both forward and inverse PDE problems [134]. Finally, multi-fidelity 
PINNs incorporated low- and high-fidelity models to balance accuracy 
and computational cost through structured surrogate modeling [135].

To illustrate a practical implementation of PINNs in real-world 
cooling systems, Liang et al. [136] proposed a comprehensive frame-
work for applying physics-informed neural networks in the optimal 
control of commercial chiller plants. The study introduces a dual-
knowledge embedding strategy by integrating both structure-type and 
trend-type prior knowledge into the network architecture (S-PINN) and 
loss function (T-PINN), respectively. The approach was applied to de-
velop energy models for all critical chiller plant components — chillers, 
cooling towers, and pumps — using actual operational data from a 
commercial building in Shanghai. The results demonstrated substantial 
improvements in extrapolation robustness and energy efficiency. In 
a field deployment, the proposed PINN-based optimal control system 
achieved a 23.2% increase in energy efficiency compared to traditional 
fixed-setpoint strategies.

These applications demonstrate PINNs’ versatility in solving a range 
of heat transfer and diagnostic problems in industrial cooling systems. 
While PINNs offer significant advantages in terms of accuracy, inter-
pretability, and computational efficiency, challenges such as scalability, 
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training stability, and generalizability to diverse conditions remain 
active areas of research. Lastly, the integration of machine learning, 
deep learning, and physics-informed neural networks has revolution-
ized diagnostics and predictive maintenance in industrial cooling sys-
tems. Each approach offers unique strengths and limitations tailored to 
specific application domains. Table  6 compares ML-based, DL-based, 
and PINN-based models for diagnostics and predictive maintenance in 
industrial cooling systems.

4.3. Method–application mapping

To strengthen the connection between the technical methods re-
viewed in Section 4.2 and the industrial use-cases presented in Chap-
ter 3, Fig.  7 illustrates a high-level mapping between different tech-
niques and their primary cooling-related applications. Traditional ma-
chine learning models such as Support Vector Machines, Decision Trees, 
and Random Forests are widely applied in HVAC fault classification 
tasks. Their strength lies in handling structured sensor data with rel-
atively small datasets while offering model transparency. Deep learn-
ing methods show broader applicability across spatial and tempo-
ral domains. Convolutional and recurrent networks (e.g., CNNs and 
LSTMs) are mainly used for detecting data-center hotspots and for 
processing thermal imaging tasks. Transformer models, known for their 
ability to capture long-term dependencies, are primarily deployed in 
multi-energy load forecasting problems where accurate prediction over 
extended horizons is necessary for energy-efficient cooling strategies.

Unsupervised generative models such as autoencoders and GANs 
are particularly effective in PV and chiller anomaly detection, where 
labeled fault data are rare. These models learn compact latent repre-
sentations of normal operating states and flag significant deviations, 
making them ideal for fault detection in imbalanced or unlabeled 
settings. Physics-Informed Neural Networks extend deep learning by 
embedding governing heat transfer equations into the learning process. 
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Table 6
Comparative advantages and limitations of ML, DL, and PINN approaches for industrial-cooling diagnostics and predictive-maintenance tasks.
 Approach Key advantages Key limitations  
 Traditional 
Machine-Learning (ML) 
algorithms (SVM, RF, GBM, 
k-NN, NB, LR)

• Lightweight; fast training and 
inference on standard CPUs/edge 
devices
• Higher interpretability (feature 
importance, decision paths)
• Perform well on structured/tabular 
sensor data with limited samples
• Tree ensembles provide built-in 
variable-ranking for root-cause 
analysis

• Depend on manual feature 
engineering; weak on raw 
image/signal data
• Struggle with highly non-linear or 
high-dimensional relationships
• Generally lower accuracy than DL 
on complex patterns
• Often requires separate models per 
fault class, limiting scalability

 

 Deep-Learning (DL) models 
(CNN, LSTM, Transformer, 
AE, GAN)

• Automatically learn hierarchical 
features from high-dimensional/ 
unstructured inputs (e.g. IR images, 
raw time-series)
• Achieve state-of-the-art accuracy on 
complex non-linear tasks (fault 
detection, RUL prediction, anomaly 
segmentation)
• GANs generate synthetic data to 
mitigate class imbalance

• Need large labeled datasets; 
annotation is costly and 
time-consuming
• Substantial memory/compute 
footprint hinders real-time edge 
deployment
• Often behave as ‘‘black boxes’’, 
reducing explainability and user trust
• Hyper-parameter tuning is 
labour-intensive

 

 Physics-Informed Neural 
Networks (PINNs)

• Embed governing physics in the 
loss; predictions remain physically 
consistent even with sparse/noisy 
data
• Require smaller labeled datasets 
than purely data-driven models
• Better extrapolation outside the 
training domain (out-of-distribution 
regimes)
• Remove mesh/discretization errors 
typical of CFD/FEM solvers

• Training can be unstable; balancing 
data vs. physics losses is non-trivial
• High computational overhead 
(automatic differentiation over PDE 
residuals)
• Limited scalability to large 3-D, 
transient or strongly coupled 
multi-physics problems
• Depend on domain expertise to 
specify correct physical constraints

 

They are suited to data-center thermal control and micro-channel heat 
sink design problems, where physical constraints and sparse sensor 
data are prevalent. Lastly, reinforcement learning and hybrid PINNs-RL 
models are used in real-time cooling optimization, where agents learn 
control policies that adapt to dynamic environments while satisfying 
thermal and energy efficiency constraints.

Fig.  10 illustrates the mapping between AI methodologies and 
their application domains in industrial cooling systems, alongside the 
frequency of articles associated with each category. Traditional ma-
chine learning methods such as SVM, RF, GBM, k-NN, NB, and LR 
were the most frequently studied, with 8 articles primarily focused on 
HVAC fault classification. Deep learning approaches using CNNs and 
LSTMs were discussed in 5 studies, particularly for hotspot detection in 
data centers and thermal imaging-based diagnostics. Autoencoders and 
GANs appeared in 6 papers, commonly applied to anomaly detection 
in photovoltaic systems and chiller units. Transformer models, used 
for multi-energy load forecasting, were referenced in only 1 article, 
suggesting this area is still emerging. Physics-informed neural net-
works (PINNs) and their reinforcement learning hybrids were each 
mentioned in 2 to 3 articles, indicating growing interest in real-time 
cooling optimization and microchannel heat sink design. This frequency 
analysis highlights the current research emphasis on traditional ML and 
anomaly detection techniques, while also pointing to underexplored 
opportunities in transformer-based forecasting and hybrid PINNs for 
dynamic thermal control.

5. Discussion

The integration of AI-driven diagnostics and predictive maintenance 
in industrial cooling systems has shown considerable progress, en-
hancing fault detection, energy efficiency, and operational reliability. 
However, despite these advancements, several challenges remain, lim-
iting broader adoption and real-world implementation. This section 
critically analyzes the key findings of this review by addressing the 
research questions, discussing the major limitations identified in exist-
ing AI applications, and outlining future research directions. Instead of 
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reiterating the results, this discussion examines why these findings are 
significant, how they compare across different studies, and what gaps 
remain to be addressed.

5.1. Application-specific analysis

The effectiveness of AI-driven diagnostics and predictive mainte-
nance methods depends heavily on the application context of industrial 
cooling systems. These systems vary in scale, function, and operating 
conditions across different industrial sectors. As a result, the selection 
and performance of AI algorithms must align with application-specific 
requirements such as reliability, energy efficiency, data availability, 
and system complexity.

In commercial buildings and HVAC systems, energy efficiency and 
occupant comfort are primary concerns. These systems typically oper-
ate under relatively stable conditions and produce structured sensor 
data. Traditional ML algorithms such as SVM and Random Forests are 
well-suited for these environments. They offer interpretable results and 
are efficient to deploy, especially in scenarios where computational 
resources are limited. Data centers, on the other hand, require high 
operational reliability and rapid fault detection to avoid service dis-
ruptions. Deep learning models, particularly CNNs, have shown strong 
performance in analyzing thermal imaging data for identifying hot 
spots and hardware faults. Recurrent models such as LSTM networks 
are used for temperature trend forecasting and predictive maintenance 
based on time-series data. In addition, Transformer-based models of-
fer scalable solutions for handling high-dimensional sensor inputs in 
real-time monitoring environments.

In manufacturing and heavy industry, cooling systems often operate 
under dynamic and harsh conditions with fluctuating thermal loads. 
These settings pose challenges for data collection and model generaliza-
tion. Physics-Informed Neural Networks are useful in such cases, as they 
integrate physical laws into the learning process. PINNs can improve ac-
curacy and reduce dependency on large datasets. However, their practi-
cal implementation may require careful tuning and substantial compu-
tational resources. Cryogenic systems and high-performance industrial 
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Fig. 10. Mapping of AI/ML methods to industrial cooling applications.
cooling applications often involve operating regimes that are underrep-
resented in available datasets. Generative models, such as GANs, can 
be employed to generate synthetic fault scenarios and enhancing the 
training process of diagnostic models. Reinforcement Learning methods 
are also relevant in adaptive cooling control, where the system dynam-
ically adjusts cooling parameters in response to changing operational 
demands.

Across all application domains, model explainability is a key factor 
influencing adoption. Black-box models are often met with skepticism 
in industrial settings, particularly where compliance or operator trust 
is required. Explainable AI techniques, including feature attribution 
methods and attention mechanisms, can improve transparency and 
facilitate acceptance by maintenance personnel and decision-makers.

5.2. Algorithm-specific analysis

The comparative analysis of AI methodologies reveals distinct
strengths and limitations when applied to industrial cooling systems. 
Deep learning methods, particularly Convolutional Neural Networks, 
excel in analyzing thermal imaging data. CNNs effectively extract 
spatial patterns from high-resolution infrared images, providing ro-
bust anomaly detection capabilities such as identifying overheating 
or refrigerant leakage. However, their performance heavily depends 
on extensive labeled datasets and computational resources, limiting 
their real-time deployment. In contrast, Long Short-Term Memory 
networks demonstrate exceptional performance in handling sequential 
time-series data, essential for predictive maintenance tasks such as 
forecasting remaining useful life (RUL) and detecting subtle patterns in-
dicating impending failures. Their ability to retain long-term temporal 
dependencies allows accurate fault predictions even in dynamic oper-
ational conditions. Yet, LSTMs face scalability challenges, particularly 
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when modeling multivariate sensor data streams simultaneously, where 
Transformer-based models may offer superior performance through 
their self-attention mechanisms and ability to scale efficiently with 
increasing data complexity.

Physics-informed neural networks play a crucial role by integrating 
governing physical laws directly into their architecture. This integra-
tion allows PINNs to leverage limited data more effectively, enhancing 
the accuracy and interpretability of thermal diagnostics. PINNs effec-
tively handle sparse datasets and reduce the need for extensive labeled 
data, making them highly valuable in industrial scenarios where col-
lecting comprehensive, high-quality data is challenging. Nonetheless, 
PINNs’ computational complexity, sensitivity to the precise formulation 
of physical constraints, and potential instability during training remain 
critical challenges that necessitate careful tuning and methodological 
improvements.

Despite the dominance of sophisticated deep learning and physics-
informed models, traditional machine learning algorithms, such as 
Support Vector Machines and Random Forests, remain relevant due 
to their interpretability, simplicity, and lower computational demands. 
ML models provide transparent decision-making paths, making them 
more trusted by practitioners, especially in resource-constrained in-
dustrial environments. Their lower computational requirements allow 
deployment in real-time scenarios, offering practical benefits where 
immediate diagnostics are essential. Although their predictive perfor-
mance may not always match deep learning models, their straight-
forward implementation, ease of deployment, and ability to handle 
structured data effectively justify their continued use.

Generative models, including Generative Adversarial Networks, fur-
ther extend the capabilities of AI-driven diagnostics by addressing 
data scarcity through synthetic data generation. GANs are instrumental 
in mitigating dataset imbalance by creating realistic fault scenarios, 
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Table 7
Comparison of data-driven and physics-based modeling approaches.
 Aspect Data-driven modeling Physics-based modeling  
 Core Principle Learns patterns directly from empirical 

data using statistical or machine 
learning methods

Uses governing physical laws (e.g., 
PDEs) derived from first principles

 

 Data Requirements Requires large volumes of high-quality 
labeled data

Can work with limited data if physical 
laws are well-defined

 

 Interpretability Often a black-box; difficult to interpret Physically interpretable and consistent 
with domain knowledge

 

 Generalization May struggle outside training 
distribution; prone to overfitting

Generalizes better in unseen scenarios if 
physics is applicable

 

 Robustness to Noise Sensitive to noise and outliers in data Robust to noise if equations are 
well-posed

 

 Model Flexibility Can approximate unknown or complex 
phenomena

Limited by the accuracy and 
completeness of physical equations

 

 Computational Complexity High for deep learning models; requires 
extensive training data and tuning

Can be computationally expensive for 
PDE solvers, especially in complex 
domains

 

 Challenges in Integration 
(PINNs)

Conflicts with physical laws when data 
is noisy or inconsistent

Difficulty in incorporating real-world 
imperfections or data-driven residuals

 

 References [15,26,84,122,137,138] [14,15,39,49,120–122]  
enhancing the training robustness of other AI models. However, gener-
ative models carry inherent risks, such as mode collapse and generation 
of unrealistic samples, potentially introducing biases and inaccuracies. 
Addressing these limitations through rigorous training, validation, and 
hybrid modeling strategies is crucial for their successful application in 
industrial cooling diagnostics.

In recent years, efforts to bridge data-driven methods with physics-
based modeling have gained traction, notably through frameworks such 
as PINNs. One key difficulty is the tuning of loss function components. 
In PINNs, the total loss typically includes terms for both data fidelity 
and physical consistency. Determining appropriate weights for these 
components is non-trivial and often domain-specific. Overweighting 
the physical loss may reduce sensitivity to data patterns, especially 
in noisy industrial environments, while underweighting it can violate 
key physical laws. Another issue is the potential conflict between 
empirical data and governing equations. Noisy sensor data may con-
tradict idealized PDEs, leading to optimization instability or biased 
learning. Moreover, expressing complex domain-specific phenomena 
— like turbulent cooling behavior or coupled heat-mass transfer — 
as mathematical constraints may not be feasible, limiting the prac-
tical applicability of PINNs. These challenges underline the need for 
adaptive weighting strategies, robust hybrid architectures, and better 
methods to encode domain knowledge without rigid formulations. 
Table  7 provides a comparative overview of data-driven and physics-
based modeling approaches, highlighting their respective strengths, 
limitations, and integration challenges. 

Overall, selecting an optimal AI model for industrial cooling di-
agnostics requires careful consideration of data availability, compu-
tational resources, interpretability, and domain-specific constraints. 
Balancing data-driven methodologies with physics-based insights pro-
vides the best avenue for achieving reliable, efficient, and interpretable 
AI-driven predictive maintenance solutions in industrial cooling sys-
tems.

5.3. Data challenges and implications

Data availability plays a crucial role in developing AI-driven di-
agnostics and predictive maintenance for industrial cooling systems. 
This study reveals a notable reliance on synthetic data compared to 
real-world datasets. The primary reason for this trend is the practical 
difficulties industries face in collecting and sharing real data. Indus-
trial data collection encounters numerous barriers, including privacy 
concerns, cybersecurity threats, and operational confidentiality. The 
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cost of data acquisition and maintenance further discourages companies 
from openly distributing their data, driving researchers toward syn-
thetic data generation methods such as physics-based simulations and 
Generative Adversarial Networks. However, synthetic data introduces 
potential biases, as simulated scenarios may not accurately reflect the 
complex, nonlinear, and noisy conditions found in real-world cooling 
systems. Also, real-time data collection in industrial cooling systems 
poses distinct challenges, including sensor failures, latency issues, en-
vironmental disturbances, and integration complexities. Sensor failures 
and environmental noise create gaps and inaccuracies in continuous 
monitoring, significantly impacting the quality and reliability of data 
used for diagnostics. Industrial environments frequently involve harsh 
conditions and complex operational dynamics, complicating consistent 
sensor performance and data reliability. Addressing these challenges 
requires robust sensor networks, advanced sensor fusion techniques, 
and resilience to operational disturbances.

An essential consideration is whether limited data can effectively 
support AI-driven diagnostics. Techniques such as transfer learning, 
few-shot learning, and synthetic data augmentation demonstrate sig-
nificant promise in compensating for limited real data. Transfer learn-
ing enables models to leverage knowledge acquired from related do-
mains, improving performance with fewer data points. Few-shot learn-
ing methodologies further facilitate model development by requiring 
minimal labeled data and rapidly adapting AI models to new fault 
scenarios. Synthetic data augmentation, especially through GAN-based 
approaches, can artificially expand datasets, addressing class imbalance 
and providing representative examples of rare failure conditions. Nev-
ertheless, reliance on synthetic data demands caution due to potential 
biases and discrepancies from real-world conditions. The debate be-
tween data quality and quantity is also critical. High-quality data, char-
acterized by accuracy, consistency, and relevance, typically leads to 
superior diagnostic performance compared to large but noisy datasets. 
High-quality datasets, even if smaller, contribute to better model ac-
curacy and lower false detection rates, highlighting the need for pre-
cise data collection and rigorous preprocessing techniques. In con-
trast, large, noisy datasets can obscure critical fault indicators, reduce 
the reliability of predictions, and demand increased computational 
resources.

The generalizability of existing benchmark datasets, such as the 
ASHRAE RP-1312 dataset, to diverse industrial environments is limited. 
Many publicly available datasets reflect highly controlled conditions, 
potentially unrepresentative of dynamic industrial scenarios charac-
terized by fluctuating loads and varying cooling configurations. The 
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limited applicability of these datasets underscores the necessity for 
standardized datasets that capture diverse fault scenarios across dif-
ferent operational settings, thereby improving model generalization. 
Lastly, concerns regarding data privacy and security significantly in-
fluence the industry’s willingness to share cooling system operational 
data. The interconnected nature of modern cooling systems, often 
integrated with IoT networks, exposes them to cybersecurity vulnerabil-
ities. Companies remain cautious about data sharing, fearing potential 
exploitation or unauthorized access. Developing secure, anonymized 
data-sharing platforms, coupled with robust cybersecurity frameworks, 
is essential to facilitate data exchange, enhance collaboration, and 
accelerate the development of effective AI-driven diagnostic solutions.

5.4. Practical deployment and performance

A critical consideration in deploying AI-driven diagnostic systems 
is the inherent trade-off between accuracy and computational cost. 
High-performing deep learning models, including Transformer archi-
tectures and deep CNNs, achieve exceptional accuracy but demand 
substantial computational resources. This requirement poses challenges 
in real-time industrial environments, where processing power, memory 
constraints, and latency restrictions significantly impact the feasibility 
of deployment. Although pruning, quantization, and model compres-
sion techniques can reduce computational burdens, these methods 
often compromise predictive accuracy, highlighting the need for careful 
consideration of performance trade-offs. Furthermore, deploying AI 
models effectively in real-time scenarios involves a balance between di-
agnostic accuracy and inference speed. Lightweight models, optimized 
through edge computing techniques, provide practical solutions by 
enabling rapid, resource-efficient processing directly at the industrial 
endpoint. However, the reduction in model complexity can result in 
lower accuracy, making it imperative to carefully evaluate the accept-
able trade-offs between precision and operational efficiency based on 
application-specific requirements.

Explainability remains another critical factor influencing the adop-
tion of AI-driven diagnostics in industrial cooling systems. The black-
box nature of complex neural networks raises concerns among industry 
practitioners regarding transparency and accountability. Integration of 
Explainable AI techniques, such as attention mechanisms, SHAP values, 
and Local Interpretable Model-Agnostic Explanations, can significantly 
enhance model transparency, trustworthiness, and user acceptance. 
Transparent models not only improve stakeholder confidence but also 
enable technicians to interpret diagnostic decisions clearly, facilitating 
more informed maintenance actions. Scalability across different indus-
trial settings represents another substantial challenge. Models trained 
on specific HVAC datasets may struggle to generalize effectively to dif-
ferent domains, such as data center cooling or industrial refrigeration, 
due to variations in operating conditions, cooling system configu-
rations, and fault characteristics. Therefore, ensuring broader model 
generalization demands hybrid approaches combining data-driven and 
physics-informed methods, transfer learning strategies, and standard-
ized cross-domain datasets. Models designed with modular or adaptive 
structures could help maintain accuracy while facilitating adaptation 
to diverse cooling environments.

Integration of AI-driven diagnostic solutions into existing legacy sys-
tems is particularly challenging, primarily due to compatibility issues, 
communication protocol mismatches, and outdated system architec-
tures. Legacy systems often lack the necessary sensor infrastructure 
and computing capabilities required by advanced AI algorithms. Over-
coming these integration barriers demands significant infrastructure 
updates, middleware solutions that enable seamless communication 
between legacy and modern AI systems, and incremental deployment 
strategies. Future research should explore interoperability frameworks 
and lightweight AI approaches specifically tailored for integration with 
existing industrial cooling infrastructures.
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In addition, Table  8 provides a comparative summary of how dif-
ferent categories of AI methods — traditional machine learning, deep 
learning, and physics-informed neural networks — address key chal-
lenges in AI-driven diagnostics for industrial cooling systems. Tra-
ditional ML algorithms exhibit high computational efficiency, inter-
pretability, and suitability for real-time deployment, making them ideal 
for structured sensor data in resource-constrained settings. However, 
they moderately address data scarcity and scalability. Deep learning 
techniques offer superior modeling capabilities for complex and un-
structured data such as thermal images but face limitations in data 
requirements, computational cost, and real-time deployment. PINNs 
effectively handle sparse and noisy data while maintaining physical 
consistency, making them well-suited for scenarios with limited labeled 
data. Despite their interpretability and integration potential, PINNs 
currently struggle with scalability and training stability. This compar-
ative analysis helps align methodological choices with domain-specific 
requirements in industrial cooling diagnostics.

5.5. Future research directions and recommendations

Based on the insights gained from this study, several important 
directions for future research can further enhance AI-driven diagnostics 
and predictive maintenance in industrial cooling systems:

• Developing standardized, publicly accessible benchmark datasets 
covering various fault scenarios, operational conditions, and cool-
ing configurations to facilitate comparative analyses and model 
generalization.

• Analyzing and comparing different variants of physics-informed 
neural networks in the context of industrial cooling systems. 
This includes evaluating their effectiveness in modeling, fault 
detection, and optimization tasks.

• Investigate the integration of GAN-based loss functions within 
PINNs architectures to improve learning stability and enhance 
solution accuracy under limited or imbalanced data scenarios.

• Integrating Explainable AI methodologies, including hybrid deep 
learning approaches that combine physics-informed constraints 
and attention mechanisms, to enhance model interpretability and 
trustworthiness.

• Investigating lightweight AI architectures and deploying model 
compression techniques such as pruning, quantization, and
knowledge distillation to enable efficient real-time deployment 
in resource-constrained industrial environments.

• Exploring reinforcement learning methods for adaptive cooling 
optimization, enabling AI models to dynamically adjust cooling 
parameters in response to real-time operational and environmen-
tal changes.

• Promoting self-adaptive AI systems that employ reinforcement 
learning and continual learning paradigms, allowing real-time op-
timization and adaptation to evolving cooling system conditions.

• Advancing hybrid AI approaches that combine physics-based 
models with data-driven methods, enabling efficient diagnostics 
even with limited real-world data, thus improving robustness and 
reducing training data requirements.

• Expanding the use of generative models such as GANs and varia-
tional autoencoders (VAEs) to generate realistic synthetic datasets 
for fault scenarios, addressing class imbalance and data scarcity 
issues.

• Conducting detailed studies on edge computing implementations 
to facilitate real-time analytics, reduce latency, and minimize 
dependence on centralized computational resources.

• Exploring federated learning strategies to overcome data pri-
vacy barriers, enabling collaborative AI model training without 
compromising sensitive industrial data.
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Table 8
Mapping of AI Methods to Key Challenges in Industrial Cooling Diagnostics. (High = Effectively addresses the challenge; Medium = Partially addresses it; Low = Struggles to 
address it).
 AI technique Data scarcity Computational efficiency Real-time deployment Legacy integration Interpretability Scalability  
 Traditional ML Medium High High Medium High Medium  
 Deep Learning Low Low Low Low Low to Medium Medium to High 
 PINNs High Medium Medium Medium High Low  
• Examining the role of multi-modal data fusion techniques in 
integrating diverse data sources, including thermal images, sensor 
readings, and operational data, to enhance diagnostic accuracy 
and robustness.

• Optimizing energy efficiency and sustainability through AI-driven 
thermal management, utilizing AI techniques to dynamically con-
trol cooling parameters, minimize energy consumption, and re-
duce carbon footprints.

Overall, this study underscores the significant potential of AI-driven 
diagnostics and predictive maintenance for transforming industrial 
cooling systems. Continued research along these paths promises to sub-
stantially improve reliability, efficiency, and sustainability in industrial 
cooling, thereby aligning with broader goals of operational excellence 
and environmental responsibility.

6. Conclusions

This paper presents a comprehensive review of AI-driven diagnostics 
and predictive maintenance techniques for industrial cooling systems, 
focusing on the integration of machine learning, deep learning, and 
physics-informed neural networks. The study explores the applications 
of these methodologies across various domains, including fault detec-
tion, energy optimization, thermal imaging, and real-time monitoring. 
By synthesizing advancements and analyzing key challenges such as 
data scarcity, scalability, model interpretability, and cybersecurity, this 
review highlights the transformative potential of AI technologies in 
improving system reliability, energy efficiency, and operational sus-
tainability. Despite significant progress, several gaps remain in the 
development and deployment of AI solutions for industrial cooling sys-
tems. Challenges such as the availability of labeled data, computational 
demands of advanced models, and the need for real-time scalability 
hinder widespread adoption. Furthermore, ensuring the integration 
of domain-specific knowledge with data-driven approaches remains a 
critical area for future research. To address these challenges, this pa-
per outlines actionable research directions, including the development 
of standardized datasets, explainable AI frameworks, scalable real-
time algorithms, and secure AI deployment protocols. By addressing 
these issues, future advancements can enable the design of robust, 
interpretable, and sustainable cooling systems.
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