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Abstract. Accurate simulation of racing cars is crucial in motorsport
to quickly identify effective setups before track testing. Typically, profes-
sional drivers provide feedback in simulation, but this process is costly
and time-consuming. A capable virtual driver, combined with precise car
simulations, could significantly speed up setup development. This paper
proposes a data-driven predictive control approach, Data-enabled Pre-
dictive Control (DeePC), for trajectory tracking in racing simulations.
We compare our approach against an industry-standard Proportional-
Integral-Derivative controller and a state-of-the-art Model Predictive
Control controller, demonstrating that our method is feasible and yields
substantial performance improvements, particularly when trajectories
approach the car’s physical limits.
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Racing · DeePC · Trajectory Tracking · Racecar Simulation

1 Introduction

Professional racing teams heavily rely on simulators to refine car setups before
events, significantly reducing track-time costs and environmental impacts. The
relevance of simulation in motorsport has been growing steadily over the years,
with teams investing millions of dollars to get ahead of their competitors4. A bet-
ter simulation infrastructure and high correlation between simulator and track
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can lead to significant gains: the base car setup can be found early, shrinking the
search space and thus more effectively exploiting the free practice sessions to re-
fine details. Increasing cost, environmental concerns, and regulatory constraints
further amplify the role of simulation in motorsport [8].

Simulation at a professional level can be distinguished in two main categories:

1. Driver-in-Loop (DiL) simulators, where a human drives a model of the car;
2. Virtual driver simulators, where the car is driven by a computer program.

The requirement of a professional racing driver to be physically present in the
simulator limits the extent to which DiL simulators can be used; on the other
hand, accurate simulation of the driver’s behavior (a task akin to programming
virtually driven cars) is paramount to obtain valuable feedback.

In this work, we focus on the virtual driver simulator case, and, specifically,
on the construction of a control system capable of tracking an ideal trajectory
(e.g., coming from a real-world lap), for which we propose a data-driven predic-
tive control approach. We compare our proposed approach with an industrial
standard Proportional-Integral-Derivative (PID) controller and with academic
state-of-the-art Model Predictive Control (MPC).

1.1 Problem statement

Developing a virtual driver involves: (i) provided the track limits and car data,
generate an optimal reference trajectory; and (ii) compute the control inputs
to accurately follow it. Here we focus on the second task. In particular, we
investigate the usage of data-driven control techniques for autonomous racing.

1.2 Contribution

This paper extends our previous work [17], where we introduced a data-driven
predictive control approach for trajectory tracking in racing car simulation. In
this extended version, we expand our analysis of the method including:

– the impact of key hyperparameters (prediction horizon and dataset size) on
the controller’s tracking performance;

– the controller’s behavior on synthetic trajectories with progressively shorter
lap times, evaluating its response when the reference becomes infeasible.

2 Related Work

The problem of tracking a reference trajectory is a common control challenge.
Specifically, the control algorithm relies on feedback mechanisms to adjust the
vehicle inputs in real-time.

A standard approach to trajectory tracking in virtual driver simulations and
autonomous driving leverages PID controllers [5]. However, PID controllers lack
anticipatory control capabilities.
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MPC improves by predicting future states based on a model of the system
dynamics [4], producing better driving performance [12], and as such becoming
increasingly used in autonomous driving [2]. However, the improved performance
comes at the cost of increased algorithmic complexity, as MPC requires a detailed
and well-calibrated model of the system dynamics to make informed predictions,
which can be time-consuming and resource-intensive [10].

Learning-Based Model Predictive Control (LBMPC) methods overcome model-
building complexity by deriving dynamics directly from data. They are classified
in three families [6], based on what is learned: (i) system dynamics: the algo-
rithm improves its model of reality, either during operation or across multiple
operational instances; or (ii) controller design: control parameters are adjusted
to improve performance; or (iii) constraints: optimization and constraint satis-
faction are decoupled, with MPC used to enforce constraints [9]. The approach
closest to that proposed in this work belongs to the first category.

Some approaches treat the underlying system as a black box, using statistical
methods to build a system model implicitly from data. Examples include meth-
ods based on deep neural networks [15] and statistical models (e.g., NARX [11]).
DeePC [13] is part of this family. When real-world data is available, this ap-
proach can learn the input-output relationships. DeePC has shown promising in
handling the nonlinear dynamics inherent in racing environments [3]. With suffi-
ciently large datasets, DeePC can adapt to complex and dynamic scenarios, im-
proving flexibility and robustness compared to traditional MPC approaches [7].

3 Proposed approach

In this work, we investigate the use of DeePC to control a simulated racing
vehicle, comparing it with a PID controller and a “classic” MPC controller.

3.1 DeePC

DeePC is a data-driven variation of MPC where the explicit model is substituted
by a dataset. The intuition behind DeePC is that a linear combination of past
realizations of the system could be used to match the current conditions and
forecast future behavior. More formally, DeePC requires a dataset H ∈ RN×2T

of N past realizations of the system capturing T samples of the system state,
namely T inputs us

t (input at time t of the s-th trajectory), and T outputs ys
t

(output at time t of the s-th trajectory).
Inputs and outputs are split into two subgroups each, representing the ini-

tial and the future state of the system, used respectively to match the current
conditions and to forecast the future behavior. More formally: uinit (inputs se-
lected to model the initial part of the trajectory across all N trajectories), yinit
(outputs selected to model the initial part of the trajectory across all N trajec-
tories), ufut (inputs selected to model the future part of the trajectory across all
N trajectories), and yfut.
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Based on such dataset, the algorithm has to find a vector of coefficients g,
future predicted inputs ufut, and future predicted outputs yfut such that: (i) there
is no difference between the vector of previously known inputs u∗

init and outputs
y∗

init; (ii) the difference between the reference trajectory r and the predicted
outputs yfut is minimized, thus minimizing the amount of control exerted on the
system (the norm of predicted inputs ufut). Formally, the optimization problem
thus can be written as:

minimize
g,ufut,yfut

∑
∥yfut − r∥2

Q + ∥ufut∥2
R

subject to Hg = L
(1)

where Q and R are weighting matrices that balance the trade-off between track-
ing performance and control effort. Optimization constraints can be expanded
as: 

u1
init u2

init · · · uN
init

y1
init y2

init · · · yN
init

u1
fut u2

fut · · · uN
fut

y1
fut y2

fut · · · yN
fut


︸ ︷︷ ︸

H∈R2T×N


g1
g2
...

gN


︸ ︷︷ ︸

g∈RN

=


u∗

init
y∗

init
ufut
yfut


︸ ︷︷ ︸

L∈R2T

(2)

Table 1 summarizes all symbols used in this section.

Linear relaxation of non-linear systems DeePC is working with the assumption
that the controllable system is linear. If it’s not the case, then non-linearities
are accounted for by modelling them as noise through a so-called “discrepancy
term” σ [3]. The problem can then be rewritten as:

minimize
g,ufut,yfut,σ

∑
∥yfut − r∥2

Q + ∥ufut∥2
R + ∥σ∥2

λy
+ ∥g∥2

λg

subject to Hg = L +
(
0 σ 0 0

)⊤
(3)

Configuration of the algorithm The algorithm can be configured with two key
parameters representing the dataset size (N) and the prediction horizon (ph).
We expect larger N to provide faster convergence and better overall performance
at the expense of increased computational complexity. Instead, ph determines
how far into the future the controller should look, and it is equivalent to the
length of future input and output traces (ph = |ufut| = |yfut|). Selecting an
appropriate prediction horizon impacts performance, as short horizons will may
be insufficient to apply corrective actions, and performance will degrade for long
horizons, as the learned behavior will slowly drift away from reality.

3.2 DeePC for simulated racing car control
In this section, we apply DeePC to the problem of controlling a simulated racecar.
We discuss the control parameters, the simplifications we introduced, and how
to extend the model to account for greater complexity. We assume our controller
acts on two inputs: acceleration control (throttle and brake) and steering.
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Table 1. Summary of the symbols used in Section 3

Parameter Description
g Vector of coefficients for trajectories in dataset
H Matrix of dataset for DeePC
N Number of trajectories in the dataset
T Length of the trajectory in the dataset
u Input vector of the model
y Output vector of the model
Q Cost weight matrix of output
R Cost weight matrix of input
r Reference trajectory

λy Cost weight matrix of discrepancy
λg Cost weight of DeePC coefficients
σ Discrepancy vector of non-linearities

Throttle and brake The acceleration control varies in a [−1, 1] where nega-
tive values represent actions on braking, and positive values throttle. Thus, this
model does not account for combined brake/throttle actions. Moreover, we as-
sume that the car can always output its maximum torque, and thus we do not
add gearshift control as an input. Both separated brake and throttle control and
gear shifting can be included straightforwardly in the model, as the input and
output spaces are not constrained by the algorithm.

Steering steering is modeled as the angle between centerline of the vehicle and
centerline of the front wheels, ranging in [−15◦, +15◦]; we thus model the input
provided to wheels rather than the input to be provided to the steering wheel.

Outputs The model’s outputs are the following: (i) horizontal and (ii) vertical
coordinates of vehicle’s center of mass with respect to a global reference point (m)
(iii) speed (m/s) (iv) heading angle with respect to a global coordinate directed
towards east (rad). Thus, in total, the algorithm is subject to six channels: two
inputs (every entry in ufut and uinit will have two values) and four outputs (every
entry in yfut and yinit entry will have four values).

Dataset size and generation DeePC requires a dataset of past realizations of
the system to be able to predict future behavior. The quality of such dataset is
paramount for the performance of DeePC. The dataset size N is tightly bound
to the complexity of the model at hand. Constrained models generally require
smaller datasets than less constrained and more complex models. For the prob-
lem at hand, even using our simplified racecar model (cf. Section 4.1), a dataset
in the order of hundreds of trajectories is necessary. Thus, we run multiple in-
stances of the racecar model, starting in the origin with a random speed, and
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record the car’s paths in response to random control actions. We control the ran-
dom generation by setting a different seed for each run to ensure reproducibility.

Dataset roto-translation Trajectories must share the same reference frame,
requiring roto-translation of either the dataset or the current trajectory. Here,
we roto-translate the current trajectory into the dataset’s frame.

4 Experimental evaluation

In this section, we investigate: 1. how robust is DeePC to changes in the predic-
tion horizon ph and dataset size N ; 2. how DeePC compares to “classic” MPC
and traditional PID controller in terms of tracking performance.

4.1 Experimental setup

750 500 250 0 250 500 750
X, m

400

200

0

200

400

Y,
 m

Abu Dhabi circuit
DeePC
MPC
PID

Fig. 1. Trajectory tracking in the Yas Marina circuit in Abu Dhabi. The dashed line
defines the target trajectory, solid lines the trajectories as followed by the controllers.
The controllers were initialized with time offsets to avoid overlap, which results in
portions of the dashed line not being covered by any controller at a given time.

Metrics In this evaluation, we employ the Residual Sum of Squares (RSS)
method to gauge how accurately a vehicle follows the reference trajectory. Lower
RSS values indicate better tracking performance.

Reference trajectories We test our algorithms on two different trajectory
types: (i) a synthetic ∞-shaped Lissajous figure (Figure 5); and (ii) a real-world
trajectory of an open-wheel racecar in Yas Marina, Abu Dhabi (Figure 1).
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The Lissajous figure has been previously utilized in the literature [1] as a
standard reference trajectory for evaluating the performance of trajectory track-
ing systems. It can be used to generate slower or faster trajectories for a given
lap time τ : {

x(t) = 100 sin
( 2πt

τ

)
y(t) = 100 cos

( 4πt
τ

) for t ∈ [0, τ ] (4)

The Yas Marina circuit is a track where several major racing championships
take place, including Formula 1. We use the real-world trajectory of the track to
evaluate the performance of the algorithms in a more realistic scenario, with a
variety of high and low-speed corners.

Table 2. Parameters of the racecar model

Param. Description Value
DRF Peak value of the friction coefficient (Pacejika D) 1.0
CRF Shape factor of the friction coefficient (Pacejika C) 1.1
BRF Stiffness factor of the friction coefficient (Pacejika B) 25.0

m Racecar mass 896 kg

Iz Moment of inertia 1500 kg · m2

lRF Distance from Center of mass (CM) of Rear/Front wheel 1.125 m

ρ Air density 1.225 kg/m3

A Cross sectional area
CD Drag coefficient CDA = 1.35m2

CL Downforce lift coefficient CLA = 4.31m2

P Motor power 620 hp

Racecar model For this initial study, we use a simplified model of a racecar
based on the well-known “single-track model”, in which the car is approximated
as a two-wheeled vehicle with a fixed wheelbase, and the motion is described in
terms of a few key parameters summarized in Table 2. In the model we consider
nonlinear tire forces based on a simplified Pacejka model [14].

The state of the model is described by: (i) x, y: position of CM, (ii) ϕ: orien-
tation of the model, (iii) Vx, Vy: velocity of CM, (iv) r: angular velocity of the
model, (v) δ: steering angle of the front wheel, and (vi) Ξ: throttle; while its
motion is governed by the differential equation:

ẋ
ẏ

ϕ̇
V̇x

V̇y

ṙ

 =


Vx cos(ϕ) − Vy sin(ϕ)
Vx sin(ϕ) + Vy cos(ϕ)

r
1
m (Fx − FF y sin(δ) − FAx) + Vyr
1
m (FRy + FF y cos(δ) − FAy) − Vxr

1
Iz

(FF ylF cos(δ) − FRylR)

 (5)
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where the tyres’ lateral forces are represented by FF y and rear FRy; the aero-
dynamic drag forces are represented by FAx and FAy (respectively, front and
lateral5); and the motor force is represented by Fx. Tyre forces are computed
as: FRF y = DRF sin (CRF atan (BRF αRF )) W and αRF = atan

(
Vy−lRr

Vx

)
, where

the weight (W ) is computed as: W = mg + 1
2 ρACL∥V ∥2. The aerodynamic drag

forces are: FAxy = 1
2 ρACDV 2

xy.
Finally, the motor force is: Fx = min(max(ΞPVx, −xW DR

), xW DR
).

Car parameters For the experiments, we set the parameters of the car model
to mimic a Formula 2 car6 Their values are summarized in Table 2.

Optimization criteria for DeePC As optimization criterias we used R =
diag(0.1, 0.1), Q = diag(1, 1, 1, 100), λy = diag(200, 200, 200, 200), λg = N/20.
Optimization criteria R and Q (for inputs and outputs, respectively) are chosen
to balance the trade-off between tracking performance and control effort. Unlike
MPC, DeePC has two additional parameters, λy and λg, that balance the trade-
off between the uncertainty of initial conditions and the predicted trajectory
based on the dataset. If Q ≪ R, the controller deviates from the reference; while
if Q ≫ R, the system can become unstable. Similarly, if λy ≪ λg DeePC tends to
ignore initial conditions in favor of making predictions, which can cause tracking
deviations; opposedly, if λy ≫ λg the control becomes more random, decreasing
control quality and possibly causing instability.

4.2 Baselines

0.04427

0.3033

7.279

2.449

Throttle

Steering

-

-

Speed

Heading

Ref. heading

Ref. speed

Race Car

Ref. X

Ref. Y

Distance

Direction

X

Y

-

-

Fig. 2. PID controller scheme.

We compare DeePC with two baselines: (i) a PID controller, and (ii) a “clas-
sic” MPC controller. In our paper, we employ the cascade scheme of four propor-
5 Lateral aerodynamic forces are only relevant when the car slides.
6 The parameters have been extrapolated with the help of domain experts from the

data available at https://archive.fo/3erTM

https://archive.fo/3erTM
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tional controllers depicted in Figure 2, which together compose a PID controller.
The inner loops are responsible for controlling the steering and throttle based
on the reference speed and heading. The outer loops integrate these inner loops
and are responsible for direction and distance control. The parameters have been
found using random search optimization.

The MPC controller, instead, is based on a simpler kinematic model of the
car, which does not consider friction. This way, we replicate the imperfect cor-
relation between the real world and its simulated model.

Experiments and reproducibility We perform three experiments, meant
respectively to: 1. evaluate the performance of DeePC with different choices
of prediction horizon and dataset size; 2. compare the performance of DeePC
with the state of the art on an artificial trajectory with varying lap times; and
3. compare the performance on a real-world trajectory of a race car to gather
evidence of whether the approach can be applied to realistic scenarios.

The former two experiments have been opensourced7 for reuse and repro-
ducibility. An archival copy is also available at Zenodo [16]. The latter experi-
ment could not be included, as the Yas Marina track trajectory is proprietary.

4.3 Impact of dataset size and prediction horizon on DeePC

As a first step, we investigated how the variation of prediction horizon and
dataset size influenced the performance of DeePC. To do so, we generated a
synthetic ∞-shaped trajectory largely within the capability of the car. We then
let the prediction horizon range in [20ms, 160ms] and we inspect the behavior
of DeePC with dataset sizes N ∈ {50, 100, 200, 400}. For each combination of
parameters, we run 30 repetitions differing by the seed used to generate the
dataset.

Results are summarized in Figure 3. The controller’s ability to foresee into
the future correlates positively with the overall quality of control. The best
control quality is achieved at about 60ms, however, this value may be different
for different trajectories and car models.

4.4 Synthetic trajectory tracking

Next, we compare PID, MPC and DeePC on a synthetic ∞-shaped trajectory,
with the goal of understanding how well they can cope with an increasingly
difficult trajectory. In fact, we can apply Equation (4) to generate trajectories
increasingly difficult to track, as the lap time τ decreases. In this case, we set
the prediction horizon to 60ms for both MPC and DeePC.

The experiment results are depicted in Figure 4, and show that the PID con-
troller performs comparably to the predictive controllers for very easy trajecto-
ries; however, it quickly becomes the worst performer as the trajectory difficulty
7 https://github.com/Crylab/DeePC

https://github.com/Crylab/DeePC
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Fig. 3. DeepC performance with dataset
size and prediction horizon. Solid lines rep-
resent the mean over 30 repetitions, while
coloured shaded areas depict ± one stan-
dard deviation.
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Tracking error vs. trace difficulty
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Fig. 4. Error with increasingly easy syn-
thetic trajectories. When on the verge of
the car capabilities, DeePC outperforms
both baselines. Solid lines are averaged
over 30 repetitions, coloured shaded areas
depict ± one standard deviation. Accept-
able performance is under 7 meters.

increases. MPC has better performance than the PID, and it is comparable to
DeePC with N = 50. With a larger dataset, DeePC outperforms the baselines,
especially for trajectories that sit close to the limit of the car performance.

Moreover, we found that the classic MPC approach is more sensitive to the
precision of the numerical solver than DeePC: we encountered cases in which the
resulting behavior is unstable for the same selection of optimization criteria for
which DeePC is capable to follow the trajectory instead. An example is shown
in Figure 5, in which MPC accelerates too early and loses control of the car after
a classic “pendulum” effect.

4.5 Real-world trajectory tracking

The last experiment is akin to the previous one, but the trajectory is a real-world
lap of a racecar around the track of Yas Marina in Abu Dhabi. In this experiment
we make the lap increasingly more difficult to follow by varying the peak friction
coefficient of the tires, emulating the effect of an increasingly slippery track8. We
analyze conditions that range from a slippery track in which the lap is plainly
not achievable (DRF = 0.8), to conditions of extremely high grip (DRF = 1.6).

The resulting data is summarized in Figure 6. In this test, with a much more
complex trajectory featuring slow and fast turns, DeePC outperforms both base-
lines consistently. In this case, in fact, the simplified kinematic model of MPC is
not capable to accurately predict the car’s behavior in many conditions, while
the data-based model internal to DeePC can produce more accurate predictions.

8 Track conditions impact significantly the grip available to the car in real-world rac-
ing. Even if the track remains dry, the rubber laid down by the cars can make it
more or less slippery, and the track temperature can also affect the grip. Moreover,
the tire compound can be chosen to be more or less grippy, typically presenting a
trade-off between peak performance and durability.
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Fig. 5. ∞-shaped trajectory tracking
with unstable MPC
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Tires friction variation on Abu Dhabi circuit
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Fig. 6. Error with increasingly higher
peak tyre friction in the Yas Marina cir-
cuit. DeePC outperforms both baselines.
Solid lines are averaged over 30 repeti-
tions, coloured shaded areas depict ± one
standard deviation.

5 Conclusion and future work

In this paper, we extended our previous investigation of DeePC for trajectory
tracking in race car simulation, investigating the impact of prediction horizon
and dataset size on the controller’s tracking performance and the controller’s
behavior on synthetic trajectories with progressively shorter lap times. We com-
pared it against traditional PID and classical MPC controllers. Our results show
DeePC is viable, outperforming traditional methods especially on complex tracks
near the vehicle’s limits. Its data-driven nature makes DeePC suitable even when
building accurate real-world models is challenging, provided the dataset is suffi-
ciently rich and the prediction horizon appropriately balanced.

Future work will extend the approach to advanced car models (including
multibody dynamics, finite element tire models, and aerodynamics), improve
dataset generation for greater efficiency, and tackle the separate problem of tra-
jectory generation based on track and car characteristics, as discussed in Sec-
tion 1.1. Moreover, we will more precisely characterize the efficiency profile of
DeePC compared to MPC. In our experiments, execution times were comparable
between the two methods; however, we expect DeePC to scale better than MPC
with model complexity and prediction horizon. This expectation will be verified
in future work.
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