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ABSTRACT

Explainable artificial intelligence (XAI) methods produce information outputs based on a target artificial intelli-
gence model to be explained. The most popular information output is produced by XAI methods of the category
feature attribution, which produce the relative contribution of each input feature in a local instance. These rela-
tive contributions indicate how important each input feature is in a decision; this type of information is expected
to provide explanatory value to users. In real-world regression tasks, feature attribution methods are crucial for
comprehending model predictions. However, robust evaluation of such methods remains challenging due to a
lack of ground-truth data and widely accepted evaluation metrics, such as accuracy for classification or mean
absolute error for regression. This paper proposes a novel approach for generating synthetic, privacy-preserving
ground-truth datasets for regression problems that retain original feature behaviour, enabling rigorous feature
attribution evaluation without compromising sensitive information. We introduce additive case-based reason-
ing (AddCBR) as a model-aligned and interpretable baseline to benchmark additive feature attribution methods.
This work also demonstrates the first use of the coefficient of quartile variation (CQV) as a statistical measure
to quantify the consistency and stability of feature attribution methods. Altogether, these contributions form a
comprehensive evaluation methodology for objectively assessing and comparing feature attribution methods in
regression models. By providing a controlled evaluation pipeline with reliable baselines and metrics, this work

addresses the current lack of consensus and benchmarking in XAI evaluation for regression models.

1. Introduction

Recent literature on explainable artificial intelligence (XAI) explores
how artificial intelligence (AI) algorithms can explain their decisions
[1-6]. In essence, XAI methods attempt to extract information beyond
an Al algorithm’s raw output (e.g., a predicted class or numeric out-
come) by revealing why the model made its decision—for example, by
identifying the features that most influenced a given prediction. Inher-
ently interpretable models, like decision trees and case-based reasoning
(CBR), often offer information like tree paths [7] or cases [8,9] that
may carry explanatory value. However, when Al models are either not
interpretable or not sufficiently interpretable, post-hoc XAI methods can
extract additional information. Among such methods, additive feature
attribution methods such as SHAP [10] and LIME [11] assign each input
feature a contribution value whose sum approximates the model’s out-
put. This characteristic allows what is termed local accuracy [10] that
indicates how closely the additive feature attribution method’s output
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aligns with the Al model’s prediction for each instance. However, there
is ongoing debate about whether local accuracy alone is an adequate
measure for quantitative quality of feature attribution [12,13].

Despite the popularity of feature attribution methods, there is a lack
of widely accepted evaluation standards for them [6,14-16]. Construct-
ing reliable ground-truth benchmarks for evaluation remains a signifi-
cant challenge [17-21], and it is recommended that XAI methods must
be evaluated in each domain and application, because it is consensual
that explanations are application-specific and contextual (e.g., depen-
dent on user, domain, and task) [19,22-26]. In practice, these factors
make XAI evaluation challenging, and such evaluations are frequently
neglected entirely [6,16]. In a recent scoping review, Mainali and We-
ber[16] found that 81 % of works describing machine learning appli-
cations as explainable do not evaluate the quantitative quality of the
information outputs produced by their XAI methods.

Much of the existing work on feature attribution methods has fo-
cused on classification tasks. Applying similar methods to regression
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Select Original Dataset based on the Task

Generate and Evaluate Privacy-preserving
Ground-truth Synthetic Data

Train a Data Model with the Synthetic Data

Create and Evaluate AddCBR as Baseline to
Evaluate Additive Feature Attribution Methods

Implement Additive Feature Attribution Methods

Evaluate Additive Feature Attribution Methods
with CQV and other Metrics

* . Converts global CBR into an additive form that is interpretable and
can produce additive feature attributions.

- Additive CBR serves as a simple, model-aligned baseline for
evaluating additive feature attribution methods.

* « Helps determine whether complex methods offer actual improvement.
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* « Addresses the lack of ground-truth in XAl evaluations.

« Enables explanation benchmarking by simulating intrinsic
characteristics of the original data.

* « Maintains data privacy while reflecting the core data behaviour.

* . CQV quantifies the quality of additive feature attributions.

. Enables evaluating the attributions in terms of input variability aligning
recommendations for best practices from XAl literature.

. Combined with other metrics produce comprehensive evaluation.

Fig. 1. Overview of the proposed pipeline to evaluate additive feature attributions for regression. The innovations of this work are highlighted in blocks of darker
shade and bold fonts. Also, the rationales of the innovations are outlined on the right.

problems requires careful adaptation [27]. Particularly, to ensure the
model’s output is preserved on the original scale of the data-referred to
as the property of conservation-is essential, but in practice this can be eas-
ily violated by steps including normalization or standardization. Addi-
tionally, literature indicates that the outputs of popular additive feature
attribution methods can be highly sensitive to the choice of data models
and to feature collinearity in the data [28]. To address all the afore-
mentioned challenges, the overarching goal of this work is to establish
a privacy-preserving, model-aligned, and statistically grounded frame-
work for evaluating additive feature attribution methods in regression
models with the innovations outlined in the following subsection.

1.1. Innovations

This work introduces three key innovations that advance the state-
of-the-art in XAI for regression tasks:

1. Privacy-preserving ground-truth data for evaluating feature attribution in
regression models: We propose a novel approach to create synthetic
datasets for regression tasks, which address privacy concerns while
preserving the explanatory role of each feature. The synthetic dataset
replicates the characteristics of the original dataset and can be used
to compute feature attributions as ground-truth to evaluate feature
attribution methods for explaining regression tasks. This approach
aligns with recent recommendations to use synthetic data for bench-
marking XAI techniques [29] and protect sensitive information from
the original dataset [30,31].

2. Additive form of CBR as a model-aligned baseline to evaluate additive
feature attribution methods: We extend our additive CBR (AddCBR)
method, first introduced in a workshop paper by the same authors
[32]. Specifically, AAdCBR is designed to serve not only as an inter-
pretable explanation method but also as a model-aligned baseline for
evaluating additive feature attribution methods. The benefit of Add-
CBR is that it uses the prediction model parameters to generate fea-
ture attributions formatted in the same way as additive feature attri-
bution methods like SHAP [10] or LIME [11] that we aim to evaluate.
AddCBR offers a transparent, feature attribution-aware reference for
the evaluation of additive feature attribution methods. Additionally,
in this work, we validate AddCBR’s reliability with a feature deletion
study that exhibits how removing each feature affects the model’s
predictions, confirming that feature attribution from AddCBR truly
reflects each feature’s influence.

3. Statistical metric for evaluating the additive feature attribution methods:
We propose the use of a statistical measure, the coefficient of quartile
variation (CQV) [33], to evaluate the quantitative quality and consis-
tency of feature attributions. By comparing the variability of two sets
of attribution values (for instance, the attributions from our baseline
versus those from another method), CQV yields a single quantita-
tive indicator of how similar or stable the two sets are. To the best
of our knowledge, this is the first application of CQV in evaluating
XAI methods, offering a novel way to determine whether different
explanation outputs are in agreement.

To present the value of the outlined innovations, we implement an
evaluation pipeline for the additive feature attribution methods. Despite
being potentially applicable to both regression and classification appli-
cation tasks; in this work, the implementation of the proposed approach
focuses only on regression problems. Fig. 1 provides an overview of our
evaluation pipeline for additive feature attribution methods in regres-
sion. The workflow starts with the acquisition of an original dataset that
is used to create the model whose decisions one needs to explain. From
the original data, we generate a synthetic dataset that captures the be-
haviours within the original dataset, thus preserving the privacy and
reflecting ground-truth behaviours. A new data model is then trained
on this synthetic data. Next, we derive the AddCBR baseline feature
attributions from the synthetic data model and examine their fidelity.
After establishing this baseline, we apply the chosen additive feature
attribution methods to the data model. Finally, the baseline is used to
evaluate the outcome of the additive feature attribution methods using
the CQV metric and other established measures from the literature. In
our experiments, we consider two popular additive feature attribution
methods. The first method is SHAP [10] that is grounded in Shapley
values [34] and is expected to perform well for regression tasks. And,
LIME [11]—the other method that we anticipate to be less effective for
regression tasks because it includes some standardization of the model’s
values to produce feature attribution.

1.2. Motivation

This work is motivated by a real-world regression problem in avi-
ation: predicting flight take-off time delays. The aviation industry in-
curs, on average, approximately 100 Euros per minute for the Air Traffic
Flow Management [35]. In the United States, a 2019 Federal Aviation
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Administration! report presented that the estimated cost due to delay,
considering passengers, airlines, lost demand, and indirect costs, was
33 billion dollars [36]. Such high stakes underscore the significance and
provide the rationale for increased attention towards predicting take-off
time and reducing delays [37]. More generally, regression tasks play a
crucial role in many Al applications, yet the explainability of regression
outcomes has received relatively limited attention compared to that of
classification tasks.

A key challenge in developing and evaluating regression models in
safety-critical domains like aviation is the limited availability of high-
quality data. Original datasets are often proprietary, domain-specific,
and computationally expensive to process due to high dimensionality
[27,29]. These constraints hinder the iterative experimentation needed
to improve prediction and explanation methods. Moreover, a fundamen-
tal issue in the evaluation of feature attribution methods is the absence
of ground-truth attributions [21]. When combined with the need to pre-
serve data privacy and the importance of maintaining the output in its
original measurement unit, i.e., property of conservation, these challenges
motivate our use of privacy-preserving synthetic data as a stand-in for
ground-truth in explanation evaluation. Furthermore, given the lack of
consensus on standardized evaluation criteria for XAI methods [6], we
present AddCBR as a model-aligned baseline and use the CQV metric to
provide a quantitative assessment of the consistency of different feature
attribution methods. To validate the utility of the proposed benchmark
and evaluation framework, we focus our analysis on a single, domain-
specific dataset. This allows for a detailed investigation of the underly-
ing features and their role in supporting meaningful evaluation of XAI
methods in a real-world regression context.

The remainder of this article is organised as follows—Section 2 re-
views relevant background and related work. Section 3 introduces the
proposed approach for generating privacy-preserving ground-truth data
and presents the evaluation of the generated data with respect to
the original dataset. Section 4 describes the construction of the Add-
CBR baseline for evaluating additive feature attribution methods and
presents the experiments demonstrating its effectiveness as an evalua-
tion benchmark. Section 5 outlines the proposed evaluation criteria for
the additive feature attribution methods and discusses the implementa-
tion with experimental results. Finally, Section 6 concludes the paper
with a summary of the findings and potential future directions for ad-
vancing the research field of XAI in the context of evaluation.

2. Background and related work

This section presents the formal definitions of the regression mod-
els and the additive feature attribution methods used to explain their
output, which are referred to in the subsequent sections. Following the
definitions, we describe the state-of-the-art XAI methods used in this
study, along with their evaluation approaches. We also review the works
utilizing benchmark datasets for XAI evaluation.

2.1. Formal definition

The regression model Q is defined for a dataset of n observations
indexed by i € {1, ...,n}. The ith observation is described by a set of m
independent features or attributes a, ..., a,,, represented by the vector
x; = [x;1, ..., X;,] € X, Where, x;; is the value of attribute a; drawn from
its distribution D s where j € {1,...,m}. This distribution can be contin-
uous or discrete, depending on the nature of the attributes. The feature
space is defined as A = D x ... x D,,. The corresponding target value
is y; € Y C R. Given the dataset, the objective of Q is to learn a map-
ping function r : X — Y that accurately estimates the target variable y;
from the input feature vector x;, i.e., r(x;) = y;. Finally, an explanation
problem is a tuple (r,(x;, y;)) intended to be solved using an explana-
tion function g(z;). Here, z; € {0,1}" simplified binary representation

! https://www.faa.gov/
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of x; obtained via a transformation function A(x;). The function g(z;)
computes the feature attributions (¢ € R™) using Eq. (1) [10]:

g(zi) =¢0+Z¢jzij (@)
j=1

where ¢, corresponds to the bias term (average model output for the
dataset) and ¢; attributes the effect of the jth feature on the predic-
tion. Finally, the sum of all the feature attributions and the bias term
approximates the output r(x;) of the regression model.

2.2. XAI methods

The purpose of explaining an Al model’s decision is to make the be-
haviour of the model intelligible to users [1]. For this reason, many
authors have stated that the explainability problem is user-, application-
, and domain-specific [9,23,25]. This realization alone justifies the
recommendation that XAI methods should be evaluated for each spe-
cific implementation. Particularly, when considering feature attribution
methods, many studies have shown that their results can have several
limitations (e.g., [21,38-40]), underscoring evaluation as a major re-
quirement [21,39,41-44]. In this section, we describe the main XAI ap-
proaches evaluated in this work, as well as the approaches for evaluating
explanations considering different perspectives.

The domain of XAI contains a wide spectrum of methods that can be
categorised along various conceptual dimensions. A fundamental dis-
tinction between methods is whether they explain a model’s overall
decision strategy (i.e., global) [45,46] or an individual instance (i.e.,
local) [11,47]. Later in this article, we show that an interpretable CBR
methodology yields a strong alignment between global and local fea-
ture attributions. By contrast, we did not observe this alignment with
Extreme Gradient Boosting (XGBoost) or any other Al or XAI methods.

As introduced, we focus on the additive feature attribution methods
for regression on tabular data. As an example of a method that is indi-
cated for regression [27], we use SHAP [10], since it is based on Shapley
values [34]. As we will validate, despite criticisms (e.g., [21,40]), SHAP
performs well for the regression task.

SHAP-Shapley Additive Explanations [10] is a suite of methods for
computing the relative contributions of individual features to a given
prediction, so that their sum approximates the model’s output. SHAP
borrows concepts from cooperative game theory [48]. With non-linear
black box models, SHAP provides feature importance values as a global
explanation. It also produces local explanations for individual predic-
tions using Shapley values [48] to fairly assign the impact among fea-
tures. Because the calculation of the Shapley values requires iteration
over 2" sample space, SHAP approximates the feature contributions for
high-dimensional data. For smaller values of m, the feature contribu-
tions are exact. SHAP computes the marginal contributions of the fea-
tures to generate an explanation in the form of feature attribution for
models’ output. The marginal contribution of each feature is the dif-
ference between the prediction from the model with and without the
respective feature. Finally, SHAP assigns each feature an overall con-
tribution equal to its average marginal contribution across all possible
feature combinations. SHAP is available as a Python tool?. It provides a
dedicated Explainer implementation for text and image data. For tabu-
lar data, KernelExplainer is model-agnostic, and TreeExplainer is designed
for tree-based models, both singular and ensembles. In this work, we use
the TreeExplainer since the data model is built with XGBoost.

The second additive feature attribution method we consider is LIME-
Local Interpretable Model-agnostic Explanations [11]. It is developed
based on the assumption that the behaviour of an instance can be ex-
plained by fitting an interpretable model (e.g., linear regression) with
a simplified representation of the instance and its closest neighbours.
While making a single prediction, LIME first generates an interpretable

2 https://shap.readthedocs.io
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Table 1
Methods, metrics or axioms used for evaluating XAI methods with
references to the works in which they were proposed or employed.

Evaluation Method/Axiom/Metric References
Sensitivity analysis [38]
Example images [11]
Satisfiability/Model counting [54-56]
Correlation, completeness and complexity [57]
Conservation, continuity [51]
Concept Activation Vectors (CAV) [58]
Fidelity [26,59-62]
Maximum Fidelity Gap [60]
Effective Complexity [63]
Gold features [11]
Post-hoc accuracy [64-67]
Perturbation analysis for vision [68]
Remove and Retain (ROAR) [50]
Retain and Debias (ROAD) [69]
Random Logit Test [70,71]
Perturbation on time-series [72]
Implementation invariance, sensitivity [73]
Input invariance [74]
Simulated users [11]
Amazon Mechanical Turk users [11,64]
In-depth interviews [75]

representation of the input instance. In doing so, LIME standardizes the
values of the input features to create z, causing it to lose the original pro-
portion of the feature values, which is important for regression [27]. In
the next step, LIME perturbs the simplified input z and uses the black box
model to predict on these perturbed samples, thus generating a training
dataset for the interpretable model. LIME then draws samples from the
generated data based on their similarity to select the closest neighbours.
Lastly, an interpretable model (e.g., linear regression) is trained on these
selected neighbouring samples. With the weights or coefficients corre-
sponding to each feature from the trained model, LIME presents the
local explanation. LIME is available as a Python package® capable of
generating explanations for tabular, image, and text data.

2.3. Evaluation of XAI methods

In this section, we describe some evaluation methods from the liter-
ature that have been applied to different XAI methods, particularly to
additive feature attribution methods. In a recent study, Zhou et al. [21]
pointed out the fact that the main obstacle in evaluating feature attribu-
tion methods is the lack of ground-truth or ideal feature attribution val-
ues. To overcome this, Zhou et al. [21] proposed a dataset modification
procedure to generate such ground-truth. In another study, the authors
used a benchmark dataset as ground-truth for evaluating the explana-
tions on the neural network outputs [49]. The literature in XAI presents
a wide range of methods for evaluating the feature attribution methods,
which are listed in Table 1. However, ground-truth datasets for XAI are
not widely used, with a few notable exceptions (e.g., [17-21,49]), and
such absence is recognized as limiting advances in XAI [50-53]. No-
tably, the use of gold features by Ribeiro et al. [11] was the closest form
of ground-truth, i.e., the most important features used by the prediction
model.

Nevertheless, different metrics and reference values have also been
used to evaluate XAI methods. Liu et al. [29] conducted a comparative
analysis of eight feature attribution methods for regression tasks. They
evaluated these methods with various metrics (e.g., faithfulness, mono-
tonicity, etc.), yielding valuable insights into their performance. Letzgus
et al. [27] leveraged Shapley values [48] as a reference to evaluate their
proposed method and highlighted the inconsistency of XGBoost’s fea-
ture importance in local prediction scenarios. Troncoso-Garcia et al. [76]

3 https://github.com/marcoter/lime
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used association rules to evaluate the explanations for time-series pre-
dictions, demonstrating evidence of LIME’s inconsistency in generating
explanations, which resembles the findings by Deng et al. [77].

To summarise, the efficacy of XAI methods should be based not
only on their theoretical constructs but also on demonstrated empiri-
cal performance. Furthermore, there’s a growing concern about whether
these explanations can yield valuable insights and actionable decisions
[78,79]. Finally, the majority of works applying machine learning mod-
els that claim they are explainable do so based on implementing popular
libraries for additive feature attribution methods (e.g., SHAP [10], LIME
[11]) without even questioning their validity or performing any evalua-
tion [16]. In addition, none of the widely used metrics directly assesses
the consistency or dispersion of feature attributions. This is an important
omission, as high variance in an XAI method’s output can undermine
trust. To address this gap, we propose using the CQV to quantify the
stability of feature attribution values, given that it is a robust measure
of relative dispersion that is less sensitive to outliers than the regular
coefficient of variation [33].

2.4. Benchmark datasets

Many authors agree that the lack of benchmark datasets to evaluate
XAI methods is detrimental [50-53]. Jeyakumar et al. [80] used human
labelling as benchmarks to evaluate several XAl methods against their
newly proposed one across image, text, audio, and sensory datasets. In
other studies, benchmarks were proposed for time-series classification
[81,82] and for natural language tasks [83]. Amparore et al.[84] re-
leased a library providing several evaluation metrics for local linear
explanation methods and presented its use by comparing SHAP [10]
and LIME [11]. Particularly, several tools are developed for XAI evalu-
ation with benchmark synthetic datasets in the recent years (e.g., BAM
[52], XAI-Bench [29], OpenXAI [85], GraphXAI [86], M* [87], XAI-
Units [88], etc.). Among these tools, XAI-Bench [29], GraphXAI [86] and
XAI-Units [88] used the synthetic datasets as ground-truths for evaluat-
ing different XAI methods. To this end, there remains a notable scarcity
of synthetic datasets specifically designed for explanation benchmarking
with ground-truth for regression tasks, let alone addressing the concerns
with privacy regulations (e.g., GDPR [89]). These limitations directly
motivates our first contribution, and to the best of our knowledge, no
prior work has proposed to capture the underlying characteristics of
the data as representatives of ground-truths while generating synthetic
datasets as we describe in Section 3.

2.5. Case-based reasoning

CBR [90] has its roots in the memory-based methods, and it im-
plements similarity heuristics, i.e., it reuses previous solutions to solve
a similar new problem. Determining the similarity between problems
is domain-specific, which is why CBR systems frequently employ the
weighted Euclidean distance, where the details of the problem context
are reflected in the feature weights. These weights used in determining
the similarity between problems are global to features, which makes the
decisions interpretable at the global level.

CBR has three major aspects that make it interpretable. First, it can
produce a case as an example to explain a decision. Second, it can ex-
plain how similar the provided example is to the local instance that is
being explained. And, when explaining the similarity, it can provide
global weights for all the features in that local instance. Third, it has
a small set of global weights to explain its global behaviour. For these
reasons, it is possible to create a CBR system that is functionally equiv-
alent to a model based on tree-based models (e.g., XGBoost). However,
creating a functionally equivalent CBR system for a neural network is
challenging. The only work that we are aware of, on building a CBR twin
system that is functionally equivalent to a neural network, was done by
Kenny and Keane[91]. The problem with adopting the concept of the


https://github.com/marcotcr/lime

M.R. Islam et al.

CBR twin in the methodology of this work is about reusing the input rep-
resentations. While building a CBR twin, they reuse the abstract input
representation from the neural network after training, thus losing one
important aspect of transparency, which is having associated weights to
each feature.

Considering the interpretable characteristics of CBR, it is often used
to generate example-based explanations [91,92]. However, the global
weights do not support local explanations in a similar way to the addi-
tive models present. For local explanations, we proposed the additive
form of CBR, namely AddCBR, in our previous work [32]. The additive
form is attained by re-scaling the feature values after the prediction is
made by the weighted CBR regression model. Thus, by creating Add-
CBR, we are identifying a local representation for the instance that is
being explained.

By directly leveraging the underlying model’s structure and reason-
ing process, AddCBR produces explanations inherently aligned with how
the model makes its predictions. This inherent alignment makes AddCBR
a particularly suitable baseline for evaluating other additive feature at-
tribution methods, as it faithfully reflects the model’s decision logic. This
work demonstrates the value of AddCBR for the first time as a baseline
to evaluate the additive feature attribution methods. The experiments
validating AddCBR as the baseline are described in Sections 4.3 and 4.4.

3. Generation of privacy-preserving ground-truth data

The proposed evaluation pipeline for additive feature attribution
for regression begins with the generation of privacy-preserving ground-
truth data that contains the underlying behaviours in the original
dataset. The data generation process includes four major steps: i) se-
lection of an original dataset, ii) capturing the behaviour in the original
data, iii) synthetic data generation, and iv) evaluation of the generated
synthetic data. All these steps are discussed in detail in the following
subsections.

3.1. Selection of original dataset

The original datasets from which the prediction models are trained
are often domain-specific, proprietary, or computationally expensive
due to high dimensionality [27,29]. These issues restrict the use of the
original datasets for iterations of experimental studies required for the
development of the applications and methods. To mitigate the issues,
the original dataset is used as a seed for generating synthetic datasets.

The selected original dataset for this study was acquired from Avia-
tion Data for Research Repository* that was collected and processed by
EUROCONTROL® from the Enhanced Tactical Flow Management Sys-
tem flight data messages containing all flights in Europe throughout
the year 2019, from May to October. The dataset consists of fundamen-
tal details of the flights, flight status, preceding flight legs, Air Traffic
Flow Management regulations, weather conditions, calendar informa-
tion, etc. Specifically, the dataset contains 7,613,584 instances with 42
features, with the target variable in the dataset being the flight take-
off time delay. A brief description of the features used in this study is
presented in Supplementary Table S1.1 and the detailed description of
the dataset can be found in the works by Koolen and Coliban [93] and
Dalmau et al. [37].

Prior to capturing the behaviours of the data, in the preprocessing
step, instances with missing values and noise were removed from the
dataset to ensure data quality and integrity. Also, the dataset was made
free from the outliers so that the actual behaviour of the data could be
captured.

4 https://www.eurocontrol.int/dashboard/rnd-data-archive
5 https://www.eurocontrol.int/
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3.2. Capturing the data behaviours with density-based clustering

In the proposed approach, the behaviour of the data is the prime fac-
tor in evaluating the additive feature attribution methods. The data pre-
serves different behaviours in the instances collectively, and the expla-
nation is expected to recognize them. We recommend using any cluster-
ing method that captures underlying behaviours in the data and aligns
well with the characteristics of the dataset and the specific task. The
instances closest to the centroids of the clusters are those expected to
represent best the underlying behaviours of the cluster, which can be
used as the seeds to generate synthetic data. The premise is that each
cluster captures a different behaviour, and their respective explanations
have to be consistent with those behaviours.

Though synthetic data generation is founded on statistical principles,
where sampling is done to preserve the underlying behaviours or distri-
bution of the real data [94]. However, more recent studies confirm that
both distribution- and cluster-based methods can effectively replicate
multimodal and skewed structures in the data, while also noting that
small biases (e.g., in cluster or feature frequencies) may occur if resid-
ual shifts are not addressed [95,96]. Also, the clustering-based synthesis
follows the statistical rationale, ensuring that core data behaviour is pre-
served in the synthetic data [95]. These behaviours are the ground-truth
information that is crucial for XAI evaluation. Considering the recom-
mendations, the synthetic data generation process in this study starts
with density-based clustering as an unsupervised method for capturing
the behaviours of the flight delay prediction dataset. The process is de-
scribed in the following subsections, which include mitigating the po-
tential biases through the selection of the appropriate number of clusters
and samples to form the seed datasets for synthetic data generation.

3.2.1. Density-based clustering

Several clusters were formed within the dataset using density-based
clustering. Density-based clustering can discover clusters of arbitrary
shape without requiring a pre-set number of clusters and treats outliers
as noise, which makes it robust for complex temporal data with anoma-
lies [97].

Dynamic time warping (DTW) [90] is used as the distance measure
that determines the similarity between the data points, while cluster-
ing based on their intrinsic characteristics. DTW identifies a mapping
between measurements from two time series such that the cumulative
value of a given distance function is the minimum [90]. It also provides
a flexible, non-linear alignment between time series, allowing compar-
ison of sequences that are misaligned or of differing lengths and thus
handling variability in timing or speed [98]. Particularly, the origi-
nal dataset (described in Section 3.1) consists of temporal sequences
of flight-status parameters where DTW is well-suited because it aligns
time series that may be out of phase or evolve at different speeds. This
makes it a widely adopted measure for clustering or classifying time-
series data, as confirmed in the literature on time-series clustering [99].
Prior work on a similar application to ours, flight trajectory analysis,
also uses DTW for clustering temporal data [100].

Thus, density-based clustering combined with DTW distance has
been shown to effectively group similar behaviour patterns in multi-
variate datasets with time dependencies (e.g., clustering flight opera-
tion sequences) even when the data are noisy or irregular [97]. These
clustering and distance techniques were adopted considering the nature
of the original data, thus aiming at identifying patterns and grouping
similar instances.

3.2.2. Selection of appropriate number of clusters

To determine the optimal number of clusters, both the x (fea-
tures) and y (takeoff delay) values were considered. Initially, the Elbow
method suggested by Madhulatha[101] and Yuan and Yang[102] was
chosen to select the optimal number of clusters. However, the use of the
Elbow method is criticised with experimental results by Schubert[103]
and suggested using other methods. Afterwards, other methods were
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Fig. 2. Illustration of the separation of the average values of the target variable
for each cluster, considering one to 11 clusters in the dataset. The dataset with
six clusters (red dots) was chosen for primary analysis as the separations among
the average values were more prominent than the others. The datasets with two
and eight clusters are considered in the appendix (blue dots). Other datasets
(grey dots) are omitted as the average values are closer and overlapping.

compared to select the optimal number of clusters, e.g., the Variance
Ratio Criterion (VRC) proposed by Calinski and Harabasz [104] and the
Jump Method by Sugar and James[105]. Nonetheless, all three meth-
ods produced different values for the optimal number of clusters. This
hindered the selection of an optimal number of clusters using a method
from the literature. For clarity, the plots for the used methods are illus-
trated in the Supplementary Material (Figure S2.1).

3.2.3. Refining clusters based on the target variable

As several methods from the literature for selecting the number of
clusters did not reveal an optimal number of clusters with significant
differences (Supplementary Figure S2.1), the focus shifted to the values
of the target variable y. The average values of y were observed per clus-
ter for the different numbers of clusters in the dataset as illustrated in
Fig. 2. By breaking down the flight take-off delays into intervals, distinct
classes are created where each class represents a specific behaviour.

3.2.4. Selection of datasets

The dataset with six clusters was chosen as the main dataset because
of the clear separation of average y values in it, as illustrated in red
dots in Fig. 2. Additionally, two other datasets with different numbers
of clusters (two and eight clusters) were generated for sensitivity anal-
ysis, which are illustrated with blue dots in Fig. 2, and the results from
experiments with these datasets are presented in the Supplementary Ma-
terial (Section S3). Other datasets were omitted due to the overlapping
cluster-wise average values of y (grey dots in Fig. 2).

3.3. Synthetic data generation for regression tasks

Generally, in the real world, data often contains noise and outliers
that challenge the prediction models to learn crucial underlying be-
haviours of the data. In the preceding step, the original data was clus-
tered based on these target behaviours. The synthetic data generation
starts with identifying the seed instances from each cluster representing
individual behaviour. An equal number of seed instances is randomly
picked from each cluster to ensure that all the behaviours in the orig-
inal data are equally represented in the synthetic data. The next step
is to perturb the seed instances by maintaining an average of zero for
the changes, thus retaining the original behaviours. In the final step,
generate the target values randomly within the range of each cluster
from the original data. This ensures representing the distinct behaviour
of the cluster and minimising the overlap, i.e., similar data points in
neighbouring clusters.
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Table 2
Summary of the generated synthetic datasets for evaluation.

Criteria Choice for evaluation  Sensitivity analysis
No. of clusters 6 2 8

No. of seed instances 300 900 225

No. of perturbations 100 100 100

No. of total instances 180,000 180,000 180,000
No. of training instances 144,000 144,000 144,000
No. of testing instances 36,000 36,000 36,000

Here, three different synthetic datasets are generated based on the
captured behaviour from the original dataset. The data generation was
performed in two steps that are discussed in the following subsections.

3.3.1. Selection of random seed instances

Random seed instances were selected from each cluster within the
selected datasets (i.e., two-, six-, and eight-cluster datasets). The number
of seed instances selected for generating the synthetic data for a single
cluster was different for the three synthetic datasets. However, within
a single dataset, an equal number of seeds was selected. This balanced
sampling was chosen to ensure that all behavioural patterns-including
rare but operationally significant cases in small clusters-are preserved,
while preventing large clusters from dominating the dataset. This strat-
egy protects the representation of both over- and under-represented
clusters, maintaining diversity in the generated data. Also, the selec-
tion of an equal number of seed samples from the clusters contributes
to mitigating potential biases in the cluster-based synthetic data gener-
ation method [96]. Moreover, the clusters capture distinct patterns in
the original data, with only minor patterns excluded when reducing the
number of clusters (e.g., from eight to six). A comparative evaluation
between the original and synthetic data showed that omitting these pat-
terns was not detrimental, as confirmed by quantitative analysis (see
Section 3.4), indicating similar distributions across clusters. These re-
sults demonstrate that the synthetic data preserves representative pat-
terns, including those from both over- and under-represented clusters,
thereby supporting the validity of our approach. Thus, we selected an
equal number of seeds from each cluster for the three selected datasets
(see Table 2).

3.3.2. Perturbation and synthetic data generation

As the last step, perturbations were applied to the selected instances
to generate synthetic data. The continuous features were perturbed only
while keeping the categorical features unaltered, and this choice of ac-
tion is dataset-specific. Particularly, the binary and categorical variables
(e.g., presence or absence indicators, airport codes, or system message
types) were preserved in their original form to maintain semantic valid-
ity and avoid generating unrealistic combinations. In the flight dataset
used in this work, the categorical features contain information about the
airports, different system messages, etc., which influence the values of
the continuous features within the range in individual clusters. To miti-
gate the issue of exceeding the value range of continuous features influ-
enced by the categorical features, they are kept unchanged. For the con-
tinuous features, to preserve their original distribution in the synthetic
data, we adopted a use and evaluate strategy starting from the simplest
approach of sampling from a normal distribution rather than more so-
phisticated methods (e.g., Gaussian mixture models, Monte Carlo sim-
ulations). Following the Occam’s Razor Principle [106]), we selected,
used, and evaluated the simplest approach. We were motivated to adopt
the simplest one after visually inspecting the original data distributions
of the continuous features and noticing they resemble the bell-shaped
curve of normal distributions.

Formally, the values x;; of the feature vectors were perturbed from
the respective distributions D; while maintaining an average of zero
for the added values to the features, ensuring the behaviour did not
change. The y values were generated based on the range of each cluster,
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Fig. 3. Distribution of the target variable from the dataset with six clusters, that
is the main choice for evaluating the additive feature attribution methods. Each
colour represents the respective cluster indicated in the legend.

representing distinct classes of behaviour. The distribution of the target
variable y for the dataset with six clusters is illustrated in Fig. 3, which is
the primary choice for the evaluation of the additive feature attribution
methods. It can be observed from the figure that the densities of clusters
three - six are higher than those of clusters one and two. This higher
density was the result of the effect of their smaller interval of the target
variable, whereas an equal number of instances were perturbed from all
the clusters. The datasets are prepared for the evaluation of the additive
feature attribution methods with an equal number of instances in each
of them. The summary of the synthetic datasets is presented in Table 2.

3.4. Evaluation of synthetic dataset

The quality of the synthetic data can be assessed in terms of the data
distribution. The similarity between the distributions of the synthetic
and the original dataset represents how well the synthetic dataset pre-
serves the behaviour of the original data. Since only a few methods are
proposed to generate synthetic data with ground-truth for XAI evalua-
tion (described in Section 2.4), our approach is evaluated with a similar
experiment done by Liu et al. [29] for evaluating the quality of the sim-
ulated dataset. The goal of this experiment is to examine how well the
generated data captures the behaviour contained in the real data and
assess the performance of our approach with the literature.

Jensen-Shannon Divergence (JSD) [107] was used to measure the
similarity between the synthetic and the original data. JSD is a statisti-
cal measure that assesses the similarity between two probability distri-
butions. It is derived from the Kullback-Leibler Divergence (KLD) and
addresses its limitations, such as being asymmetric and unbounded. JSD
overcomes these drawbacks by calculating the average of the KLD be-
tween each distribution and their average distribution. Due to its prop-
erties, JSD became a valuable tool to quantify and compare the similar-
ity of probability distributions. JSD provides a symmetric and bounded
measure of divergence within the range [0, 1], where zero denotes iden-
tical distributions and one represents completely different distributions.

To evaluate whether the synthetic data preserves the characteristics
of the original dataset, we formulate the following hypothesis:

H 1: Each continuous feature in the synthetic data has a similar distribution
to the corresponding feature in the original data.

The synthetic dataset was generated by perturbing the continuous
features and the categorical features were kept unchanged as described
in Section 3.3.2. Therefore, the hypothesis of this experiment is defined
solely for the continuous features. Formally, it is hypothesized that D )~
D; where D ; and D; are the distributions of feature a; from the synthetic
and the original data, respectively.

The outcomes of JSD calculations for the six-cluster dataset are de-
picted in Fig. 4. To align with the JSD value range, the y-axis has been

Knowledge-Based Systems 330 (2025) 114599

Comparison of Real and Synthetic Data Distributions

Cluster
0.9 -

0.8 -

0.7 -

1
2
3
4
0.6 - 5
6

0.5 -

JSD

0.4 -
0.3 -

0.2 -

&H-ihiiihlilliilli

dg digq dzo d21 A2z A3 dq A5 Az dz7 dzg d29 d30 d31 d32 d33 d3g
Continuous Features

Fig. 4. Bar plot illustrating the JSD measures between the distributions of the
continuous features from the original and synthetic datasets. The range of values
for JSD is [0, 1], where smaller values denote similarity and higher values denote
dissimilarity between the distributions.

scaled from zero to one. For each continuous feature, the JSD values
are presented for individual clusters as the clusters hold different be-
haviours of the data, resulting in different distributions. The reported
JSD values range from 0.05 (minimum) to 0.24 (maximum) with an av-
erage (+ standard deviation) of 0.102 + 0.05. Notably, the result reflects
the high similarity between the distributions of all continuous features
in the synthetic dataset and those in the original dataset, as evidenced
by their corresponding JSD values.

The JSD values were exclusively calculated for the continuous fea-
tures, leaving the categorical features as they were kept unaltered during
synthetic data generation. As depicted in Fig. 4, it becomes evident that,
with the exception of a33, all features exhibit low JSD values. This obser-
vation underscores the remarkable similarity between the synthetic and
original data. To visually emphasise this high similarity due to the low
JSD values, the y-axis in Fig. 4 has been scaled from zero to one, mirror-
ing the range of JSD values. Specifically, while Liu et al. [29] reported an
average JSD of 0.20 for evaluating synthetic data, our approach achieved
a substantially lower average JSD of 0.105, demonstrating superior per-
formance in preserving the distribution of continuous variables in the
synthetic data.

4. AddCBR as a baseline for evaluating feature attribution
methods

The AddCBR is introduced in this paper in Section 2.5, which was at
first conceptually presented in a workshop paper by the same authors
[32]. Here, it is extended and its value as a baseline for evaluating fea-
ture attribution methods is demonstrated. Particularly, AddCBR is de-
veloped with a weighted CBR regression model [90] where the feature
weights come from the data model. AddCBR achieves the additive form
by re-scaling the feature values after the prediction with the weighted
CBR regression model. Considering the interpretable characteristics of
CBR and its use as a proxy model for explaining other models’ output
[91,92], AAdCBR becomes a potential benchmark for local interpretabil-
ity, which is demonstrated with experimental results in Sections 4.3 and
4.4.

4.1. Implementation of data model

The data model is implemented with an Al algorithm. However,
there remains a prerequisite for selecting the algorithm for implement-
ing the data model since the next step of creating the baseline requires
a set of feature weights. Therefore, any algorithm with the ability to
produce feature importance values or weights, such as decision trees
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Table 3

List of used hyperparameters in optimising
XGBoost model for regression through a grid
search over different combinations. The values
of the hyperparameters used for the final train-
ing are highlighted in bold font.

Hyperparameters List of values
learning_rate [0.01, 0.1]
max_depth [3,5,7,10]
min_child_weight [1,3,5]
subsample [0.5, 0.7]
colsample_bytree [0.5, 0.7]

n_estimators [100, 200, 500]

or tree-ensembles, can be adopted to implement the data model in this
step.

In this study, the data model for regression was implemented with
a Gradient Boosted Decision Trees (GBDT) ensemble method, namely
XGBoost [108], and trained to predict the flight take-off time delay.
We used XGBoost given its potential to be more accurate in prediction
tasks for structured or tabular data [4,109] than the other widely used
variants of GBDT, e.g., LightGBM [110], that was utilized in a previous
work in air traffic delay prediction [37].

The XGBoost regression model was trained with the hyperparame-
ter values selected through a grid search over 288 different combina-
tions. Here, grid search is exploited in the process of finding the ap-
propriate hyperparameter values following the works of Claesen and
De Moor[111], who highlighted the importance of such methods in
model optimization. Table 3 presents the list of values of the hyper-
parameters used for optimising the XGBoost regression model. The
performances of the regression model for different combinations of
the hyperparameter values were assessed using Mean Absolute Error
(MAE). The trained model with the selected hyperparameter values per-
formed with an MAE of 9.9 min, whereas the MAE was 10.02 min with
the default values of the hyperparameters. The final hyperparameters
used to train the regression model are: learning_rate = 0.1, max_depth =
7, min_child_weight = 1, subsample = 0.5, colsample_bytree = 0.5, and
n_estimators = 500.

4.2. Creating additive CBR

CBR can generate example-based explanations. However, as dis-
cussed in Section 2.5, its global weights describe overall feature impor-
tance and do not directly support local explanations in the way additive
models do. We refer to this standard form as Global CBR. To address
this, we create AddCBR by re-scaling the values from the CBR regres-
sion model after prediction. This transformation allows AddCBR to offer
local explanations and serve as a benchmark for evaluating local inter-
pretability of additive feature attribution methods. In addition, AddCBR
is designed to train using the feature importance values from the data
model and produce additive feature attributions that are directly com-
parable to those of the methods to evaluate. Thus, it enables an objective
assessment of the attribution quality of the additive feature attribution
methods.

The AddCBR baseline is designed to transform the output of a
CBR regression model into the additive feature attribution form de-
fined in Eq. (1). Recalling the formal definitions from Section 2.1, x; =
[x;15 ... X;] De the feature values of ith instance, and w = [w,, ..., ®,,]
be the corresponding feature weights from the feature importance val-
ues learned by the data model. In the first step, y; is predicted using the
regression model Q. Here, Q is represented by a CBR regression model.
Then, a scaling multiplier y; is obtained by dividing the prediction y; by
the sum of its factors, i.e., the dot product of the feature values of x; and
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weights w, using Eq. (2):

_
(Z}":l x,,-wj)

Finally, the feature attribution values can be obtained by a dot
product of the multiplier y; and the factor of the given instance, i.e.,
(x; - w). Here, the multiplier y; rescales the contributions so that their
sum matches the model output y;. Hence, for the given instance x;,
the final attribution vector ¢; = [¢;;, ..., $;,] is obtained as the addi-
tive feature attribution as per-feature contributions. For example, if a
regression model predicts a delay of y; min from the data instance x; of
a given flight, AddCBR decomposes value of y; into per-feature contri-
butions, i.e., ¢;;, ..., ¢;,, whose sum equals to y;, providing a transpar-
ent, model-aligned baseline for evaluating other additive feature attribu-
tion methods. The whole process of creating AddCBR is summarised in
Algorithm 1.

Vi = 2

Algorithm 1: Additive CBR.

Input: x;: data point, w: feature weights.

Output: ¢;: contributions of the features to the prediction.
y; « predict using CBR for x; with @

y; < compute using Eq. (2)

¢ < v (x; o)

return ¢,

a AN =

In the proposed evaluation pipeline, while implementing AddCBR,
the feature importance values from the data model (i.e., the XGBoost
model trained in the previous step) were considered as the weights (w).
And, for the CBR model within AddCBR, three nearest neighbour in-
stances (i.e., k = 3) were considered to predict the target variable. Par-
ticularly, the CBR model predicts by averaging the y; of the three near-
est neighbours retrieved using the Euclidean Distance weighted with
the feature importance values from the XGBoost model. The choice of
three nearest neighbours was made since anecdotal tests suggested that
three neighbours perform better than one. Moreover, it is a commonly
successful default that reflects the bias-variance trade-off sweet spot to
capture important local structure for many practical situations [112].

The evaluation of AAdCBR as a baseline was performed through ex-
periments on prediction performance in terms of local accuracy, and
with local and global assessment by feature ranking and the impact of
the most and least important features on the prediction. In these exper-
iments, the results from AddCBR are compared against the results from
the XGBoost regression model.

4.3. Prediction performance of AddCBR

The prediction performance metric is the MAE and Standard Devia-
tion of Absolute Error (¢, ). MAE is the average difference between the
actual observation y; and the prediction y; from the model. ¢, signifies
the dispersion of the absolute error around the MAE. The measures were
calculated using Eqgs. (3) and (4), respectively. As both the MAE and o
are representations of errors done by the models while predicting, lower
values indicate better results.

ISy,
MAE—n;|y,- sl 3)
oap = %2(|yi—ﬁi|—MAE)2 4

i=1
To assess whether the proposed AddCBR model maintains predictive

performance comparable to the reference model, we state the following
hypothesis:
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Table 4

MAE and standard deviation (o) of XGBoost and AddCBR predicting
flight delay. The result is presented for all instances and the 1000 most
accurate instances from the full test set (36,000 instances) and five test
subsets (7200 instances). The differences between the predictions by XG-
Boost and AddCBR are below 1.22min. The best values for each set are
presented in bold font.

Instances  All Top 1000
Set
Model XGBoost ~ AddCBR  XGBoost ~ AddCBR
Test set MAE 0.152 0.167 0.064 0.003
OuE 0.133 0.158 0.068 0.002
Test Subset 1 MAE 0.151 0.168 0.068 0.017
Cax 0.133 0.160 0.067 0.009
Test Subset 2 MAE 0.153 0.169 0.065 0.017
OuE 0.133 0.157 0.062 0.010
Test Subset 3 MAE 0.152 0.167 0.072 0.016
OAE 0.133 0.159 0.076 0.009
MAE 0.150 0.166 0.067 0.017
Test Subset 4 0.132 0.157 0.063 0.009
Test Subset 5 MAE 0.152 0.168 0.068 0.016
Oap 0.133 0.158 0.069 0.010

H?2: The difference between model performance between AddCBR and XG-
Boost in MAE is negligible.

The prediction performances of XGBoost and AddCBR in terms of
MAE and o, are given in Table 4. The result is presented separately
for the whole test set and the top 1000 instances where both XGBoost
and AddCBR predicted with minimal error, i.e., the average difference
between y; and y; was close to zero. Moreover, a more granular analysis
of the model performance was conducted by partitioning the test set into
multiple subsets and conducting independent predictions across these
subsets. For the subsets, the prediction performance remained similar to
the whole test set except the 1000 most accurate instances by AddCBR,
even though the difference remains negligible as presented in Table 4.

The variations between XGBoost and AddCBR are confirmed to be
negligible. As regression models trained for the context of predicting
flight delay, they can be considered as functionally equivalent. It is ob-
served that, for each unseen testing instance, both produced nearly the
same predictions, considering their differences were below a small error
of 1.22min, that is, the maximum difference between the predicted ;
by XGBoost and AddCBR. This result supports the use of AddCBR as the
baseline.

4.4. Local and global assessment on AddCBR

The feature rankings derived from both XGBoost and AddCBR were
scrutinised to establish the baseline. For XGBoost, the features were
ranked based on their importance values, and for AAdCBR, the features
were ranked based on their contributions to the prediction. These ranks
of the features were presented through global and local representations.
The global representation corresponds to the rankings across all clus-
ters, while the local representation focuses on rankings within individ-
ual clusters.

Furthermore, an analysis was conducted for the impact on predic-
tions resulting from the changes in the feature values, supported by a
statistical significance test. In this experiment, the top and bottom five
important features were selected from both XGBoost and AddCBR. Each
feature was perturbed five times with different multiples of the initial
value. Particularly, if the initial value of the feature was f, the five
perturbations were 2f, 3f, 4f, 5f, and 6f. For each perturbation, the
prediction was done with XGBoost while the other feature values were
kept unchanged, and the change in prediction was measured in percent-
age with reference to the initial prediction. Finally, the average changes
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of the predicted values in portion were compared for the top and bottom
features separately for both XGBoost and AddCBR.

4.4.1. Hypotheses

We consider two premises to determine whether AAdCBR is adequate
as a baseline. The first premise is that the baseline should have global
and local rankings that are consistent. In other words, if features a, b,
and ¢ are among the top positions at the global ranking, then they should
also appear at the top positions at the local ranks. The comparison be-
tween AddCBR and XGBoost with respect to consistency between local
and global ranking is evaluated through the hypothesis:

H3: Local and global feature rankings produced by AddCBR are more con-
sistent than those produced by XGBoost.

The second premise is that the baseline should be confirmed to have
the best ranking. This can be done through the verification that the fea-
tures ranked at the top positions are those that produce the highest im-
pact on the prediction results, while those features ranked at the bottom
produce no or minimal impact on the results. For this reason, we want
to demonstrate that the baseline is the feature attribution method for
which the difference between the impact produced by the top and bot-
tom features is the highest.

To compare AddCBR and XGBoost with respect to the performance

in ranking features, we utilize the top and bottom five ranked features
by both methods, and formulate the hypothesis as follows:
H4: The difference between the impact produced by the top five and the bot-
tom five features in the ranking obtained with AddCBR is higher than the
difference obtained with XGBoost across all clusters with statistical signifi-
cance.

We also performed a paired t-test considering a null hypothesis
where the difference is not statistically significant.

Furthermore, the changes in prediction were examined particularly
for the most important feature a3, and the least important feature a,
based on the feature contributions provided by the AddCBR (see Fig. 5b)
through the hypothesis:

H5: The impact of the most important feature as, is at least four times higher
than the impact of the least important feature ay from AddCBR.

4.4.2. Results

The feature ranks extracted from XGBoost and AAddCBR are presented
in Fig. 5. For both methods, the top seven continuous features are shown.
Notably, the features are the same for both methods at the top, but their
ranks vary for global and local representations. However, more discrep-
ancies are observed in the local representation from the XGBoost. On

Table 5

Average impact on prediction measured in percentage for the change in
values of top and bottom five features based on their importance from
XGBoost and AddCBR. The higher values for the differences in impacts
are better. Using a paired t-test, the impacts on the predictions were
analysed and the test results with significant values i.e., p < 0.05, are
marked with asterisks (*).

Cluster Model Average Impact (%) of Features t-test
Top Five Bottom Five Difference t p
All XGB 27.0 15.7 11.3 3.306 0.001*
AddCBR  27.0 15.9 11.1 3.249 0.001*
1 XGB 15.9 20.7 4.8 —1.454 0.927
AddCBR  27.0 15.7 11.3 3.306 0.001*
9 XGB 15.6 16.8 1.2 —-0.451 0.674
AddCBR  27.0 15.7 11.3 3.299 0.001*
3 XGB 15.9 16.8 0.9 -0.352 0.637
AddCBR  27.0 15.7 11.3 3.299 0.001*
4 XGB 17.5 19.5 1.9 -0.710 0.761
AddCBR  27.0 15.7 11.3 3.299 0.001*
5 XGB 17.8 19.5 1.8 -0.642 0.739
AddCBR  27.0 15.7 11.3 3.299 0.001*
6 XGB 16.1 23.4 7.3 —-2.202 0.986
AddCBR  27.0 15.7 11.3 3.299 0.001*
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(a) Feature ranks from XGBoost.
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(b) Feature ranks from AddCBR.

Fig. 5. Feature ranks of the most important features from (a) XGBoost and (b) AddCBR. Lower value and a darker shade of blue both correspond to the high
importance of the features. The ranks of the seven out of 42 features from the selected dataset are illustrated since both the models considered them as the most
important features, but with different rankings for global and local representations. For example, globally considering all the clusters, feature a;, is ranked second by
XGBoost, whereas AddCBR ranked it fourth. In local representation, for individual clusters, the ranking of a;, by AddCBR remain similar to global, but discrepancies

are observed for XGBoost.

Impact on Prediction for the change in Feature ass

®  Test Instance ]
40- O Perturbed Instance
B Cluster2
3 B Cluster3
©30- ™ Cluster4
3 m  Cluster5
~
= m  Cluster 6
° 20
o 20- [ ] n ]
S
g 1 T
=
£ 10 " [l B B B
[ | u [ | | u
[ ] n ] |

200 300 400 500

Change (%) in Feature 834

0 100

(a) Most important feature.

Impact on Prediction for the change in Feature ag

®  Test Instance
40 - O  Perturbed Instance
M Cluster2
.g m  Cluster3
2 30- W Cluster4
?é W Cluster 5
°=- B Cluster 6
° 5
= 20-
S
3]
=
ERUE [ ] [ ] ] ] ]
n n n
| | u n
[ |

0- @ [ ] ] ] n u

200 300 400 500

Change (%) in Feature ag

(b) Least important feature.

Fig. 6. Impact on the prediction by changing the values of the continuous features with (a) most and (b) least importance based on their contribution to feature
attribution from AddCBR. To demonstrate a clear separation of the clusters, the data from Cluster 1 is excluded from the illustrations due to its impact on prediction.

the contrary, the ranking of AddCBR remains consistent. Specifically,
the feature aj, is the most important feature from both XGBoost and
AddCBR in global representation but it does not remain the same in any
of the local representations from XGBoost. Unlike XGBoost, for AAdCBR,
the top rank of the feature as, is preserved in the local representations
as it stands out to be the most important feature for clusters one, three,
and five. For other clusters, a3, became the third (in cluster six) and
fourth (in clusters two and four) most important feature according to
the contributions from AddCBR.

The results of Hypothesis H4 are detailed in Table 5. The result is
presented for the whole dataset and each cluster individually. For each
selection of clusters and the models, i.e., XGBoost and AddCBR, the av-
erage impact on prediction in percentage is given for the five most (top)
and least influential (bottom) features. Considering the role of the fea-
tures for flight take-off delay prediction, the most influential features
are found to be related to turnaround and scheduling processes (e.g.,
differences between scheduled and actual turnaround times, available
turnaround durations, and remaining time until milestones such as tar-
get off-block time or estimated time over for the aerodrome of depar-
ture). On the other hand, the least influential ones are primarily sec-
ondary timing differences (e.g., gaps between planned and updated off-
block time or overall flight durations).

Table 5 includes the outcome of the paired t-test between the impact
of the top and bottom five features. The cases where the top features
have significantly more impact on the prediction than the bottom fea-
tures based on the p values are marked with asterisks (*). We reject the
null hypothesis for the outcomes for which the resulting p values are
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less than the level of significance (i.e., 0.05). From the results, it can
be observed that the impact is more consistent with the features ranked
from AddCBR than those from XGBoost. Particularly, for both models,
considering all the clusters, the top features significantly impact more
than the bottom features. This condition is maintained only for AddCBR
when individual clusters are considered. For XGBoost, it is quite the op-
posite, i.e., the top features impact the prediction less than the bottom
features in individual clusters.

Fig. 6 illustrates the impact of the features on prediction support-
ing the Hypothesis H5. The changes in prediction were examined for
the most important feature a5, and the least important feature ay based
on the feature contributions provided by the baseline AddCBR. While
computing the impact, the instance closest to the cluster centroid was
selected as the actual instance (black dots in Fig. 6). Five perturbations
were done from double to six times the feature value to assess the impact
on prediction (coloured dots based on clusters in Fig. 6). The impact of
these two features was assessed one at a time. The feature value was
perturbed while keeping the values of other features unchanged. It can
be observed from the subplots that the highest impact of the prediction
was more than 40 % due to the change in the values of a5, that is the
most important feature. On the contrary, the impact on prediction was
within 0-10 % when the value of ay was changed.

4.4.3. Discussion

The baseline selection process contained two separate experiments
with the feature ranks and feature impact on the prediction, where the
features are ranked based on the importance values from XGBoost and
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the contributions of features to the prediction from AddCBR. From the
results of both experiments, it was observed that XGBoost and AddCBR
perform similarly in the case of global representation of the data or con-
sidering the whole dataset. However, in the case of local representations
or individual behaviours presented within distinct clusters, the perfor-
mance of AddCBR remains consistent with reference to the global repre-
sentation, which is not preserved by XGBoost. This consistent global and
local representation of feature ranks and impacts on prediction strength-
ens the choice of AAdCBR as the baseline. Therefore, the AAddCBR was
chosen as the baseline for the experiments that evaluate the additive
feature attribution methods.

5. Evaluation of feature attribution methods with CQV and
domain-specific aspects

This section presents the details of the proposed evaluation criteria
for the feature attribution methods, preceded by a brief description of
the implementation of feature attribution methods.

5.1. Implementation of feature attribution methods

To generate explanations for the predictions from XGBoost, the
two previously introduced additive feature attribution methods, namely
SHAP [10] and LIME [11] were implemented. These methods were se-
lected because of their vast popularity in the recent XAl research [16].
SHAP was implemented using TreeExplainer [10] with default settings.
LIME was implemented with 1000 perturbations and 1000 samples. We
note that there are other additive feature attribution methods for XAl,
such as DeepLIFT [113] and Layer-wise Relevance Propagation [47].
We did not include those because they are not model-agnostic; they are
specifically designed for neural networks and are therefore not applica-
ble to this study focusing particularly on regression tasks with decision
trees and CBR.

Given that the additive feature attribution methods are imple-
mented, a series of experiments was conducted to evaluate the perfor-
mance of the additive feature attribution methods (i.e., SHAP and LIME),
which are described in this section. For the evaluation, we assess the
quantitative quality of the feature attributions of SHAP and LIME by
comparing them with the baseline AddCBR using the three evaluation
metrics, namely, feature ranking, feature attribution and feature impact.
Feature ranking compares the ranks of the important features from the
additive feature attribution methods in comparison to the baseline Ad-
dCBR. In the second procedure, the quantitative quality of the feature
attributions by the additive feature attribution methods is assessed in
terms of different behaviours in the data. The last procedure includes the
assessment of the impacts of the top and bottom-ranked features from
the additive feature attribution methods on the data model’s prediction.
Each experiment is presented with a description of the methodology,
metrics, and hypotheses applied. The results are presented initially for
the dataset with six clusters, followed by a sensitivity analysis where the
results are compared against the dataset with two and eight clusters.

5.2. Evaluation on feature ranking

The first evaluation experiment was conducted to assess how the ad-
ditive feature attribution methods rank the important features compared
to the baseline AddCBR. Particularly, the Normalised Discounted Cu-
mulative Gain (nDCG) was used to evaluate the feature ranks produced
by SHAP and LIME by comparing the feature ranks from the baseline.
nDCG [114] is a widely used evaluation metric in information retrieval
and recommendation systems. It measures the quality of a ranked list
by considering both the relevance and the position of items. In terms
of implementation, studies [115,116] show that varied results can be
obtained while using different libraries. In this experiment, the nDCG
metric is calculated using the sklearn library [117]. In practice, nDCG
normalises the cumulative gain of the ranked list by dividing it by the
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Table 6

The maximum (max,pcq), average (u,pcq), and standard deviation
(6,pcg) of nDCG scores for the feature ranking from SHAP and LIME
for all the test instances. The nDCG scores were calculated considering
the feature order from the AddCBR as the baseline. For max, -, and
U,pcg» the higher values are better, and for ¢,,, the lower values
are better, which are presented in bold font.

Method SHAP LIME

Cluster max, pce HupcG OnDCG max, pcg HnpcG OuDCG
All 0.968 0.852  0.038  0.960 0.844 0.039
1 0.963 0.855 0.038 0.950 0.843 0.039
2 0.948 0.844 0.038  0.952 0.843 0.040
3 0.968 0.854 0.037  0.946 0.844 0.040
4 0.955 0.849 0.037 0.951 0.844 0.039
5 0.964 0.855 0.037  0.942 0.843 0.039
6 0.960 0.854 0.038  0.960 0.844 0.039

ideal cumulative gain, resulting in a score in the range [0, 1]. A higher
nDCG value indicates a better-ranked list that effectively captures the
relevance of items in a specific context.

To evaluate the quality of feature rankings using the nDCG metric,
we propose the following hypothesis:

H6: The ranking of the feature contributions produced by SHAP results in
higher nDCG values than those from LIME.

Table 6 presents the maximum (max,pcq), average (u,pcg), and
standard deviation (¢, pcg) of nDCG scores for all the clusters together
and for individual clusters. From the table, it is evident that the fea-
ture ranks from SHAP produced better results in terms of nDCG score
across all the clusters. However, for cluster two, LIME achieved a higher
max, pcg than SHAP, and for cluster six, the values of max,pc; were
equal for both methods. Overall, both max, ¢ and u,pcg values for
the feature ranking by SHAP are higher than LIME, which advocates for
a better feature ranking by SHAP. However, the y, s values are closer
yet SHAP stands out to produce better feature ranks based on their con-
tribution to the prediction. This is also observed with a lower o, ,cg
for SHAP emphasising less variation in the feature ranks compared to
the baseline AAdCBR. Evidently, the nDCG scores across individual clus-
ters are consistent with the overall value, which indicates the balance
between the global and local representation produced by SHAP.

The overlaps in the feature rankings by SHAP and LIME are also
compared with the baseline AddCBR using the illustration presented in
Fig. 7. The illustration shows that the highest-importance feature (a;,)
is common to both methods and the baseline. Among the top-5 features
ranked by the baseline AddCBR, SHAP shares all features with different
rankings, while LIME shares only three, resulting in a greater overlap for
SHAP with the AddCBR baseline. These observations quantitatively con-
firm that all methods agree on the most critical feature and that SHAP’s
ranking aligns more closely with the AddCBR baseline than LIME’s does.
Thus, the illustration of overlaps in feature ranking also resembles the
quantitative evaluation with the nDCG metric presented in Table 6.

5.3. Evaluation on feature attribution

The proposed evaluation approach with synthetic data is based on
the concept of constraining the data generation around cluster centroids
to capture the behaviour of each cluster. This concept enables assessing
whether feature attribution methods can recover this same behaviour.
In other words, we expect the additive feature attribution methods to
attribute features in a way that reflects the data distribution of each
cluster. We quantitatively evaluate explanation quality by comparing
the variability of the feature attributions to the variability of the fea-
ture values in the synthetic data. In this experiment, the Coefficient of
Quartile Variation (CQV) [33], a robust statistical measure of relative
dispersion, is used as a metric to evaluate additive feature attribution
methods. Using CQV, we demonstrate that the better-performing addi-
tive feature attribution method will produce explanations showing fea-
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Comparison of Feature Ranks by SHAP and LIME with AddCBR for the 6-cluster Dataset

Continuous Features

dg aia azo az a2 az3 a
I | |
AddCBR - 15 12
n
=]
<]
<= SHAP- 15 14
3
=
LIME - 10 13

azs

| | ' | |
: l ) ll ’ ) !

aso asi

a9

ae az7 azg
| | |

Fig.7. Comparison of feature ranks from SHAP and LIME with the feature ranks from AddCBR as the baseline. Lower value and darker shade of blue both correspond
to the high importance and rank of the features. The ranks of the 17 continuous features from the selected dataset with six clusters are illustrated with their relative
ranks. Note that the feature a;, is ranked first by all the methods, and between SHAP and LIME, the ranking by SHAP is closer to the ranking by the baseline AddCBR.

ture contributions with similar variability to the feature values in the
synthetic dataset. The value of CQV ranges from zero to infinity, where
values close to zero indicate less variability in the data and vice versa.
The value of CQV is computed using the Eq. (5) [33], where Q, is the
population 25th percentile and Q5 is the population 75th percentile.
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Intuitively, a better-performing additive feature attribution method
will produce output whose variability closely mirrors the variability of
the actual values of the features. This intuition is rooted in the stability
property of explanations: similar instances should have similar explanations
[118]. Due to the difference in nature (e.g., unit, value ranges, etc.), the
similarity between the inputs (feature values) and explanations (feature
contributions) is measured using variability. This works only because
it is for regression, where the patterns in the data are preserved and
transferred to the contributions in the output. Here, feature values and
contributions are not necessarily the same, but they preserve similar pat-
terns. Thus, if the feature values do not vary much within a cluster, re-
liable feature attribution values should contain little variation for those
instances. Again, if a feature’s values vary widely, a method responding
more accurately to those differences may show a wider spread in feature
attributions. Botta-Dukat [119] demonstrated that the CQV of two sets
of values can be best compared using scatter plots, and the points closer
to the reference 1:1 line indicate similar variability between the two
sets of values. In this experiment of evaluating the feature attribution
of the additive feature attribution methods, CQV was computed for the
feature values and the contributions of the features from the additive
feature attribution methods, thus comparing their variability. The CQV
of feature values and contributions is compared using scatter plots and
the reference 1:1 line. The plots of CQV values closer to the 1:1 line indi-
cate similar variability of the feature value and contribution presented
through the axes of the plots. Particularly, the plots of CQV are gener-
ated for SHAP and LIME to compare with the CQV plots of the baseline
AddCBR.

To compare SHAP and LIME in terms of the variability in their fea-
ture attributions with respect to the feature values, quantified by CQV,
we propose the following hypothesis:

H7: Feature contributions from SHAP produce smaller CQV values than
those from LIME.

Fig. 8 presents the CQV for all the feature values and the contribu-
tions from SHAP and LIME compared to the baseline AddCBR. In the
figure, the axes of each subplot refer to the data and feature attribution
for individual clusters. It was observed from the illustrations that the
CQV of the feature values and the feature contributions from SHAP are
closer to the 1:1 line than those of LIME. The plots closer to 1:1 refer
to identical variability in the data and the feature contributions. The
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data points for the baseline AddCBR are closer to the 1:1 line and ac-
cumulated near the lower left segment of the subplots, signifying that
the variations in the data and feature contributions from AddCBR are
identical and low. On the other hand, the feature attribution produced
by SHAP and LIME both have more variability than the data, as their
data points are scattered in the subplots.

In the tasks of regression, the feature values are responsible for the
prediction, while the contributions from the additive feature attribution
methods sum up to the prediction. Though the feature values and the
contributions are different measures, the variability among these two
measures should follow the same pattern as they regard a single pre-
diction. From Fig. 8, it is prominent that the CQV of the feature values
and contributions (yellow dots) from AddCBR follows the 1:1 line with
outliers in clusters two, three, and six. The CQV values for both SHAP
and LIME are sparsely distributed along the x-axis, signifying the fact
that the variability in their contributions is not following the variability
in the data. The illustration in Fig. 8 aligns with the claim of Krishna
et al. [120], which states that the XAI methods often disagree in terms
of the explanations they produce and the behaviours of the correspond-
ing data. A similar conclusion can be drawn from the presented analysis
on the variability of data and feature attributions from the additive fea-
ture attribution methods. However, the variability of the contributions
produced by SHAP is more similar to the data than the same for LIME.

5.4. Evaluation on feature impact

In this experiment, the level of impact on the prediction is assessed
when we change the values of the top and bottom ranked features. The
features are ranked according to the feature contributions from differ-
ent additive feature attribution methods, i.e., SHAP and LIME. We con-
ducted this experiment with a similar procedure to the experiment dis-
cussed in Section 4.4. The value of the selected feature was perturbed
while keeping the values of other features unchanged. Then, the pre-
diction was done by XGBoost, and the impact of the change of feature
values on the prediction was calculated. Both the changes in prediction
and feature values are measured in percentages. A paired t-test was also
performed to assess the significant difference in the feature impacts.

To evaluate how well the feature attribution methods distinguish the
most impactful features from the less impactful ones, we formulate the
following hypothesis:

H3: The difference between the impact produced by the top five and the
bottom five features in the ranking obtained with SHAP is higher than the
difference obtained with LIME across all clusters with statistical significance.

The impacts on prediction for the changes in the most and least
important features from SHAP and LIME were assessed in global and
local representations. In addition, the differences in impacts were sta-
tistically tested considering all the clusters and individual clusters.
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Comparison of CQVs from SHAP and LIME with AddCBR for the 6-cluster Dataset
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Fig. 8. Evaluation of feature attribution from SHAP (blue dots) and LIME (red dots) considering AddCBR (yellow dots) as the baseline with scatter plots for CQV
of the feature values and contributions, where each subplot represents individual clusters. In each subplot, the data points correspond to individual features, and
the grey diagonal line is the reference 1:1 line. Points closer to the 1:1 line refer to similar variability between feature values and contributions. In the legends, the
values in parentheses refer to the average distance to the 1:1 line from the scattered points for the respective methods.

Table 7

Average impact on prediction measured in percentage for the change in values
of top and bottom five features based on their contributions from SHAP and
LIME. The higher values for the differences in impacts refer to better feature
attributions. Using a paired t-test, the impacts on the predictions were anal-
ysed and the test results with significant values i.e., p < 0.05, are marked with
asterisks (*).

0, -
Cluster  Method Average Impact (%) of Features t-test
Top Five Bottom Five Difference t p
All SHAP 27.0 16.0 11.0 3.222  0.001*
LIME 20.8 18.2 2.6 0.782 0.217
1 SHAP 27.0 15.6 11.4 3.336  0.000*
LIME 26.0 15.8 10.2 3.007  0.001*
9 SHAP 27.0 15.6 11.4 3.346  0.000*
LIME 27.0 15.7 11.3 3.303  0.001*
3 SHAP 27.0 15.7 11.3 3.330 0.000*
LIME 26.0 15.7 10.3 3.043  0.001*
4 SHAP 27.0 15.6 11.4 3.346  0.000*
LIME 27.0 15.9 11.1 3.253 0.001*
5 SHAP 27.0 15.8 11.2 3.295  0.001*
LIME 26.4 15.7 10.7 3.146  0.001*
6 SHAP 23.1 15.6 7.4 2.741 0.003*
LIME 26.0 15.8 10.1 3.002  0.001*

We performed a paired t-test considering a null hypothesis where the
impact would be no different, with a level of significance of 0.05. The
results of the tests are detailed in Table 7. The average impact on pre-
diction in percentage is given for the top and bottom five important
features based on the ranks produced by SHAP and LIME. The result of
the paired t-test between the impacts of top and bottom five features is
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also presented, and the cases where the top features have significantly
(p < 0.05) more impact on the prediction than the bottom features are
emphasised. Evidently, for both methods, while individual clusters are
considered, the top features had a significantly higher impact than the
bottom features. However, the top features from LIME didn’t have a
significantly higher impact on the prediction, whereas the top features
from SHAP had a higher impact while all the clusters were considered
together.

The assumption behind the experiment on feature impact is that the
features with the highest contribution require small changes to impact
the prediction result. On the other hand, features with low contributions
would require large changes to impact the prediction result. However,
this assumption was proved by investigating the impact on prediction
by changing the values uniformly for high and low contributing fea-
tures. From the results, it was found that for a uniform change in the
feature values, the impact is more from the high contributing features.
Specifically, for the ranking from SHAP, the differences in the impact of
the high and low contributing features are more significant than LIME
based on the corresponding p values of the statistical significance test
presented in Table 7. Most importantly, the difference in impact on pre-
diction between the high and low contributing features from LIME is
not significant globally, i.e., considering all the clusters. This result can
be justified by the fact that LIME is designed to generate local explana-
tions [11], thus it is unable to differentiate the features based on their
importance values at a global level.

Throughout the presented experiments in Sections 5.2-5.4, the re-
sults demonstrate that the feature ranking, attribution, and impact from
SHAP are better than those from LIME. Consequently, these findings are
also aligned with the claim from the literature that a method employ-
ing standardization on input, such as LIME, does not produce feature
attributions of the same quality as the method that does not use stan-
dardization, like SHAP, in a regression task.
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6. Conclusion and future works

This article advances the evaluation of feature attribution meth-
ods for regression. The framework encompasses an evaluation strategy
grounded in the intrinsic characteristics of the data and preserving its
privacy, offering a comprehensive assessment of the feature attribution
methods within the context of regression problems. First, the article con-
tributes an approach to generate synthetic regression data that replicates
the behaviour of a given data set, and shows how to use the synthetic
data to evaluate the additive feature attribution methods applied to the
original data set. This proposed methodology can be reused by those
who want to conduct a thorough analysis of real-world applications,
provided the authorities share the centroids of the clusters that contain
the intrinsic characteristics of the original data, even if the data is pro-
prietary or confidential. Notably, this approach provides a solution to
data privacy concerns that restrict dataset distribution complying with
different policies and regulations such as the General Data Protection
Regulation (GDPR) [89]. Second, we demonstrate how the additive rep-
resentation of cases, AddCBR, aligns global and local feature attribu-
tions, making it possible to use it as a benchmark for evaluation. The
AddCBR is created as a functionally equivalent model to XGBoost by
utilising the feature importance values as weights for CBR. However, the
process of creating AddCBR is not defined for the data models that learn
an abstract representation of the data (e.g., neural networks), which is
a limitation of this study. Third, we proposed and demonstrated the use
of a statistical metric, CQV, in evaluating feature attribution methods
alongside other metrics from the literature. Given the extensive use of
CQV as a stability metric in different domains, the approach addresses
the lack of consensus in the literature on the evaluation approaches for
XAI methods. As a whole, we proposed an evaluation pipeline for fea-
ture attribution methods and effectively evaluated two such methods,
namely SHAP and LIME, against the AddCBR benchmark. On a differ-
ent note, the outcomes of the evaluation experiments confirmed that
LIME, a representative of methods incorporating a standardization pro-
cess, does not yield feature attributions of satisfactory quality, which
aligns with the current XAI literature [27,77].

This work evaluates the proposed pipeline on a single aviation
dataset, providing extensive functional validation, limiting generaliz-
ability to other domains. Functional evaluation is an essential prerequi-
site to user validation in XAI, ensuring that methods are rigorously tested
from an algorithmic standpoint before involving domain experts. More-
over, the development and assessment of XAI methods are inherently
domain-specific, and expert evaluations are often difficult to conduct
due to scarcity of experts, subjectivity, and high opportunity costs [75].
For these reasons, we focused on functional evaluation in this study. We
acknowledge this as a limitation and note that future work will extend
the evaluation to additional domains, such as healthcare, finance, and
manufacturing, to broaden applicability.

As the research progresses, the exploration will be extended for clas-
sification tasks and other types of data models (e.g., neural networks).
AddCBR is currently limited to regression models with feature impor-
tance values, though extensions to neural networks (e.g., deep CBR
[121,122], and other variants reviewed by Leake et al.[123]) are a
prospective future direction. Exploration of a suitable variant of CBR for
other XAI methods (e.g., saliency maps or gradient-based methods) can
be done with further research. These will contribute to the refinement
of XAI methods across different application domains. Another possible
research direction is to investigate different methods, such as genera-
tive modelling methods like generative adversarial networks, to gener-
ate synthetic data other than the presented clustering-based approach
to evaluate the performance of the additive feature attribution methods.

CRediT authorship contribution statement

Mir Riyanul Islam: Conceptualization, Data curation, Formal anal-
ysis, Investigation, Methodology, Software, Validation, Visualization,

14

Knowledge-Based Systems 330 (2025) 114599

Writing — original draft, Writing — review & editing; Rosina O. Weber:
Conceptualization, Investigation, Methodology, Resources, Supervision,
Validation, Visualization, Writing — original draft, Writing — review &
editing; Mobyen Uddin Ahmed: Funding acquisition, Project adminis-
tration, Supervision; Shahina Begum: Funding acquisition, Project ad-
ministration, Supervision.

Data availability

All the synthetic datasets® and implementation scripts’ are made
available in Zenodo.

Declaration of competing interest

The authors declare that they have no known competing financial
interests (other than those acknowledged) or personal relationships that
could have appeared to influence the work reported in this paper.

Acknowledgements

The following projects supported this study; i) TRUSTY, financed by
the SESAR JU under the EU’s Horizon 2022 Research and Innovation
programme (Grant Agreement No. 101114838), ii) CPMXai, funded by
the VINNOVA (Diary No. 2021-03679), iii) ARTIMATION, funded by
the SESAR JU under the EU’s Horizon 2020 Research and Innovation
programme (Grant Agreement No. 894238), and iv) xApp, funded by
the VINNOVA (Diary No. 2021-03971).

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.knosys.2025.114599.

References

[1] D. Gunning, D.W. Aha, DARPA’s explainable artificial intelligence program, Al
Mag. 40 (2) (2019) 44-58. https://doi.org/10.1609/aimag.v40i2.2850

T. Miller, Explanation in artificial intelligence: insights from the social sciences,
Artif. Intell. 267 (2019) 1-38. https://doi.org/10.1016/j.artint.2018.07.007

R. Hoffman, G. Klein, S.T. Mueller, M. Jalaeian, C. Tate, The Stakeholder Play-
book for Explaining Al Systems, Technical Report, DARPA Explainable Al Program,
2021.

C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, C. Zhong, Interpretable ma-
chine learning: fundamental principles and 10 grand challenges, Stat. Surv. 16
(none) (2022) 1-85. https://doi.org/10.1214/21-SS133

U. Ehsan, M.O. Riedl, Explainability pitfalls: beyond dark patterns in explainable
Al Patterns 5 (6) (2024) 100971. https://doi.org/10.1016/j.patter.2024.100971
R.O. Weber, A.J. Johs, P. Goel, J.M. Silva, XAl is in trouble, AI Mag. 45 (3) (2024)
300-316. https://doi.org/10.1002/aaai.12184

Y. Izza, A. Ignatiev, J. Marques-Silva, On tackling explanation redundancy in de-
cision trees, J. Artif. Intell. Res. 75 (2022) 261-321. https://doi.org/10.1613/jair.
1.13575

B. Kim, C. Rudin, J. Shah, The bayesian case model: a generative approach for case-
based reasoning and prototype classification, in: Neural Information Processing
Systems, 2014, pp. 1-9. https://doi.org/10.48550/arXiv.1503.01161

A. Barredo Arrieta, N. Diaz-Rodriguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, F. Herrera, Explainable
artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges
toward responsible Al, Inf. Fusion 58 (2020) 82-115. https://doi.org/10.1016/j.
inffus.2019.12.012

S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in:
Proceedings of the 31st International Conference on Neural Information Process-
ing Systems (NeurIPS), NIPS’17, 2017, pp. 4768-4777. https://doi.org/10.48550/
arXiv:1705.07874

M.T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?”: explaining the pre-
dictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2016), ACM, San Fran-
cisco, CA, USA, 2016, pp. 1135-1144. https://doi.org/10.1145/2939672.2939778
D. Slack, S. Hilgard, E. Jia, S. Singh, H. Lakkaraju, Fooling LIME and
SHAP: Adversarial Attacks on Post hoc Explanation Methods, arXiv preprint
(arXiv:1911.02508v2 [cs.LG]) (2020). https://doi.org/10.48550/arXiv.1911.
02508

[2]

[3]
[4]

[5]
[6]

[71
[8]
[9]
[10]

[11]

[12]

6 https://zenodo.org/records/10115807
7 https://zenodo.org/records/10152705


https://www.sesarju.eu/projects/trusty
https://www.sesarju.eu/
https://www.mdu.se/en/malardalen-university/research/research-projects/cpmxai-cognitive-predictive-maintenance-and-quality-assurance-using-explainable-ai-and-machine-learning
https://www.vinnova.se/en
https://www.sesarju.eu/node/3727
https://www.sesarju.eu/
https://www.es.mdu.se/projects/585-_xApp__Explainable_AI_for_Industrial_Applications
https://www.vinnova.se/en
http://dx.doi.org/10.1016/j.knosys.2025.114599
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0003
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0003
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0003
https://doi.org/10.1214/21-SS133
https://doi.org/10.1214/21-SS133
https://doi.org/10.1016/j.patter.2024.100971
https://doi.org/10.1016/j.patter.2024.100971
https://doi.org/10.1002/aaai.12184
https://doi.org/10.1002/aaai.12184
https://doi.org/10.1613/jair.1.13575
https://doi.org/10.1613/jair.1.13575
https://doi.org/10.1613/jair.1.13575
https://doi.org/10.1613/jair.1.13575
https://doi.org/10.48550/arXiv.1503.01161
https://doi.org/10.48550/arXiv.1503.01161
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.48550/arXiv:1705.07874
https://doi.org/10.48550/arXiv:1705.07874
https://doi.org/10.48550/arXiv:1705.07874
https://doi.org/10.48550/arXiv:1705.07874
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.48550/arXiv.1911.02508
https://doi.org/10.48550/arXiv.1911.02508
https://doi.org/10.48550/arXiv.1911.02508
https://doi.org/10.48550/arXiv.1911.02508
https://zenodo.org/records/10115807
https://zenodo.org/records/10152705

M.R. Islam et al.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[301]

[31]

[32]

[33]

[34]
[35]
[36]

[371

[38]

J. Marques-Silva, X. Huang, Explainability is not a game, Commun. ACM 67 (7)
(2024) 66-75. https://doi.org/10.1145/3635301

D. Nguyen, Comparing automatic and human evaluation of local explanations for
text classification, in: M. Walker, H. Ji, A. Stent (Eds.), Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 1, Association for Computational Lin-
guistics, New Orleans, Louisiana, 2018, pp. 1069-1078. https://doi.org/10.18653/
v1/N18-1097

W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, B. Yu, Definitions, methods,
and applications in interpretable machine learning, Proc. Natl. Acad. Sci. 116 (44)
(2019) 22071-22080. https://doi.org/10.1073/pnas.1900654116

M. Mainali, R.O. Weber, What’s meant by explainable model: a scoping review,
in: Proceedings of the Workshop on XAI co-located with the 32nd International
Joint Conference on Artificial Intelligence (IJCAI), 2023, pp. 1-8. https://doi.org/
10.48550/arXiv.2307.09673

J. Oramas, K. Wang, T. Tuytelaars, Visual explanation by interpretation: improv-
ing visual feedback capabilities of deep neural networks, in: Proceedings of the
Seventh International Conference on Learning Representations (ICLR), 2019, pp.
1-29. https://doi.org/10.48550/arXiv.1712.06302

M. Yang, B. Kim, Benchmarking Attribution Methods with Relative Feature Im-
portance, arXiv preprint (arXiv:1907.09701 [cs.LG]) (2019). https://doi.org/10.
48550/arXiv.1907.09701

B. Barr, K. Xu, C. Silva, E. Bertini, R. Reilly, C.B. Bruss, J.D. Wittenbach, Towards
Ground Truth Explainability on Tabular Data, arXiv preprint (arXiv:2007.10532v1
[cs.LG]) (2020). https://doi.org/10.48550/arXiv.2007.10532

D. Mahajan, C. Tan, A. Sharma, Preserving Causal Constraints in Counterfactual
Explanations for Machine Learning Classifiers, arXiv preprint (arXiv:1912.03277v3
[es.LG]) (2020). https://doi.org/10.48550/arXiv.1912.03277

Y. Zhou, S. Booth, M.T. Ribeiro, J. Shah, Do feature attribution methods correctly
attribute features?, in: Proceedings of the 36th AAAI Conference on Artificial Intel-
ligence, 36(9), 2022, pp. 9623-9633. https://doi.org/10.1609/aaai.v36i9.21196
F. Doshi-Velez, B. Kim, Towards A Rigorous Science of Interpretable Machine
Learning, arXiv preprint (arXiv:1702.08608v2 [stat.ML]) (2017). https://doi.org/
10.48550/arXiv.1702.08608

D. Gunning, Explainable artificial intelligence (XAI), Defense Adv. Res. Projects
Agency (DARPA) 2 (2) (2017).

R.R. Hoffman, S.T. Mueller, G. Klein, Explaining explanation, part 2: empirical
foundations, IEEE Intell. Syst. 32 (4) (2017) 78-86. https://doi.org/10.1109/MIS.
2017.3121544

S.T. Mueller, R.R. Hoffman, W.J. Clancey, A.K. Emery, G. Klein, Explanation in
Human-AI Systems: A Literature Meta-Review Synopsis of Key Ideas and Publica-
tions and Bibliography for Explainable Al, Technical Report, Defense Advanced
Research Projects Agency (DARPA), Arlington, VA, USA, 2019.

J. Zhou, A.H. Gandomi, F. Chen, A. Holzinger, Evaluating the quality of machine
learning explanations: a survey on methods and metrics, Electronics 10 (5) (2021)
593. https://doi.org/10.3390/electronics10050593

S. Letzgus, P. Wagner, J. Lederer, W. Samek, K.-R. Muller, G. Montavon, Toward
explainable artificial intelligence for regression models: a methodological perspec-
tive, IEEE Signal Process. Mag. 39 (4) (2022) 40-58. https://doi.org/10.1109/
MSP.2022.3153277

AM. Salih, Z. Raisi-Estabragh, 1.B. Galazzo, P. Radeva, S.E. Petersen, K. Lekadir,
G. Menegaz, A perspective on explainable artificial intelligence methods: SHAP
and LIME, Adv. Intell. Syst. 7 (1) (2025) 2400304. https://doi.org/10.1002/aisy.
202400304

Y. Liu, S. Khandagale, S. Khandagale, C. White, W. Neiswanger, Synthetic bench-
marks for scientific research in explainable machine learning, in: J. Vanschoren,
S. Yeung (Eds.), Proceedings of the Neural Information Processing Systems - Track
on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks 2021), 1, 2021,
pp. 1-14. https://doi.org/10.48550/arXiv.2106.12543

Z. Qian, T. Callender, B. Cebere, S.M. Janes, N. Navani, M. van der Schaar, Syn-
thetic data for privacy-preserving clinical risk prediction, Sci. Rep. 14 (1) (2024)
25676. https://doi.org/10.1038/s41598-024-72894-y

D.R. Padariya, A privacy-preserving framework for generative model-driven syn-
thetic datasets, AAAI 39 (28) (2025) 29289-29290. https://doi.org/10.1609/aaai.
v39i28.35222

M.U. Ahmed, S. Barua, S. Begum, M.R. Islam, R.O. Weber, When a CBR in hand bet-
ter than twins in the bush, in: P. Reuss, J. Schonborn (Eds.), Proceedings of the 4th
Workshop on XCBR: Case-based Reasoning for the Explanation of Intelligent Sys-
tems, 3389 of CEUR Workshop Proceedings, CEUR-WS.org, Nancy, France, 2022,
pp. 141-152. https://ceur-ws.org/Vol-3389/#XCBR99.

D.G. Bonett, Confidence interval for a coefficient of quartile variation, Comput.
Stat. Data Anal. 50 (11) (2006) 2953-2957. https://doi.org/10.1016/j.csda.2005.
05.007

E. Strumbelj, I. Kononenko, An efficient explanation of individual classifications
using game theory, J. Mach. Learn. Res. 11 (1) (2010) 1-18.

A.J. Cook, G. Tanner, European Airline Delay Cost Reference Values, Technical
Report, University of Westminster, London, UK, 2015.

M. Lukacs, Cost of Delay Estimates, Technical Report, Federal Aviation Adminis-
tration, Washington, DC, USA, 2020.

R. Dalmau, F. Ballerini, H. Naessens, S. Belkoura, S. Wangnick, An explainable
machine learning approach to improve take-off time predictions, J. Air Transp.
Manag. 95 (2021) 102090. https://doi.org/10.1016/j.jairtraman.2021.102090

J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, B. Kim, Sanity checks
for saliency maps, in: Proceedings of the 32nd International Conference on Neural
Information Processing Systems (NeurIPS), NIPS’18, 2018, pp. 9525-9536. https:
//doi.org/10.48550/arXiv.1810.03292

15

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Knowledge-Based Systems 330 (2025) 114599

J. Marques-Silva, A. Ignatiev, Delivering trustworthy AI through formal XAl in:
Proceedings of the 36th AAAI Conference on Artificial Intelligence, 36(11), 2022,
pp. 12342-12350. https://doi.org/10.1609/aaai.v36i11.21499

X. Huang, J. Marques-Silva, The Inadequacy of Shapley Values for Explainability,
arXiv preprint (2023). https://doi.org/10.48550/arXiv.2302.08160

Y.-S. Lin, W.-C. Lee, Z.B. Celik, What do you see? Evaluation of explainable artificial
intelligence (XAI) interpretability through neural backdoors, in: Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21,
Association for Computing Machinery, New York, NY, USA, 2021, pp. 1027-1035.
https://doi.org/10.1145/3447548.3467213

A. Rosenfeld, Better metrics for evaluating explainable artificial intelligence, in:
Proceedings of the 20th International Conference on Autonomous Agents and Mul-
tiAgent Systems (AAMAS 2021), AAMAS ’21, International Foundation for Au-
tonomous Agents and Multiagent Systems, Richland, SC, 2021, pp. 45-50.

J. van der Waa, E. Nieuwburg, A. Cremers, M. Neerincx, Evaluating XAI: a com-
parison of rule-based and example-based explanations, Artif. Intell. 291 (2021)
103404. https://doi.org/10.1016/j.artint.2020.103404

Y. Rong, T. Leemann, T.-T. Nguyen, L. Fiedler, P. Qian, V. Unhelkar, T. Seidel, G.
Kasneci, E. Kasneci, Towards human-centered explainable Al: a survey of user stud-
ies for model explanations, IEEE Trans. Pattern Anal. Mach. Intell. 46 (4) (2024)
2104-2122. https://doi.org/10.1109/TPAMI.2023.3331846

A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, J. Clune, Synthesizing the pre-
ferred inputs for neurons in neural networks via deep generator networks, in: Pro-
ceedings of the 30th Annual Conference on Neural Information Processing Systems
(NeurIPS), NIPS’16, 2016, pp. 3395-3403. https://doi.org/10.48550/arXiv.1605.
09304

S. Lapuschkin, S. Wéldchen, A. Binder, G. Montavon, W. Samek, K.-R. Miiller, Un-
masking clever hans predictors and assessing what machines really learn, Nat.
Commun. 10 (1) (2019) 1096. https://doi.org/10.1038/s41467-019-08987-4

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Miiller, W. Samek, On pixel-
wise explanations for non-linear classifier decisions by layer-wise relevance propa-
gation, PLoS One 10 (7) (2015) e0130140. https://doi.org/10.1371/journal.pone.
0130140

L.S. Shapley, A value for n-person games, in: H.W. Kuhn, A.W. Tucker (Eds.),
Contributions to the Theory of Games, II, Princeton University Press, 1953, pp.
307-318.

L. Arras, A. Osman, W. Samek, CLEVR-XAI: a benchmark dataset for the ground
truth evaluation of neural network explanations, Inf. Fusion 81 (2022) 14-40.
https://doi.org/10.1016/j.inffus.2021.11.008

S. Hooker, D. Erhan, P.-J. Kindermans, B. Kim, A benchmark for interpretabil-
ity methods in deep neural networks, in: Proceedings of the 33rd Interna-
tional Conference on Neural Information Processing Systems, 2019, pp. 9737-
9748.

G. Montavon, Gradient-based vs. propagation-based explanations: an axiomatic
comparison, in: W. Samek, G. Montavon, A. Vedaldi, L.K. Hansen, K.-R. Miiller
(Eds.), Explainable AL Interpreting, Explaining and Visualizing Deep Learning,
11700 of Lecture Notes in Computer Science, Springer International Publishing,
Cham, 2019, pp. 253-265. https://doi.org/10.1007/978-3-030-28954-6_13

F. Yang, M. Du, X. Hu, Evaluating Explanation without Ground Truth in Inter-
pretable Machine Learning, arXiv preprint (arXiv:1907.06831v2 [cs.LG]) (2019).
https://doi.org/10.48550/arXiv.1907.06831

R. Tomsett, D. Harborne, S. Chakraborty, P. Gurram, A. Preece, Sanity checks for
saliency metrics, in: Proceedings of the AAAI Conference on Artificial Intelligence,
34, 2020, pp. 6021-6029. https://doi.org/10.1609/aaai.v34i04.6064

A. Ignatiev, F. Pereira, N. Narodytska, J. Marques-Silva, A SAT-based approach to
learn explainable decision sets, in: D. Galmiche, S. Schulz, R. Sebastiani (Eds.),
Automated Reasoning, 10900 of Lecture Notes in Computer Science, Springer
International Publishing, Cham, 2018, pp. 627-645. https://doi.org/10.1007/
978-3-319-94205-6_41

A. Ignatiev, N. Narodytska, J. Marques-Silva, On Validating, Repairing and Re-
fining Heuristic ML Explanations, arXiv preprint (arXiv:1907.02509v1 [cs.LG])
(2019). https://doi.org/10.48550/arXiv.1907.02509

N. Narodytska, A. Shrotri, K.S. Meel, A. Ignatiev, J. Marques-Silva, M. Janota, I.
Lynce, Assessing heuristic machine learning explanations with model counting, in:
Theory and Applications of Satisfiability Testing - SAT 2019, 11628 of Lecture Notes
in Computer Science, Springer International Publishing, Cham, 2019, pp. 267-278.
https://doi.org/10.1007/978-3-030-24258-9_19

X. Cui, J.M. Lee, J.P. Hsieh, An integrative 3C evaluation framework for explainable
artificial intelligence, in: Proceedings of the Americas Conference on Information
Systems (AMCIS), 10, 2019, pp. 1-10.

B. Kim, M. Wattenberg, J. Gilmer, C.J. Cai, J. Wexler, F. Viégas, R. Sayres, Inter-
pretability beyond feature attribution: quantitative testing with concept activation
vectors (TCAV), in: Proceedings of the 35th International Conference on Machine
Learning (ICML), PMLR, 2018, pp. 1-18. https://doi.org/10.48550/arXiv.1711.
11279

D. Alvarez-Melis, T.S. Jaakkola, Towards robust interpretability with self-
explaining neural networks, in: Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18, Curran Associates Inc., Red
Hook, NY, USA, 2018, pp. 7786-7795.

A. Balagopalan, H. Zhang, K. Hamidieh, T. Hartvigsen, F. Rudzicz, M. Ghassemi,
The road to explainability is paved with bias: measuring the fairness of expla-
nations, in: Proceedings of the 2022 Conference on Fairness, Accountability, and
Transparency (FAT*), FAccT "22, Association for Computing Machinery, New York,
NY, USA, 2022, pp. 1194-1206. https://doi.org/10.1145/3531146.3533179

M. Nauta, J. Trienes, S. Pathak, E. Nguyen, M. Peters, Y. Schmitt, J. Schl6tterer, M.
Van Keulen, C. Seifert, From anecdotal evidence to quantitative evaluation meth-


https://doi.org/10.1145/3635301
https://doi.org/10.1145/3635301
https://doi.org/10.18653/v1/N18-1097
https://doi.org/10.18653/v1/N18-1097
https://doi.org/10.18653/v1/N18-1097
https://doi.org/10.18653/v1/N18-1097
https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.48550/arXiv.2307.09673
https://doi.org/10.48550/arXiv.2307.09673
https://doi.org/10.48550/arXiv.2307.09673
https://doi.org/10.48550/arXiv.2307.09673
https://doi.org/10.48550/arXiv.1712.06302
https://doi.org/10.48550/arXiv.1712.06302
https://doi.org/10.48550/arXiv.1907.09701
https://doi.org/10.48550/arXiv.1907.09701
https://doi.org/10.48550/arXiv.1907.09701
https://doi.org/10.48550/arXiv.1907.09701
https://doi.org/10.48550/arXiv.2007.10532
https://doi.org/10.48550/arXiv.2007.10532
https://doi.org/10.48550/arXiv.1912.03277
https://doi.org/10.48550/arXiv.1912.03277
https://doi.org/10.1609/aaai.v36i9.21196
https://doi.org/10.1609/aaai.v36i9.21196
https://doi.org/10.48550/arXiv.1702.08608
https://doi.org/10.48550/arXiv.1702.08608
https://doi.org/10.48550/arXiv.1702.08608
https://doi.org/10.48550/arXiv.1702.08608
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0018
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0018
https://doi.org/10.1109/MIS.2017.3121544
https://doi.org/10.1109/MIS.2017.3121544
https://doi.org/10.1109/MIS.2017.3121544
https://doi.org/10.1109/MIS.2017.3121544
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0020
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0020
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0020
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0020
https://doi.org/10.3390/electronics10050593
https://doi.org/10.3390/electronics10050593
https://doi.org/10.1109/MSP.2022.3153277
https://doi.org/10.1109/MSP.2022.3153277
https://doi.org/10.1109/MSP.2022.3153277
https://doi.org/10.1109/MSP.2022.3153277
https://doi.org/10.1002/aisy.202400304
https://doi.org/10.1002/aisy.202400304
https://doi.org/10.1002/aisy.202400304
https://doi.org/10.1002/aisy.202400304
https://doi.org/10.48550/arXiv.2106.12543
https://doi.org/10.48550/arXiv.2106.12543
https://doi.org/10.1038/s41598-024-72894-y
https://doi.org/10.1038/s41598-024-72894-y
https://doi.org/10.1609/aaai.v39i28.35222
https://doi.org/10.1609/aaai.v39i28.35222
https://doi.org/10.1609/aaai.v39i28.35222
https://doi.org/10.1609/aaai.v39i28.35222
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0027
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0027
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0027
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0027
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0027
https://ceur-ws.org/Vol-3389/#XCBR99
https://doi.org/10.1016/j.csda.2005.05.007
https://doi.org/10.1016/j.csda.2005.05.007
https://doi.org/10.1016/j.csda.2005.05.007
https://doi.org/10.1016/j.csda.2005.05.007
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0029
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0029
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0030
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0030
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0031
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0031
https://doi.org/10.1016/j.jairtraman.2021.102090
https://doi.org/10.1016/j.jairtraman.2021.102090
https://doi.org/10.48550/arXiv.1810.03292
https://doi.org/10.48550/arXiv.1810.03292
https://doi.org/10.48550/arXiv.1810.03292
https://doi.org/10.48550/arXiv.1810.03292
https://doi.org/10.1609/aaai.v36i11.21499
https://doi.org/10.1609/aaai.v36i11.21499
https://doi.org/10.48550/arXiv.2302.08160
https://doi.org/10.48550/arXiv.2302.08160
https://doi.org/10.1145/3447548.3467213
https://doi.org/10.1145/3447548.3467213
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0036
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0036
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0036
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0036
https://doi.org/10.1016/j.artint.2020.103404
https://doi.org/10.1016/j.artint.2020.103404
https://doi.org/10.1109/TPAMI.2023.3331846
https://doi.org/10.1109/TPAMI.2023.3331846
https://doi.org/10.48550/arXiv.1605.09304
https://doi.org/10.48550/arXiv.1605.09304
https://doi.org/10.48550/arXiv.1605.09304
https://doi.org/10.48550/arXiv.1605.09304
https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0042
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0042
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0042
https://doi.org/10.1016/j.inffus.2021.11.008
https://doi.org/10.1016/j.inffus.2021.11.008
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0044
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0044
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0044
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0044
https://doi.org/10.1007/978-3-030-28954-6_13
https://doi.org/10.1007/978-3-030-28954-6_13
https://doi.org/10.48550/arXiv.1907.06831
https://doi.org/10.48550/arXiv.1907.06831
https://doi.org/10.1609/aaai.v34i04.6064
https://doi.org/10.1609/aaai.v34i04.6064
https://doi.org/10.1007/978-3-319-94205-6_41
https://doi.org/10.1007/978-3-319-94205-6_41
https://doi.org/10.1007/978-3-319-94205-6_41
https://doi.org/10.1007/978-3-319-94205-6_41
https://doi.org/10.48550/arXiv.1907.02509
https://doi.org/10.48550/arXiv.1907.02509
https://doi.org/10.1007/978-3-030-24258-9_19
https://doi.org/10.1007/978-3-030-24258-9_19
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0049
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0049
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0049
https://doi.org/10.48550/arXiv.1711.11279
https://doi.org/10.48550/arXiv.1711.11279
https://doi.org/10.48550/arXiv.1711.11279
https://doi.org/10.48550/arXiv.1711.11279
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0051
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0051
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0051
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0051
https://doi.org/10.1145/3531146.3533179
https://doi.org/10.1145/3531146.3533179

M.R. Islam et al.

[62]

[63]

[64]

[65]

[66]

671

[68]

[69]

[70]

[71]

[72]

[731]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

ods: a systematic review on evaluating explainable A, ACM Comput. Surv. 55 (13s)
(2023) 1-42. https://doi.org/10.1145/3583558

Z. Chen, V. Subhash, M. Havasi, W. Pan, F. Doshi-Velez, What Makes a Good
Explanation?: A Harmonized View of Properties of Explanations, arXiv preprint
(arXiv:2211.05667v3 [cs]) (2024). https://doi.org/10.48550/arXiv.2211.05667
A.-p. Nguyen, M.R. Martinez, On Quantitative Aspects of Model Interpretability,
arXiv preprint (arXiv:2007.07584v1 [cs.LG]) (2020). https://doi.org/10.48550/
arXiv.2007.07584

J. Chen, L. Song, M.J. Wainwright, M.I. Jordan, Learning to explain: an
information-theoretic perspective on model interpretation, in: J.G. Dy, A. Krause
(Eds.), Proceedings of the 35th International Conference on Machine Learning
(ICML), 80 of Proceedings of Machine Learning Research, PMLR, 2018, pp. 882-891.
https://doi.org/10.48550/arXiv.1802.07814

U. Bhatt, P. Ravikumar, J.M.F. Moura, Building human-machine trust via in-
terpretability, Proc. AAAI Conf. Artif. Intell. 33 (01) (2019) 9919-9920. https:
//doi.org/10.1609/aaai.v33i01.33019919

S.M. Xie, S. Ermon, Reparameterizable subset sampling via continuous relaxations,
in: Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, International Joint Conferences on Artificial Intelligence Organiza-
tion, Macao, China, 2019, pp. 3919-3925. https://doi.org/10.24963/ijcai.2019/
544

B. Bai, J. Liang, G. Zhang, H. Li, K. Bai, F. Wang, Why Attentions May Not Be
Interpretable?, arXiv preprint (arXiv:2006.05656v4 [stat.ML]) (2021). https://doi.
org/10.48550/arXiv.2006.05656

M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in:
D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), Computer Vision - ECCV 2014,
Lecture Notes in Computer Science, Springer International Publishing, Cham, 2014,
pp. 818-833. https://doi.org/10.1007/978-3-319-10590-1_53

Y. Rong, T. Leemann, V. Borisov, G. Kasneci, E. Kasneci, A consistent and ef-
ficient evaluation strategy for attribution methods, in: Proceedings of the 39th
International Conference on Machine Learning (ICML), 2022, pp. 1-26. https:
//doi.org/10.48550/arXiv.2202.00449

L. Sixt, M. Granz, T. Landgraf, When explanations lie: why many modified BP
attributions fail, in: Proceedings of the 37th International Conference on Ma-
chine Learning (ICML), PMLR, 2020, pp. 9046-9057. ISSN: 2640-3498. https:
//doi.org/10.48550/arXiv.1912.09818

A. Hedstrom, L. Weber, D. Krakowczyk, D. Bareeva, F. Motzkus, W. Samek, S. La-
puschkin, M.M.C. Héhne, Quantus: an explainable Al toolkit for responsible eval-
uation of neural network explanations and beyond, J. Mach. Learn. Res. 24 (34)
(2023) 1-11. https://doi.org/10.48550/arXiv.2202.06861

U. Schlegel, H. Arnout, M. El-Assady, D. Oelke, D.A. Keim, Towards a rigorous
evaluation of XAI methods on time series, in: 2019 IEEE/CVF International Con-
ference on Computer Vision Workshop (ICCVW), IEEE, Seoul, Korea (South), 2019,
pp. 4197-4201. https://doi.org/10.1109/ICCVW.2019.00516

M. Sundararajan, A. Taly, Q. Yan, Axiomatic attribution for deep networks, in:
Proceedings of the 34th International Conference on Machine Learning, 70 of
ICML’17, JMLR.org, Sydney, NSW, Australia, 2017, pp. 3319-3328.

P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K.T. Schiitt, S. Dahne, D.
Erhan, B. Kim, The (un)reliability of saliency methods, in: W. Samek, G. Mon-
tavon, A. Vedaldi, L.K. Hansen, K.-R. Miiller (Eds.), Explainable AIL: Interpret-
ing, Explaining and Visualizing Deep Learning, 11700 of Lecture Notes in Com-
puter Science, Springer International Publishing, Cham, 2019, pp. 267-280. https:
//doi.org/10.1007/978-3-030-28954-6_14

R.R. Hoffman, S.T. Mueller, G. Klein, J. Litman, Metrics for Explainable AI: Chal-
lenges and Prospects, arXiv preprint (arXiv:1812.04608v2 [cs.Al]) (2019). https:
//doi.org/10.48550/arXiv.1812.04608

A.R. Troncoso-Garcia, M. Martinez-Ballesteros, F. Martinez-Alvarez, A. Troncoso,
A new approach based on association rules to add explainability to time series fore-
casting models, Inf. Fusion 94 (2023) 169-180. https://doi.org/10.1016/].inffus.
2023.01.021

S. Deng, C. Aldrich, X. Liu, F. Zhang, Explainability in reservoir well-logging eval-
uation: comparison of variable importance analysis with shapley value regression,
SHAP and LIME, IFAC-PapersOnLine 58 (22) (2024) 66-71. https://doi.org/10.
1016/j.ifacol.2024.09.292

R. Roscher, B. Bohn, M.F. Duarte, J. Garcke, Explainable machine learning for
scientific insights and discoveries, IEEE Access 8 (2020) 42200-42216. https://
doi.org/10.1109/ACCESS.2020.2976199

A. Binder, M. Bockmayr, M. Hégele, S. Wienert, D. Heim, K. Hellweg, M.
Ishii, A. Stenzinger, A. Hocke, C. Denkert, K.-R. Miiller, F. Klauschen, Mor-
phological and molecular breast cancer profiling through explainable machine
learning, Nat. Mach. Intell. 3 (4) (2021) 355-366. https://doi.org/10.1038/
542256-021-00303-4

J.V. Jeyakumar, J. Noor, Y.-H. Cheng, L. Garcia, M. Srivastava, How can I explain
this to you? An empirical study of deep neural network explanation methods, in:
Advances in Neural Information Processing Systems (NeurIPS 2020), 33, 2020,
pp. 4211-4222.

K. Fauvel, V. Masson, E. Fromont, A performance-explainability framework to
benchmark machine learning methods: application to multivariate time series clas-
sifiers, in: Proceedings of the Workshop on XAI co-located with the 29th Inter-
national Joint Conference on Artificial Intelligence and the 17th Pacific Rim In-
ternational Conference on Artificial Intelligence (IJCAI-PRICAI), 2020, pp. 1-8.
https://doi.org/10.48550/arXiv.2005.14501

A.A. Ismail, M. Gunady, H.C. Bravo, S. Feizi, Benchmarking deep learning inter-
pretability in time series predictions, in: Proceedings of the 34th International
Conference on Neural Information Processing Systems (NeurIPS), 2020, pp. 1-32.
https://doi.org/10.48550/arXiv.2010.13924

16

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

911

[92]

[93]

[94]

[95]

[96]

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Knowledge-Based Systems 330 (2025) 114599

J. DeYoung, S. Jain, N.F. Rajani, E. Lehman, C. Xiong, R. Socher, B.C. Wallace,
ERASER: a benchmark to evaluate rationalized NLP models, in: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, Association
for Computational Linguistics, Online, 2020, pp. 4443-4458. https://doi.org/10.
18653/v1/2020.acl-main.408

E. Amparore, A. Perotti, P. Bajardi, To trust or not to trust an explanation: using
LEAF to evaluate local linear XAI methods, PeerJ Comput. Sci. 7 (2021) e479.
https://doi.org/10.7717 /peerj-cs.479

C. Agarwal, S. Krishna, E. Saxena, M. Pawelczyk, N. Johnson, I. Puri, M. Zitnik,
H. Lakkaraju, OpenXAI: towards a transparent evaluation of model explanations,
Adv. Neural Inf. Process. Syst. 35 (2022) 15784-15799.

C. Agarwal, O. Queen, H. Lakkaraju, M. Zitnik, Evaluating explainability for graph
neural networks, Sci. Data 10 (1) (2023) 144. Publisher: Nature Publishing Group.
https://doi.org/10.1038/5s41597-023-01974-x

X. Li, M. Du, J. Chen, Y. Chai, H. Lakkaraju, H. Xiong, M4: a unified XAI benchmark
for faithfulness evaluation of feature attribution methods across metrics, modali-
ties and models, in: Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Curran Associates Inc., Red Hook, NY,
USA, 2023, pp. 1630-1643.

J.R. Lee, S. Emami, M.D. Hollins, T.C.H. Wong, C.I. Villalobos Sanchez, F. Toni, D.
Zhang, A. Dejl, XAI-Units: benchmarking explainability methods with unit tests, in:
Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Trans-
parency, FAccT ’25, Association for Computing Machinery, New York, NY, USA,
2025, pp. 2892-2905. https://doi.org/10.1145/3715275.3732186

S. Wachter, B. Mittelstadt, C. Russell, Counterfactual explanations without opening
the black box: automated decisions and the GDPR, Harv. J. Law Technol. 31 (2)
(2018) 841-887. https://doi.org/10.2139/ssrn.3063289

M.M. Richter, R.O. Weber, Case-Based Reasoning: A Textbook, Springer,
Berlin, Heidelberg, Berlin, Heidelberg, 2013. https://doi.org/10.1007/
978-3-642-40167-1

E.M. Kenny, M.T. Keane, Explaining deep learning using examples: optimal fea-
ture weighting methods for twin systems using post-hoc, explanation-by-example
in XAI, Knowledge-Based Syst. 233 (2021) 107530. https://doi.org/10.1016/j.
knosys.2021.107530

C. Nugent, P. Cunningham, A case-based explanation system for black-box
systems, Artif. Intell. Rev. 24 (2) (2005) 163-178. https://doi.org/10.1007/
510462-005-4609-5

H. Koolen, I. Coliban, Flight Progress Messages Document, Technical Report, EU-
ROCONTROL, Brussels, Belgium, 2020.

D. Rankin, M. Black, R. Bond, J. Wallace, M. Mulvenna, G. Epelde, Reliability of
supervised machine learning using synthetic data in health care: model to preserve
privacy for data sharing, JMIR Med. Inform. 8 (7) (2020) e18910. https://doi.org/
10.2196/18910

AF. Kalay, Generating Synthetic Data with Locally Estimated Distributions for
Disclosure Control, arXiv preprint (arXiv:2210.00884v2 [stat.CO]) (2025). https:
//doi.org/10.48550/arXiv.2210.00884

Y. Zhang, J.L. Dong, B. Xue, Y. Xiong, S. Gupta, M.V. Segbroeck, N. Shara, P.
McGarvey, Exploring the utilization of synthetic data in unsupervised cluster-
ing for opioid misuse analysis, AMIA Annu. Symp. Proc. 2024 (2025) 1313-
1322.

B. Li, P. Wang, P. Sun, R. Meng, J. Zeng, G. Liu, A model for determining the optimal
decommissioning interval of energy equipment based on the whole life cycle cost,
Sustainability 15 (6) (2023) 5569. https://doi.org/10.3390/su15065569

J. Paparrizos, F. Yang, H. Li, Bridging the Gap: A Decade Review of Time-Series
Clustering Methods, arXiv preprint (arXiv:2412.20582v1 [cs.LG]) (2024). https:
//doi.org/10.48550/arXiv.2412.20582

S. Aghabozorgi, A. Seyed Shirkhorshidi, T. Ying Wah, et al., Time-series
clustering—A decade review, Inf. Syst. 53 (2015) 16-38. https://doi.org/10.1016/
j.15.2015.04.007

A. Gonsek, M. Jeschke, S. Ronnau, O.J.N. Bertrand, From paths to routes: a method
for path classification, Front. Behav. Neurosci. 14 (2021). Publisher: Frontiers.
https://doi.org/10.3389/fnbeh.2020.610560

T.S. Madhulatha, An overview on clustering methods, IOSR J. Eng. 02 (04) (2012)
719-725. https://doi.org/10.9790/3021-0204719725

C. Yuan, H. Yang, Research on k-value selection method of k-means clustering al-
gorithm, J. — Multidiscip. Sci. J. 2 (2) (2019) 226-235. https://doi.org/10.3390/
j2020016

E. Schubert, Stop using the elbow criterion for k-means and how to choose the
number of clusters instead, ACM SIGKDD Explor. Newsl. 25 (1) (2023) 36-42.
https://doi.org/10.1145/3606274.3606278

T. Calinski, J. Harabasz, A dendrite method for cluster analysis, Com-
mun. Stat. - Theory Methods 3 (1) (1974) 1-27. https://doi.org/10.1080/
03610927408827101

C.A. Sugar, G.M. James, Finding the number of clusters in a dataset: an information-
theoretic approach, J. Am. Stat. Assoc. 98 (463) (2003) 750-763. https://doi.org/
10.1198/016214503000000666

1.J. Good, Explicativity: a mathematical theory of explanation with statistical ap-
plications, Proc. R. Soc. Lond. A 354 (1678) (1977) 303-330. https://doi.org/10.
1098/rspa.1977.0069

J. Lin, Divergence measures based on the shannon entropy, IEEE Trans. Inf. Theory
37 (1) (1991) 145-151. https://doi.org/10.1109/18.61115

T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, in: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM, San Francisco California USA, 2016, pp. 785-794. https://doi.
org/10.1145/2939672.2939785


https://doi.org/10.1145/3583558
https://doi.org/10.1145/3583558
https://doi.org/10.48550/arXiv.2211.05667
https://doi.org/10.48550/arXiv.2211.05667
https://doi.org/10.48550/arXiv.2007.07584
https://doi.org/10.48550/arXiv.2007.07584
https://doi.org/10.48550/arXiv.2007.07584
https://doi.org/10.48550/arXiv.2007.07584
https://doi.org/10.48550/arXiv.1802.07814
https://doi.org/10.48550/arXiv.1802.07814
https://doi.org/10.1609/aaai.v33i01.33019919
https://doi.org/10.1609/aaai.v33i01.33019919
https://doi.org/10.1609/aaai.v33i01.33019919
https://doi.org/10.1609/aaai.v33i01.33019919
https://doi.org/10.24963/ijcai.2019/544
https://doi.org/10.24963/ijcai.2019/544
https://doi.org/10.24963/ijcai.2019/544
https://doi.org/10.24963/ijcai.2019/544
https://doi.org/10.48550/arXiv.2006.05656
https://doi.org/10.48550/arXiv.2006.05656
https://doi.org/10.48550/arXiv.2006.05656
https://doi.org/10.48550/arXiv.2006.05656
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.48550/arXiv.2202.00449
https://doi.org/10.48550/arXiv.2202.00449
https://doi.org/10.48550/arXiv.2202.00449
https://doi.org/10.48550/arXiv.2202.00449
https://doi.org/10.48550/arXiv.1912.09818
https://doi.org/10.48550/arXiv.1912.09818
https://doi.org/10.48550/arXiv.1912.09818
https://doi.org/10.48550/arXiv.1912.09818
https://doi.org/10.48550/arXiv.2202.06861
https://doi.org/10.48550/arXiv.2202.06861
https://doi.org/10.1109/ICCVW.2019.00516
https://doi.org/10.1109/ICCVW.2019.00516
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0062
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0062
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0062
https://doi.org/10.1007/978-3-030-28954-6_14
https://doi.org/10.1007/978-3-030-28954-6_14
https://doi.org/10.1007/978-3-030-28954-6_14
https://doi.org/10.1007/978-3-030-28954-6_14
https://doi.org/10.48550/arXiv.1812.04608
https://doi.org/10.48550/arXiv.1812.04608
https://doi.org/10.48550/arXiv.1812.04608
https://doi.org/10.48550/arXiv.1812.04608
https://doi.org/10.1016/j.inffus.2023.01.021
https://doi.org/10.1016/j.inffus.2023.01.021
https://doi.org/10.1016/j.inffus.2023.01.021
https://doi.org/10.1016/j.inffus.2023.01.021
https://doi.org/10.1016/j.ifacol.2024.09.292
https://doi.org/10.1016/j.ifacol.2024.09.292
https://doi.org/10.1016/j.ifacol.2024.09.292
https://doi.org/10.1016/j.ifacol.2024.09.292
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1038/s42256-021-00303-4
https://doi.org/10.1038/s42256-021-00303-4
https://doi.org/10.1038/s42256-021-00303-4
https://doi.org/10.1038/s42256-021-00303-4
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0068
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0068
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0068
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0068
https://doi.org/10.48550/arXiv.2005.14501
https://doi.org/10.48550/arXiv.2005.14501
https://doi.org/10.48550/arXiv.2010.13924
https://doi.org/10.48550/arXiv.2010.13924
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.7717/peerj-cs.479
https://doi.org/10.7717/peerj-cs.479
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0073
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0073
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0073
https://doi.org/10.1038/s41597-023-01974-x
https://doi.org/10.1038/s41597-023-01974-x
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0075
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0075
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0075
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0075
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0075
https://doi.org/10.1145/3715275.3732186
https://doi.org/10.1145/3715275.3732186
https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.1007/978-3-642-40167-1
https://doi.org/10.1007/978-3-642-40167-1
https://doi.org/10.1007/978-3-642-40167-1
https://doi.org/10.1007/978-3-642-40167-1
https://doi.org/10.1016/j.knosys.2021.107530
https://doi.org/10.1016/j.knosys.2021.107530
https://doi.org/10.1016/j.knosys.2021.107530
https://doi.org/10.1016/j.knosys.2021.107530
https://doi.org/10.1007/s10462-005-4609-5
https://doi.org/10.1007/s10462-005-4609-5
https://doi.org/10.1007/s10462-005-4609-5
https://doi.org/10.1007/s10462-005-4609-5
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0081
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0081
https://doi.org/10.2196/18910
https://doi.org/10.2196/18910
https://doi.org/10.2196/18910
https://doi.org/10.2196/18910
https://doi.org/10.48550/arXiv.2210.00884
https://doi.org/10.48550/arXiv.2210.00884
https://doi.org/10.48550/arXiv.2210.00884
https://doi.org/10.48550/arXiv.2210.00884
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0083
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0083
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0083
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0083
https://doi.org/10.3390/su15065569
https://doi.org/10.3390/su15065569
https://doi.org/10.48550/arXiv.2412.20582
https://doi.org/10.48550/arXiv.2412.20582
https://doi.org/10.48550/arXiv.2412.20582
https://doi.org/10.48550/arXiv.2412.20582
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.3389/fnbeh.2020.610560
https://doi.org/10.3389/fnbeh.2020.610560
https://doi.org/10.9790/3021-0204719725
https://doi.org/10.9790/3021-0204719725
https://doi.org/10.3390/j2020016
https://doi.org/10.3390/j2020016
https://doi.org/10.3390/j2020016
https://doi.org/10.3390/j2020016
https://doi.org/10.1145/3606274.3606278
https://doi.org/10.1145/3606274.3606278
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1198/016214503000000666
https://doi.org/10.1198/016214503000000666
https://doi.org/10.1198/016214503000000666
https://doi.org/10.1198/016214503000000666
https://doi.org/10.1098/rspa.1977.0069
https://doi.org/10.1098/rspa.1977.0069
https://doi.org/10.1098/rspa.1977.0069
https://doi.org/10.1098/rspa.1977.0069
https://doi.org/10.1109/18.61115
https://doi.org/10.1109/18.61115
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

M.R. Islam et al.

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

C. Huertas, Gradient Boosting Trees and Large Language Models for Tabular Data
Few-Shot Learning, arXiv preprint (arXiv:2411.04324v1 [cs.LG]) (2024). https://
doi.org/10.48550/arxiv.2411.04324

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, LightGBM:
a highly efficient gradient boosting decision tree, in: Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems (NeurIPS), 30,
2017, pp. 1-9.

M. Claesen, B. De Moor, Hyperparameter Search in Machine Learning, arXiv
preprint (arXiv:1502.02127v2 [cs.LG]) (2015). https://doi.org/10.48550/arxiv.
1502.02127

R.K. Halder, M.N. Uddin, M.A. Uddin, S. Aryal, A. Khraisat, Enhancing k-
nearest neighbor algorithm: a comprehensive review and performance analy-
sis of modifications, J. Big Data 11 (1) (2024) 113. https://doi.org/10.1186/
s40537-024-00973-y

A. Shrikumar, P. Greenside, A. Kundaje, Learning important features through prop-
agating activation differences, in: Proceedings of the 34th International Conference
on Machine Learning (ICML), ICML’17, JMLR.org, Sydney, NSW, Australia, 2017,
pp. 3145-3153. https://doi.org/10.48550/arXiv.1704.02685

K. Jarvelin, J. Kekéldinen, Cumulated gain-based evaluation of IR techniques, ACM
Trans. Inf. Syst. 20 (4) (2002) 422-446. https://doi.org/10.1145/582415.582418
R. Busa-Fekete, G. Szarvas, T. Elteto, B. Kégl, An apple-to-apple comparison of
learning-to-rank algorithms in terms of normalized discounted cumulative gain, in:
Proceedings of the Workshop on Preference Learning: Problems and Applications in
Al Co-located with the 20th European Conference on Artificial Intelligence (ECAI),
242, los Press, Montpellier, France, 2012, pp. 1-7.

Y. Wang, L. Wang, Y. Li, D. He, T.-Y. Liu, A theoretical analysis of NDCG type rank-
ing measures, in: Proceedings of the 26th Annual Conference on Learning Theory
(COLT), 30, PMLR, 2013, pp. 25-54.

17

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Knowledge-Based Systems 330 (2025) 114599

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in python, J.
Mach. Learn. Res. 12 (85) (2011) 2825-2830.

C. Molnar, Interpretable Machine Learning: A Guide for Making Black Box Models
Explainable, second ed., Munich, Germany, 2022.

Z. Botta-Dukat, Quartile coefficient of variation is more robust than CV for traits
calculated as a ratio, Sci. Rep. 13 (1) (2023) 4671. https://doi.org/10.1038/
s41598-023-31711-8

S. Krishna, T. Han, A. Gu, J. Pombra, S. Jabbari, S. Wu, H. Lakkaraju, The Dis-
agreement Problem in Explainable Machine Learning: A Practitioner’s Perspective,
arXiv preprint (arXiv:2202.01602v3 [cs.LG]) (2022). https://doi.org/10.48550/
arXiv.2202.01602

C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, J.K. Su, This looks like that: deep
learning for interpretable image recognition, in: Advances in Neural Information
Processing Systems, 32, Curran Associates, Inc., 2019, pp. 1-12.

M.T. Keane, E.M. Kenny, The Twin-System Approach as One Generic Solution
for XAI: An Overview of ANN-CBR Twins for Explaining Deep Learning, arXiv
preprint (arXiv:1905.08069v1 [cs.AI]) (2019). https://doi.org/10.48550/arXiv.
1905.08069

D. Leake, Z. Wilkerson, D.J. Crandall, Combining case-based reasoning with
deep learning: context and ongoing case feature learning research, in: Neuro-
Symbolic Learning and Reasoning in the Era of Large Language Models, 2023,

pp. 1-5.


https://doi.org/10.48550/arxiv.2411.04324
https://doi.org/10.48550/arxiv.2411.04324
https://doi.org/10.48550/arxiv.2411.04324
https://doi.org/10.48550/arxiv.2411.04324
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0095
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0095
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0095
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0095
https://doi.org/10.48550/arxiv.1502.02127
https://doi.org/10.48550/arxiv.1502.02127
https://doi.org/10.48550/arxiv.1502.02127
https://doi.org/10.48550/arxiv.1502.02127
https://doi.org/10.1186/s40537-024-00973-y
https://doi.org/10.1186/s40537-024-00973-y
https://doi.org/10.1186/s40537-024-00973-y
https://doi.org/10.1186/s40537-024-00973-y
https://doi.org/10.48550/arXiv.1704.02685
https://doi.org/10.48550/arXiv.1704.02685
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0099
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0099
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0099
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0099
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0099
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0100
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0100
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0100
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0101
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0101
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0101
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0101
https://doi.org/10.1038/s41598-023-31711-8
https://doi.org/10.1038/s41598-023-31711-8
https://doi.org/10.1038/s41598-023-31711-8
https://doi.org/10.1038/s41598-023-31711-8
https://doi.org/10.48550/arXiv.2202.01602
https://doi.org/10.48550/arXiv.2202.01602
https://doi.org/10.48550/arXiv.2202.01602
https://doi.org/10.48550/arXiv.2202.01602
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0103
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0103
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0103
https://doi.org/10.48550/arXiv.1905.08069
https://doi.org/10.48550/arXiv.1905.08069
https://doi.org/10.48550/arXiv.1905.08069
https://doi.org/10.48550/arXiv.1905.08069
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0104
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0104
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0104
http://refhub.elsevier.com/S0950-7051(25)01638-7/sbref0104

	Privacy-preserving ground-truth data for evaluating additive feature attribution in regression models with additive CBR and CQV 
	1 Introduction
	1.1 Innovations
	1.2 Motivation

	2 Background and related work
	2.1 Formal definition
	2.2 XAI methods
	2.3 Evaluation of XAI methods
	2.4 Benchmark datasets
	2.5 Case-based reasoning

	3 Generation of privacy-preserving ground-truth data
	3.1 Selection of original dataset
	3.2 Capturing the data behaviours with density-based clustering
	3.2.1 Density-based clustering
	3.2.2 Selection of appropriate number of clusters
	3.2.3 Refining clusters based on the target variable
	3.2.4 Selection of datasets

	3.3 Synthetic data generation for regression tasks
	3.3.1 Selection of random seed instances
	3.3.2 Perturbation and synthetic data generation

	3.4 Evaluation of synthetic dataset

	4 AddCBR as a baseline for evaluating feature attribution methods
	4.1 Implementation of data model
	4.2 Creating additive CBR
	4.3 Prediction performance of AddCBR
	4.4 Local and global assessment on AddCBR
	4.4.1 Hypotheses
	4.4.2 Results
	4.4.3 Discussion


	5 Evaluation of feature attribution methods with CQV and domain-specific aspects
	5.1 Implementation of feature attribution methods
	5.2 Evaluation on feature ranking
	5.3 Evaluation on feature attribution
	5.4 Evaluation on feature impact

	6 Conclusion and future works


