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 a b s t r a c t

Explainable artificial intelligence (XAI) methods produce information outputs based on a target artificial intelli-
gence model to be explained. The most popular information output is produced by XAI methods of the category 
feature attribution, which produce the relative contribution of each input feature in a local instance. These rela-
tive contributions indicate how important each input feature is in a decision; this type of information is expected 
to provide explanatory value to users. In real-world regression tasks, feature attribution methods are crucial for 
comprehending model predictions. However, robust evaluation of such methods remains challenging due to a 
lack of ground-truth data and widely accepted evaluation metrics, such as accuracy for classification or mean 
absolute error for regression. This paper proposes a novel approach for generating synthetic, privacy-preserving 
ground-truth datasets for regression problems that retain original feature behaviour, enabling rigorous feature 
attribution evaluation without compromising sensitive information. We introduce additive case-based reason-
ing (AddCBR) as a model-aligned and interpretable baseline to benchmark additive feature attribution methods. 
This work also demonstrates the first use of the coefficient of quartile variation (CQV) as a statistical measure 
to quantify the consistency and stability of feature attribution methods. Altogether, these contributions form a 
comprehensive evaluation methodology for objectively assessing and comparing feature attribution methods in 
regression models. By providing a controlled evaluation pipeline with reliable baselines and metrics, this work 
addresses the current lack of consensus and benchmarking in XAI evaluation for regression models.

1.  Introduction

Recent literature on explainable artificial intelligence (XAI) explores 
how artificial intelligence (AI) algorithms can explain their decisions 
[1–6]. In essence, XAI methods attempt to extract information beyond 
an AI algorithm’s raw output (e.g., a predicted class or numeric out-
come) by revealing why the model made its decision–for example, by 
identifying the features that most influenced a given prediction. Inher-
ently interpretable models, like decision trees and case-based reasoning 
(CBR), often offer information like tree paths [7] or cases [8,9] that 
may carry explanatory value. However, when AI models are either not 
interpretable or not sufficiently interpretable, post-hoc XAI methods can 
extract additional information. Among such methods, additive feature 
attribution methods such as SHAP [10] and LIME [11] assign each input 
feature a contribution value whose sum approximates the model’s out-
put. This characteristic allows what is termed local accuracy [10] that 
indicates how closely the additive feature attribution method’s output 
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aligns with the AI model’s prediction for each instance. However, there 
is ongoing debate about whether local accuracy alone is an adequate 
measure for quantitative quality of feature attribution [12,13].

Despite the popularity of feature attribution methods, there is a lack 
of widely accepted evaluation standards for them [6,14–16]. Construct-
ing reliable ground-truth benchmarks for evaluation remains a signifi-
cant challenge [17–21], and it is recommended that XAI methods must 
be evaluated in each domain and application, because it is consensual 
that explanations are application-specific and contextual (e.g., depen-
dent on user, domain, and task) [19,22–26]. In practice, these factors 
make XAI evaluation challenging, and such evaluations are frequently 
neglected entirely [6,16]. In a recent scoping review, Mainali and We-
ber[16] found that 81% of works describing machine learning appli-
cations as explainable do not evaluate the quantitative quality of the 
information outputs produced by their XAI methods.

Much of the existing work on feature attribution methods has fo-
cused on classification tasks. Applying similar methods to regression 
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Fig. 1. Overview of the proposed pipeline to evaluate additive feature attributions for regression. The innovations of this work are highlighted in blocks of darker 
shade and bold fonts. Also, the rationales of the innovations are outlined on the right.

problems requires careful adaptation [27]. Particularly, to ensure the 
model’s output is preserved on the original scale of the data-referred to 
as the property of conservation-is essential, but in practice this can be eas-
ily violated by steps including normalization or standardization. Addi-
tionally, literature indicates that the outputs of popular additive feature 
attribution methods can be highly sensitive to the choice of data models 
and to feature collinearity in the data [28]. To address all the afore-
mentioned challenges, the overarching goal of this work is to establish 
a privacy-preserving, model-aligned, and statistically grounded frame-
work for evaluating additive feature attribution methods in regression 
models with the innovations outlined in the following subsection.

1.1.  Innovations

This work introduces three key innovations that advance the state-
of-the-art in XAI for regression tasks:
1. Privacy-preserving ground-truth data for evaluating feature attribution in 
regression models: We propose a novel approach to create synthetic 
datasets for regression tasks, which address privacy concerns while 
preserving the explanatory role of each feature. The synthetic dataset 
replicates the characteristics of the original dataset and can be used 
to compute feature attributions as ground-truth to evaluate feature 
attribution methods for explaining regression tasks. This approach 
aligns with recent recommendations to use synthetic data for bench-
marking XAI techniques [29] and protect sensitive information from 
the original dataset [30,31].

2. Additive form of CBR as a model-aligned baseline to evaluate additive 
feature attribution methods: We extend our additive CBR (AddCBR) 
method, first introduced in a workshop paper by the same authors 
[32]. Specifically, AddCBR is designed to serve not only as an inter-
pretable explanation method but also as a model-aligned baseline for 
evaluating additive feature attribution methods. The benefit of Add-
CBR is that it uses the prediction model parameters to generate fea-
ture attributions formatted in the same way as additive feature attri-
bution methods like SHAP [10] or LIME [11] that we aim to evaluate. 
AddCBR offers a transparent, feature attribution-aware reference for 
the evaluation of additive feature attribution methods. Additionally, 
in this work, we validate AddCBR’s reliability with a feature deletion 
study that exhibits how removing each feature affects the model’s 
predictions, confirming that feature attribution from AddCBR truly 
reflects each feature’s influence.

3. Statistical metric for evaluating the additive feature attribution methods:
We propose the use of a statistical measure, the coefficient of quartile 
variation (CQV) [33], to evaluate the quantitative quality and consis-
tency of feature attributions. By comparing the variability of two sets 
of attribution values (for instance, the attributions from our baseline 
versus those from another method), CQV yields a single quantita-
tive indicator of how similar or stable the two sets are. To the best 
of our knowledge, this is the first application of CQV in evaluating 
XAI methods, offering a novel way to determine whether different 
explanation outputs are in agreement.

To present the value of the outlined innovations, we implement an 
evaluation pipeline for the additive feature attribution methods. Despite 
being potentially applicable to both regression and classification appli-
cation tasks; in this work, the implementation of the proposed approach 
focuses only on regression problems. Fig. 1 provides an overview of our 
evaluation pipeline for additive feature attribution methods in regres-
sion. The workflow starts with the acquisition of an original dataset that 
is used to create the model whose decisions one needs to explain. From 
the original data, we generate a synthetic dataset that captures the be-
haviours within the original dataset, thus preserving the privacy and 
reflecting ground-truth behaviours. A new data model is then trained 
on this synthetic data. Next, we derive the AddCBR baseline feature 
attributions from the synthetic data model and examine their fidelity. 
After establishing this baseline, we apply the chosen additive feature 
attribution methods to the data model. Finally, the baseline is used to 
evaluate the outcome of the additive feature attribution methods using 
the CQV metric and other established measures from the literature. In 
our experiments, we consider two popular additive feature attribution 
methods. The first method is SHAP [10] that is grounded in Shapley 
values [34] and is expected to perform well for regression tasks. And, 
LIME [11]—the other method that we anticipate to be less effective for 
regression tasks because it includes some standardization of the model’s 
values to produce feature attribution.

1.2.  Motivation

This work is motivated by a real-world regression problem in avi-
ation: predicting flight take-off time delays. The aviation industry in-
curs, on average, approximately 100 Euros per minute for the Air Traffic 
Flow Management [35]. In the United States, a 2019 Federal Aviation
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Administration1 report presented that the estimated cost due to delay, 
considering passengers, airlines, lost demand, and indirect costs, was 
33 billion dollars [36]. Such high stakes underscore the significance and 
provide the rationale for increased attention towards predicting take-off 
time and reducing delays [37]. More generally, regression tasks play a 
crucial role in many AI applications, yet the explainability of regression 
outcomes has received relatively limited attention compared to that of 
classification tasks.

A key challenge in developing and evaluating regression models in 
safety-critical domains like aviation is the limited availability of high-
quality data. Original datasets are often proprietary, domain-specific, 
and computationally expensive to process due to high dimensionality 
[27,29]. These constraints hinder the iterative experimentation needed 
to improve prediction and explanation methods. Moreover, a fundamen-
tal issue in the evaluation of feature attribution methods is the absence 
of ground-truth attributions [21]. When combined with the need to pre-
serve data privacy and the importance of maintaining the output in its 
original measurement unit, i.e., property of conservation, these challenges 
motivate our use of privacy-preserving synthetic data as a stand-in for 
ground-truth in explanation evaluation. Furthermore, given the lack of 
consensus on standardized evaluation criteria for XAI methods [6], we 
present AddCBR as a model-aligned baseline and use the CQV metric to 
provide a quantitative assessment of the consistency of different feature 
attribution methods. To validate the utility of the proposed benchmark 
and evaluation framework, we focus our analysis on a single, domain-
specific dataset. This allows for a detailed investigation of the underly-
ing features and their role in supporting meaningful evaluation of XAI 
methods in a real-world regression context.

The remainder of this article is organised as follows–Section 2 re-
views relevant background and related work. Section 3 introduces the 
proposed approach for generating privacy-preserving ground-truth data 
and presents the evaluation of the generated data with respect to 
the original dataset. Section 4 describes the construction of the Add-
CBR baseline for evaluating additive feature attribution methods and 
presents the experiments demonstrating its effectiveness as an evalua-
tion benchmark. Section 5 outlines the proposed evaluation criteria for 
the additive feature attribution methods and discusses the implementa-
tion with experimental results. Finally, Section 6 concludes the paper 
with a summary of the findings and potential future directions for ad-
vancing the research field of XAI in the context of evaluation.

2.  Background and related work

This section presents the formal definitions of the regression mod-
els and the additive feature attribution methods used to explain their 
output, which are referred to in the subsequent sections. Following the 
definitions, we describe the state-of-the-art XAI methods used in this 
study, along with their evaluation approaches. We also review the works 
utilizing benchmark datasets for XAI evaluation.

2.1.  Formal definition

The regression model Ω is defined for a dataset of 𝑛 observations 
indexed by 𝑖 ∈ {1,… , 𝑛}. The 𝑖th observation is described by a set of 𝑚
independent features or attributes 𝑎1,… , 𝑎𝑚, represented by the vector 
𝑥𝑖 = [𝑥𝑖1,… , 𝑥𝑖𝑚] ∈  , where, 𝑥𝑖𝑗 is the value of attribute 𝑎𝑗 drawn from 
its distribution 𝑗 , where 𝑗 ∈ {1,… , 𝑚}. This distribution can be contin-
uous or discrete, depending on the nature of the attributes. The feature 
space is defined as  = 1 ×… ×𝑚. The corresponding target value 
is 𝑦𝑖 ∈  ⊆ ℝ. Given the dataset, the objective of Ω is to learn a map-
ping function 𝑟 ∶  →  that accurately estimates the target variable 𝑦𝑖
from the input feature vector 𝑥𝑖, i.e., 𝑟(𝑥𝑖) = 𝑦𝑖. Finally, an explanation 
problem is a tuple (𝑟, (𝑥𝑖, 𝑦𝑖)) intended to be solved using an explana-
tion function 𝑔(𝑧𝑖). Here, 𝑧𝑖 ∈ {0, 1}𝑚 simplified binary representation 

1 https://www.faa.gov/

of 𝑥𝑖 obtained via a transformation function ℎ(𝑥𝑖). The function 𝑔(𝑧𝑖)
computes the feature attributions (𝜙 ∈ ℝ𝑚) using Eq. (1) [10]:

𝑔
(

𝑧𝑖
)

= 𝜙0 +
𝑚
∑

𝑗=1
𝜙𝑗𝑧𝑖𝑗 (1)

where 𝜙0 corresponds to the bias term (average model output for the 
dataset) and 𝜙𝑗 attributes the effect of the 𝑗th feature on the predic-
tion. Finally, the sum of all the feature attributions and the bias term 
approximates the output 𝑟(𝑥𝑖) of the regression model.

2.2.  XAI methods

The purpose of explaining an AI model’s decision is to make the be-
haviour of the model intelligible to users [1]. For this reason, many 
authors have stated that the explainability problem is user-, application-
, and domain-specific [9,23,25]. This realization alone justifies the 
recommendation that XAI methods should be evaluated for each spe-
cific implementation. Particularly, when considering feature attribution 
methods, many studies have shown that their results can have several 
limitations (e.g., [21,38–40]), underscoring evaluation as a major re-
quirement [21,39,41–44]. In this section, we describe the main XAI ap-
proaches evaluated in this work, as well as the approaches for evaluating 
explanations considering different perspectives.

The domain of XAI contains a wide spectrum of methods that can be 
categorised along various conceptual dimensions. A fundamental dis-
tinction between methods is whether they explain a model’s overall 
decision strategy (i.e., global) [45,46] or an individual instance (i.e., 
local) [11,47]. Later in this article, we show that an interpretable CBR 
methodology yields a strong alignment between global and local fea-
ture attributions. By contrast, we did not observe this alignment with 
Extreme Gradient Boosting (XGBoost) or any other AI or XAI methods.

As introduced, we focus on the additive feature attribution methods 
for regression on tabular data. As an example of a method that is indi-
cated for regression [27], we use SHAP [10], since it is based on Shapley 
values [34]. As we will validate, despite criticisms (e.g., [21,40]), SHAP 
performs well for the regression task.

SHAP–Shapley Additive Explanations [10] is a suite of methods for 
computing the relative contributions of individual features to a given 
prediction, so that their sum approximates the model’s output. SHAP 
borrows concepts from cooperative game theory [48]. With non-linear 
black box models, SHAP provides feature importance values as a global 
explanation. It also produces local explanations for individual predic-
tions using Shapley values [48] to fairly assign the impact among fea-
tures. Because the calculation of the Shapley values requires iteration 
over 2𝑚 sample space, SHAP approximates the feature contributions for 
high-dimensional data. For smaller values of 𝑚, the feature contribu-
tions are exact. SHAP computes the marginal contributions of the fea-
tures to generate an explanation in the form of feature attribution for 
models’ output. The marginal contribution of each feature is the dif-
ference between the prediction from the model with and without the 
respective feature. Finally, SHAP assigns each feature an overall con-
tribution equal to its average marginal contribution across all possible 
feature combinations. SHAP is available as a Python tool2. It provides a 
dedicated Explainer implementation for text and image data. For tabu-
lar data, KernelExplainer is model-agnostic, and TreeExplainer is designed 
for tree-based models, both singular and ensembles. In this work, we use 
the TreeExplainer since the data model is built with XGBoost.

The second additive feature attribution method we consider is LIME–
Local Interpretable Model-agnostic Explanations [11]. It is developed 
based on the assumption that the behaviour of an instance can be ex-
plained by fitting an interpretable model (e.g., linear regression) with 
a simplified representation of the instance and its closest neighbours. 
While making a single prediction, LIME first generates an interpretable 

2 https://shap.readthedocs.io
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Table 1 
Methods, metrics or axioms used for evaluating XAI methods with 
references to the works in which they were proposed or employed.

 Evaluation Method/Axiom/Metric  References
 Sensitivity analysis  [38]
 Example images  [11]
 Satisfiability/Model counting  [54–56]
 Correlation, completeness and complexity  [57]
 Conservation, continuity  [51]
 Concept Activation Vectors (CAV)  [58]
 Fidelity  [26,59–62]
 Maximum Fidelity Gap  [60]
 Effective Complexity  [63]
 Gold features  [11]
 Post-hoc accuracy  [64–67]
 Perturbation analysis for vision  [68]
 Remove and Retain (ROAR)  [50]
 Retain and Debias (ROAD)  [69]
 Random Logit Test  [70,71]
 Perturbation on time-series  [72]
 Implementation invariance, sensitivity  [73]
 Input invariance  [74]
 Simulated users  [11]
 Amazon Mechanical Turk users  [11,64]
 In-depth interviews  [75]

representation of the input instance. In doing so, LIME standardizes the 
values of the input features to create 𝑧, causing it to lose the original pro-
portion of the feature values, which is important for regression [27]. In 
the next step, LIME perturbs the simplified input 𝑧 and uses the black box 
model to predict on these perturbed samples, thus generating a training 
dataset for the interpretable model. LIME then draws samples from the 
generated data based on their similarity to select the closest neighbours. 
Lastly, an interpretable model (e.g., linear regression) is trained on these 
selected neighbouring samples. With the weights or coefficients corre-
sponding to each feature from the trained model, LIME presents the 
local explanation. LIME is available as a Python package3 capable of 
generating explanations for tabular, image, and text data.

2.3.  Evaluation of XAI methods

In this section, we describe some evaluation methods from the liter-
ature that have been applied to different XAI methods, particularly to 
additive feature attribution methods. In a recent study, Zhou et al. [21] 
pointed out the fact that the main obstacle in evaluating feature attribu-
tion methods is the lack of ground-truth or ideal feature attribution val-
ues. To overcome this, Zhou et al. [21] proposed a dataset modification 
procedure to generate such ground-truth. In another study, the authors 
used a benchmark dataset as ground-truth for evaluating the explana-
tions on the neural network outputs [49]. The literature in XAI presents 
a wide range of methods for evaluating the feature attribution methods, 
which are listed in Table 1. However, ground-truth datasets for XAI are 
not widely used, with a few notable exceptions (e.g., [17–21,49]), and 
such absence is recognized as limiting advances in XAI [50–53]. No-
tably, the use of gold features by Ribeiro et al. [11] was the closest form 
of ground-truth, i.e., the most important features used by the prediction 
model.

Nevertheless, different metrics and reference values have also been 
used to evaluate XAI methods. Liu et al. [29] conducted a comparative 
analysis of eight feature attribution methods for regression tasks. They 
evaluated these methods with various metrics (e.g., faithfulness, mono-
tonicity, etc.), yielding valuable insights into their performance. Letzgus 
et al. [27] leveraged Shapley values [48] as a reference to evaluate their 
proposed method and highlighted the inconsistency of XGBoost’s fea-
ture importance in local prediction scenarios. Troncoso-García et al. [76] 

3 https://github.com/marcotcr/lime

used association rules to evaluate the explanations for time-series pre-
dictions, demonstrating evidence of LIME’s inconsistency in generating 
explanations, which resembles the findings by Deng et al. [77].

To summarise, the efficacy of XAI methods should be based not 
only on their theoretical constructs but also on demonstrated empiri-
cal performance. Furthermore, there’s a growing concern about whether 
these explanations can yield valuable insights and actionable decisions 
[78,79]. Finally, the majority of works applying machine learning mod-
els that claim they are explainable do so based on implementing popular 
libraries for additive feature attribution methods (e.g., SHAP [10], LIME 
[11]) without even questioning their validity or performing any evalua-
tion [16]. In addition, none of the widely used metrics directly assesses 
the consistency or dispersion of feature attributions. This is an important 
omission, as high variance in an XAI method’s output can undermine 
trust. To address this gap, we propose using the CQV to quantify the 
stability of feature attribution values, given that it is a robust measure 
of relative dispersion that is less sensitive to outliers than the regular 
coefficient of variation [33].

2.4.  Benchmark datasets

Many authors agree that the lack of benchmark datasets to evaluate 
XAI methods is detrimental [50–53]. Jeyakumar et al. [80] used human 
labelling as benchmarks to evaluate several XAI methods against their 
newly proposed one across image, text, audio, and sensory datasets. In 
other studies, benchmarks were proposed for time-series classification 
[81,82] and for natural language tasks [83]. Amparore et al. [84] re-
leased a library providing several evaluation metrics for local linear 
explanation methods and presented its use by comparing SHAP [10] 
and LIME [11]. Particularly, several tools are developed for XAI evalu-
ation with benchmark synthetic datasets in the recent years (e.g., BAM 
[52], XAI-Bench [29], OpenXAI [85], GraphXAI [86], 4 [87], XAI-
Units [88], etc.). Among these tools, XAI-Bench [29], GraphXAI [86] and 
XAI-Units [88] used the synthetic datasets as ground-truths for evaluat-
ing different XAI methods. To this end, there remains a notable scarcity 
of synthetic datasets specifically designed for explanation benchmarking 
with ground-truth for regression tasks, let alone addressing the concerns 
with privacy regulations (e.g., GDPR [89]). These limitations directly 
motivates our first contribution, and to the best of our knowledge, no 
prior work has proposed to capture the underlying characteristics of 
the data as representatives of ground-truths while generating synthetic 
datasets as we describe in Section 3.

2.5.  Case-based reasoning

CBR [90] has its roots in the memory-based methods, and it im-
plements similarity heuristics, i.e., it reuses previous solutions to solve 
a similar new problem. Determining the similarity between problems 
is domain-specific, which is why CBR systems frequently employ the 
weighted Euclidean distance, where the details of the problem context 
are reflected in the feature weights. These weights used in determining 
the similarity between problems are global to features, which makes the 
decisions interpretable at the global level.

CBR has three major aspects that make it interpretable. First, it can 
produce a case as an example to explain a decision. Second, it can ex-
plain how similar the provided example is to the local instance that is 
being explained. And, when explaining the similarity, it can provide 
global weights for all the features in that local instance. Third, it has 
a small set of global weights to explain its global behaviour. For these 
reasons, it is possible to create a CBR system that is functionally equiv-
alent to a model based on tree-based models (e.g., XGBoost). However, 
creating a functionally equivalent CBR system for a neural network is 
challenging. The only work that we are aware of, on building a CBR twin 
system that is functionally equivalent to a neural network, was done by 
Kenny and Keane[91]. The problem with adopting the concept of the 
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CBR twin in the methodology of this work is about reusing the input rep-
resentations. While building a CBR twin, they reuse the abstract input 
representation from the neural network after training, thus losing one 
important aspect of transparency, which is having associated weights to 
each feature.

Considering the interpretable characteristics of CBR, it is often used 
to generate example-based explanations [91,92]. However, the global 
weights do not support local explanations in a similar way to the addi-
tive models present. For local explanations, we proposed the additive 
form of CBR, namely AddCBR, in our previous work [32]. The additive 
form is attained by re-scaling the feature values after the prediction is 
made by the weighted CBR regression model. Thus, by creating Add-
CBR, we are identifying a local representation for the instance that is 
being explained.

By directly leveraging the underlying model’s structure and reason-
ing process, AddCBR produces explanations inherently aligned with how 
the model makes its predictions. This inherent alignment makes AddCBR 
a particularly suitable baseline for evaluating other additive feature at-
tribution methods, as it faithfully reflects the model’s decision logic. This 
work demonstrates the value of AddCBR for the first time as a baseline 
to evaluate the additive feature attribution methods. The experiments 
validating AddCBR as the baseline are described in Sections 4.3 and 4.4.

3.  Generation of privacy-preserving ground-truth data

The proposed evaluation pipeline for additive feature attribution 
for regression begins with the generation of privacy-preserving ground-
truth data that contains the underlying behaviours in the original 
dataset. The data generation process includes four major steps: i) se-
lection of an original dataset, ii) capturing the behaviour in the original 
data, iii) synthetic data generation, and iv) evaluation of the generated 
synthetic data. All these steps are discussed in detail in the following 
subsections.

3.1.  Selection of original dataset

The original datasets from which the prediction models are trained 
are often domain-specific, proprietary, or computationally expensive 
due to high dimensionality [27,29]. These issues restrict the use of the 
original datasets for iterations of experimental studies required for the 
development of the applications and methods. To mitigate the issues, 
the original dataset is used as a seed for generating synthetic datasets.

The selected original dataset for this study was acquired from Avia-
tion Data for Research Repository4 that was collected and processed by 
EUROCONTROL5 from the Enhanced Tactical Flow Management Sys-
tem flight data messages containing all flights in Europe throughout 
the year 2019, from May to October. The dataset consists of fundamen-
tal details of the flights, flight status, preceding flight legs, Air Traffic 
Flow Management regulations, weather conditions, calendar informa-
tion, etc. Specifically, the dataset contains 7,613,584 instances with 42 
features, with the target variable in the dataset being the flight take-
off time delay. A brief description of the features used in this study is 
presented in Supplementary Table S1.1 and the detailed description of 
the dataset can be found in the works by Koolen and Coliban[93] and 
Dalmau et al. [37].

Prior to capturing the behaviours of the data, in the preprocessing 
step, instances with missing values and noise were removed from the 
dataset to ensure data quality and integrity. Also, the dataset was made 
free from the outliers so that the actual behaviour of the data could be 
captured.

4 https://www.eurocontrol.int/dashboard/rnd-data-archive
5 https://www.eurocontrol.int/

3.2.  Capturing the data behaviours with density-based clustering

In the proposed approach, the behaviour of the data is the prime fac-
tor in evaluating the additive feature attribution methods. The data pre-
serves different behaviours in the instances collectively, and the expla-
nation is expected to recognize them. We recommend using any cluster-
ing method that captures underlying behaviours in the data and aligns 
well with the characteristics of the dataset and the specific task. The 
instances closest to the centroids of the clusters are those expected to 
represent best the underlying behaviours of the cluster, which can be 
used as the seeds to generate synthetic data. The premise is that each 
cluster captures a different behaviour, and their respective explanations 
have to be consistent with those behaviours.

Though synthetic data generation is founded on statistical principles, 
where sampling is done to preserve the underlying behaviours or distri-
bution of the real data [94]. However, more recent studies confirm that 
both distribution- and cluster-based methods can effectively replicate 
multimodal and skewed structures in the data, while also noting that 
small biases (e.g., in cluster or feature frequencies) may occur if resid-
ual shifts are not addressed [95,96]. Also, the clustering-based synthesis 
follows the statistical rationale, ensuring that core data behaviour is pre-
served in the synthetic data [95]. These behaviours are the ground-truth 
information that is crucial for XAI evaluation. Considering the recom-
mendations, the synthetic data generation process in this study starts 
with density-based clustering as an unsupervised method for capturing 
the behaviours of the flight delay prediction dataset. The process is de-
scribed in the following subsections, which include mitigating the po-
tential biases through the selection of the appropriate number of clusters 
and samples to form the seed datasets for synthetic data generation.

3.2.1.  Density-based clustering
Several clusters were formed within the dataset using density-based 

clustering. Density-based clustering can discover clusters of arbitrary 
shape without requiring a pre-set number of clusters and treats outliers 
as noise, which makes it robust for complex temporal data with anoma-
lies [97].

Dynamic time warping (DTW) [90] is used as the distance measure 
that determines the similarity between the data points, while cluster-
ing based on their intrinsic characteristics. DTW identifies a mapping 
between measurements from two time series such that the cumulative 
value of a given distance function is the minimum [90]. It also provides 
a flexible, non-linear alignment between time series, allowing compar-
ison of sequences that are misaligned or of differing lengths and thus 
handling variability in timing or speed [98]. Particularly, the origi-
nal dataset (described in Section 3.1) consists of temporal sequences 
of flight-status parameters where DTW is well-suited because it aligns 
time series that may be out of phase or evolve at different speeds. This 
makes it a widely adopted measure for clustering or classifying time-
series data, as confirmed in the literature on time-series clustering [99]. 
Prior work on a similar application to ours, flight trajectory analysis, 
also uses DTW for clustering temporal data [100].

Thus, density-based clustering combined with DTW distance has 
been shown to effectively group similar behaviour patterns in multi-
variate datasets with time dependencies (e.g., clustering flight opera-
tion sequences) even when the data are noisy or irregular [97]. These 
clustering and distance techniques were adopted considering the nature 
of the original data, thus aiming at identifying patterns and grouping 
similar instances.

3.2.2.  Selection of appropriate number of clusters
To determine the optimal number of clusters, both the 𝑥 (fea-

tures) and 𝑦 (takeoff delay) values were considered. Initially, the Elbow 
method suggested by Madhulatha[101] and Yuan and Yang[102] was 
chosen to select the optimal number of clusters. However, the use of the 
Elbow method is criticised with experimental results by Schubert [103] 
and suggested using other methods. Afterwards, other methods were 
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Fig. 2. Illustration of the separation of the average values of the target variable 
for each cluster, considering one to 11 clusters in the dataset. The dataset with 
six clusters (red dots) was chosen for primary analysis as the separations among 
the average values were more prominent than the others. The datasets with two 
and eight clusters are considered in the appendix (blue dots). Other datasets 
(grey dots) are omitted as the average values are closer and overlapping.

compared to select the optimal number of clusters, e.g., the Variance 
Ratio Criterion (VRC) proposed by Calinski and Harabasz[104] and the 
Jump Method by Sugar and James[105]. Nonetheless, all three meth-
ods produced different values for the optimal number of clusters. This 
hindered the selection of an optimal number of clusters using a method 
from the literature. For clarity, the plots for the used methods are illus-
trated in the Supplementary Material (Figure S2.1).

3.2.3.  Refining clusters based on the target variable
As several methods from the literature for selecting the number of 

clusters did not reveal an optimal number of clusters with significant 
differences (Supplementary Figure S2.1), the focus shifted to the values 
of the target variable 𝑦. The average values of 𝑦 were observed per clus-
ter for the different numbers of clusters in the dataset as illustrated in 
Fig. 2. By breaking down the flight take-off delays into intervals, distinct 
classes are created where each class represents a specific behaviour.

3.2.4.  Selection of datasets
The dataset with six clusters was chosen as the main dataset because 

of the clear separation of average 𝑦 values in it, as illustrated in red 
dots in Fig. 2. Additionally, two other datasets with different numbers 
of clusters (two and eight clusters) were generated for sensitivity anal-
ysis, which are illustrated with blue dots in Fig. 2, and the results from 
experiments with these datasets are presented in the Supplementary Ma-
terial (Section S3). Other datasets were omitted due to the overlapping 
cluster-wise average values of 𝑦 (grey dots in Fig. 2).

3.3.  Synthetic data generation for regression tasks

Generally, in the real world, data often contains noise and outliers 
that challenge the prediction models to learn crucial underlying be-
haviours of the data. In the preceding step, the original data was clus-
tered based on these target behaviours. The synthetic data generation 
starts with identifying the seed instances from each cluster representing 
individual behaviour. An equal number of seed instances is randomly 
picked from each cluster to ensure that all the behaviours in the orig-
inal data are equally represented in the synthetic data. The next step 
is to perturb the seed instances by maintaining an average of zero for 
the changes, thus retaining the original behaviours. In the final step, 
generate the target values randomly within the range of each cluster 
from the original data. This ensures representing the distinct behaviour 
of the cluster and minimising the overlap, i.e., similar data points in 
neighbouring clusters.

Table 2 
Summary of the generated synthetic datasets for evaluation.
 Criteria  Choice for evaluation  Sensitivity analysis
 No. of clusters  6  2  8
 No. of seed instances  300  900  225
 No. of perturbations  100  100  100
 No. of total instances  180,000  180,000  180,000
 No. of training instances  144,000  144,000  144,000
 No. of testing instances  36,000  36,000  36,000

Here, three different synthetic datasets are generated based on the 
captured behaviour from the original dataset. The data generation was 
performed in two steps that are discussed in the following subsections.

3.3.1.  Selection of random seed instances
Random seed instances were selected from each cluster within the 

selected datasets (i.e., two-, six-, and eight-cluster datasets). The number 
of seed instances selected for generating the synthetic data for a single 
cluster was different for the three synthetic datasets. However, within 
a single dataset, an equal number of seeds was selected. This balanced 
sampling was chosen to ensure that all behavioural patterns-including 
rare but operationally significant cases in small clusters-are preserved, 
while preventing large clusters from dominating the dataset. This strat-
egy protects the representation of both over- and under-represented 
clusters, maintaining diversity in the generated data. Also, the selec-
tion of an equal number of seed samples from the clusters contributes 
to mitigating potential biases in the cluster-based synthetic data gener-
ation method [96]. Moreover, the clusters capture distinct patterns in 
the original data, with only minor patterns excluded when reducing the 
number of clusters (e.g., from eight to six). A comparative evaluation 
between the original and synthetic data showed that omitting these pat-
terns was not detrimental, as confirmed by quantitative analysis (see 
Section 3.4), indicating similar distributions across clusters. These re-
sults demonstrate that the synthetic data preserves representative pat-
terns, including those from both over- and under-represented clusters, 
thereby supporting the validity of our approach. Thus, we selected an 
equal number of seeds from each cluster for the three selected datasets 
(see Table 2).

3.3.2.  Perturbation and synthetic data generation
As the last step, perturbations were applied to the selected instances 

to generate synthetic data. The continuous features were perturbed only 
while keeping the categorical features unaltered, and this choice of ac-
tion is dataset-specific. Particularly, the binary and categorical variables 
(e.g., presence or absence indicators, airport codes, or system message 
types) were preserved in their original form to maintain semantic valid-
ity and avoid generating unrealistic combinations. In the flight dataset 
used in this work, the categorical features contain information about the 
airports, different system messages, etc., which influence the values of 
the continuous features within the range in individual clusters. To miti-
gate the issue of exceeding the value range of continuous features influ-
enced by the categorical features, they are kept unchanged. For the con-
tinuous features, to preserve their original distribution in the synthetic 
data, we adopted a use and evaluate strategy starting from the simplest 
approach of sampling from a normal distribution rather than more so-
phisticated methods (e.g., Gaussian mixture models, Monte Carlo sim-
ulations). Following the Occam’s Razor Principle [106]), we selected, 
used, and evaluated the simplest approach. We were motivated to adopt 
the simplest one after visually inspecting the original data distributions 
of the continuous features and noticing they resemble the bell-shaped 
curve of normal distributions.

Formally, the values 𝑥𝑖𝑗 of the feature vectors were perturbed from 
the respective distributions 𝑗 while maintaining an average of zero 
for the added values to the features, ensuring the behaviour did not 
change. The 𝑦 values were generated based on the range of each cluster, 
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Fig. 3. Distribution of the target variable from the dataset with six clusters, that 
is the main choice for evaluating the additive feature attribution methods. Each 
colour represents the respective cluster indicated in the legend.

representing distinct classes of behaviour. The distribution of the target 
variable 𝑦 for the dataset with six clusters is illustrated in Fig. 3, which is 
the primary choice for the evaluation of the additive feature attribution 
methods. It can be observed from the figure that the densities of clusters 
three – six are higher than those of clusters one and two. This higher 
density was the result of the effect of their smaller interval of the target 
variable, whereas an equal number of instances were perturbed from all 
the clusters. The datasets are prepared for the evaluation of the additive 
feature attribution methods with an equal number of instances in each 
of them. The summary of the synthetic datasets is presented in Table 2.

3.4.  Evaluation of synthetic dataset

The quality of the synthetic data can be assessed in terms of the data 
distribution. The similarity between the distributions of the synthetic 
and the original dataset represents how well the synthetic dataset pre-
serves the behaviour of the original data. Since only a few methods are 
proposed to generate synthetic data with ground-truth for XAI evalua-
tion (described in Section 2.4), our approach is evaluated with a similar 
experiment done by Liu et al. [29] for evaluating the quality of the sim-
ulated dataset. The goal of this experiment is to examine how well the 
generated data captures the behaviour contained in the real data and 
assess the performance of our approach with the literature.

Jensen-Shannon Divergence (JSD) [107] was used to measure the 
similarity between the synthetic and the original data. JSD is a statisti-
cal measure that assesses the similarity between two probability distri-
butions. It is derived from the Kullback-Leibler Divergence (KLD) and 
addresses its limitations, such as being asymmetric and unbounded. JSD 
overcomes these drawbacks by calculating the average of the KLD be-
tween each distribution and their average distribution. Due to its prop-
erties, JSD became a valuable tool to quantify and compare the similar-
ity of probability distributions. JSD provides a symmetric and bounded 
measure of divergence within the range [0, 1], where zero denotes iden-
tical distributions and one represents completely different distributions.

To evaluate whether the synthetic data preserves the characteristics 
of the original dataset, we formulate the following hypothesis:
𝐻1: Each continuous feature in the synthetic data has a similar distribution 
to the corresponding feature in the original data.

The synthetic dataset was generated by perturbing the continuous 
features and the categorical features were kept unchanged as described 
in Section 3.3.2. Therefore, the hypothesis of this experiment is defined 
solely for the continuous features. Formally, it is hypothesized that ̂𝑗 ≈
𝑗 where ̂𝑗 and 𝑗 are the distributions of feature 𝑎𝑗 from the synthetic 
and the original data, respectively.

The outcomes of JSD calculations for the six-cluster dataset are de-
picted in Fig. 4. To align with the JSD value range, the y-axis has been 

Fig. 4. Bar plot illustrating the JSD measures between the distributions of the 
continuous features from the original and synthetic datasets. The range of values 
for JSD is [0, 1], where smaller values denote similarity and higher values denote 
dissimilarity between the distributions.

scaled from zero to one. For each continuous feature, the JSD values 
are presented for individual clusters as the clusters hold different be-
haviours of the data, resulting in different distributions. The reported 
JSD values range from 0.05 (minimum) to 0.24 (maximum) with an av-
erage (± standard deviation) of 0.102 ± 0.05. Notably, the result reflects 
the high similarity between the distributions of all continuous features 
in the synthetic dataset and those in the original dataset, as evidenced 
by their corresponding JSD values.

The JSD values were exclusively calculated for the continuous fea-
tures, leaving the categorical features as they were kept unaltered during 
synthetic data generation. As depicted in Fig. 4, it becomes evident that, 
with the exception of 𝑎33, all features exhibit low JSD values. This obser-
vation underscores the remarkable similarity between the synthetic and 
original data. To visually emphasise this high similarity due to the low 
JSD values, the y-axis in Fig. 4 has been scaled from zero to one, mirror-
ing the range of JSD values. Specifically, while Liu et al. [29] reported an 
average JSD of 0.20 for evaluating synthetic data, our approach achieved 
a substantially lower average JSD of 0.105, demonstrating superior per-
formance in preserving the distribution of continuous variables in the 
synthetic data.

4.  AddCBR as a baseline for evaluating feature attribution 
methods

The AddCBR is introduced in this paper in Section 2.5, which was at 
first conceptually presented in a workshop paper by the same authors 
[32]. Here, it is extended and its value as a baseline for evaluating fea-
ture attribution methods is demonstrated. Particularly, AddCBR is de-
veloped with a weighted CBR regression model [90] where the feature 
weights come from the data model. AddCBR achieves the additive form 
by re-scaling the feature values after the prediction with the weighted 
CBR regression model. Considering the interpretable characteristics of 
CBR and its use as a proxy model for explaining other models’ output 
[91,92], AddCBR becomes a potential benchmark for local interpretabil-
ity, which is demonstrated with experimental results in Sections 4.3 and 
4.4.

4.1.  Implementation of data model

The data model is implemented with an AI algorithm. However, 
there remains a prerequisite for selecting the algorithm for implement-
ing the data model since the next step of creating the baseline requires 
a set of feature weights. Therefore, any algorithm with the ability to 
produce feature importance values or weights, such as decision trees 
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Table 3 
List of used hyperparameters in optimising 
XGBoost model for regression through a grid 
search over different combinations. The values 
of the hyperparameters used for the final train-
ing are highlighted in bold font.

 Hyperparameters  List of values
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒  [0.01, 0.1]
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ  [3, 5, 7, 10]
𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡  [1, 3, 5]
𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒  [0.5, 0.7]
𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒  [0.5, 0.7]
𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠  [100, 200, 500]

or tree-ensembles, can be adopted to implement the data model in this 
step.

In this study, the data model for regression was implemented with 
a Gradient Boosted Decision Trees (GBDT) ensemble method, namely 
XGBoost [108], and trained to predict the flight take-off time delay. 
We used XGBoost given its potential to be more accurate in prediction 
tasks for structured or tabular data [4,109] than the other widely used 
variants of GBDT, e.g., LightGBM [110], that was utilized in a previous 
work in air traffic delay prediction [37].

The XGBoost regression model was trained with the hyperparame-
ter values selected through a grid search over 288 different combina-
tions. Here, grid search is exploited in the process of finding the ap-
propriate hyperparameter values following the works of Claesen and 
De Moor[111], who highlighted the importance of such methods in 
model optimization. Table 3 presents the list of values of the hyper-
parameters used for optimising the XGBoost regression model. The 
performances of the regression model for different combinations of 
the hyperparameter values were assessed using Mean Absolute Error 
(MAE). The trained model with the selected hyperparameter values per-
formed with an MAE of 9.9min, whereas the MAE was 10.02min with 
the default values of the hyperparameters. The final hyperparameters 
used to train the regression model are: 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 0.1, 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ =
7, 𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡 = 1, 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 = 0.5, 𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒 = 0.5, and 
𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 500.

4.2.  Creating additive CBR

CBR can generate example-based explanations. However, as dis-
cussed in Section 2.5, its global weights describe overall feature impor-
tance and do not directly support local explanations in the way additive 
models do. We refer to this standard form as Global CBR. To address 
this, we create AddCBR by re-scaling the values from the CBR regres-
sion model after prediction. This transformation allows AddCBR to offer 
local explanations and serve as a benchmark for evaluating local inter-
pretability of additive feature attribution methods. In addition, AddCBR 
is designed to train using the feature importance values from the data 
model and produce additive feature attributions that are directly com-
parable to those of the methods to evaluate. Thus, it enables an objective 
assessment of the attribution quality of the additive feature attribution 
methods.

The AddCBR baseline is designed to transform the output of a 
CBR regression model into the additive feature attribution form de-
fined in Eq. (1). Recalling the formal definitions from Section 2.1, 𝑥𝑖 =
[𝑥𝑖1,… , 𝑥𝑖𝑚] be the feature values of 𝑖th instance, and 𝜔 = [𝜔1,… , 𝜔𝑚]
be the corresponding feature weights from the feature importance val-
ues learned by the data model. In the first step, 𝑦𝑖 is predicted using the 
regression model Ω. Here, Ω is represented by a CBR regression model. 
Then, a scaling multiplier 𝛾𝑖 is obtained by dividing the prediction 𝑦𝑖 by 
the sum of its factors, i.e., the dot product of the feature values of 𝑥𝑖 and 

weights 𝜔, using Eq. (2):

𝛾𝑖 =
𝑦𝑖

(

∑𝑚
𝑗=1 𝑥𝑖𝑗𝜔𝑗

) (2)

Finally, the feature attribution values can be obtained by a dot 
product of the multiplier 𝛾𝑖 and the factor of the given instance, i.e., 
(𝑥𝑖 ⋅ 𝜔). Here, the multiplier 𝛾𝑖 rescales the contributions so that their 
sum matches the model output 𝑦𝑖. Hence, for the given instance 𝑥𝑖, 
the final attribution vector 𝜙𝑖 = [𝜙𝑖1,… , 𝜙𝑖𝑚] is obtained as the addi-
tive feature attribution as per-feature contributions. For example, if a 
regression model predicts a delay of 𝑦𝑖min from the data instance 𝑥𝑖 of 
a given flight, AddCBR decomposes value of 𝑦𝑖 into per-feature contri-
butions, i.e., 𝜙𝑖1,… , 𝜙𝑖𝑚, whose sum equals to 𝑦𝑖, providing a transpar-
ent, model-aligned baseline for evaluating other additive feature attribu-
tion methods. The whole process of creating AddCBR is summarised in
Algorithm 1.

Algorithm 1: Additive CBR.
Input: 𝑥𝑖: data point, 𝜔: feature weights.
Output: 𝜙𝑖: contributions of the features to the prediction.

1 𝑦𝑖 ← predict using CBR for 𝑥𝑖 with 𝜔
2 𝛾𝑖 ← compute using Eq. (2)
4 𝜙𝑖 ← 𝛾𝑖 ⋅ (𝑥𝑖 ⋅ 𝜔)
5 return 𝜙𝑖

In the proposed evaluation pipeline, while implementing AddCBR, 
the feature importance values from the data model (i.e., the XGBoost 
model trained in the previous step) were considered as the weights (𝜔). 
And, for the CBR model within AddCBR, three nearest neighbour in-
stances (i.e., 𝑘 = 3) were considered to predict the target variable. Par-
ticularly, the CBR model predicts by averaging the 𝑦𝑖 of the three near-
est neighbours retrieved using the Euclidean Distance weighted with 
the feature importance values from the XGBoost model. The choice of 
three nearest neighbours was made since anecdotal tests suggested that 
three neighbours perform better than one. Moreover, it is a commonly 
successful default that reflects the bias-variance trade-off sweet spot to 
capture important local structure for many practical situations [112].

The evaluation of AddCBR as a baseline was performed through ex-
periments on prediction performance in terms of local accuracy, and 
with local and global assessment by feature ranking and the impact of 
the most and least important features on the prediction. In these exper-
iments, the results from AddCBR are compared against the results from 
the XGBoost regression model.

4.3.  Prediction performance of AddCBR

The prediction performance metric is the MAE and Standard Devia-
tion of Absolute Error (𝜎𝐴𝐸). MAE is the average difference between the 
actual observation 𝑦𝑖 and the prediction 𝑦𝑖 from the model. 𝜎𝐴𝐸 signifies 
the dispersion of the absolute error around the MAE. The measures were 
calculated using Eqs. (3) and (4), respectively. As both the MAE and 𝜎𝐴𝐸
are representations of errors done by the models while predicting, lower 
values indicate better results.

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦𝑖|| (3)

𝜎𝐴𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

|

|

𝑦𝑖 − 𝑦𝑖|| −𝑀𝐴𝐸
)2 (4)

To assess whether the proposed AddCBR model maintains predictive 
performance comparable to the reference model, we state the following 
hypothesis:
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Table 4 
MAE and standard deviation (𝜎𝐴𝐸 ) of XGBoost and AddCBR predicting 
flight delay. The result is presented for all instances and the 1000 most 
accurate instances from the full test set (36,000 instances) and five test 
subsets (7200 instances). The differences between the predictions by XG-
Boost and AddCBR are below 1.22min. The best values for each set are 
presented in bold font.

Set
 Instances  All  Top 1000
 Model  XGBoost  AddCBR  XGBoost  AddCBR

Test set 𝑀𝐴𝐸  0.152  0.167  0.064  0.003
𝜎𝐴𝐸  0.133  0.158  0.068  0.002

Test Subset 1 𝑀𝐴𝐸  0.151  0.168  0.068  0.017
𝜎𝐴𝐸  0.133  0.160  0.067  0.009

Test Subset 2 𝑀𝐴𝐸  0.153  0.169  0.065  0.017
𝜎𝐴𝐸  0.133  0.157  0.062  0.010

Test Subset 3 𝑀𝐴𝐸  0.152  0.167  0.072  0.016
𝜎𝐴𝐸  0.133  0.159  0.076  0.009

Test Subset 4 𝑀𝐴𝐸  0.150  0.166  0.067  0.017
𝜎𝐴𝐸  0.132  0.157  0.063  0.009

Test Subset 5 𝑀𝐴𝐸  0.152  0.168  0.068  0.016
𝜎𝐴𝐸  0.133  0.158  0.069  0.010

𝐻2: The difference between model performance between AddCBR and XG-
Boost in MAE is negligible.

The prediction performances of XGBoost and AddCBR in terms of 
MAE and 𝜎𝐴𝐸 are given in Table 4. The result is presented separately 
for the whole test set and the top 1000 instances where both XGBoost 
and AddCBR predicted with minimal error, i.e., the average difference 
between 𝑦𝑖 and 𝑦𝑖 was close to zero. Moreover, a more granular analysis 
of the model performance was conducted by partitioning the test set into 
multiple subsets and conducting independent predictions across these 
subsets. For the subsets, the prediction performance remained similar to 
the whole test set except the 1000 most accurate instances by AddCBR, 
even though the difference remains negligible as presented in Table 4.

The variations between XGBoost and AddCBR are confirmed to be 
negligible. As regression models trained for the context of predicting 
flight delay, they can be considered as functionally equivalent. It is ob-
served that, for each unseen testing instance, both produced nearly the 
same predictions, considering their differences were below a small error 
of 1.22min, that is, the maximum difference between the predicted 𝑦𝑖
by XGBoost and AddCBR. This result supports the use of AddCBR as the 
baseline.

4.4.  Local and global assessment on AddCBR

The feature rankings derived from both XGBoost and AddCBR were 
scrutinised to establish the baseline. For XGBoost, the features were 
ranked based on their importance values, and for AddCBR, the features 
were ranked based on their contributions to the prediction. These ranks 
of the features were presented through global and local representations. 
The global representation corresponds to the rankings across all clus-
ters, while the local representation focuses on rankings within individ-
ual clusters.

Furthermore, an analysis was conducted for the impact on predic-
tions resulting from the changes in the feature values, supported by a 
statistical significance test. In this experiment, the top and bottom five 
important features were selected from both XGBoost and AddCBR. Each 
feature was perturbed five times with different multiples of the initial 
value. Particularly, if the initial value of the feature was 𝑓 , the five 
perturbations were 2𝑓 , 3𝑓 , 4𝑓 , 5𝑓 , and 6𝑓 . For each perturbation, the 
prediction was done with XGBoost while the other feature values were 
kept unchanged, and the change in prediction was measured in percent-
age with reference to the initial prediction. Finally, the average changes 

of the predicted values in portion were compared for the top and bottom 
features separately for both XGBoost and AddCBR.

4.4.1.  Hypotheses
We consider two premises to determine whether AddCBR is adequate 

as a baseline. The first premise is that the baseline should have global 
and local rankings that are consistent. In other words, if features 𝑎, 𝑏, 
and 𝑐 are among the top positions at the global ranking, then they should 
also appear at the top positions at the local ranks. The comparison be-
tween AddCBR and XGBoost with respect to consistency between local 
and global ranking is evaluated through the hypothesis:
𝐻3: Local and global feature rankings produced by AddCBR are more con-
sistent than those produced by XGBoost.

The second premise is that the baseline should be confirmed to have 
the best ranking. This can be done through the verification that the fea-
tures ranked at the top positions are those that produce the highest im-
pact on the prediction results, while those features ranked at the bottom 
produce no or minimal impact on the results. For this reason, we want 
to demonstrate that the baseline is the feature attribution method for 
which the difference between the impact produced by the top and bot-
tom features is the highest.

To compare AddCBR and XGBoost with respect to the performance 
in ranking features, we utilize the top and bottom five ranked features 
by both methods, and formulate the hypothesis as follows:
𝐻4: The difference between the impact produced by the top five and the bot-
tom five features in the ranking obtained with AddCBR is higher than the 
difference obtained with XGBoost across all clusters with statistical signifi-
cance.

We also performed a paired t-test considering a null hypothesis 
where the difference is not statistically significant.

Furthermore, the changes in prediction were examined particularly 
for the most important feature 𝑎34 and the least important feature 𝑎9
based on the feature contributions provided by the AddCBR (see Fig. 5b) 
through the hypothesis:
𝐻5: The impact of the most important feature 𝑎34 is at least four times higher 
than the impact of the least important feature 𝑎9 from AddCBR.

4.4.2.  Results
The feature ranks extracted from XGBoost and AddCBR are presented 

in Fig. 5. For both methods, the top seven continuous features are shown. 
Notably, the features are the same for both methods at the top, but their 
ranks vary for global and local representations. However, more discrep-
ancies are observed in the local representation from the XGBoost. On 

Table 5 
Average impact on prediction measured in percentage for the change in 
values of top and bottom five features based on their importance from 
XGBoost and AddCBR. The higher values for the differences in impacts 
are better. Using a paired t-test, the impacts on the predictions were 
analysed and the test results with significant values i.e., p < 0.05, are 
marked with asterisks (*).

Cluster Model
 Average Impact (%) of Features  t-test
 Top Five  Bottom Five  Difference  t  p

All
 XGB  27.0  15.7  11.3  3.306  0.001*
 AddCBR  27.0  15.9  11.1  3.249  0.001*

1
 XGB  15.9  20.7  4.8 −1.454  0.927
 AddCBR  27.0  15.7  11.3  3.306  0.001*

2
 XGB  15.6  16.8  1.2 −0.451  0.674
 AddCBR  27.0  15.7  11.3  3.299  0.001*

3
 XGB  15.9  16.8  0.9 −0.352  0.637
 AddCBR  27.0  15.7  11.3  3.299  0.001*

4
 XGB  17.5  19.5  1.9 −0.710  0.761
 AddCBR  27.0  15.7  11.3  3.299  0.001*

5
 XGB  17.8  19.5  1.8 −0.642  0.739
 AddCBR  27.0  15.7  11.3  3.299  0.001*

6
 XGB  16.1  23.4  7.3 −2.202  0.986
 AddCBR  27.0  15.7  11.3  3.299  0.001*
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Fig. 5. Feature ranks of the most important features from (a) XGBoost and (b) AddCBR. Lower value and a darker shade of blue both correspond to the high 
importance of the features. The ranks of the seven out of 42 features from the selected dataset are illustrated since both the models considered them as the most 
important features, but with different rankings for global and local representations. For example, globally considering all the clusters, feature 𝑎30 is ranked second by 
XGBoost, whereas AddCBR ranked it fourth. In local representation, for individual clusters, the ranking of 𝑎30 by AddCBR remain similar to global, but discrepancies 
are observed for XGBoost.

Fig. 6. Impact on the prediction by changing the values of the continuous features with (a) most and (b) least importance based on their contribution to feature 
attribution from AddCBR. To demonstrate a clear separation of the clusters, the data from Cluster 1 is excluded from the illustrations due to its impact on prediction.

the contrary, the ranking of AddCBR remains consistent. Specifically, 
the feature 𝑎34 is the most important feature from both XGBoost and 
AddCBR in global representation but it does not remain the same in any 
of the local representations from XGBoost. Unlike XGBoost, for AddCBR, 
the top rank of the feature 𝑎34 is preserved in the local representations 
as it stands out to be the most important feature for clusters one, three, 
and five. For other clusters, 𝑎34 became the third (in cluster six) and 
fourth (in clusters two and four) most important feature according to 
the contributions from AddCBR.

The results of Hypothesis 𝐻4 are detailed in Table 5. The result is 
presented for the whole dataset and each cluster individually. For each 
selection of clusters and the models, i.e., XGBoost and AddCBR, the av-
erage impact on prediction in percentage is given for the five most (top) 
and least influential (bottom) features. Considering the role of the fea-
tures for flight take-off delay prediction, the most influential features 
are found to be related to turnaround and scheduling processes (e.g., 
differences between scheduled and actual turnaround times, available 
turnaround durations, and remaining time until milestones such as tar-
get off-block time or estimated time over for the aerodrome of depar-
ture). On the other hand, the least influential ones are primarily sec-
ondary timing differences (e.g., gaps between planned and updated off-
block time or overall flight durations).

Table 5 includes the outcome of the paired t-test between the impact 
of the top and bottom five features. The cases where the top features 
have significantly more impact on the prediction than the bottom fea-
tures based on the p values are marked with asterisks (*). We reject the 
null hypothesis for the outcomes for which the resulting p values are 

less than the level of significance (i.e., 0.05). From the results, it can 
be observed that the impact is more consistent with the features ranked 
from AddCBR than those from XGBoost. Particularly, for both models, 
considering all the clusters, the top features significantly impact more 
than the bottom features. This condition is maintained only for AddCBR 
when individual clusters are considered. For XGBoost, it is quite the op-
posite, i.e., the top features impact the prediction less than the bottom 
features in individual clusters.

Fig. 6 illustrates the impact of the features on prediction support-
ing the Hypothesis 𝐻5. The changes in prediction were examined for 
the most important feature 𝑎34 and the least important feature 𝑎9 based 
on the feature contributions provided by the baseline AddCBR. While 
computing the impact, the instance closest to the cluster centroid was 
selected as the actual instance (black dots in Fig. 6). Five perturbations 
were done from double to six times the feature value to assess the impact 
on prediction (coloured dots based on clusters in Fig. 6). The impact of 
these two features was assessed one at a time. The feature value was 
perturbed while keeping the values of other features unchanged. It can 
be observed from the subplots that the highest impact of the prediction 
was more than 40% due to the change in the values of 𝑎34 that is the 
most important feature. On the contrary, the impact on prediction was 
within 0–10% when the value of 𝑎9 was changed.

4.4.3.  Discussion
The baseline selection process contained two separate experiments 

with the feature ranks and feature impact on the prediction, where the 
features are ranked based on the importance values from XGBoost and 
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the contributions of features to the prediction from AddCBR. From the 
results of both experiments, it was observed that XGBoost and AddCBR 
perform similarly in the case of global representation of the data or con-
sidering the whole dataset. However, in the case of local representations 
or individual behaviours presented within distinct clusters, the perfor-
mance of AddCBR remains consistent with reference to the global repre-
sentation, which is not preserved by XGBoost. This consistent global and 
local representation of feature ranks and impacts on prediction strength-
ens the choice of AddCBR as the baseline. Therefore, the AddCBR was 
chosen as the baseline for the experiments that evaluate the additive 
feature attribution methods.

5.  Evaluation of feature attribution methods with CQV and 
domain-specific aspects

This section presents the details of the proposed evaluation criteria 
for the feature attribution methods, preceded by a brief description of 
the implementation of feature attribution methods.

5.1.  Implementation of feature attribution methods

To generate explanations for the predictions from XGBoost, the 
two previously introduced additive feature attribution methods, namely 
SHAP [10] and LIME [11] were implemented. These methods were se-
lected because of their vast popularity in the recent XAI research [16]. 
SHAP was implemented using TreeExplainer [10] with default settings. 
LIME was implemented with 1000 perturbations and 1000 samples. We 
note that there are other additive feature attribution methods for XAI, 
such as DeepLIFT [113] and Layer-wise Relevance Propagation [47]. 
We did not include those because they are not model-agnostic; they are 
specifically designed for neural networks and are therefore not applica-
ble to this study focusing particularly on regression tasks with decision 
trees and CBR.

Given that the additive feature attribution methods are imple-
mented, a series of experiments was conducted to evaluate the perfor-
mance of the additive feature attribution methods (i.e., SHAP and LIME), 
which are described in this section. For the evaluation, we assess the 
quantitative quality of the feature attributions of SHAP and LIME by 
comparing them with the baseline AddCBR using the three evaluation 
metrics, namely, feature ranking, feature attribution and feature impact. 
Feature ranking compares the ranks of the important features from the 
additive feature attribution methods in comparison to the baseline Ad-
dCBR. In the second procedure, the quantitative quality of the feature 
attributions by the additive feature attribution methods is assessed in 
terms of different behaviours in the data. The last procedure includes the 
assessment of the impacts of the top and bottom-ranked features from 
the additive feature attribution methods on the data model’s prediction. 
Each experiment is presented with a description of the methodology, 
metrics, and hypotheses applied. The results are presented initially for 
the dataset with six clusters, followed by a sensitivity analysis where the 
results are compared against the dataset with two and eight clusters.

5.2.  Evaluation on feature ranking

The first evaluation experiment was conducted to assess how the ad-
ditive feature attribution methods rank the important features compared 
to the baseline AddCBR. Particularly, the Normalised Discounted Cu-
mulative Gain (nDCG) was used to evaluate the feature ranks produced 
by SHAP and LIME by comparing the feature ranks from the baseline. 
nDCG [114] is a widely used evaluation metric in information retrieval 
and recommendation systems. It measures the quality of a ranked list 
by considering both the relevance and the position of items. In terms 
of implementation, studies [115,116] show that varied results can be 
obtained while using different libraries. In this experiment, the nDCG 
metric is calculated using the sklearn library [117]. In practice, nDCG 
normalises the cumulative gain of the ranked list by dividing it by the 

Table 6 
The maximum (max𝑛𝐷𝐶𝐺), average (𝜇𝑛𝐷𝐶𝐺), and standard deviation 
(𝜎𝑛𝐷𝐶𝐺) of nDCG scores for the feature ranking from SHAP and LIME 
for all the test instances. The nDCG scores were calculated considering 
the feature order from the AddCBR as the baseline. For max𝑛𝐷𝐶𝐺 and 
𝜇𝑛𝐷𝐶𝐺 , the higher values are better, and for 𝜎𝑛𝐷𝐶𝐺, the lower values 
are better, which are presented in bold font.
 Method  SHAP  LIME
 Cluster max𝑛𝐷𝐶𝐺 𝜇𝑛𝐷𝐶𝐺 𝜎𝑛𝐷𝐶𝐺 max𝑛𝐷𝐶𝐺 𝜇𝑛𝐷𝐶𝐺 𝜎𝑛𝐷𝐶𝐺

 All  0.968  0.852  0.038  0.960  0.844  0.039
 1  0.963  0.855  0.038  0.950  0.843  0.039
 2  0.948  0.844  0.038  0.952  0.843  0.040
 3  0.968  0.854  0.037  0.946  0.844  0.040
 4  0.955  0.849  0.037  0.951  0.844  0.039
 5  0.964  0.855  0.037  0.942  0.843  0.039
 6  0.960  0.854  0.038  0.960  0.844  0.039

ideal cumulative gain, resulting in a score in the range [0, 1]. A higher 
nDCG value indicates a better-ranked list that effectively captures the 
relevance of items in a specific context.

To evaluate the quality of feature rankings using the nDCG metric, 
we propose the following hypothesis:
𝐻6: The ranking of the feature contributions produced by SHAP results in 
higher nDCG values than those from LIME.

Table 6 presents the maximum (max𝑛𝐷𝐶𝐺), average (𝜇𝑛𝐷𝐶𝐺), and 
standard deviation (𝜎𝑛𝐷𝐶𝐺) of nDCG scores for all the clusters together 
and for individual clusters. From the table, it is evident that the fea-
ture ranks from SHAP produced better results in terms of nDCG score 
across all the clusters. However, for cluster two, LIME achieved a higher 
max𝑛𝐷𝐶𝐺 than SHAP, and for cluster six, the values of max𝑛𝐷𝐶𝐺 were 
equal for both methods. Overall, both max𝑛𝐷𝐶𝐺 and 𝜇𝑛𝐷𝐶𝐺 values for 
the feature ranking by SHAP are higher than LIME, which advocates for 
a better feature ranking by SHAP. However, the 𝜇𝑛𝐷𝐶𝐺 values are closer 
yet SHAP stands out to produce better feature ranks based on their con-
tribution to the prediction. This is also observed with a lower 𝜎𝑛𝐷𝐶𝐺
for SHAP emphasising less variation in the feature ranks compared to 
the baseline AddCBR. Evidently, the nDCG scores across individual clus-
ters are consistent with the overall value, which indicates the balance 
between the global and local representation produced by SHAP.

The overlaps in the feature rankings by SHAP and LIME are also 
compared with the baseline AddCBR using the illustration presented in 
Fig. 7. The illustration shows that the highest-importance feature (𝑎34) 
is common to both methods and the baseline. Among the top-5 features 
ranked by the baseline AddCBR, SHAP shares all features with different 
rankings, while LIME shares only three, resulting in a greater overlap for 
SHAP with the AddCBR baseline. These observations quantitatively con-
firm that all methods agree on the most critical feature and that SHAP’s 
ranking aligns more closely with the AddCBR baseline than LIME’s does. 
Thus, the illustration of overlaps in feature ranking also resembles the 
quantitative evaluation with the nDCG metric presented in Table 6.

5.3.  Evaluation on feature attribution

The proposed evaluation approach with synthetic data is based on 
the concept of constraining the data generation around cluster centroids 
to capture the behaviour of each cluster. This concept enables assessing 
whether feature attribution methods can recover this same behaviour. 
In other words, we expect the additive feature attribution methods to 
attribute features in a way that reflects the data distribution of each 
cluster. We quantitatively evaluate explanation quality by comparing 
the variability of the feature attributions to the variability of the fea-
ture values in the synthetic data. In this experiment, the Coefficient of 
Quartile Variation (CQV) [33], a robust statistical measure of relative 
dispersion, is used as a metric to evaluate additive feature attribution 
methods. Using CQV, we demonstrate that the better-performing addi-
tive feature attribution method will produce explanations showing fea-
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Fig. 7. Comparison of feature ranks from SHAP and LIME with the feature ranks from AddCBR as the baseline. Lower value and darker shade of blue both correspond 
to the high importance and rank of the features. The ranks of the 17 continuous features from the selected dataset with six clusters are illustrated with their relative 
ranks. Note that the feature 𝑎34 is ranked first by all the methods, and between SHAP and LIME, the ranking by SHAP is closer to the ranking by the baseline AddCBR.

ture contributions with similar variability to the feature values in the 
synthetic dataset. The value of CQV ranges from zero to infinity, where 
values close to zero indicate less variability in the data and vice versa. 
The value of CQV is computed using the Eq. (5) [33], where 𝑄1 is the 
population 25th percentile and 𝑄3 is the population 75th percentile.

𝐶𝑄𝑉 =
𝑄3 −𝑄1
𝑄3 +𝑄1

(5)

Intuitively, a better-performing additive feature attribution method 
will produce output whose variability closely mirrors the variability of 
the actual values of the features. This intuition is rooted in the stability 
property of explanations: similar instances should have similar explanations
[118]. Due to the difference in nature (e.g., unit, value ranges, etc.), the 
similarity between the inputs (feature values) and explanations (feature 
contributions) is measured using variability. This works only because 
it is for regression, where the patterns in the data are preserved and 
transferred to the contributions in the output. Here, feature values and 
contributions are not necessarily the same, but they preserve similar pat-
terns. Thus, if the feature values do not vary much within a cluster, re-
liable feature attribution values should contain little variation for those 
instances. Again, if a feature’s values vary widely, a method responding 
more accurately to those differences may show a wider spread in feature 
attributions. Botta-Dukát[119] demonstrated that the CQV of two sets 
of values can be best compared using scatter plots, and the points closer 
to the reference 1:1 line indicate similar variability between the two 
sets of values. In this experiment of evaluating the feature attribution 
of the additive feature attribution methods, CQV was computed for the 
feature values and the contributions of the features from the additive 
feature attribution methods, thus comparing their variability. The CQV 
of feature values and contributions is compared using scatter plots and 
the reference 1:1 line. The plots of CQV values closer to the 1:1 line indi-
cate similar variability of the feature value and contribution presented 
through the axes of the plots. Particularly, the plots of CQV are gener-
ated for SHAP and LIME to compare with the CQV plots of the baseline 
AddCBR.

To compare SHAP and LIME in terms of the variability in their fea-
ture attributions with respect to the feature values, quantified by CQV, 
we propose the following hypothesis:
𝐻7: Feature contributions from SHAP produce smaller CQV values than 
those from LIME.

Fig. 8 presents the CQV for all the feature values and the contribu-
tions from SHAP and LIME compared to the baseline AddCBR. In the 
figure, the axes of each subplot refer to the data and feature attribution 
for individual clusters. It was observed from the illustrations that the 
CQV of the feature values and the feature contributions from SHAP are 
closer to the 1:1 line than those of LIME. The plots closer to 1:1 refer 
to identical variability in the data and the feature contributions. The 

data points for the baseline AddCBR are closer to the 1:1 line and ac-
cumulated near the lower left segment of the subplots, signifying that 
the variations in the data and feature contributions from AddCBR are 
identical and low. On the other hand, the feature attribution produced 
by SHAP and LIME both have more variability than the data, as their 
data points are scattered in the subplots.

In the tasks of regression, the feature values are responsible for the 
prediction, while the contributions from the additive feature attribution 
methods sum up to the prediction. Though the feature values and the 
contributions are different measures, the variability among these two 
measures should follow the same pattern as they regard a single pre-
diction. From Fig. 8, it is prominent that the CQV of the feature values 
and contributions (yellow dots) from AddCBR follows the 1:1 line with 
outliers in clusters two, three, and six. The CQV values for both SHAP 
and LIME are sparsely distributed along the 𝑥-axis, signifying the fact 
that the variability in their contributions is not following the variability 
in the data. The illustration in Fig. 8 aligns with the claim of Krishna 
et al. [120], which states that the XAI methods often disagree in terms 
of the explanations they produce and the behaviours of the correspond-
ing data. A similar conclusion can be drawn from the presented analysis 
on the variability of data and feature attributions from the additive fea-
ture attribution methods. However, the variability of the contributions 
produced by SHAP is more similar to the data than the same for LIME.

5.4.  Evaluation on feature impact

In this experiment, the level of impact on the prediction is assessed 
when we change the values of the top and bottom ranked features. The 
features are ranked according to the feature contributions from differ-
ent additive feature attribution methods, i.e., SHAP and LIME. We con-
ducted this experiment with a similar procedure to the experiment dis-
cussed in Section 4.4. The value of the selected feature was perturbed 
while keeping the values of other features unchanged. Then, the pre-
diction was done by XGBoost, and the impact of the change of feature 
values on the prediction was calculated. Both the changes in prediction 
and feature values are measured in percentages. A paired t-test was also 
performed to assess the significant difference in the feature impacts.

To evaluate how well the feature attribution methods distinguish the 
most impactful features from the less impactful ones, we formulate the 
following hypothesis:
𝐻8: The difference between the impact produced by the top five and the 
bottom five features in the ranking obtained with SHAP is higher than the 
difference obtained with LIME across all clusters with statistical significance.

The impacts on prediction for the changes in the most and least 
important features from SHAP and LIME were assessed in global and 
local representations. In addition, the differences in impacts were sta-
tistically tested considering all the clusters and individual clusters. 
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Fig. 8. Evaluation of feature attribution from SHAP (blue dots) and LIME (red dots) considering AddCBR (yellow dots) as the baseline with scatter plots for CQV 
of the feature values and contributions, where each subplot represents individual clusters. In each subplot, the data points correspond to individual features, and 
the grey diagonal line is the reference 1:1 line. Points closer to the 1:1 line refer to similar variability between feature values and contributions. In the legends, the 
values in parentheses refer to the average distance to the 1:1 line from the scattered points for the respective methods.

Table 7 
Average impact on prediction measured in percentage for the change in values 
of top and bottom five features based on their contributions from SHAP and 
LIME. The higher values for the differences in impacts refer to better feature 
attributions. Using a paired t-test, the impacts on the predictions were anal-
ysed and the test results with significant values i.e., p < 0.05, are marked with 
asterisks (*).

Cluster Method
 Average Impact (%) of Features  t-test
 Top Five  Bottom Five  Difference  t  p

All
 SHAP  27.0  16.0  11.0  3.222  0.001*
 LIME  20.8  18.2  2.6  0.782  0.217

1
 SHAP  27.0  15.6  11.4  3.336  0.000*
 LIME  26.0  15.8  10.2  3.007  0.001*

2
 SHAP  27.0  15.6  11.4  3.346  0.000*
 LIME  27.0  15.7  11.3  3.303  0.001*

3
 SHAP  27.0  15.7  11.3  3.330  0.000*
 LIME  26.0  15.7  10.3  3.043  0.001*

4
 SHAP  27.0  15.6  11.4  3.346  0.000*
 LIME  27.0  15.9  11.1  3.253  0.001*

5
 SHAP  27.0  15.8  11.2  3.295  0.001*
 LIME  26.4  15.7  10.7  3.146  0.001*

6
 SHAP  23.1  15.6  7.4  2.741  0.003*
 LIME  26.0  15.8  10.1  3.002  0.001*

We performed a paired t-test considering a null hypothesis where the
impact would be no different, with a level of significance of 0.05. The 
results of the tests are detailed in Table 7. The average impact on pre-
diction in percentage is given for the top and bottom five important 
features based on the ranks produced by SHAP and LIME. The result of 
the paired t-test between the impacts of top and bottom five features is 

also presented, and the cases where the top features have significantly 
(p < 0.05) more impact on the prediction than the bottom features are 
emphasised. Evidently, for both methods, while individual clusters are 
considered, the top features had a significantly higher impact than the 
bottom features. However, the top features from LIME didn’t have a 
significantly higher impact on the prediction, whereas the top features 
from SHAP had a higher impact while all the clusters were considered
together.

The assumption behind the experiment on feature impact is that the 
features with the highest contribution require small changes to impact 
the prediction result. On the other hand, features with low contributions 
would require large changes to impact the prediction result. However, 
this assumption was proved by investigating the impact on prediction 
by changing the values uniformly for high and low contributing fea-
tures. From the results, it was found that for a uniform change in the 
feature values, the impact is more from the high contributing features. 
Specifically, for the ranking from SHAP, the differences in the impact of 
the high and low contributing features are more significant than LIME 
based on the corresponding 𝑝 values of the statistical significance test 
presented in Table 7. Most importantly, the difference in impact on pre-
diction between the high and low contributing features from LIME is 
not significant globally, i.e., considering all the clusters. This result can 
be justified by the fact that LIME is designed to generate local explana-
tions [11], thus it is unable to differentiate the features based on their 
importance values at a global level.

Throughout the presented experiments in Sections 5.2–5.4, the re-
sults demonstrate that the feature ranking, attribution, and impact from 
SHAP are better than those from LIME. Consequently, these findings are 
also aligned with the claim from the literature that a method employ-
ing standardization on input, such as LIME, does not produce feature 
attributions of the same quality as the method that does not use stan-
dardization, like SHAP, in a regression task.
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6.  Conclusion and future works

This article advances the evaluation of feature attribution meth-
ods for regression. The framework encompasses an evaluation strategy 
grounded in the intrinsic characteristics of the data and preserving its 
privacy, offering a comprehensive assessment of the feature attribution 
methods within the context of regression problems. First, the article con-
tributes an approach to generate synthetic regression data that replicates 
the behaviour of a given data set, and shows how to use the synthetic 
data to evaluate the additive feature attribution methods applied to the 
original data set. This proposed methodology can be reused by those 
who want to conduct a thorough analysis of real-world applications, 
provided the authorities share the centroids of the clusters that contain 
the intrinsic characteristics of the original data, even if the data is pro-
prietary or confidential. Notably, this approach provides a solution to 
data privacy concerns that restrict dataset distribution complying with 
different policies and regulations such as the General Data Protection 
Regulation (GDPR) [89]. Second, we demonstrate how the additive rep-
resentation of cases, AddCBR, aligns global and local feature attribu-
tions, making it possible to use it as a benchmark for evaluation. The 
AddCBR is created as a functionally equivalent model to XGBoost by 
utilising the feature importance values as weights for CBR. However, the 
process of creating AddCBR is not defined for the data models that learn 
an abstract representation of the data (e.g., neural networks), which is 
a limitation of this study. Third, we proposed and demonstrated the use 
of a statistical metric, CQV, in evaluating feature attribution methods 
alongside other metrics from the literature. Given the extensive use of 
CQV as a stability metric in different domains, the approach addresses 
the lack of consensus in the literature on the evaluation approaches for 
XAI methods. As a whole, we proposed an evaluation pipeline for fea-
ture attribution methods and effectively evaluated two such methods, 
namely SHAP and LIME, against the AddCBR benchmark. On a differ-
ent note, the outcomes of the evaluation experiments confirmed that 
LIME, a representative of methods incorporating a standardization pro-
cess, does not yield feature attributions of satisfactory quality, which 
aligns with the current XAI literature [27,77].

This work evaluates the proposed pipeline on a single aviation 
dataset, providing extensive functional validation, limiting generaliz-
ability to other domains. Functional evaluation is an essential prerequi-
site to user validation in XAI, ensuring that methods are rigorously tested 
from an algorithmic standpoint before involving domain experts. More-
over, the development and assessment of XAI methods are inherently 
domain-specific, and expert evaluations are often difficult to conduct 
due to scarcity of experts, subjectivity, and high opportunity costs [75]. 
For these reasons, we focused on functional evaluation in this study. We 
acknowledge this as a limitation and note that future work will extend 
the evaluation to additional domains, such as healthcare, finance, and 
manufacturing, to broaden applicability.

As the research progresses, the exploration will be extended for clas-
sification tasks and other types of data models (e.g., neural networks). 
AddCBR is currently limited to regression models with feature impor-
tance values, though extensions to neural networks (e.g., deep CBR 
[121,122], and other variants reviewed by Leake et al. [123]) are a 
prospective future direction. Exploration of a suitable variant of CBR for 
other XAI methods (e.g., saliency maps or gradient-based methods) can 
be done with further research. These will contribute to the refinement 
of XAI methods across different application domains. Another possible 
research direction is to investigate different methods, such as genera-
tive modelling methods like generative adversarial networks, to gener-
ate synthetic data other than the presented clustering-based approach 
to evaluate the performance of the additive feature attribution methods.
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