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Abstract— This work studies mean stability and first-moment
stability of discrete-time positive Markov Jump Linear Systems
with time-varying discrete modes. We adopt an approach based
on linear co-positive Lyapunov functions that produces two
sets of non-equivalent sufficient conditions with guaranteed
exponential decay rates. Due to the general time-varying nature
of the subsystems, the conditions require infinitely many tests.
Hence, we show how one of the two introduced conditions can
be finitely tested in the special case where the subsystems take
uncertain values within polytopes.

Index Terms—Markov Jump Linear Systems, Switching
Systems, Time-varying systems, Stability of Linear Systems.

I. INTRODUCTION

Markov Jump Linear Systems (MJLSs) are described by
switched models whose switching rule follows a Markovian
stochastic process. This class of linear systems has been
largely studied in the last decades due to some remarkable
applications to various problems arising in engineering, eco-
nomics, biology, etc. [1], [2], [3]. A quite established theory
exists to date (see, e.g., the monograph [2]) encompassing
some of the most popular problems in analysis and control.

Positive MJLSs (PMJLSs) are a popular subclass in which
the state variables can only be non-negative, provided that
non-negative inputs and initial state are applied to the system.
PMILSs have been popular due to the inherent positivity of
many systems of practical interest, as for example population
models, consensus models with switching topology, etc. [3].
Analysis and control of PMJLSs are themselves mature fields
with a rich and insightful literature (see, e.g., the recent [4],
[5], [6], [7], [8] and references therein).

Due to their stochastic nature, MJLSs allow for various
characterizations of stability. To name a few, literature has
studied stochastic stability, p-moment stability, almost-sure
stability, etc. [2]. Mean stability, which is quite easy to
characterize and test for MJLSs with time-homogeneous
transition rates, has no particular meaning for general MJLSs,
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as the convergence to zero of the expected value of the state
variable does not yield practically meaningful properties on
its evolution. On the other hand, when positivity is imposed
on the system’s dynamics, mean stability is equivalent to
first-moment stability and implies that almost all the real-
izations asymptotically converge to zero, that is, almost sure
stability, a significant practical property [3].

The core idea of this paper, and the main motivation
behind it, is to provide stability conditions for PMJLSs with
time-varying discrete modes, which have been less addressed
in the literature. Albeit being studied for control purposes
[2], literature on stability results for the general time-varying
case is scarce (one can mention [9] for the continuous-time
case with no positivity assumptions). More attention has been
paid to the case of MJLSs with dynamic matrices subject to
polytopic uncertainties (see, e.g., [10], [11]) or parameter-
varying [12]. Considering time-varying subsystems in MJLSs
allows for modeling complex systems in which a finite
number of time-varying behaviors is selected according to
a stochastic rule. Consider, for example, an epidemiological
model with a finite number of concurring scenarios that
exhibit a time-varying behavior (such as seasonality).

Our work starts by providing a general overview of the
main stability definitions for MJLSs (and PMIJLSs) and
by discussing their relationships. Then, we examine how
linear co-positive Lyapunov functions (LCLFs) can pro-
vide sufficient conditions of exponential mean stability (and
equivalently exponential 1-moment stability) for PMJLSs
with time-varying subsystems. For these conditions, we also
provide guaranteed exponential convergence rates (on the
mean value of the state and on its first moment, respectively).
As expected, due to the generality of the considered class
of systems, the conditions involve infinitely many tests in
the general case. Hence, we study the special and finitely
testable case in which the dynamic matrices take uncertain
values within polytopes. Remarkably, we show that only one
of the two non-equivalent LCLF-based conditions provided
for the general time-varying case can be adapted to a finitely
testable condition for the polytopic scenario. To the best of
our knowledge, all these contributions are novel and appear
here for the first time. Some of these can be seen as the
time-varying extension of the results in [5] when considered
for time-inhomogeneous transition probabilities.

Notation and preliminaries: We consider a probability
space (2, F, P) consisting of the sample space €2, a o-
algebra F of subsets of €2, and a probability measure P on
it. For any event F' € F, 1 is the usual indicator function,
defined as 1p(w) =1, if w € F, and 0 otherwise.



Ny is the set of natural numbers including 0. R>g (R+0) is
the set of non-negative (positive) real numbers. RZ ) (RZ ) is
the non-negative (positive) orthant of R™. RT;LOX”}S the cone
of non-negative m xn matrices. I,, is the nxn identity matrix
and 1,, is the column vector consisting of n ones. Vectors
are defined as columns, so that v' denotes a row vector
of suitable size. For sets of vectors defined with indexes
the notation [v;], will be used to denote the h-th entry of
vector v;. Inequalities among vectors and matrices of the
same dimensions have to be understood component-wise, i.e.,
M < N (M < N)if mij < Nij (mij < nij) for all 1,7,
where m;; denotes the 7, j entry of matrix M. In this sense,
a non-negative matrix M € RZ;™ is also denoted by M >
0, where 0 is the matrix of appropriate dimensions whose
entries are all zero. (M) and p(M ) respectively denote the
spectrum and the spectral radius of a square matrix M, which
is said to be Schur-stable if o(M) C {z € C : |z] < 1}
or, equivalently, if p(M) < 1. The following conditions are
equivalent for the Schur-stability of a non-negative M &
RYG™ [13]:

o p(M)<1, (1
e I — M is non-singular and (I — M)~ ' >0, (2
o JveRY;st VM <ol 3)
e JweRY,st Mw<w. 4)

The last two conditions can be tested via Linear Program-
ming (LP), making them appealing from the computational
viewpoint. Condition (3) is equivalent to the existence of
a linear co-positive Lyapunov function (LCLF) V (z(k)) =
v'x(k) for the discrete-time positive difference equation
xz(k + 1) = Maz(k), with 2(0) € RZ,, whereas (4) asks
the same on the system with one-step transition matrix M ' .
The symbols ||z|| and ||M]| denote a generic norm for
vector x and for the corresponding induced norm of matrix
M. ||z||; denotes the 1-norm of vector x € R™, i.e., ||z]|; =
S @l Clearly, if 2 € R, [Jz|l1 = Y1, 2 =1, 2.

For two matrices M € R™*™ and N € RP*? the
Kronecker product is denoted by M ® N, with:
mi1 N minN
M®@N = € RMPX"
mmlN mmnN

Finally, diag,[M;] will denote a block diagonal matrix
obtained by orderly putting the M, ..., M, matrices on the
diagonal blocks.

II. PROBLEM FORMULATION AND PRELIMINARY
RESULTS

We deal with discrete-time MJLSs with time-varying
subsystems, whose state evolution is described by:

(b +1) = Ag (k)z(k),
2(0) = zo € R",

k>0, &)

where {0(k), k € Ny} is a discrete-time stochastic pro-
cess described by a Markov chain taking values in the

finite set N := {1,2,..., N}, to which system matrices
{A1(k),...,An(k)} correspond. The probability of transi-
tion from mode ¢ to mode j at times k, k + 1 is given by:

and the probabilities m;; > 0 form the transition probability
(TP) matrix IT = [m;;], with Z;\le mi; = 1, or equivalently
11y = 1y. The initial probability distribution on (k) is
denoted pg(o) = [P(6(0) =1) --- P(A(0) = N)]".

Definitions and conditions of positivity for system (5) are
well-known in literature for the case of constant subsystems
(see, e.g., [5]). The extension to MJLSs with time-varying
subsystems is straightforward and follows.

Definition 1: A system described by (5) is a positive
Markov Jump Linear System (PMJLS) if, for any initial
condition xg > 0, it holds that (k) > 0 for all k& > 0.

A simple necessary and sufficient condition can be formu-
lated on {A;(k),..., An(k)} to satisfy this definition.

Proposition 1: System (5) is a PMJLS if and only if for
alli e N, A;(k)>0atall k> 0.

Various definitions of stability can be proposed for MJLSs,
with remarkable relationships holding in case of positivity.

Let us start with the definition of almost sure stability [3],
which ensures that nearly all the realizations asymptotically
tend to zero, a property of clear, practical interest.

Definition 2: The MJLS described by (5) is almost surely
asymptotically stable if, for any ¢y € R™ and any initial
probability distribution py (o),

P (fim (i) =0) =1 @
k—oc0

and is almost surely exponentially stable if, for some p > 0,
: 1

P (limsup —log ||z(k)|| < —p | = 1. (8)
k—o0 k

Another characterization that has been extensively studied
for MJLSs is moment stability.

Definition 3: The MILS described by (5) is p-moment
stable if, for any ¢y € R" and any initial probability
distribution pg(g):

lim B[l2(k)[”] = 0. ©)

Moreover, the p-moment stability is exponential if there
also exist a positive scalar «, and 5 € (0,1), such that
E[||z(k)||P] < aB¥||zo||P for all times k > 0.

p-moment stability has two important cases in p = 1 (first-
moment stability, 1-moment stability in brief) and p = 2
(mean square stability, MSS). Moment stability of any order
implies almost sure stability and higher moment stability
implies lower moment stability [14]. Most of literature dealt
with MSS, as necessary and sufficient condition to test it
exist (at least for the special case of constant subsystems).
This explains why MSS is often used to assess almost sure
stability, which is more difficult to test, even if MSS is a way
stronger condition. Clearly, this also motivates the interest in
studying 1-moment stability, which still implies almost sure
stability and is less stringent than MSS.



The concept of mean stability, that is the convergence to
zero, on average, of the realizations of z(k), has no particular
meaning for general MJLSs. On the other hand, for positive
MJLSs mean stability can be shown equivalent to 1-moment
stability, and this means that it implies almost sure stability;
these facts have been investigated and proved in various
works, still for the case of constant subsystems (see, e.g.,
[3], [6]). The equivalence of mean and 1-moment stability
for PMJLSs is appealing, since mean stability is relatively
easy to characterize and test. The following definition holds
under positivity constraints.

Definition 4: A PMILS as in (5) is mean stable if, for any
zo € RY, and any initial probability distribution pyg):

lim Efz(k)] = 0.

k—o00

(10)

Moreover, the mean stability is exponential if there also
exists a positive scalar «, and 8 € (0,1), such that
| E[z(k)]|| < aB¥||zol for all k > 0.

We start with a preliminary result on the usage of common
LCLFs to investigate the exponential stability of a discrete-
time positive system with time-varying matrices with no
Markovian switching rule. The result has appeared before (it
is, for example, a special case of the results for time-delay
systems of [15]). A proof (different from the one in the cited
reference) is reported here for the reader’s convenience.

Proposition 2: Consider a time-varying positive system
described by

x(k+1) = A(k)x(k),
:L’(O) =X € Rgo,
with A(k) > 0 at all k¥ > 0. The system is exponentially

stable with a guaranteed decay rate 8 € (0,1) if either one
among the following two (non-equivalent) conditions holds:

k>0,
(1D

e WeR:), 38, €(0,1) st. v A(k) < By,
e JweRY,, 35, €(0,1) s.t. A(k)w < Bw.

(12)
13)

Proof: We start proving that (12) implies the exponen-
tial stability of (11). Define V(z) = v z(k), for v € RZ,,.
Now, compute:

Vek+1) =0 a(k+1) =v A(k)z(k)  (14)

< pTek) = BV (e(E),  (15)

which implies that V(x(k)) < 88V (x¢) for k > 0, proving
the exponential stability of (11) with guaranteed convergence
rate 3, € (0,1).

To see that (13) implies the exponential stability of (11),
recalling that (k) > 0 at all k, consider the Lyapunov
function -

~max —,
i=1,...,n W;

V(z) = (16)
where z; and w; simply denote the i-th entries of vectors
z(k) € R%, and w € RZ;,. One has that (k) < V(z(k))w,
for any k£ > 0. It follows that:
A(k)z(k) < V(x(k))Ak)w,

k>0. a7

From (13) one has:

A(R)z(k) < V(2(k)Buw, k>0,  (18)

which considered component-wise yields

[A(R)z (k)]

V(z(k+1)) = max L < BuV(x(k), (19)

1=1,...,n w;
from which V(z(k)) < BEV(xg) for k > 0, that implies
the exponential stability of (11) with guaranteed convergence
rate 3, € (0,1). [ |
The next section will illustrate how the preliminary results
introduced above can be applied to the stability of PMJLSs.

III. MEAN STABILITY OF TIME-VARYING PMJLSS

We now consider the time evolution of the mean value of
x(k) for the MILS (5) under positivity constraints.

Let us define g(k) = [qf (k) - qX(k)]T with ¢;i(k) =
E[x(k)1g(r)—;]. Then, on the lines of [5], it can be shown
that Flz(k)] = Zi\;l qi(k) and

N
q(k+1) = Zﬂ'iin(k)Qi(k)a (20)
i=1
that can be compactly written as
q(k+1)= 1" ®1,) diag;[4; (k)] q(k), (21

which can be interpreted as a time-varying model with
dynamic matrix Q(k) := (II" ® I,,) diag;[A;(k)].

An application of Prop. 2 to this time-varying system
describing the mean evolution a PMJLS (5) yields the
following results.

Theorem 3: Consider a PMIJLS described by (5), with
A;(k) > 0atall k>0, for all 4 € N. Consider:

Q(k) = (1" ® I,,) diag,[A;(k)].

The following statements are equivalent:

(22)

a) The PMILS is exponentially mean stable;
b) The PMILS is exponentially 1-moment stable.

Moreover, both statements are implied by either one of the
following two sufficient conditions:

c) Jve R, 38, € (0,1) s.t. v Q(k) < ByvT, k>0

d) Jw e RZY, 3B, € (0,1) s.t. Q(k)w < Byw, k> 0.

Proof: The equivalence among conditions a) and b)

crucially relies on the positivity of the system. If a) holds
true, then there exists a positive «, and 8 € (0,1), s.t.
|E[z(k)]|| < aB¥||zol, for all & > 0. Then, consider that
z(k) > 0 at all k > 0, so that ||E[z(k)]|lx = E[l|z(k)|1]-
From the equivalence of norms on finite-dimensional spaces,
there exists a positive scalar ¢ such that:

Elllz(k)[] < cE[llz(k)]1] = | Blz(k)][l < aB*|loll
(23)
for some positive @, at all £ > 0. Hence, a) implies b).
Conversely, if b) holds true, there exist a positive «, and
B € (0,1), such that E[||z(k)||] < aB*||zo]. Then:

Bz < Elllz(F)[] < aB¥lzoll, k>0. (24



Now let us show that ¢c) = a), b). Consider that the
mean value of the state of (5) is described by E[z(k)] =

Zi]\il qi(k), as illustrated above. Hence, F[z(k)] koo
0 exponentially if and only if the time-varying system
q(k+1) = Q(k)q(k) is exponentially stable. Condition (12)
of Prop. 2 applied on this time-varying system yields the
implication c) == a), with the guaranteed exponential
convergence rate 3, € (0,1). In particular, one has that for
some positive « it holds:

(k)| < e lla(0)]],

Since Elz(k)] = Zf;l ¢i(k), one can write that:

N N
S a®)| < S latlh = la®)l:
i=1 1 =1

< &B*lq(0)]lr = @B | E[z(0)]]l1 = &B" [lzolx
(26)

k> 0. (25)

[ELz(F)][ly =

for some positive .

Finally, the fact that d) = a), b) follows with analogous
arguments just considering condition (13) of Prop. 2 applied
to system q(k + 1) = Q(k)q(k). [ |

Remark 1: First of all, we stress that the equivalence
among mean stability and 1-moment stability only holds due
to the positivity assumption on the system. Moreover, we
remark that 1-moment stability is also interesting due to the
fact that it implies (regardless of positivity) the practically
significant almost sure stability, which is difficult to test even
in the case of time-invariant discrete modes [3]. Most of
literature on MJLSs with time-invariant subsystems focuses
on MSS (which is stronger than 1-moment stability) since
necessary and sufficient conditions are available, and due to
the fact that it implies almost sure stability. Yet, testing MSS
involves stability checks on Nn? x Nn? matrices (see the
discussion in Remark 1 of [16]). The weaker property of
I-moment stability studied above can offer a computation-
ally advantageous and practically meaningful alternative for
PMILSs especially for large scale systems, even in the case
of time-invariant subsystems (see [16] for the discrete-time
case and [17], [18] for the continuous-time one).

The following Corollary proposes an alternative (but
equivalent) statement of conditions ¢) and d) of Thm. 3.

Corollary 4: Consider a PMJLS described by (5), with
A;(k) >0 atall k> 0, for all i € N. Either one of the fol-
lowing two conditions is sufficient for the exponential mean
stability (or, equivalently, exponential 1-moment stability) of
the system:

o Ju; €eRY;, i€ N, sit.

N
Vie N, > mjv Ai(k) < By, (27)
j=1
e Jw; € RYy, i € N, s.t.
N
VieN, > mjAik)w; < Buw;.  (28)

i=1

Proof: Consider matrix Q(k) in (22):

'/TllAl(k) 7T21A2(k) 7TNlAN(k)
7T12A1(/€) 7722A2(/€) 7TNQAN(IC)
minAi(k) manAa(k) TnNAn (k)
(29
Now consider condition ¢) of Thm. 3, one has:
U1 ’ 7T11A1(k) '/TNlAN(k) U1 !
: : : <Bu|: )
UN 7T1NA1(,Z€) WNNAN(]{J) UN
(30)
yielding
WlleAl(k) + - +7T1N’U]—|\—]A1(/€) < BU’U;—,
(€2D)]

mn1v] An (k) + -+ avnvog An (k) < By,

that is the set of conditions (27).
Similarly, considering condition d) of Thm. 3, we have:

71'11A1(l€) WNlAN(k) w1 w1
: : S IS I
7T1NA1(]€) WNNAN(IC> WN WN
(32)
yielding

m1dr(k)wi + -+ v An (B)wn < Bypwi,

mnAi(k)wy + -+ N AN (B)wn < Buwn,
that is the set of conditions (28). |

IV. PMIJLS WITH MODE MATRICES IN POLYTOPES

In this section, we consider PMJLS in which the time-
varying matrices associated with the N modes (mode matri-
ces) take values on N polytopes. There exists a rich litera-
ture on MJLSs with polytopic-valued transition probability
matrices (see, e.g., [19] and references therein). Here, we
consider the case in which the dynamic matrices A;(k) take
values in polytopes, and the transition probability matrix
is time-homogeneous (an extension to the case of time-
inhomogeneous, and even polytopic TP matrices is left for
future work). For a list of works on the same topic, see
[10], [11] and references therein. We remark that the main
focus of literature for polytopic and uncertain MJLSs is mean
square stability under no positivity constraints, while we here
consider mean (and 1-moment) stability for PMJLSs.

As is well known, a polytope in the space of matrices is
defined as the convex hull of a finite set of matrices, which
are the polytope’s vertices. Let P; denote the polytope on
which the time-varying mode matrix A;(k) takes values, let
r; be the number of vertices of P;, and let Az(-h) be the h-th
vertex. Thus, the N polytopes P; are formally defined as

P = conv({AW" . ATy i=1,...N. (34



Clearly, A;(k) € P; means that at each time instant k there
exists a non-negative vector 7;(k) € RY such that

T T
Ailk) =" AP pia(k); with S ma(k) =1, (35)
h=1 h=1
where the notation 7; (k) has been used to denote the h-th
component of vector 7; (k).

A situation in which it is appropriate to consider switching
systems with mode matrices taking values in polytopes is the
case of uncertain switching systems, that is the case where
the mode matrices are not exactly known. In this case, an
effective modeling approach is to consider nominal mode
matrices A; and bounded, possibly time-varying, uncertain-
ties A;(k) that take values in a polytope:

x(k+1) = Ag(m.ﬁ(k) + Ag(k)(k')w(k), k>0, 0(k) €N,
with A (k) € P2 = conv({AM, ..., Ay,

(36)
This uncertain PJMLS is equivalent to model (5) by setting

Ai(k) = A; + A(k), 37

provided that all matrices A; + A;(k) are non-negative. This
is equivalent to assuming that the uncertain time-varying
mode matrices A;(k) belong to the polytopes (34), where
the vertices are defined as Agh) =A; + Agh).

For PMIJLS with mode matrices taking values in polytopes,
the following Theorem provides a condition of mean and 1-
moment stability.

Theorem 5: Consider a PMIJILS described by (5), with
A;(k) taking values on polytopes P; as in (34), forall i € N,
where all vertices of all polytopes are non-negative matrices.
If the following conditions are verified

38, € (0,1), Jv; € R, i € N, sit.

N
—1,...,N,  (38)
T 4(h) T s s 4V,
domguf A < Bl
= h—l,...,TZ‘,

then the PMJLS (5) is exponentially mean stable (or, equiv-
alently, exponentially 1-moment stable).

Proof: Recall that A;(k) € P; means that there exists
a n;(k) € RY, such that the identities (35) are satisfied.
Then, if all conditions (38) are satisfied, for each i € N we
can consider the linear combinations of both terms of the 7;
inequalities with coefficients 7, 5 (k), for h =1,...,1, i.e.

Ti N Ti
ST nink) > mo] AN < S nak)Berl . (39)
h=1 j=1 h=1

Recalling that > ;" m;n(k) = 1, and distributing the
coefficients n; »(k) in the summation, we get

Ti N
> ZﬂijU;Agh)m,h(k‘) < By

h=1j=1

(40)
From this, rearranging the summations we get, forall ¢ € IV,

N [
S mge] S AP k) < Bov] (41)
j=1 h=1

Recalling (35), we see that the previous inequalities are
equivalent to the inequalities (27), and this, thanks to Cor.
4, proves the exponential mean stability of system (5). M
Remark 2: According to Theorem 5, the number of vector
inequalities to be satisfied to asses the stability of PMJLSs
with mode matrices in polytopes is K = Zi\; r;, which
is also the total number of vertices of the polytopes P;.
Consequently, the number of scalar inequalities is n/& . Note
that only the inequalities (27) of Cor. 4 have been exploited to
provide conditions of 1-moment exponential stability. After
a careful investigation, we can say that there is no equally
simple way to exploit inequalities (28) for assessing the 1-
moment exponential stability for this class of PIMLS.

Clearly, if the unknowns (decision variables) in the K
inequalities (38) are the N positive vectors v; € RY; and
the scalar 3, € (0, 1), then the problem is not a standard LP,
due to the presence of the products (3, 'UJT. Indeed, only if 3,
is fixed (not an unknown variable), the problem of finding
the N positive vectors v; that solve the inequalities becomes
standard. A deeper discussion on how transform the problem
with unknown (3, into a LP so that a standard solver can be
used to find the IV positive vectors that solve inequalities
(38) for some (3, € (0,1) is left for a future work due to
space constraints. We here remark that this reformulation can
be achieved by fairly standard techniques in optimization.

V. EXAMPLE

Here we demonstrate the paper’s results using an illustra-
tive example. Due to space constraints, a single example is
presented that focuses on the polytopic case of Sec. IV.

Consider a PMIJLS as in (5), with N = 3 modes, with
the polytopic mode structure described in (34)-(35). The
non-negative matrices Aj(k), A2(k), As(k) take value in
polytopes P1, P2, Ps with vertices given by:

@ _[0.2 071 2 [03 0.9]
A= 0.5 0.6] AT = 0.6 0.7)’
@ _[01 02] 2 [07 04] ,3 [0 05
A7 = |0 0.2 »As” = 0.4 0.6} »As” = 0.2 0.3
@ [03 0] ,@2 [02 0.3]
Az = 0.3 04 »AgT = 0.4 0.1)°
i ) i i (42)
and the transition probability matrix is given by:
0.5 0.3 0.2
II=1]03 02 0.5 (43)
04 02 04

We remark that Agl), A(2), and Agz) are unstable, i.e.
p(Agl)),p(Agz)), and p(A§2)) are strictly greater than one.
The system in this example is exponentially mean stable
(and exponentially 1-moment stable) since it satisfies the
conditions of Thm. 5, for example, with 3, = 0.9844 and

o — 384728 ~ [35.6982  [22.8460
L7 163.7015| 7 "2 7 [33.4794|° 3 T |16.5126]

The state evolution of the system is depicted in Figs. 1
and 2 for a single realization of §(k), and for 1 000 randomly



Single realization of (k)

Fig. 1. Example: Time evolution of z(k) (all components) for a single,
randomly generated realization of 6(k).
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Fig. 2. Example: Time evolution of ||z(k)||2 over 1000 randomly

generated realizations of 0(k).

generated realizations, respectively. For all such realizations
the pairs 2:(0), 6(0), and the coefficients n; j, (k) of the convex
combinations of the vertices of Py, P2, Ps are all randomly
generated with suitable uniform probability distributions. In
particular, 7; , (k) are randomly generated to satisfy (35).
The system clearly shows exponential 1-moment conver-
gence, and this also implies exponential almost sure stability.

VI. DISCUSSION AND CONCLUSION

This work established novel sufficient conditions of expo-
nential mean and first-moment stability for positive MJLSs
with time-varying subsystems. We adopted an approach
based on linear co-positive Lyapunov functions that pro-
vides guaranteed bounds on the exponential decay rate.
Due to the usage of constant Lyapunov functions on time-
varying systems, the conditions are certainly conservative.
On the other hand, time-varying Lyapunov conditions would
increase the computational burden even more, leading to
numerical intractability.

For the special case of uncertain subsystems taking values
within polytopes, we have seen how one of the novel stability
conditions can be finitely tested. The proposed conditions,
even when specialized to subclasses such as polytopic and
uncertain PMJLSs, offer a simpler and computationally less
demanding approach to deduce almost sure stability (which
is implied by 1-moment stability) with respect to the popular
analysis based on mean square stability.

Concerning future works, a first idea is to exploit the re-
sults proposed on PMJLSs in this paper also for MJLSs with
no positivity constraints, on the lines of our previous works
[16], [17], [18] which only considered time-invariant discrete
modes. Other research ideas pertain to the case of time-
varying transition probabilities, and applications. Among
these, we mention moving-target defense mechanisms and
analysis of control systems under deadline misses.
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